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Introduction 
The utilization of X-ray diffraction for crystallographic analysis relies on a few basic 
principals: 

1. When an incident beam of x-rays interacts with a target material, one of the primary 
effects observed is scattering (spherical radiation of the incident x-rays without 
change in wavelength) of those x-rays from atomic scattering centers within the target 
material.   

2. In materials with some type of regular (i.e., crystalline) structure, x-rays scattered in 
certain directions will be in-phase (i.e., amplified), while most will be out of phase.  
This is the process of diffraction.   

3. Measurement of the geometry of the diffracted x-rays can be used to discern the 
crystal structure and unit cell dimensions of the target material.   

4. The intensities of the amplified x-rays can be used to work out the arrangement of 
atoms in the unit cell.   

For the x-rays to yield useful information about the material structure, the wavelength of the 
incident x-rays should be of that same order of magnitude as the interatomic spacing in the 
crystal structure.  

In this section we will discuss this process of diffraction and how we make use of the 
amplification and attenuation to elucidate the structure of the material(s) in the target.  The 
goal of this section is to give the student sufficient background in the mathematics and 
crystallography underlying the practice of x-ray diffraction so that the analytical results will 
rise above the level of a “black box” technique.   

The first part of the material (including the illustrations) in this section is abstracted from 
Chapter 3 of Nuffield (1966).  The remainder of the material (from Bragg’s Law on and the 
reciprocal lattice) is from Jenkins and Snyder (1996) and Bloss (1994).  I thank Dr. Cornelis 
Klein for his suggestions and assistance with this material.   

The Geometry of Diffraction 
As discussed previously, there are many types 
of secondary effects that occur when x-rays 
interact with matter.  Fortunately the dominant 
effect, and the only one with which we are 
concerned in diffraction, is scattering.  In this 
process, an electron in the path of the x-ray 
beam vibrates with the frequency of the 
incoming radiation thus becomes a secondary 
point source of x-rays of the same energy as the 
incident x-rays (Fig 3-1).  The atom (or its 
nucleus) is not actually the point source of x-
rays, but the electrons surrounding the atom will 
scatter x-rays that appear to emanate from the 
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center of the atom.   

A crystal is a complex but orderly arrangement of atoms, and all atoms in the path of an x-
ray beam scatter x-rays simultaneously.  In general, the scattered x-rays interfere, essentially 
canceling each other out.  In certain specific directions, where the scattered x-rays are “in-
phase” the x-rays scatter cooperatively to form a new wave.  This process of constructive 
interference is diffraction.   

The directions of possible diffractions depend only on the size and shape of the unit cell.  
Certain classes of diffraction are systematically extinguished by lattice centering and by 
certain space-group symmetry elements.  The intensities of the diffracted waves depend on 
the kind and arrangement of atoms in the crystal structure.  It is the study of the geometry of 
diffraction from a crystal that we use to discern the unit cell dimensions; the missing 
diffractions give the symmetry of the crystal. The intensities are used to work out the 
arrangement of atoms.   

The Laue treatment of the geometry of diffraction, developed by Max von Laue in 1912, is 
presented in the following sections because of its geometric clarity and the rigor with which 
the concepts are treated.  As will be discussed, Laue diffraction occurs with polychromatic 
(i.e., “white”) rather than monochromatic radiation that we use with powder diffractometry.   

Later we will present Bragg’s treatment of diffraction that allow diffraction of 
monochromatic x-rays to be treated as reflection.  Bragg’s treatment greatly simplifies the 
mathematics involved in diffraction calculations, and, when combined with the somewhat 
difficult but very useful concept of the reciprocal lattice, simplifies the experimental 
measurement of a diffraction pattern, thus making diffraction a useful routine tool for 
crystallographic studies.   

Diffraction by a Row of Identical, Equally Spaced Atoms 
Consider the 
hypothetical case of a 
one-dimensional row of 
equally spaced atoms.  
Each atom in the path of 
an x-ray beam can be 
considered to be the 
center of radiating, 
spherical wave shells of 
x-rays (Fig 3-2).   

In general the scattered 
waves interfere, cancel 
out and no diffraction 
occurs.  However, when 
the scattered waves 
happen to be in phase, 
they form wave fronts as 

shown in Figure 3-2.  Since wavelengths of λ, 2λ and 3λ will all add to produce a different 
wavefront, we call these first-, second- and third-order wavefronts.  By convention, 
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wavefronts to the right of the diffracted beam is are positive, those to the left are negative 
(i.e., minus first-order, etc.).   

