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The symmetry of two-dimensional periodic structures can be seen, for 

example, on wallpaper, but it is of great importance in crystals, where atoms are 

regularly arranged in parallel planes. The symmetry of naturally occurring crystals is 

very diverse, but each crystal in terms of the symmetry of external shapes can be 

included in one of the 32 types (32 crystal classes), represented by the point groups 

of symmetry. However, the set of symmetry types of the arrangement of atoms, i.e. 

the symmetry types of the crystal structure, is much more numerous.   Each crystal 

can be classified into one of 230 types, the so-called space groups of symmetry. A 

group as a mathematical formation represents a set of elements, (with certain rules, 

given in Appendix D29 on groups), which in the case of crystals and their structure 

relate to the so-called symmetry operations. The elements of such groups are 

rotations, reflections (mirrorings), inversions (each position vector r is transformed 

into a vector −�) and displacements (translations), including their combinations. 

Symmetry operations are performed by means of symmetry elements, which are 

rotational axes, reflection planes (mirror planes), or the centre of symmetry. 

Symmetry operations convert the crystal structure, resp. the whole crystal, to a 

position which is physically and geometrically indistinguishable from the original 

position. That is, physical and the geometrical properties of the crystal do not change 

at any point of the reference system after such an operation. 

The above number of space groups was established by E. S. Fedorov and A. 

Schoenflies in 1891 after a more extensive mutual correspondence, in the character 

of only constructive procedure. Consistently, using the theory of groups and matrices, 

the space groups were derived by F. Seitz in the 1930 (a series of articles in the 

magazine Zeitschrift für Kristallographie). Next, using tensors, the derivation was 

modified by W. H. Zachariasen (published just after World War II in a book Theory of 

X-Ray Diffraction in Crystals). 

The derivation of 230 space groups is very demanding in scope and content, 

and so for pedagogical purposes it is more appropriate to document the exact 

derivation procedure on two-dimensional planar groups of periodic structures, of 

which there are only 17. And that is the content of the third part of this text (part C). 

However, this procedure is also for the first contact with space or planar groups very 

demanding. The geometric construction of possible types of lattices, point groups and 

plane groups, is therefore more appropriate, and represents the content of the first 

part of this text (part A). The periodic planar structures can be seen as imprinted 

patterns on the cloth, but they are also characterized by the arrangement of atoms 

that appears on a section of a perfect crystal, or on its surface below the electron 

microscope, or after imaging under an atomic force microscope (AFM). The first part 

of the text is processed on the basis of A. Fingerland's lecture from 1969 presented 
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at the Colloquium of Czech and Slovak crystallographers in Smolenice (Slovakia). It 

was based on the original ideas of A. Bravais from the middle of the 19th century. To 

understand the essence of the description of symmetry types the geometric 

construction is completely sufficient, and can be extended to three-dimensional 

periodic structures. 

The third part of this text (part C) is significantly more demanding, it uses group 

theory and expression of spatial transformations using matrix, or tensor apparatus. It 

represents the remarkable fact, that it is possible to derive all of the 230 types of 

symmetry only using simple mathematical principles and the assumption of strict 

periodicity of the crystal structure. The second part (Part B) serves to better 

understand part C, and provides information on how to describe symmetry 

operations using matrices, or tensors. The shapes of matrices and tensors 

representing rotations and reflections in various crystal systems are given, as well as 

the method of their application to the transformation of the coordinates of points in 

space. 

Many authors have dealt with the theory of crystal symmetry. Sometimes, as 

first, is mentioned Johann Kepler's paper on the snowflake from 1611, in which he 

tried to explain the origin of its hexagonal shape, but also described the tightest 

arrangement of spheres in plane and space. The constancy of the angles between 

crystal faces was stated by Nicolas Steno in 1669, and the idea of the structure 

periodicity in crystals was published by René Just Haüy in 1784. The symmetry of 

external shapes - its 32 types – was described in 1830 by J. F. Ch. Hessel, and 14 lattice 

types by A. Bravais in 1848. The search for symmetry types was completed in 1891 by 

E. S. Fyodorov and A. Schoenflies, who derived 230 symmetry types of crystal 

structures. The reader can learn more about this search in the book Symmetry of 

crystals [23]. 
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Part A  

Geometric construction of plane symmetry types  
 

A1  Basic terms used in crystal structure description 
 

Due to the periodicity of the crystal structure, a set of points can be found, 
called lattice points, which are characterized by the same neighbourhood. In a two-
dimensional example (Fig. A1) such a set of equivalent points can be represented by 
intersections of mutually perpendicular lines. In the crystal structure we can select 
various sets of points with the same surrounding, periodically distributed in space – 
more numerous and less numerous sets. The most numerous of them (in other words, 
with the largest number of points per unit volume) forms a space lattice, in 
connection with crystals, called a crystal lattice. For two-dimensional formations it is 
a plane lattice. 

When constructing the space lattice of the given structure, it can be assumed 
from any point in space, the resulting lattice will always be the same, but somewhat 
shifted. The figure shows two starting points in a planar lattice – point A and point B. 

 
 The periodicity of the structure makes it possible to divide the building 
particles of the crystal (atoms, ions) so that the same group of particles, called a 
structural motif, is assigned to each lattice point (Figure A1b). When selecting a 
structural motif, it is useful to consider the chemical composition of the substance so 
that the structural motif consists of, for example, a complete molecule. 
     The crystal lattice is described by a triplet of non-coplanar vectors �� , �� , �� (in 
the plane only pairs) called basis vectors, forming the so-called vector basis. Their 
integer linear combinations form a set of lattice vectors  ��: 
 ��   �   ����  �  ����  �  ���� ,                            (A1.1) 
 

whose endpoints form the space lattice of the crystal (��  are integers). The set of all 

lattice vectors forms the translation group of the crystal. 

