48 ABSTRACTS - MEETING OF THE CZECH AND SLOVAK STRUCTURAL BIOLOGISTS
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The B. subtilis spollSA gene encodes a 248-residue protein
containing three predicted transmembrane domains [2]
with the last two-thirds of protein being located in the cyto-
plasm. The spolISB gene codes for a hydrophilic 56-resi-
due protein. None of these proteins shares any sequentional
similarity to a protein of known function, providing no clue
to their function and evolutionary origin. The spolISB
translation start codon overlaps the spolISA translation
stop codon what is a strong indication that the two genes
constitute an operon [1].

A null mutation in spolISB leads to the strong
sporulation defect, whereas disruption of either spolISA or
whole spollS locus has no effect on sporulation. Alto-
gether, this facts indicates that a) SpolISA prevents normal
progression of the sporulation process; b) SpolISB neutral-
izes the action of SpollISA; and c) spollS locus does not
play essential role in sporulation process. The strain carry-
ing the spolISB null allele does not exhibit any obvious de-
fect during exponential growth. This immunity of
exponentially growing cells to the absence of Spo/ISB most
likely reflects the existence of a threshold concentration
below which SpolISA does not significantly impair cell vi-
ability, since the induced expression of additional spolISA4
gene copy led to rapid drop in optipcal density of exponen-
tial phase cell [1].

Since it has structural features of an integral membrane
protein, SpollISA could act as a holin and allow some
endolysin to gain access to the peptidoglycan [3]. Local
solubilization of the cell wall would lead to membrane dis-
ruption and consequently to the large plasmolysis zones
which were observed by electron microscopy [1]. How-
ever, SpolISA does not show any similarity to known
holins and is significantly larger than holins identified so
far [3]. It is therefore quite possible that the cytoplasmic
membrane itselfis the target of the toxic action of SpolISA.

In our work we over-expressed cytosolic part of
SpollSA His-tag fusion protein together with intact
SpolISB protein in Escherichia coli. The both proteins
were purified using single step metal chelate affinity chro-
matography, and therefore isolated proteins formed stable
complex, which indicates their specific interactions. The
gel filtration and electrophoresis experiments showed that
the most abundant form of the complex is oligomer consist-
ing of two SpolISA and two SpolISB molecules. This ob-
servation confirms the results gain using genetic
complementation experiments, which predicted that
SpollA acts as an oligomer [1]. The purified
SpolISA-SpolISB protein complex was used for crystalli-
zation trials.
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Pyranose 2-oxidase (P20, EC 1.1.3.10), a fungal
periplasmic homotetrameric flavoprotein (~300 kDa), has
received increased attention due to its potential analytical
and biotechnological applications [1]. This enzyme cata-
lyzes C-2/C-3 oxidation of numerous sugars to their corre-
sponding dicarbonyl derivatives (aldos-2-uloses or
glycosid-3-uloses), accompanied with the reduction of
flavin adenine dinucleotide (FAD), an obligatory cofactor.
P20 has a great biotechnological potential as a catalyst in
the key step of C-2 oxidation of D-glucose and D-galactose
in the production of modern low-caloric sweeteners
D-fructose and D-tagatose.

Our research on the P20 from the fungus Trametes
multicolor followed three subjects. The first one was the
study of the enzyme substrate specificity and characteriza-
tion of its reaction products by spectral analyses (NMR,
FAB mass spectrometry) [2,3]. Further, we applied
MALDI mass spectrometry with post-source decay (PSD)
analysis to determine sequence segments suitable for de-
signing PCR primers for cloning cDNA corresponding to
the P20 gene [4]. Finally, we elucidated the structure of the
P20 flavin-binding domain, which is of importance for un-
derstanding the enzyme reaction mechanisms and possible
optimized application. The combination of PSD-MALDI
MS and electrospray ion trap mass spectrometry (ESI
IT-MS) on the isolated flavopeptide identified flavo-
peptide sequence, flavin type and flavin linkage site. The
type of the aminoacyl flavin covalent link was determined
by NMR spectroscopy resulting in the structure STXW
with X = 8a-(NV-histidyl)-FAD [5].
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