 

 
Figure 3-3. Condition for diffraction from a row 

Figure 3-3 illustrates the conditions for diffraction from a row of atoms.  Two x-rays strike 
the row of periodicity p, at an angle of incidence µ , to form zero-, first- and second-order 
diffractions.  The angle of diffraction, ν , is measured from the left (positive) end of the row.  
The diffracted rays are only in phase if: 

λµν hp ±=− )cos(cos  

where h is the order of the diffraction, in this case 0 or 1.  The condition for diffraction is met 
not only in the directions AD, AE and AF shown in the diagrams, but in all directions that 
make angles of ν , ν ′ and ν ′′ .  These outline three concentric cones as shown in figure 3-3d.  
The cones define the locus of in-phase scattering (diffraction).   
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The expression above is the Laue equation for diffraction by a row.  Note that for zero-order 
diffractions, h = 0, and thatν is equal to µ .  The significance of this is that the incident beam 
is always a line in the zero-order cone.   

When the angle of incidence, µ , is 90°, the Laue equation reduces to: 

λν hp ±=cos  

 

Under this condition the 
angleν  for zero order 
diffractions is also 90° and 
the zero-order cone has the 
shape of a disk.  Higher-
order cones occur in pairs, 
symmetrically placed about 
the zero-order disk (Fig. 3-4) 

 

 

 

Diffraction by a Plane Lattice-Array of Atoms 
A plane lattice-array of atoms (Fig. 3-5) may be defined by two translation periods, a and b, 
in the rows OA and OB and the angle γ.  Basically this extends the concept of diffraction by a 
row to include simultaneous diffraction by two non-parallel rows of atoms.   

The diffraction directions for the row OA comprise a set of concentric cones coaxial with OA 
(Fig 3-5b), and have half-apical angles defined by the Laue equation for a row.  The 
directions for the row OB comprise another set of cones (Fig 3-5c) with a different 
orientation.   

When both diffractions are combined, only at the intersection of the diffraction cones will 
diffraction occur (since the other diffractions will interfere and thus cancel).  Those lines of 
intersection are shown as OX and OY (Fig 3-5d).  The Laue equations for diffraction by the 
plane may be expresses in terms of the Laue equations for the rows OA and OB: 

λµν ha ±=− )cos(cos 11  
λµν kb ±=− )cos(cos 22  

where a and b are periods of the rows 
1µ  and 2µ  are the angles at which the beam meets the rows 

1ν  and 2ν are the diffractions angles referred to the respective rows. 
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Diffraction occurs when the two equations are simultaneously satisfied, i.e., when the angles 

1ν  and 2ν  define the same direction.  As illustrated in Fig 3-5d, when the beam meets the 
plane at such an angle that the hth-order cone about OA intersects the kth-order cone about 
OB along OX and OY.  The angle between OA and OX (and OY) is 1ν  and that between OB 
and OX is 2ν . 

Diffraction by a Three-Dimensional Lattice-Array of Atoms 
 

The diffraction 
directions for a three-
dimensional array may 
be described by three 
sets of diffraction 
cones coaxial with 
three non-coplanar 
reference rows (Fig 3-
6).  In general, each 
cone will form two 
diffraction lines by 
intersection with each 
of the other two 
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resulting in 6 diffraction lines shown as OU and OV (a-c) , OY and OZ (a-b), OW and OX (b-
c).  For the material to diffract (i.e., interfere constructively) the three diffractions OV, OW, 
and OY would need to be coincident, a condition satisfied by the following Laue equations 
only when the diffraction angles, 1ν , 2ν and 3ν  define a common direction: 

λµν ha ±=− )cos(cos 11  
λµν kb ±=− )cos(cos 22  

λµν lc ±=− )cos(cos 33  

The a, b and c directions are fixed (and define the unit cell), thus the ν  values depend on µ  
(the angle at which the beam meets the reference rows) and λ,  (the wavelength of the 
incident radiation).  The possibility of satisfying the three equations simultaneously can be 
increased by varying either µ  or λ during analysis.  In Laue diffraction, the crystal position 
in the beam is fixed, and λ is varied by using continuous (or “white”) radiation while keeping 
the orientation of the crystal fixed.  Monochromatic radiation is used in most modern 
diffraction equipment, so for single crystal analysis the crystal must be progressively moved 
in the X-ray beam to vary µ  sufficiently so that diffractions may be obtained and recorded.  
Below is a sample Laue diffraction pattern (Fig 7.39 from Klein, 2002). 