 

A B A B 

a b c Fig. A1 
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 With the help of a trio of basis vectors, a lattice is created unambiguously. At 

however, the choice of basis vectors is not unambiguous for a previously known 

lattice. The figure A2a shows a selection of several pairs, whose integral linear 

combination creates the same planar lattice. There were therefore accepted certain 

conditions for the choose of three vectors, originating from the XIX. century by A. 

Bravais [1].  

 

These conditions require that the symmetry of the parallelepiped formed by the triple 

of vectors corresponds to the symmetry of the lattice, the number of right angles 

between the vectors of the triple is maximal and the  volume  of the parallelepiped is 

minimal, i.e., that the vectors of the triple are as short as possible.  

The triple thus chosen forms the triple of basis vectors of the lattice and the 

corresponding parallelogram forms the unit cell. Successive translations (without 

rotations) of the unit cell by all lattice vectors fill the entire volume of the crystal 

without residue. The sizes of the basis vectors and the angles between them are lattice 

parameters. 

A line passing through at least two lattice points is a lattice line. The direction 

of a lattice line with respect to a triplet of basis vectors is expressed by the coordinates 

of the shortest lattice vector that is parallel to the line. The coordinates are put in 

square brackets, e.g. �131 �, and the fact that the coordinate is negative is expressed 

by a minus sign over the coordinate. In planar structures, only two coordinates are 

used, of course. The directions of reflection lines in a planar structure may also be 

denoted in this way, when the symbol m representing the reflection line to indicate 

the direction of the reflection line, e.g. !��"��. Other, abbreviated designations are also 

used in this text, e.g.  !# when the reflection line is parallel to the x-axis, or  !� when 

it is parallel to the vector ��. Given the periodicity of the crystal structure, each lattice 

line is associated with a set of lattice lines parallel to it that pass through the individual 

lattice points of the crystal, leaving none of them out. Such a set forms the set of the 

lattice lines.   

 The reciprocal lattice of a crystal is of great importance in the description of the 

crystal structure, especially in diffraction methods for its determination. It is obtained 

Obr. A2b 

 a1 
 a1

 
 a2 

 a2

 a1 

 a2  a1
 

 a2
 

Obr. A2a 
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by integral linear combinations of a triplet of reciprocal vectors, ��, ��, �� which 

with respect to a triplet of basis vectors �� , �� , �� is defined by scalar products:  �� ∙  �$   =   ��$   (&, ' =  1, 2, 3) ,                           (A1.2) 

where    ��$ = 0  if  & ≠ ', and  ��$ = 1  if  & = ' . 
 

These relations imply that the vectors ��, �� and similarly ��, �� are perpendicular 

to each other. In doing so, vectors with the same indices, e.g.  ��  and  �� need not be 

parallel. It is true   ��  ∙  ��  =  -� -� cos 1 =  1, so if they are parallel (cos 0° = 1), 

then the product of their magnitudes equals unity. This is where the name reciprocal 

vectors comes from, because they have inverse (reciprocal) magnitudes to each other. 

We do not give further details about reciprocal vectors because they are not needed 

for planar periodic structures. Figure A2b shows a pair of basis vectors and a pair of 

corresponding reciprocal vectors in dashed lines. The basis and reciprocal vectors are 

used to express tensors representing symmetry operations, so their introduction is 

important. 

 

 

A2   Lattices of planar periodic structures 

 

A planar lattice is characterized by two non-collinear vectors �� , �� - their sizes 

and the angle between them, but also by the unit cell formed by these vectors.  Since 

the same planar lattice can be formed by integral linear combinations of different pairs 

of vectors, for the sake of clarity, the vectors �� and  �� should also be chosen in 

accordance with the Bravais conditions as follows:  
 

the symmetry of the unit cell must be identical to the symmetry of the    

lattice 

a right angle between the basis vectors is to be preferred 

the areal content of the unit cell must be minimal. 

 

The unit cells, as well as the lattices formed by different pairs of basis vectors, 

differ from each other in their symmetry. By symmetry in this case, we mean the 

existence of a set of geometric transformations – symmetry operations – by which the 

lattice identifies with itself – gets to an equivalent position. The symmetry of a plane 

lattice is represented by a set of lattice translations, rotational axes - perpendicular to 

the plane of the lattice, and reflection lines lying in this plane.  Unlike translations, 

reflection and rotation operations do not change the position of at least one point on 

the lattice, so these operations are called point symmetry operations, and this kind of 
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symmetry point symmetry. The set of these operations mathematically forms a group, 

called a point group (→ Appendix D29).   

The third Bravais condition can be satisfied by choosing the two shortest lattice 

vectors. Bravais described his procedure as follows:  

In a planar lattice, we choose an arbitrary lattice point O, and among the other 

lattice points we search for the one closest to it. Let A be that point, then OA is the 

smallest lattice parameter. Through the points O and A we draw lines Op and Am 

perpendicular to the line OA, and in the bounded space pOAm we find the next closest 

lattice point B. 

 

Therefore, we proceed as follows: let vector ��  (Fig. A3) be the shortest lattice 

vector of a given planar lattice. Both the direction and the magnitude of the second 

shortest vector depend on the lattice type. For example, in a square lattice, we choose 

the second shortest vector perpendicular to the first one, with both having the same 

length. To find the second shortest vector in different types of lattices, we will refer to 

Figure A3. We will show that it suffices to restrict ourselves to the cases where the 

endpoint of the second shortest vector lies within the hatched region, including its 

boundaries. 

