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Introduction 
The material in the previous section is concerned primarily with the origin of diffraction 
peaks and the application of the reciprocal lattice to the interpretation of peak positions.  This 
section is concerned primarily with the other aspect of X-ray diffraction data – the intensity 
of the diffraction peaks and how variations in those intensities are related to the chemistry 
and atomic arrangement or crystal structure of the analyzed material.  This section concludes 
the basic theory of X-ray diffraction.  Although the balance of the course will be concerned 
with use of the powder diffractometer to acquire and interpret experimental data, the theory 
is an essential element of successful practical application.   

Material in this section is taken from a variety of sources, primarily Jenkins and Snyder 
(1996) and Nuffield (1966), supplemented by notes from a short course on powder 
diffraction taken by the author at the International Center for Diffraction Data (ICDD) during 
the summer of 2002.   

Intensity Variations in X-ray Powder Data 

Overview 
The position of diffraction peaks and the d-spacings that they represent provide information 
about the location of lattice planes in the crystal structure.  Each peak measures a d-spacing 
that represents a family of lattice planes.  Each peak also has an intensity which differs from 
other peaks in the pattern and reflects the relative strength of the diffraction.  In a diffraction 
pattern, the strongest peak is, by convention, assigned an intensity value of 100, and other 
peaks are scaled relative to that value.  Although peak height may be used as a qualitative 
measure of relative intensity, the most accurate measure of intensity relationships in a pattern 
is to measure the area (minus background) under the peaks.   

Variations in measured intensity are related chiefly to variations in the scattering intensity of 
the components of the crystal structure – the atoms, molecules – and their arrangement in the 
lattice.  Some of the most dramatic variations are related to interference between diffractions 
produced in the lattice; these can produce systematic extinctions or greatly reduced 
intensities of peaks from certain lattice planes.   

Scattering 
In diffraction, we are concerned with coherent scattering, that is, the scattering in which the 
incident X-rays interact with a target atom, exciting it and causing it to be a secondary point 
source of X-rays of the same energy (wavelength).  The intensity of that scattering is the 
result of a variety of processes the sum of which results in scattering which “looks” like it 
comes from the atom as a whole.   

Scattering by an Electron  
An electron will oscillate in phase with an x-ray beam according to the following equation 
(called the Thompson equation after J.J. Thompson who demonstrated the relationship in 
1906):   
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where I0 is the intensity of the incident beam; e the charge on the electron; me the mass of the 
electron; c the speed of light; and r the distance from the scattering electron to the detector 
(with the r2 term in the denominator expressing the inverse square law).  Clearly (by the 
second term) the scattered energy from a single electron is quite low.  Third term, involving 
the cosine function, is called the polarization factor because it indicates that the incoming 
non-polarized x-ray is polarized by the scattering process, resulting in a directional variation 
in the scattered intensity.   

Scattering by an Atom  
Scattering by an atom is essentially the sum of the scattering of the electron “cloud” around 

the nucleus.  

The process is illustrated in the 
simplified diagram at left (Fig. 
3.12 from Jenkins and Snyder, 
1996).  Scattering from each 
electron follows the Thompson 
equation.  Because of the 
distance between electrons 
scattering within the atom and 
the fact that the x-ray 
wavelength is of the same order 
as the atomic dimensions, there 
will be path differences between 
the scattered waves.  These 
differences will always be less 
than one wavelength, so the 
interference will always be 
partially destructive.   

This phenomenon is called the 
nction is normalized in un

the amount of scattering occurring from a single electron in the Thompson equation.  At zero 
degrees, f

atomic scattering factor, described by the quantity f0.  This fu its of 

nd λ 

 integrating scattering over the electron 

bles as a 
re 

0 will be equal to the number of electrons surrounding the atom or ion.  At higher 
scattering angles, the factor will be less.  f0 is generally expressed as a function of sinθ  a
as shown below for Cu (Fig. 3.13 from Jenkins and Snyder, 1996).    

The actual shape of the f0 function is calculated by

 

distribution around an atom.  These calculations involve very complex quantum 
approximation methods and have been compiled in the International Tables for 
Crystallography (Vol. 3).  Atomic scattering factors are usually given either in ta
function of (sinθ)/λ or as coefficients of polynomials fit to curves like those shown in Figu
3.15 (from Nuffield, 1966).    
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Anomalous s
or anomalous 
dispersion occurs 
when the incident x
ray energy is sufficien
to cause photoelectric 
x-ray production in a 
target atom.  The 
process is called 
fluorescence.  This
phenomenon is 
responsible for 
“absorption edge
phenomenon that 
occurs with certain 
elements when 
interacting with 
particular wavele
x-rays.  In this process 
a characteristic x-ray 
photon is produced in 
the target; subsequent 
interaction produces 
coherent x-rays which 
et result is a reduction 

of the scattered intensity from the element.    