 

 
 

The table below summarizes the different diffraction methods and the radiation used.  Most 
of this course will be concerned with powder methods.   
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Radiation Method 
White Laue: stationary single crystal 

Monochromatic Powder: specimen is polycrystalline, and therefore 
all orientations are simultaneously presented to the 
beam 

 Rotation, Weissenberg: oscillation,  
De Jong-Bouman: single crystal rotates or oscillates 
about chosen axis in path of beam 

 Precession: chosen axis of single crystal precesses 
about beam direction 

 

Diffraction as Reflection: The Bragg Law 
In 1912, shortly after von Laue’s experiments were published, Sir W.L. Bragg discovered 
that diffraction could be pictured as a reflection of the incident beam from lattice planes.  He 
developed an equation for diffraction, equivalent to the simultaneous solution of the three 
Laue equations by monochromatic radiation, which allows diffraction to be treated 
mathematically as reflection from the diffracting planes.   

Nuffield’s (1966) explanation of the 
Bragg condition is particularly clear.  In 
Figure 3-7 at left, an x-ray beam 
encounters a three dimensional lattice-
array of atoms shown as rows OA, OB 
and OC.  In this case we assume that the 
third-order cone about OA, the second-
order cone about OB and the first-order 
cone about OC intersect in a common line 
to satisfy the Laue condition for 
diffraction.1   

The x-rays scattered by adjacent atoms on 
OA have a path difference of three 
wavelengths, those around OB have a 
path difference of two wavelengths and 
those around OC, one wavelength 
difference.  These three points of coherent 

scatter define a plane with intercepts 2a, 3b, 6c.  The Miller index of this plane (the 
reciprocal of the intercepts) is (321).  Because A’’, B’’ and C’’ are six wavelengths out of 

                                                 
1 Keep in mind that diffraction is not really reflection, but coherent scattering from lattice points, such that each 
point may be thought of as an independent source of x-rays.   Diffraction occurs when the scattered x-rays are in 
phase.   
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phase with those scattered at the origin, they scatter waves that differ by zero wavelengths 
from one another.  

To maintain the same path 
length (and remain in phase) 
the rays must pass through 
the plane (Fig 3-8a) or be 
deviated at an angle equal to 
the angle of incidence, θ (Fig 
3-8b).  Though it is not really 
reflecting the X-rays, the 
effective geometry is that of 

reflection.  Since the lattice is three-dimensional and any lattice point will act as the origin, 
(321) defines an infinite number of parallel planes that diffract simultaneously.  The 
relationship may be stated as follows: A diffraction direction defined by the intersection of 
the hth order cone about the a axis, the kth order cone about the b axis and the lth order 
cone about the c axis is geometrically equivalent to a reflection of the incident beam from 
the (hkl) plane referred to these axes.  This geometric relation provides the basis for Bragg 
diffraction.  Referring to Figure 3-7, diffraction from each parallel plane shown will be 
exactly one wavelength out of phase at the proper value of θ.   

Figure 3-9 shows a beam of 
parallel x-rays penetrating a stack 
of planes of spacing d, at a 
glancing angle of incidence, θ.  
Each plane is pictured as 
reflecting a portion of the 
incident beam.  The “reflected” 
rays combine to form a diffracted 
beam if they differ in phase by a 
whole number of wavelength, 
that is, if the path difference AB-
AD = nλ where n is an integer.  
Therefore 

θsin
dAB =   and 

)2(cos
sin

2cos θ
θ

θ dABAD ==  

Therefore: )2(cos
sinsin

θ
θθ

λ ddn −=  

)sin2(
sin

)2cos1(
sin

2 θ
θ

θ
θ

dd =−=  

θλ sin2dn =  

The last equation is the Bragg condition for diffraction.   
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The value of n gives the “order” of the diffraction.  Note that the value of the diffraction 
angle, θ, will increase as the order of diffraction increases up to the limit where nλ = 2d.  The 
diagram below (from Bloss, 1994) illustrates this graphically.  A indicates light reflection 
from a polished (111) face of an NaCl crystal.  B indicates diffraction by Cu Kα x-rays at 
successive orders of diffraction, with the first-order diffraction at θ = 13.7° (2θ = 25.4°).  C 
shows the wavelength difference producing the different orders of diffraction.  These 
reflections are commonly referred to as multiples of the Miller index for the planes without 
the parentheses, i.e., 111, 222, 333, 444, but are represent the same value of d.   