 

 

Also, if we plot the vector �� from the point O, its endpoint cannot lie inside the circle 

bounded by the circle  k , because  it would be shorter than ��. Nor can it lie to the 

right of the line  c  (the line passes through the centre of the vector ��), because it 

would be closer to point A from there than to point O. Nor will we take into account 

the endpoints lying to the left of the line  p , because the lattice  which would thus be 

formed would be merely the mirror image of the lattices which are formed when the 

endpoint lies to the right of the line p. It would be essentially a top or bottom view of 

a1 O 

p c 

k 

A 

Q 
H 

Diagram for determining 
the types of planar 
lattices  
          

Fig. A3 
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the same lattice. For the same reason, there is no need to consider the endpoints 

below the OA line. This leaves only options  a)  to  f), described in detail in the following. 

 
 

a) The end point of the vector lies inside the hatched region, but not on its 

boundaries. A oblique lattice is then formed, where the sizes of the basis vectors are 

not equal and the vectors do not take a special angle (meaning angles of 90°, 60°, or 

120°, respectively). The unit cell is in the shape of a parallelogram (Fig. A4a.). Both the 

cell and the lattice are characterized by twofold axes of symmetry perpendicular to 

the plane of the lattice; the reflection lines are absent. The twofold axes of symmetry 

pass through the centre of the unit cell, its vertices, and the centres of the basis 

vectors, and are thus distributed throughout the lattice. When rotated 360° about the 

twofold axis, the lattice is twice brought to the equivalent position – identifies itself 

with itself, hence such a symmetry operation is denoted by the symbol 2. The 

corresponding point group of the symmetry of the lattice is denoted by the symbol 2 

and has two elements {e, 2}, where symbol e represents the identity (rotation by 0° 

and 360°, respectively) and symbol 2 the 180° rotation. 

 

b) The end point of the vector �� lies on the semi-line p, but not at the point  

Q .  An orthogonal lattice is then formed, the unit cell being orthogonal (Fig. A4b.). 

Both the lattice and the unit cell are characterized by twofold axes of symmetry and 

two sets of reflection lines perpendicular to each other. The reflection lines are parallel 

to the basis vectors and are both identical to the sides of the unit cell and pass through 

the centres of the sides, perpendicular to them. A symmetry of this type is described 

by a point group 2mm, which contains the following elements (i.e., symmetry 

operations): 78, 2, !��9�, !�9��:, where !��9�, (resp. !�9��) represents the reflection in 

a line perpendicular to the basis vector �� (resp. ��). In square brackets next to the 

symbol m are the coordinates of the vector perpendicular to the reflection line, 

expressed in the vector system  �� , �� . 
 

Fig. A4 

  a1   

  a2   

 a1   

  a2   

 case a)  case  b) 



12 

 

c) The end point of the second shortest lattice vector lies on the semi-line c, but 

not at the point H. The lattice thus formed has twofold axes of symmetry and two sets 

of reflection lines perpendicular to each other. It has the same point symmetry as the 

lattice in the previous case (described by the 2mm group), but the unit cell formed 

from the vectors �� , �� has only double axes of symmetry, 

it has no reflection lines (Fig. A5.). Therefore, in accordance with the Bravais 

conditions, new basis vectors ;� , ;� (drawn in dashed lines) are chosen which are 

perpendicular to each other and form a unit cell with the same symmetry as the lattice, 

which is orthogonal. The two sets of reflection lines are parallel to the vectors  ;� , ;� 

respectively.  However, a unit cell formed from these vectors also has a lattice point in 

the middle of its area and is therefore called centred cell. The unit cell formed from 

vectors �� , �� is called primitive and has lattice points only at its vertices. If a centred 

cell exists in the lattice, the lattice is also called centred. 
 

d) The endpoint of the vector  �� lies on the circle between Q and H , but not 

at these points. The vectors �� , ��  then have the same magnitude, forming a rhombic 

cell. Both the lattice and the cell are characterized by twofold axes of symmetry and 

two mutually perpendicular sets of reflection lines, but this time parallel to the 

diagonals of the rhombus. This lattice represents the same type of symmetry as in case 

c , is orthogonal. It has the symmetry described by the 2mm group, and again new 

basis vectors ;� , ;� can be chosen to form an orthogonal centred unit cell. The 

reflection lines are parallel to the diagonals of the rhombus formed from the vectors �� , ��, not to its sides.  

 

e) The end point of the vector �� is identical to the point Q . Both the lattice 

and the unit cell have the symmetry of a square, i.e., fourfold axes of symmetry and 

four sets of reflection lines (two parallel to the sides of the square and two parallel to 

the diagonals of the square). The lattice is called square. Such a symmetry is described 

by a point group denoted 4mm , which has the following elements: 78, 4,4�, 4�, !��9�, !�9��, !����, !���"�:,, where !��9�  and !�9�� represent the reflection lines 

that are parallel to the basis vectors �� , ��, respectively, i.e., the sides of the unit cell, 

 Fig. A5  case c)   case  d) 
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and !���� and !���"� in lines that are parallel to the diagonals of the unit cell. The 

symbols 4, 4�, 4� represent "powers" of 90° rotations, e.g. 4� represents a 270° 

rotation. 
 

f) The end point of the vector �� is the point H.  The lattice has sixfold axes of 

symmetry and six sets of reflection lines, successively rotated by  30?. The lattice is 

called hexagonal.  

