| Powder Diffraction Methods
>

¢ Qualitative Analysis

mum e Phase Identification
>

M ¢ Quantitative Analysis
e Lattice Parameter Determination
l . g e Phase Fraction Analysis

¢ Structure Solution and Refinement

> e Rietveld Methods
e ab-initio Reciprocal Space Methods
) e ab-initio Real Space Methods

¢ Peak Shape Analysis
e Crystallite Size Distribution

e Microstrain Analysis
e Extended Defect Concentration




¢ Information Contained in a

Bl Diffraction Pattern
“N““ ¢ Peak Positions

”m“llll |||||||| PS Crystal System

l e Space Group Symmetry
e Translational Symmetry
l . g e Unit Cell Dimensions

e Qualitative Phase Identification
» o Peak Intensities

> e Point Symmetry
e Quantitative Phase Fractions

” ¢ Peak Shapes & Widths
[l

| » Crystallite Size (2-200 nm)
e Non-uniform microstrain

M > e Extended Defects (stacking faults, antiphase
VWWW\WV boundaries, etc.)



, ¢ The powder diffraction pattern of a known phase
‘ should act as a “fingerprint” which can be used
to identify the phase.
L
| .

> Qualitative Analysis

¢ Computer “search-match” algorithms are used
to compare experimental pattern with ICDD
> database of known compounds

¢ As of 1994 the International Centre for
> Diffraction Data (ICDD) database contained over
60,000 entries

_ ¢ Can be used for multiphase mixtures
¢ Can be used to identify polymorphic mixtures




*

Quantitative Analysis

By measuring changes in the unit cell dimensions it is
sometimes possible to determine composition through
Vegards law (i.e. Na,_ K, Cl)

¢ Weight fractions of multiphase mixtures can be

determined using a variety of methods, but the Rietveld
method is the most commonly used approach.

Care must be taken when phases have significantly
different densities or crystallite sizes

With care, accuracy is typically within a few percent, and
the lower limit of detection can be less than 1%

See "Outcomes of the International Union of
Crystallography Commission on Powder Diffraction round
robin on quantitative phase analysis: samples 1a to 1h”
Madsen IC, Scarlett NVY, Cranswick LMD, Lwin T, J. Appl.
Crystallography 34, 409-426 (2001)



‘ Structural Data from Powder
Diffraction Data

. ¢ Why not use single crystal methods?

I e It may difficult to obtain a single crystal
e Usable form of a material may be polycrystalline
I . g e Problems with twinning or phase transitions

¢ What types of structures can be analyzed?

> e Typically 5-15 crystallographically distinct atoms
e Good data may allow 50-75 cryst. distinct atoms

, ¢ What type of data is best?

e High resolution is important (monochromatic and/or
synchrotron radiation is best)

e Neutron data can be very useful for finding light atoms




Limitations of Powder Diffraction for
Structure Determination

The 3D set of diffraction spots obtained from a single
crystal experiment is condensed into 1D in powder
diffraction pattern. This leads to both accidental and
exact peak overlap, and complicates the determination of
individual peak intensities.

Crystal symmetry cannot be seen directly from diffraction
pattern.

Multiphase mixtures can be problematic.

Preferred orientation can lead to inaccurate peak
intensities.



*

> ¢

Steps to Structure Solution

Index the diffraction pattern to determine
crystal system and unit cell dimensions

Analyze systematic absences in order to
determine space group (at least narrow the list)

Whole pattern fitting to obtain accurate unit cell
dimensions and peak shape parameters

Input approximate structural model

Allow atomic positions, occupancies and
displacement parameters to refine in order to
optimize the fit to the observed diffraction
pattern (Rietveld refinement)



How do I obtain the
Approximate Structure Model?

s

, ¢ Empirical Methods

M e Look for isostructural compounds
. > — Search the powder diffraction file (JCPDS)
M — Search the inorganic crystal structure database
(ICSD)

» — Search the Cambridge Database

e Derive structural models using Z, the
constl_’aint_s of_ space group symmetry and

e

M

¢ ab-initio Structure Solution
s
.

s

> e Reciprocal Space (Traditional) Methods

e Real Space Methods



I e To obtain an accurate crystal structure

Rietveld Refinements

¢ What is the goal of a Rietveld refinement?

. j o What is the basic idea of a Rietveld refinement?
|

e To fit the entire diffraction pattern at once,
optimizing the agreement between calculated
g and observed patterns

¢ What input is needed to carry out a Rietveld
”  refinement?
e Correct space group symmetry
I e Reasonably accurate unit cell dimensions
e Approximate starting positions for the atoms
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! Peak Shape Analysis
\

. * Peak broadening comes from several sources

l e Instrumental effects
e Finite crystallite (not particle) size (< 100-500 nm)
. """" e Strain (atoms deformed from ideal positions in a non-
l uniform manner)

> ° Extende_d defects (terminate “crystal” and lead to size
Loocemne)

¢ Methods of extracting size & strain information
s

e Scherrer formula (average size, neglects strain)

e Integral breadth methods (provide average values of
size and strain)

e Peak shape methods (provide size and strain
distributions)




O
> Correcting for Instrumental Effects

‘ ¢ To do an accurate analysis for size and/or strain effects
one must accurately account for instrumental broadening.