This “absorption edge” phenomenon is respon

are slightly out of phase with other coherently scattered x-rays.  The 

materials containing certain elements.  The table below lists the common x-ray source anod
and the elements for which this absorption effect occurs.   

Target (Anode) λ of Kα1 in Elem
Element Angstr ms strong fluoresce
Cr 2.2909 Ti, Sc, Ca 

Fe 1.9373 Cr, V, Ti 

Co 1.7902 Mn, Cr, V 

Cu 1.5418 Co, Fe, Mn 

Mo 0.7107 Y, Sr, Rb 

Quantitatively, t lculation of the on to f0 involves a real (∆f’) and imaginary he ca  correcti
(∆f’’) term.  The effective scattering will be:  

22
0

2 ( ff ∆+= )() ff ′′∆+′  
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Values for the coefficients are tabulated in the International Tables for Crystallography.  In 
actual practice, these corrections are only significant for those elements for which absorption 

onal amplitude of the atom will have an effect on x-ray scattering.  The 
 is described by the following relationship: 

edge fluorescence effects are significant.   

Thermal Motion 
The thermal vibrati
effective scattering
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B is the Debye-Waller temperature factor and is defined as: .   U2 is the mean-
square amplitude of vibration of an atom, and is directly related to the thermal energy (kT) 

 in 

228 UB π=

available with other terms related to atomic mass and the strength of interatomic bonds.  
Qualitatively, as T increases (other factors constant), B will increase.  When B = 0, the 
scattering will follow the Thompson equation.  As B increases, scattering will be reduced
amplitude.  This relationship is shown in Fig 3.14 (Jenkins and Snyder, 1996) below:  

 
Unlike other scattering factors, the computation of the temperature factor is extremely 
complex, based on tensor relationships on which there is not widespread general agreement.   

ifferent elements whose 
oint group symmetry 

 

ks 
 are.  

Intensity, on the other hand, is definitely related to the composition because the intensity of 

Scattering of X-Rays by a Unit Cell: The Structure Factor 
The unit cells of most crystalline substances contain a several d
atoms are arranged in a complex motif defined by a variety of p
elements and replicated by translational elements into a three-dimensional lattice array.  

The structure may be thought of as repeating planar arrays of atoms.  The geometry of pea
is related fundamentally to positions of those atoms with little regard to what those atoms
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scattering is related to atomic scattering.  The structure factor is a means of grouping the 
atoms in the unit cell into planar elements, developing the diffraction intensities from each of 
those elements and integrating the results into the total diffraction intensity from each dhkl 
plane in the structure.   

We can define F(hkl) as the structure factor for the (hkl) plane.  A particular (hkl) plane is the 
result of reflections from a series of parallel atomic planes where f1, f2, f3, etc. are the 
amplitudes of the respective atomic planes.  The phase factors (φ ) are the repeat distances N
between the atomic planes measured from a common origin.  The general expression for the 
structure factor for a (hkl) is:  

),()( NNN
fhklF φΣ=  

where fN is the f value of the Nth kind of atom in the cell, and φN is its phase factor.  This 
relationship is most easily visualized as an addition of vectors as shown in the diagram below 
(Fig. 3-16 from Nuffield, 1966).   

and R are arranged in a 
 
 

 

vectors.  Though the 

sor 

l to 

ation of 

 or any other text on x-ray 

In this diagram, three 
different atoms, P, Q 

reader is referred to Nuffield (1966), Jenkins and Snyder (1996)
diffraction.   

two-dimensional lattice
repeating at interval dhkl
(Fig. 3-16a).   Nuffield 
presents the structure 
factor in slightly 
different terms as shown
by the expressions for 
φP, φQ, and φR.   

F(hkl) is shown as the 
sum of the component 

mathematics of the 
actual calculations in 
three dimensions 
involve complex ten
operations, it is 
conceptually usefu
understand the structure 
factor as a summ
directional vectors.   