 

Such a symmetry is described by a point group 6mm, where the group contains 

the following elements: 

  @8, 6, 6�, 6�, 6A, 6B, !9, !�9, !C9, !D9, !��9, !�B9E. The numeric indices next to the 

symbol m represent the angle, expressed in degrees, that the reflection line makes 

with the basis vector  ��. 
 

There are 5 types of planar lattices in total (lattices c and d are of the same 

type). They are summarised in Table TA1. The five lattice types are characterized by 

only four types of point symmetry. The point symmetry of a lattice determines its 

membership in one of the four planar crystal systems listed in the table. In the 

rectangular system, two types of unit cells are distinguished, namely primitive 

(denoted by p) and centred (denoted by c). In the other systems there are only 

primitive cells. The five types of planar lattices represent the 5 types of planar 

translational symmetry, i.e., the 5 types of planar translation groups.  

 
 

Tab. TA1   Plane lattices, crystal systems and point groups 
 

Lattice Crystal system Cell type Basis vectors Point groups 

a) oblique  p -�  +  -� ,     1 +  90° 2 

b) rectangular 

 

p -�  +  -� ,     1 �  90° 2mm 
c), d) c 

e) square p -�  �  -� ,     1 �  90° 4mm 

f) hexagonal p  -�  �  -� ,    1 �  120° 6mm 

 

case  e)     case  f) Fig. A6 
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A3   Point groups of planar periodic structures 

 
In the previous section, the symmetries of planar lattices were described. They 

are characterized by four types of point groups, called holohedral (from Greek = 

complete). In a planar periodic structure repeats a structural motif that is the same at 

each of its lattice points. Also the structural motif has its own point symmetry, which 

can be higher or lower than the point symmetry of the lattice. Therefore, the point 

symmetry of a planar periodic structure can also be the same as the symmetry of the 

lattice, it can also be lower, but not higher. That is, a planar periodic structure can have 

the same symmetry operations as a lattice, but with less symmetric structural motif 

the number of them may be smaller. Therefore, a planar periodic structure has a point 

group identical to point group of lattice, or it is a subgroup of the lattice point group. 

The four holohedral point groups together with their subgroups form the set of 10 

point groups of planar periodic structures.  The lattices of planar periodic structures 

and their point groups are listed in Table TA1, the point groups and their subgroups in 

the following text and in Table TA2. 
 

The group 2mm has four elements: �FF ≡ 78, 2, ![�9] , ![9�]:, where e 

represents the identity, 2 the 180° rotation about the twofold axis of symmetry, ![�9] 
the reflection in a line perpendicular to the basis vector �� and ![9�] the reflection in 

a line perpendicular to the basis vector �� . The numbers in square brackets (indices) 

next to the symbols m represent the coordinates of the vector perpendicular to the 

reflection lines in the system of basis vectors  ��, �� . The subgroups of the group �FF are the sets of operations   
 @8, 2E,  designation of this group:  2,  78, ![�9]:,  designation of this group:  F,    78, ![9�]:, designation of this group:  F,    

 

unless we also consider the trivial subgroups I � @8E and �FF. The subgroup {e,2}  is 

denoted by the symbol  2,  the other two by the common symbol m, because they 

represent the same type of symmetry, differing only in the numbering of the basis 

vectors, which one is considered as �� and which one as ��. If an orthogonal lattice 

has a symmetry of �FF, then a planar structure with such a lattice together with a 

structure motif may have a symmetry described by the point groups I, �, F, �FF. 

Point groups I and � also occur in the oblique system, they are characteristic of it, so 

they are included in the oblique system. Only the F, and �FF point groups are 

included in the rectangular system. 
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The group 4mm ≡ 78, 4, 4�, 4�, ![�9], ![9�], ![��], ![��"]: expresses the point 

symmetry of the square lattice (the symbol ![��] represents the reflection in the line 

dividing the angle between the vectors �� , ��, the symbol ![��"] in the line 

perpendicular to the former). It has the following 8 non-trivial subgroups: 
 @8, 4�E ≡ @8, 2E , group label: 2 ,   

        (where  4�  ≡  2, because a double 90° rotation is a 180° rotation), @8, 4, 4�, 4�E, group label: 4 ,    7 8, ![�9]:, 7 8, ![9�]:, 7 8, ![��]:, 7 8, ![��"]:,  common labeling of groups: m , 78, 4�, ![�9] , ![9�]:, 78, 4�, ![��], ![��"]:  common labelling of groups: 2mm . 
 

Of these groups, all but the group @8, 4, 4�, 4�E are typical of the rectangular system in 

their nature, so only the groups � � @8, 4, 4�, 4�E and �FF  are included in the square 

system 

 

The group 6mm ≡ @8, 6, 6�, 6�, 6A, 6B, !9 , !�9 , !C9 , !D9 , !��9 , !�B9E,  

expresses the point symmetry of the hexagonal lattice. The notation !C9 denotes 

reflection  in a straight line making an angle of 60° with the basis vector ��.  It has the 

following non-trivial subgroups: 
 @8, 6�E ≡ @8, 2E , group label:  � ,  @8, 6�, 6AE ≡ @8, 3, 3�E,  group  label:  J ,  @8, 6, 6�, 6�, 6A, 6BE,  group  label:  � ,  @8, !9E, @8, !�9E,  etc., common label of groups:   F , @8, 6�, 6A, !9 , !C9 , !��9E, @8, 6�, 6A, !�9 , !D9 , !�B9E, common label:  JF . 