< The manner of doing this differs depending upon the peak
M shape,
. > e Lorentzian
M Bobs = Bsize * Bstrain * Binst
> {Bobs o Binst} = Bsize + Bstrain
| » Gaussian

> Bzobs = stize + sttrain + Bzinst
‘ {Bzobs - Bzinst} = stize + sttrain

» e \/oigt, Pseudo-Voigt

M - Generally it is necessary to first deconvolute into
gaussian and lorentzian fractions before subtracting out

|WWW » the instrumental effects.

|



Finite Crystallite Size

L
¢ A perfect crystal would extend in all directions to infinity,
> SO we can say that no crystal is perfect due to it's finite
size. This deviation from perfect crystallinity leads to a
broadening of the diffraction peaks. However, above a
. ,  certain size (100-500 nm) this type of broadening is
negligivle.

¢ Crystallite size is a measure of the size of a coherently
> diffracting domain. Due to the presence of polycrystalline

aggregates crystallite size is not generally the same
thing as particle size.

> & Other techniques for measuring size, measure the particle
size rather than the crystallite size

,,,,,,,,,, e BET
» Light (Laser) Scattering
e Electron Microscopy (SEM)




l
Size Broadening

¢ Scherrer (1918) first observed that small crystallite size
could give rise to line broadening. He derived a well
< known equation for relating the crystallite size to the
I broadening, which is called the “Scherrer Formula”

s
WA =z

¢ D, = Volume Weighted crystallite size

,» ¢ K = Scherrer constant, somewhat arbitrary value that falls
in the range 0.87-1.0. I usually assume K = 1.

¢ A = The wavelength of the radiation

I ¢ [ = The integral breadth of a reflection (in radians 26)
“““N“ located at 26.




Extended Defects

L
¢ Extended defects disrupt the atomic arrangement of a
> crystal, typically along a 2D plane. These defects
I effectively terminate a crystallographically ordered
domain of the crystal. Thus as far as x-rays are
> concerned one crystal ends and a new crystal begins at
I the extended defect.

¢ Crystallite size analysis on a sample containing extended
> defects can be used to estimate the ordered domain size
(the size of the region between defects) in the same
manner that XRD is used to determine crystallite size.

> o Types of extended defects

e Stacking faults (ABCABCABCCBACBACBA...)

» e Dislocations in “layered” materials (graphite, MoS,,
| clays, ZNCl, etc.)

e Antiphase boundaries, which arise in partially ordered
materials (CusAu, Sr,AlTaOg)




Lattice Strain (Microstrain)

\
¢ Strain is a term used more often in engineering than in
> chemistry. Strain is defined as the deformation of an
object divided by it’s ideal length, Ad/d. In crystals there
we can observe two types of strain

. > e Uniform strain
e Non-uniform strain

¢ Uniform strain causes the unit cell to expand/contract in
“ g an isotropic way. This simply leads to a change in the
““““““ unit cell parameters and shift of the peaks. There is no

broadening associated with this type of strain.

)
¢ Non-uniform strain leads to systematic shifts of atoms

from their ideal positions and to peak broadening. This
type of strain arises from the following sources:

e Plastic deformation (cold worked metals, thin films)
e Poor crystallinity




|
Strain Broadening

¢ Stokes and Wilson (1944) first observed that strained or
imperfect crystals containing line broadening of a different

l < sprt, than the broadening that arises from small crystallite
size.

Estr = B/{4 tan 0}

+ &, = weighted average strain

,» ¢ P = The integral breadth of a reflection (in radians 26)
located at 26

I + Note that "size” and “strain” broadening show a different
O dependence. This provides a way to separate the two

$ s effects.
I



L Williamson-Hall Analysis

> Simplified Integral Breadth Methods

¢ Williamson and Hall (1953) proposed a method for
> deconvoluting size and strain broadening by looking at the
‘ peak width as a function of 20. Here I derive the
Williamson-Hall relationship for the Lorentzian peak
. » shape, but it can derived in a similar manner for the
‘ Gaussian peak shape

,,,,,,,,, {Bobs — Binst} =A/{D,cos 6} +4 ¢, {tan 6}

{Bobs ~ Binst}COS 6=1/D, + 4 e {sin 6}
¢ To make a Williamson-Hall plot

| e Plot {B,ps — Binst}COS 6 ON the y-axis (in radians 20)
e Plot 4 sin6 on the x-axis
> e If you get a linear fit to the data you can extract

‘ e the crystallite size from the y-intercept of the fit
e the strain from the slope of the fit




Williamson-Hall Plot

A Williamson-Hall plot for Pb,ScTaOg. The size extracted from the even-
even-even reflections gives the volume weighted crystallite size, while
the size extracted from the odd-odd-odd reflections gives the volume
weighted size of the regions over which the Sc and Ta atoms are well
ordered.
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, ¢ Elements of X-ray Diffraction

| + B.D. Cullity
. y * Solid State Chemistry (Ch. 2)
|
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¢ Solid State Chemistry (Ch. 5)
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e R. Jenkins & R.L. Snyder
¢ Modern Powder Diffraction

e edited by Bish & Post
I > o The Rietveld Method
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-
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