 
It can be easily shown that Bragg diffraction occurs in any set of planes in a crystal structure.  
Because of geometrical considerations related to multiple out-of phase diffractions (a.k.a. 
extinction) in some types of point groups and space groups, not all lattice planes will produce 
measurable diffractions.  As will be discussed later, these missing diffractions provide 
valuable information about the crystal structure.   

The Reciprocal Lattice 
The most useful method for describing diffraction phenomena has the intimidating name 
“reciprocal lattice.”  It was developed by P.P. Ewald, and is also called “reciprocal space.”  It 
makes use of the reciprocal of dhkl to fabricate a geometrical construction which then serves 
as a very effective way to understand diffraction effects.  Most of the discussion in this 
section is abstracted from Jenkins and Snyder (1996).   

When setting up an arrangement of x-ray source, specimen and detector, it is useful to be 
able to predict the motions that will have to be applied the various motions that will have to 
be applied to see particular diffraction effects.  Consider the diffraction from the (200) planes 
of a (cubic) LiF crystal that has an identifiable (100) cleavage face.  To use the Bragg 
equation to determine the orientation required for diffraction, one must determine the value 
of d200.  Using a reference source (like the ICDD database or other tables of x-ray data) for 
LiF, a = 4.0270 Å, thus d200 will be ½ of a or 2.0135 Å.  From Bragg’s law, the diffraction 
angle for Cu Kα1 (λ = 1.54060) will be 44.986° 2θ.  Thus the (100) face should be placed to 
make an angle of 11.03° with the incident x-ray beam and detector.  If we had no more 
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complicated orientation problems, then we would have no need for the reciprocal space 
concept.  Try doing this for the (246) planes and the complications become immediately 

evident.   

The orientation 
problem is related to 
the fact that the 
diffracting Bragg 
planes are inherently 
three dimensional.  
We can remove a 
dimension from the 
problem by 
representing each 
plane as a vector – 
dhkl is defined as the 
perpendicular 
distance from the 

origin of a unit cell to the first plane In the family hkl as illustrated in Figure 3.2.  While this 
removes a dimensional element, it is evident that the sheaf of vectors representing all the 
lattice planes (see Fig. 3.3 on the following page) will be extremely dense near the center and 
not ultimately very useful. 

Ewald proposed that instead of plotting the dhkl vectors, that the reciprocal of these vectors 
should be plotted.  The reciprocal vector is defined as: 

hkl
hkl d

1* ≡d  

Figure 3.3 can now be reconstructed plotting the reciprocal vectors instead of the dhkl vectors.  
Figure 3.4 shows this construction.  The units are in reciprocal angstroms and the space is 
therefore a reciprocal space.  Note that the points in this space repeat at perfectly periodic 
intervals defining a space lattice called a reciprocal lattice.  The repeating translation vectors 
in this lattice are called a*, b* and c*.  The interaxial (or reciprocal) angles are α*, β* and γ* 
where the reciprocal of an angle is defined as its complement, or 180° minus the real-space 
angle.  For orthogonal systems the angular relations are quite simple.  For non-orthogonal 
systems (monoclinic and triclinic), they are more complex.   
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The reciprocal lattice 
makes the 
visualization of 
Bragg planes very 
easy.  Figure 3.4 
shows only the (hk0) 
plane of the 
reciprocal lattice.  
To establish the 
index of any point in 
the reciprocal lattice, 
count the number of 
repeat units in the 
a*, b*, and c* 
directions.  Fig. 3.4 
shows only the hk0 
plane, but the lattice 
is fully three 
dimensional.  When 
connected, the 
innermost points in 
the lattice will define 
a three-dimensional 

shape that is directly related to the shape of the of the real-space unit cell.  Thus the 
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symmetry of the real space lattice propagates into the reciprocal lattice.  Any vector in the 
lattice represents a set of Bragg planes and can be resolved into its components: 

**** cba lkhd hkl ++=  

In orthogonal crystal systems, the relationship between d and d* is a simple reciprocal.  In 
non-orthogonal systems (triclinic, monoclinic, hexagonal), the vector character of the 
reciprocals complicates the angular calculations.  The figure at left shows the relations for the 

ac plane of a monoclinic unit cell.  d001 
meets the (100) plane at 90°.  Because the 
angle β between the a and c directions is 
not 90°, the a unit cell direction and the 
d100 are not equal in magnitude or 
direction, but are related by the sin of the 
angle between them.  This means that the 
reciprocal lattice parameters d*100 and a* 

will also involve the sin of the interaxial angle.   