 

Only the J, JF, �, �FF groups are included in the hexagonal system. 

 

TA2  Affiliation of point groups to the crystal systems 
 

Crystal system 
Point groups 

belonging to system 

Lattice point group 

(holohedric group) 

oblique I, � � 

rectangular F , �FF �FF 

square �, �FF �FF 

hexagonal J, JF , � , �FF �FF 

 

According to the point group the belonging of the planar structure to the crystal 

system is judged. If the lattice has a symmetry higher than required by the crystal 

system to which the structure belongs, it is said to be pseudo-symmetric. For example, 
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a lattice may have square symmetry, but the structural motif reduces the symmetry 

to orthogonal The point groups listed in the last column of the table characterize the 

symmetry of the lattices belonging to a given crystal system and are called holohedral 

groups. 

 

A4   Plane groups 
 

Plane symmetry represents the periodic distribution of symmetry elements 
(rotation axes, reflection planes) throughout the plane, the same in each unit cell. 
Meanwhile, each planar periodic structure is characterized by one of five types of 
translational symmetry and one of ten types of point symmetry. Combinations of 
translation groups with point groups give rise to plane groups, but they cannot be 
combined arbitrarily.  For example, the translation group of a hexagonal lattice does 
not combine with a 4mm point group. Combinations are only possible within a single 
crystal system; they are listed in table TA3.  The numbers of the plane groups that were 
formed by direct combination (there are twelve of them) are marked in bold in the 
table.  

 

TA3   Plane groups 

 

Group 

number 
Crystal system 

Type of unit 

cell 
Point 

group 

Symbol of plane group 

   full         abbreviated 

1 
oblique p 

I p1 p1 

2 � p211 p2 

3  

 

 

rectangular 

p 
 F 

p1m1 pm 

4 p1g1 pg 

5 c c1m1 cm 

6 

p 

 �FF 

p2mm pmm 

7 p2mg pmg 

8 p2gg pgg 

9 c c2mm cmm 

10 

square 

 

p 

� p4 p4 

11 �FF 
p4mm p4m 

12 p4gm p4g 

13  

 

hexagonal p 

J p3 p3 

14 JF 
p3m1 p3m1 

15 p31m p31m 

16 � p6 p6 

17 �FF p6mm p6m 
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The twelve types do not exhaust the symmetry of planar structures. The 

structural motif, but also the lattice itself, in some cases induces a special element of 

symmetry in the structure – a glide line. The corresponding operation – glide 

reflection – consists of a reflection in the glide line and a subsequent translation 

parallel to the glide line. The translational part of this operation does not belong to the 

translation group, because the magnitude of the displacement (translation) is equal to 

half the length of the shortest lattice vector parallel to the glide line; therefore, on its 

own, it cannot represent a symmetry operation. The glide reflection does not belong 

to the point group either, because it contains the translation – it is a specific element 

of the plane group. Figure A7 shows part of a planar structure with glide lines. 

  

 

The structural motif is indicated by an ellipse, the glide lines are dashed and labelled 

with g , the unit cell is highlighted in grey. Just by reflection in the glide line, the 

structural motif does not get to the congruent position, it still has to move by half of 

the lattice parameter along the glide line.  Glide reflections are part of the four types 

of symmetry of planar structures, denoted in Table TA3 by serial numbers 4, 7, 8 and 

12.   

In the oblique system, glide lines do not occur because there are no reflection 

lines.  

In the rectangular system, if the lattice is primitive, glide lines can arise by 

transformation from reflection lines due to the influence of a structural motif (as seen 

in Figure A7), so that in addition to the  pm  and  p2mm  groups, the pg, p2mg, and 

p2gg groups also belong to this crystal system.  If the lattice is centred, glide lines occur 

in it even without the influence of the structural motif. Their presence in the structure 

therefore does not represent a new type of symmetry, so that, for example, the c2gg 

type does not appear in Table TA3 because it is identical to the p2gg type. 
 

In the square system, the properties of an orthogonal lattice (orthogonal unit 

cell) meet those of a lattice whose unit cell is rhombic (at point Q in Figure A3). Both 

have a point symmetry described by a �FF group, but differ in the orientation of the 

Fig. A7 

g 

g 

g 

g 

g 
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reflection lines. In the orthogonal lattice, the reflection lines are parallel to the sides 

of the unit cell; in the rhombic lattice, the reflection lines are parallel to the sides of 

the rhombic cell (Fig. A8.). Therefore, for a rhombic lattice, the typical glide lines are 

parallel to the diagonals, which then also occur in a square lattice. Therefore, the 

presence of such glide lines in the square structure does not represent a new type of 

symmetry. However, a new type can be created by a structural motif that turns the 

reflection lines parallel to the sides of the square unit cell into glide lines. 

In the �FF symbol, the first m refers to systems of reflection lines parallel to the 

sides of the square, the second m to systems parallel to its diagonals. Therefore, in 

addition to the symmetry type p4mm , the type p4gm can occur as a separate type in 

the square system, but not the types p4mg and p4gg . 
 

 

In the hexagonal system, there are no symmetry types in which the presence 

of glide lines is induced by a structural motif. Also in the hexagonal lattice, the 

symmetries of two types of lattices - orthogonal centred and rhombic (at point H in 

Figure A3) – meet. In the orthogonal centred lattice, there are glide lines parallel to 

both basis vectors, but in the rhombic centred lattice parallel to the diagonals of the 

rhombus. Therefore, in the hexagonal lattice, their presence does not represent a new 

type of symmetry. 