For a more rigorous 
treatment of the 
structure factor, the 
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Extinction 
In certain lattice types, the arrangement and spacing of lattice planes produces diffractions 

 classes of planes in the structure that are always exactly 180° out of phase 
 

 

from certain
producing a phenomenon called extinction.  In these cases, certain classes of reflections from
valid lattice planes will not produce visible diffractions.   For example, for a body-centered
cubic cell, for each atom located at x, y, z there will be an identical atom located at x+½, 
y+½, z+½.  The structure factor Fhkl is represented by the following equation.    
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While complicated, it is noted that if h + k + l is even, then the second term will contain an 
integer, n, in it.  An integral number of 2π’s will have no effect on the value of this term and 
the equation reduces to: 

[ ]m

lzkyhxif ++= Σ (2exp2
2/

πF  jjjn
j

hkl
=1

If h + k + l is odd, however, the second term will contain an integer with a 2π(n/2) term; here 
n is any integer and represents a full rotation of the scattering vector.  This causes the second 
term to be negative, and the net result is there is no diffracted intensity (since Fhkl = 0).  This 
condition is called a systematic extinction.  The table below lists the systematic extinction 
conditions due to translational symmetry elements1:  

Symmetry Extinction Conditions 

P none 

C hkl; h + k = odd 

B hkl; h + l = odd 

A hkl; k + l = odd 

I hkl; h + k + l = odd 

F hkl; h, k, l mixed even and odd 

21 b  ║ 0k0: k = odd 

b⊥c  h0l: l = odd 

Other systematic extincti  occ uence of rotational operations (screw axes 
and glide planes).   

d to systematic lattice parameters; these are not easily predictable and 
are called accidental extinction.   

                                                

ons can ur as a conseq

Extinctions can also be caused by atomic scattering vectors that happen to cancel each other 
out and are not relate

 
1 P = primitive lattice; C, B, A = side-centered on c-, b-, a-face; I = body centered; F = face centered (001)  
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Summary of Factors Affecting Relative Intensity of Bragg Reflections 
By considering all of the factors affecting the relative intensity diffractions produced by the 
lattice planes of a crystal structure, it is possible to calculate a theoretical diffraction pattern 

 

  

d 
actor will always 

tems, a single family of planes may be duplicated many times 
ch “duplicate” will add to the intensity of the diffraction.  As 

for virtually any crystalline material.  The ICDD database contains over 40,000 patterns 
calculated based on these factors, and the Inorganic Crystal Structure Database (ICSD) 
includes the calculated patterns and all of the detailed crystal structure data used as a base for
detailed pattern refinements done on experimental data.  We will not actually do these 
calculations, but it is important to be aware of these factors when you interpret your data.
The factors are summarized in the following sections.   

Multiplicity of Bragg Planes 
The number of identically spaced planes cutting a unit cell in a particular hkl family is calle
the plane multiplicity factor.  For low symmetry systems, the multiplicity f
be low.  For high symmetry sys
by symmetry operations, and ea
an example, each cubic crystal face has a diagonal (110) and an equivalent )101( plane.  
With six faces, there are 12 crystallographic orientations.  The (100) will similarly have 6 
orientations.  Thus, the (110) family will have twice the intensity of the (100) family because 
of the multiplicity factor.   

Multiplicity factors for the various crystal classes and planes are given in Table 3.3 (from 
Jenkins and Snyder, 1996) below:  

 
The Lorentz Factor 
When each lattice point on the reciprocal lattice intersects the diffractometer circle, a 
diffraction related to the plane represented will occur.  The diffractometer typically moves at 

 amount of time each point is in the diffracting condition will be a 
 As angles increase, the intersection approaches a tangent to 

ay be 

 

ccur which is related to a phase-shifted reflection which can occur from 
the underside of very strongly reflecting planes.  Directed towards the incident beam but 

a constant 2θ rate, the
function of the diffraction angle. 
the circle; thus at higher angles, more time is spent in the diffracting condition.  This m
corrected by inserting the term I/(sin2θ cosθ) into the expression for calculating diffraction 
intensities; this is called the Lorentz factor.  In practice, this is usually combined with the
atomic scattering polarization term (Thompson equation) and called the Lorentz polarization 
(Lp) correction.   

Extinction 
In addition to systematic extinctions related to crystal structure, another extinction 
phenomenon can o
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always 180° out of phase with it, the net effect is to reduce the intensity of the incident beam, 

t by thermally shocking the 
this 

eam into the specimen.  In general, with a Bragg-Brentano diffractometer, the 
 sample irradiated at low 2θ values have less depth of penetration.  At higher 2θ 

ese 

ls preferentially interact with the beam causing 
orption and intensities not representative of the proportions of the phases.  

 to 
on angle of the monochromator (θm) is added to the (Lp) correction.  It should be 

PG) monochromators, the curved crystal geometry tends to 

 

nd is done regularly to produce the “calculated 
 Diffraction File database.  This section is directly extracted 

and secondarily the intensity of the diffraction from that plane.   

A similar phenomenon will reduce the penetration of the beam into strongly diffracting 
planes by reducing the primary beam energy which is redirected into the diffracted beam.   