Table 3.1 (at right) 
lists the direct and 
reciprocal space 
relationships in the 
different crystal 
systems.  The 
parameter V shown 
for the Triclinic 
system is a 
complicated 
trigonometric 
calculation required 
for the this system 
because of the 
absence of 90° 
angles.  It is derived by Jenkins and Snyder (1994, p. 53) and listed below: 

2/1222 *)cos*cos*cos2*cos*cos*cos1(***1* γβαγβα +−−−== cba
V

V  

The Ewald Sphere of Reflection 
Figure 3.6 (following page) shows a cross section through an imaginary sphere with a radius 
of 1/λ with a crystal at its center.  The reciprocal lattice associated with the crystal’s lattice is 
viewed as tangent to the sphere at the point where an x-ray beam entering from the left and 
passing through the crystal would exit the sphere on the right.  The Ewald sphere contains all 
that is needed to visualize diffraction geometrically.   
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Rotation of the 
crystal (and its 
associated real-
space lattice) will 
will also rotate the 
reciprocal lattice 
because the 
reciprocal lattice is 
defined in terms of 
the real-space 
lattice.  Figure 3.7 
shows  this 
arrangement at a 
specific time when 
the (230) point is 
broght into contact 
with the sphere.  
Here, by definition: 

λ
1=CO  and 

2
* )230(d

OA =  hence 

λ
θ

/1
2/*

sin )230(d
CO
OA ==

or 

)230(*
sin2

d
θλ =  

from the definition 
of the reciprocal 
vector: 

)230(
)230( *

1
d

≡d  

therefore: 

θλ sin2 )230(d=  

which is the Bragg 
equation.   

As each lattice 
point, representing a d*-value, touches the sphere of reflection, the diffraction condition is 
met and diffraction occurs.  In terms of Bragg notation, the real-space lattice plane, 
represented by d*, “reflects” the incident beam.  Note that the angle between the incident x-
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ray beam and the diffraction point on the Ewald sphere is 2θ; this is directly related to the use 
of 2θ as a measurement convention in x-ray diffraction data.   

In the notation of the Ewald sphere, the diffracted intensity is directed from the crystal in the 
direction of the lattice point touching the sphere.  The Ewald sphere construction is very 
useful in explaining diffraction in a manner that avoids the need to do complicated 
calculations.  It allows us to visualize and effect using a pictorial, mental model, and permits 
simple analysis of otherwise complex relationships among the crystallographic axes and 
planes.   

The Powder Diffraction Pattern 
Methods of single crystal diffraction are not germane to this course.  Most of the previous 
discussions have been in relation to diffraction by single crystals, and most modern methods 
of single crystal diffractometry utilize automated three-axis diffractometers to move the 
specimen in a systematic manner and obtain a diffraction pattern.   

Most materials are not single crystals, but are composed of billions of tiny crystallites – here 
called a polycrystalline aggregate or powder.  Many manufactured and natural materials 
(including many rocks) are polycrystalline aggregates.  In these materials there will be a 
great number of crystallites in all possible orientations.  When a powder with randomly 
oriented crystallites is placed in an x-ray beam, the beam will see all possible interatomic 
planes.  If we systematically change the experimental angle we produce and detect all 
possible diffraction peaks from the powder.  Here’s how it works in the context of the Ewald 
sphere:  

 
• There is a d*hkl vector associated with each point in the reciprocal lattice with its 

origin on the Ewald sphere at the point where the direct X-ray beam exists 

• Each crystallite located in the center of the Ewald sphere has its own reciprocal lattice 
with its orientation determined by the orientation of the crystallite with respect to the 
X-ray beam. 
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The Powder Camera 
Figure 3.9 shows this geometry from the d*100 reflection, which forms a sphere of vectors 

emanating from the point 
of interaction with the 
beam.  The number of 
vectors will be equal to the 
number of crystallites 
interacting with the x-ray 
beam.  The angle between 
the beam and the cone of 
diffraction (refer to Fig 
3.7) is 2θ.  In the diagram 
at left (Fig 3.10), the 
diffraction cones from the 
(100) reflection are 
shown.  In the powder 
camera, these rings 
intersect a 360° ring of 
film, and parts of the 

cones are captured 
on film as Debye 
rings, producing a 
Debye-Scherrer 
diffraction 
photograph.   