Particular mention should be made of the plane groups denoted by numbers 

14 and 15, which differ in the orientation of the structural motif with trigonal 

symmetry with respect to the basis vectors of the hexagonal lattice. Therefore, the 

reflection and glide lines are oriented differently in these groups.  
 

A graphical representation of the 17 types of plane groups is given in the figure part of 

this book.  
 

A5   Symmetries of three-dimensional periodic structures 
 

When searching for different types of space lattices differing from each other 

by their symmetry, it is possible to start from the known five types of planar lattices 

and proceed by analogy, i.e. search for the third shortest lattice vector. By such a 

procedure it can be found that there are 14 types of space lattices (so-called Bravais 

m

g 
Fig. A8 
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lattices), characterized by 14 types of translation groups, which on the basis of their 

point symmetry are classified into 7 crystal systems. Their point symmetry is 

characterized by 7 so-called holohedral (i.e. complete) groups, which together with 

their subgroups form a set of 32 point groups of three-dimensional periodic structures. 

Structures whose structural motif has symmetry lower than the lattice or is 

inappropriately oriented with respect to the lattice have symmetry lower than the 

holohedral symmetry.  These 32 point groups characterize the point symmetry of 

crystals belonging to one of the 32 crystal classes. They determine the macroscopic 

symmetry - the symmetry of the external shapes of well-developed crystals, but also 

the symmetry of the physical properties of the crystals, which is manifested by their 

anisotropy. 
 

TA4   Lattices and point groups of three-dimensional structures 
 

Crystal system Lattice parameters 
Types of 

lattices  
Point groups 

Triclinic 
 

-� ,  -� ,  -� 1� , 1� ,  1� 
P 1, 1  

Monoclinic 
 

-� ,  -� ,  -� 1� = 1� = 90°,   1� 
P 

(C1 , C3 , I ) 
2, !, 2! 

Orthorombic 
 

-� ,  -� ,  -� 1� = 1� = 1� = 90° 
P,  I,  F 

(C1 , C2 , C3) 
222, !!2, 2! 2! 2! 

Tetragonal 
 

-� =  -� ,  -� 1� = 1� = 1� = 90° 
P,  I 

4, 4  , 4! , 422 

  4!!, 4 2!, 4! 2! 2!   

Trigonal  

-� =  -� = -� 1� = 1� = 1� ≠ 90° 
––––––––––––– -� =  -� ,  -� 1� = 1� = 90°,    1� = 120° 

 
R 

 
 

P 

3, 3 , 32, 3!, 3 2! 

Hexagonal 
 

-� =  -� ,  -� 1� = 1� = 90°,   1� = 120° 
P 

6, 6  , 6! , 622 

6!!, 6 2!, 6! 2! 2! 

Cubic 
 

-� =  -� = -� 1� = 1� = 1� = 90° 
P,  I,  F 

 23,   2! 3  ,   432 

4 3!,   4! 3 2! 
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Table TA4 shows the distribution of lattice types and point groups into crystal 

systems. The membership of a crystal in a crystal system is determined on the basis of 

its point symmetry, i.e., its point group. The relations between lattice parameters in 

individual crystal systems (system metrics) are also given in the table.  In the last 

column are the symbols of the point groups, while the last in the row is the symbol of 

the holohedral group, expressing the symmetry of the lattice belonging to the 

corresponding crystal system. 

The table uses the unabbreviated international symbols to denote the point 

groups. For example, the symbol 1  represents the inversion, 4  the fourfold inverse axis 

(rotation combined with inversion), 
CK the sixfold axis with the plane of symmetry 

perpendicular to it, 3m the threefold axis lying in the reflection plane. The symbols in 

the point group labels also have a specified order. For example, in the cubic system, if 

a symbol consists of three symbols in a row, the first refers to an edge of the cube, the 

second to a solid, and the third to a wall diagonal. When denoting the angle between 

two basis vectors, the index of the third one is used. The symbol P represents primitive 

unit cell, I body centred and F face centred unit cell. When several such symbols are 

given in parentheses, it means that the corresponding lattice types are equivalent, 

differing only in the choice of basis vectors. The index (e.g. L� , L�) is assigned 

according to which of the faces of the unit cell is centred, the same rule for assigning 

the index as for angles between basis vectors. 

The structure of each crystal has a certain translational and point symmetry. 

Their different combinations, together with the presence of different types of glide 

planes and screw axes, produce 230 types of symmetry of three-dimensional periodic 

structures, 230 space groups. Their detailed description is given in the international 

tables [7].  

In the following Table TA5 the numbers characterizing the multiplicity of 

symmetry types of two- and three-dimensional periodic structures are given. 

 

TA5  Number of groups in planar and space structures 

 

Periodic 
structures 

Crystal 
systems 

Lattice types Point groups 
Plane/Space 

groups 

Two 
dimensional 

4 5 10 17 

Three 
dimensional 

7 14 32 230 
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Part   B 
 

Representation of symmetry operations by matrices and tensors 

 
The representation of symmetry operations by matrices (tensors) is understood 

as such an assignment of a matrix (tensor) to each symmetry operation, which ensures 

that the result of the successive application of two symmetry operations corresponds 

to the matrix (tensor) that results from the product of the respective assigned matrices 

(tensors).  The set of symmetry operations in each crystal class forms a group, and, 

crucially from a representational point of view, the corresponding matrices or tensors 

also form a group in terms of the multiplication defined between the matrices or 

tensors, respectively. In other words – if an element g of the group G of symmetry 

operations is assigned the matrix MN , and an element ℎ the matrix MP , then the 

product Qℎ of these two elements (i.e. their successive application) is assigned the 

matrix that results from the product of the respective matrices  MNMP. The mutually 

unambiguous assignment of matrices (tensors) to symmetry operations thus gives rise 

to an isomorphic group of matrices (tensors). The matrices, or tensors, are then 

understood as operators by means of which the positions of points in space, i.e. their 

spatial coordinates, are transformed (changed) by appropriate mathematical rules.   