Corrections have been devised that require knowledge of the diffraction domain size, but this 
is very difficult to ascertain.  Usually attempts to reduce this effec
sample, inducing strains that reduce or eliminate the effect.  The simplest way to reduce 
effect is to make sure that particle size is uniformly fine.  The effect will be reduced in 
samples in which the sizes of diffracting crystallites are consistently less than 1 µm, however 
this effect can still reduce the experimental intensities of the strongest reflecting peaks by up 
to 25%.   

Absorption 
Absorption phenomena related to fluorescence effects have already been discussed.  
Absorption also occurs related to the area of a powder specimen and depth of penetration of 
the x-ray b
larger area of
values, the irradiated area will smaller, but depth of penetration greater.  In general, th
tend to be offsetting effects as related to diffracted intensity over the angular range of the 
data collection.  The calculated intensity will include a term for 1/µs where µs is the linear 
absorption coefficient of the specimen.   

Microabsorption 
Microabsorption is a phenomenon that occurs in polyphase samples.  Typically the linear 
absorption coefficient is calculated based the proportions of the phases in the mixture.  
Microabsorption occurs when large crysta
both anomalous abs
The effect is minimized in diffraction experiments by decreasing the crystallite size in the 
specimen.  

Monochromator Polarization 

As noted previously, the diffracted beam is partially polarized by the diffraction process.  A 
crystal monochromator can modify the intensity of the diffracted beam, thus a term related
the diffracti
noted that for pyrolitic graphite (
minimize the intensity loss due to the polarization effect such that the correction term tends 
to over estimate the intensity loss.   

The Intensity Equation 
All of the previous factors affecting the intensity of a diffraction peak may be summarized in
the following equations.  Though we will not actually calculate diffraction patterns with these 
equations in this course, it can be done a
patterns” in the ICDD Powder
from Jenkins and Snyder (1996).   
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The Intensity of diffraction peak from a flat rectangular sample of phase α in a diffractom
with a fixed receiving slit (neglecting air absorption), may be described as: 

eter 
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where: 

• I0 = incident beam intensity 

 = distance from the specimen to the detector 

ation 

 radius 

f the specimen 

Also, K  from the crystal structure of phase 
α:  

• r

• λ = wavelength of the X-radi

• (e2/mec2)2 is the square of the classical electron

• µs = linear attenuation coefficient o

• vα = volume fraction of phase α in specimen 

(hkl)α is a constant for each diffraction reflection hkl

hkl

m
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hkl F

V
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where: 

• Mhkl = multiplicity for reflection hkl of phase α 

α = volume of the unit cell of phase α 

d polarization corrections for the 
the diffracted beam monochromator 

hromator 

Ch e  calculation of a diffraction pattern 
for ta
proced culations. This simple cubic example with two elements in the 

⎛ + 2

• V

• the fraction in parentheses equals the Lorentz an
diffractometer (Lp)hkl, including a correction for 

• 2θ  = the diffraction angle of the monocm

• F(hkl)α = the structure factor for reflection hkl including anomalous scattering and 
temperature effects 

apt r 3 of Jenkins and Snyder (1996) includes a sample
po ssium chloride (KCl).  Students are encourage read the chapter and follow the 

ures used in these cal
unit cell can be handled with relatively simple calculations.  More complex diffraction 
pattern calculations are done with computers and programs specifically written for the 
purpose.   
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Anisotropic Distortions of the Diffraction Pattern 
The figure at below (from Jenkins and Snyder, 1996) schematically illustrates the 

 
 atomic 

position destroying long range 

.  

.  

e 

 have completely 

ossess 

use 
p tive 

phase identification) preferred orientation can be recognized
useful results in spite of it.   

ls exhibit preferred orientation as a characteristic 
 Some types of ceramic magnets, extruded wires, most pressed 
eered films and polymers require manipulating and measuring 

meter 

 be recognized and compensated for when 

progression from atoms to crystalline structure.   

A crystallite comprises a number of cells systematically grouped together to form a
coherently diffracting domain.  If the cells are not identical, and show variations in

order, the material is 
amorphous.  Where individual 
cells are highly ordered, the 
material is called crystalline
The “ideal” situation is that the 
individual crystallites in the 
sample are completely random
When the crystallites take up 
some common orientation, th
specimen is showing preferred 
orientation.   

In general, the most desirable 
analytical situation in a 
specimen is to
random orientation of uniformly 
small crystallites which p
sufficient long range order such 
that each crystallite diffracts 
strongly.  Some types of 
diffraction analysis (i.e., the 
study of clay minerals) make 
es of analysis (i.e., qualita
 and worked around to yield 

Preferred Orientation 
Many natural and engineered materia

of preferred orientation of these crystallites, and in other ty

property of the material. 
powders and many engin
preferred orientation.  This frequently involves the use of a special pole-figure diffracto
to measure a particular single diffraction.   