Debye-Scherrer 
powder cameras 
(illustrated at left) 
have been largely 
supplanted in 
analytical 
laboratories by 
automated 
diffractometers. 
The powder 
patterns recorded 
on film in these 
devices accurately 
record the true 
shape of the 
diffraction cones 
produced.    

 



Diffraction Basics 

(Revision date: 19-Feb-03)  Page 16 of 18 

The schematic at left 
shows the Debye 
cones that intersect 
the film in the 
camera, and how 
diffractions are 
measured on the 
film to determine 
the d-spacings for 
the reflections 
measured.   

Two Debye-
Scherrer powder 
camera photographs 
are shown below.  
The upper film is 
gold (Au), a Face 
centered cubic 
structure (Fm3m) 
that exhibits a fairly  
simple diffraction 

pattern.   

 
The film below is of Zircon (ZrSiO4).  Zircon is a fairly complex tetragonal structure 
(4/m2/m2/m) and this complexity is reflected in the diffraction pattern.   

 
 

The Powder Diffractometer 
Most modern X-ray diffraction laboratories rely on automated powder diffractometers.  
While diffractometers differ in the geometry, their purpose is the measurement of the dhkl 
values and diffraction intensities for powder specimens.  In essence, the powder 
diffractometer is designed to measure diffractions occurring along the Ewald sphere from a 
powder specimen.  It can be thought of as a system for moving through the reciprocal lattice, 
measuring d-spacings as they occur.  By convention (but not by accident – see Fig. 3.7) 
diffraction angles are recorded at 2θ.  We will discuss our Scintag diffractometer in more 
detail later in this course.   

Figure 7.4 (following page from Jenkins and Snyder, 1996) shows the geometry and common 
mechanical movements in the different types of diffractometers.  The table shows the 
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diffractometer type, and how the various components move (or don’t move).  In the table r1 is 
the distance between the tube (usually taken as the anode) and the specimen, and r2 the 
distance between the specimen and the receiving slit.   

 
The Seeman-Bolin diffractometer fixes the incident beam and specimen and moves the 
receiving slit (detector) assembly, varying r2 with 2θ to maintain the correct geometry.   

The Bragg-Brentano diffractometer is the dominant geometry found in most laboratories.  In 
this system, if the tube is fixed, this is called θ-2θ geometry.  If the tube moves (and the 
specimen is fixed), this is called θ:θ geometry.  The essential characteristics are:  

• The relationship between θ (the angle between the specimen surface and the incident 
x-ray beam) and 2θ (the angle between the incident beam and the receiving slit-
detector) is maintained throughout the analysis.  

• r1 and r2 are fixed and equal and define a diffractometer circle in which the specimen 
is always at the center.  

A detailed schematic of this geometry is on the following page (Fig. 7.6 from Jenkins and 
Snyder).   
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The arrangement above includes the following elements:  

• F – the X-ray source  
• DS – the divergence scatter slit 
• SS –Soller slit assembly (SS1 on “tube” side, SS2 on detector side), a series of 

closely spaced parallel plates, parallel to the diffractometer circle (i.e., the plane of 
the paper), designed to limit the axial divergence of the beam. 

• α -- the “take off” angle – the angle between the anode surface and the primary beam 
• θ and 2θ are as defined above. 
• RS – the receiving slit, located on the diffractometer circle (which remains fixed 

throughout diffractometer movement) 
• C – the monochromator crystal.  rm is the radius of the monochromator circle on 

which RS, C and AS (the detector slit) lie.   
• rf is the radius of the focusing circle.  F, S and RS all fall on this circle.  rf is very 

large at low θ values and decreases as θ increases.   

We will discuss the Bragg-Brentano diffractometer in more detail in subsequent weeks.   

Conclusions 
This introduction to diffraction has been primarily concerned with development of an 
understanding of the source of diffraction and understanding how crystalline spacings can be 
determined experimentally by x-ray diffraction methods.   

What is missing in the treatment so far is related to the intensity of diffraction.  Basically not 
all diffractions are created equal – some are much more intense than others and some that one 
assumes should be present are missing altogether.  The source of the variations in intensity of 
diffraction and the relationship to crystal structure and chemistry will be the topic of Part 2.   