 

B1   Representation by matrices 

 

In order to write about the representation of 

symmetry operations by matrices, it is first necessary to 

clarify the notion of matrix in the context of spatial 

transformation of objects.  In spatial transformations, 

such as symmetry operations, individual points of the 

transformed object are moved to new positions. By 

relocating a point, its original R, S, T  coordinates in the 

external coordinate system are changed to RU, SU, TU.     For 

example, moving a point by R? in the x-axis direction, 

changes its coordinates to  
 RU � R � R? , SU � S, TU � T . 
 

If it is a rotation of the body by a certain angle, then such relationships are more 

complicated. Consider the case of a rotation of a point A in the plane by an angle �  

counter-clockwise about an axis perpendicular to this plane and passing through the 

Obr. B1 

y 

y’ 

x x’ 

α 

A‘ 

ϕ 

A 
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origin of the coordinate system (Fig. B1).  Let point A have coordinates R, S  and hence 

a distance from the origin of the coordinate system V = WR� + S�; after rotation to 

point XU  it will take on the coordinates RU, SU, the relations being valid:   R = V cos 1           S =  V sin 1 RU = V cos(1 + Z)          SU = V sin(1 + Z) 
 

or after modification: 
 RU = V cos(1 + Z) = V cos 1  cos Z −  V sin 1  sin Z = R cos Z –  S sin Z   SU = V sin(1 + Z) = V sin 1  cos Z +  V cos 1 sin Z = S cos Z +  R sin Z 
 

and after appropriate reordering of members: 
 RU = R cos Z − S sin Z SU = R sin Z +  S cos Z  .                                           (B1.1) 

 

This result is written symbolically in the form: 

 

]RUSU^ = ]cos Z − sin Zsin Z cos Z ^ ∙ _RS` ,                                  (B1.2)   

 

in which there are two column matrices representing the positions of points (also 

understood as position vectors) and one square matrix representing the 

transformation of the point position. Only the rotation angle Z appears in the 

transformation matrix, but neither the angle 1 of the original position of the point nor 

its distance V from the origin of the coordinate system appear in it. Therefore, such a 

matrix is suitable for calculating the change in coordinates of any point in the plane as 

it is rotated about the origin of the coordinate system. 

The product of the square transformation matrix with the column matrix is 

indicated on the right-hand side of equation (B1.2), and rules are introduced for their 

product such that the product returns to the original transformation equations (B1.1).  

We will state these rules for the case of a square matrix of size 2 × 2,  i.e., a matrix of 

second degree: 

_-�� -��-�� -��` ,                                                    (B1.3) 

where  in the symbol  -�$  the first index represents the row number in the matrix, the 

second the column number. Similarly, using the indices denoting the rows, the 

coordinates in the column matrices are also expressed, where instead of the symbols  R  and  S  we use the symbols R� and R� : 

_R�R�`  ,      ]R�UR�U ^ . 
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In this notation of both square and column matrices, their product is expressed in the 

form: 

]R�UR�U ^ � _-�� -��-�� -��` ∙ _R�R�`                                          (B1.4) 

 

and rules of their product as follows: 
 R�U =  -��R� + -��R�            R�U = -��R� + -��R� ,                   (B1.5) 

or more generally: 

R�U = b -�$
�

$c�
R$  .                                                 (B1.6) 

 

The matrix from equation (B1.2) will be used to determine the shape of the 

matrices representing the symmetry operations appearing in all the point groups listed 

in Section A. These are the rotations by 60°, 90° and their multiplicities, the reflections 

in different lines, as well as the inversion, which is, however, identical to the rotation 

by 180° in planar structures. Each of the ten point groups contains a so-called neutral 

element – identity (denoted by the letter e), when the position of the points of the 

object does not change, i.e. when it is a rotation by 0° (respectively by 360°), where 

cos 0 = 1   and sin 0 = 0; the neutral element thus corresponds to the so-called unit 

matrix 

]cos Z − sin Zsin Z cos Z ^� _1 00 1` ≡ 8 .                               (B1.7) 

 

In each of the four planar crystal systems there is a holohedral point group, the 

other point groups belonging to this system being subgroups of it. This also applies to 

the corresponding matrices. It is therefore sufficient to give the form of the 

transformation matrices representing the symmetry operations belonging to the 

holohedral group of the respective system. 
 

In the oblique system, the holohedral group is the group with label 2, which 

contains only two elements: @8, 2E, i.e. the identity and the rotation by 180° (= π rad). 