In general powder diffraction data, preferred orientation is probably the most common cause 
of deviation of experimental diffractometer data from the ideal intensity pattern for the 
phase(s) analyzed.  Preferred orientation can
identifying crystalline phases in a specimen, but is much more difficult to deal with when 
attempting to do quantitative analysis or precise unit cell calculations.   

The most common way of dealing with preferred orientation in a material of known 
composition is to compare the diffraction intensities of the specimen showing preferred 
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orientation with the calculated (random) pattern for the material.  Some data analysis
software (including MDI’s Jade) will adjust data to correct for preferred orientation in a 
specimen when attempting quantitative analysis.   

Crystallite Size 

 

 large size (i.e., thousands of unit cells), the nature diffraction will produce 
only at the precise location of the Bragg angle.  This is because of the 

) 

g.  

e 

For crystallites of
diffraction peaks 
canceling of diffractions by incoherent scattering at other angles by the lattice planes within 
the large crystal structure.  If the particle size is smaller (such that there are insufficient 
lattice planes to effectively cancel all incoherent scattering at angles close to the Bragg angle
the net result will be a broadening of the diffraction peak around the Bragg angle.  This 
phenomenon of widening of diffraction peaks is related to incomplete “canceling” of small 
deviations from the Bragg angle in small crystallites is known as particle size broadenin
Particle size broadening is differentiated from the normal width of diffraction peaks related 
to instrumental effects.  In most cases, particle size broadening will not be observed with 
crystallite sizes larger than 1 µm. The crystallite size broadening (βτ) of a peak can usually b
related to the mean crystallite dimension (τ) by the Scherrer equation:  

θβ
λτ

cos
K

=  
τ

where βτ is the line broadening due to the effect of sm stallites.  Here βτ is given by (B 
– b), B being the breadth of the observed diffraction line at its half-intensity maximum, and b 

 
s, 

r 

s 
nd 

ing 
 

e 

re 

raction pattern obtained from many 
 a

mp” in 

all cry

the instrumental broadening or breadth of a peak that exhibits no broadening beyond the 
inherent instrumental peak width. 
Note that βτ is given in radian
and that K is the shape facto
which typically has a value of 
about 0.9.  The general relation i
shown in Fig. 3.21 (Jenkins a
Snyder, 1996).   

Note that particle size broaden
is not significant at sizes above
10,000 Å (1 µm).  When 
instrumental parameters are 
known (i.e., FWHM values for 
crystallites larger than 1 µm), th
relationship above may be used 
to calculate crystallite sizes as 
small as 10 Å if the structures a
unstrained.   

It is interesting to think of 
particle size broadening when considering the diff
amorphous materials.  Typically these materials (like glass nd plastics) will give an 
extremely broad peak over an angular range of perhaps 10° 2θ that will look like a “hu
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the background.  One can think of this “hump” as an extreme example of particle size
broadening where the short range ordering is on the order of a few angstroms.   

Residual Stress and Strain 

 

o types of diffraction effects.  If the strain is uniform 
) it is called macrostrain and the unit cell distances will become 

 the 

e 

 of 
ompressive forces resulting in a 

t 
 

, 
 

onclusions 
etical” treatment of the 

 including our 

etermination 
it uss 

the practical aspects of x-ray powder diffract

Strain in a material can produce tw
(either tensile or compressive

either larger or smaller resulting in a shift in
diffraction peaks in the pattern.  Macrostrain 
causes the lattice parameters to change in a 
permanent (but possibly reversible) manner 
resulting in a peak shift.  Macrostrains may b
induced by glycolation or heating of clay 
minerals.   

Microstrains are produced by a distribution
tensile and c
broadening of the diffraction peaks.  In some 
cases, some peak asymmetry may be the resul
of microstrain.  Microstress in crystallites may
come from dislocations, vacancies, shear planes
etc; the effect will generally be a distribution of
peaks around the unstressed peak location, and a 
crude broadening of the peak in the resultant 
pattern.  These effects are shown in a very 
generalized way in Figure 3.23 (Jenkins and 
Snyder, 1996).   

 

C
This concludes our “theor
diffraction process,
crystallography review, and aspects of the 
crystal structure (peak positions) d
ies).   In the next several weeks we will disc
ion, and hopefully you will find that the theory 

lurking in the background of your data interpretations will assist greatly in helping to 
understand what your data is telling you.   

and crystal chemistry determination (intens
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