For this angle the relations: sin π = 0, cos π = –1 hold, so these two operations are 

represented by matrices: 8 � _1 00 1` ,   2 � _−1 00 −1` .                                    (B1.8) 
 

We will see that the matrix representing the element with symbol  2 will rotate every 

position vector to the opposite one if we use the rules of B1.5: 
 _−1 00 −1` � _R�R�` =  _−R�−R�` .                                    (B1.9) 

 

This means that a rotation in the plane by 180°  is also an inversion.    
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In the rectangular system (symmetry of a rectangle), it is a group of �FF that 

contains the following elements (symmetry operations): 78, 2, !��9�, !�9��:, where the 

symbol !��9� represents the reflection in a line perpendicular to the basis vector �� 

and the symbol !�9�� the reflection in a line perpendicular to the vector ��. The 

matrices representing the elements of this group have the form: 
 8 � _1 00 1` ,     2 � _�1 00 �1`,    !��9� � _�1 00 1` ,   !�9�� � _1 00 �1`  %B1.10) 

 

The correctness of the above form of the matrices representing the reflection can be 

verified by using the rules of B1.5, by applying these matrices to a vector with 

coordinates (a, b): 
 _�1 00 1` ∙ _-d` � _�-d ` , _1 00 �1` ∙ _-d` � _ -�d` , 
 

from which, as well as from figure B2, it can be seen that the first of the matrices has 

changed to the opposite first coordinate of the vector, so that it is a reflection in the 

y-axis (the vertical axis, perpendicular to the vector ��), the second of the matrices the 

second coordinate, so that it is a reflection in the x-axis (the axis perpendicular to the 

vector ��).  

  

 

In the square system, the holohedral group is the �FF group containing eight 

elements: 78, 4, 4�, 4�, !��9�, !�9��, !����, !���"�:. The symbols !���� and !���"� 
represent reflections in the diagonals of the square unit cell. The matrices representing 

the elements of this group have the form: 
 8 � _1 00 1` ,       4 � _0 �11 0 `,      4�� 2 � _�1 00 �1`,     4�� _ 0 1�1 0` 

!��9� � _�1 00 1`,   !�9�� � _1 00 �1`,    !���� � _ 0 �1�1 0 `,   !���"�� _0 11 0` . 
(B1.11) 

 

Fig. B2 a1 

a2 
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The hexagonal holohedral point group of �FF, describing the symmetry of a 

hexagon, has the largest number of elements:  @8, 6, 6�, 6�, 6A, 6B, !9, !�9, !C9, !D9, !��9, !�B9E, where the indices at the symbols 

m express the angle formed by the reflection line with the basis vector �� and the 

symbols 6, 6�, 6� . . . represent rotations by 60°, 120°, 180° . . ... The corresponding 

matrices have the form: 

8 � _1 00 1` ,   6 �
⎝
⎜⎛

12 � √32√32 12 ⎠
⎟⎞,    6� � 3 �

⎝
⎜⎛� 12 � √32√32 � 12 ⎠

⎟⎞,    6� � 2 � _�1 00 �1` 

6A � 3��
⎝
⎜⎛ � 12 √32

� √32 � 12⎠
⎟⎞ ,   6B�

⎝
⎜⎛

12 √32
� √32 12 ⎠

⎟⎞,   !9 � _1 00 �1` , !�9� 
⎝
⎜⎛

12 √32√32 � 12⎠
⎟⎞   

!C9�
⎝
⎜⎛� 12 √32√32 12 ⎠

⎟⎞,   !D9� _�1 00 1`,   !��9�
⎝
⎜⎛ � 12 � √32

� √32 12 ⎠
⎟⎞,   !�B9� 

⎝
⎜⎛

12 � √32
� √32 � 12 ⎠

⎟⎞ 

(B1.12) 

In the matrices representing symmetry operations of the oblique, rectangular 

and square systems, only integers (0, 1, -1) are located; in the hexagonal system, 

fractions and even irrational numbers are situated. This is a consequence of the use of 

the Cartesian coordinate system, whose coordinate axes take the angle 90°, although 

the basis vectors �� and ��, and hence the axes of the so-called natural hexagonal 

coordinate system, take the angle 120°. When using the natural coordinate system, 

even in the hexagonal system, only integers are in the transformation matrices. For 

example, rotating the hexagonal basis vector �� by 60° produces a vector (dashed in 

Figure B3) that in the Cartesian system (left part of the figure) is projected onto the x-

axis at half its magnitude, so that it has a coordinate of 1⁄2 , but its y-coordinate has a 

Fig. B3 
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value of √3 2⁄ , which is then reflected in the transformation matrix. If, however, 

turning is considered in terms of the natural coordinate system (right part of the 

figure), the projection of the rotated vector in both directions determined by the pair 

of basis vectors is evaluated by coordinates of magnitude 1. Therefore, even in a 

transformation matrix expressed in the natural coordinate system, only integers stand 

out. The transformation matrix of a rotation by 60° then has the form 
 6 ≡ _1 −11 0 ` ,                                                   (B1.13)  

 

and its effect on the vectors ��and �� will be verified. In the natural system, these 

vectors are written as column matrices: _10` and _01` , so we write their 

transformations as products:                                           
 _1 −11 0 ` ∙ _10` = _11` ,            _1 −11 0 ` ∙ _01` = _−10 ` . 

 

The result shows that rotating the vector �� by 60° counter-clockwise produces 

a vector equal to the sum of �� + ��, and rotating the vector �� becomes the vector −�� . 
 

Having given matrices representing the symmetry operations of all four 

holohedral plane point groups, we can show that the matrices, like the symmetry 

operations, form a group. This group is isomorphic to the group of symmetry 

operations of the corresponding crystal class. The set of corresponding matrices forms 

a group in terms of their multiplication with each other, which, however, needs to be 

defined. By definition, the product of two square matrices X and m, whose elements 

we denote by the symbols -�$, and d�$  respectively, gives rise to a new square matrix 

C, whose elements n�$  are calculated according to the relation: 
 n�$ =  b -�odo$p

o  .                                                (B1.14) 

 

In two-dimensional space the addition index k takes only the values 1, 2.  

We give an example from the square system, namely the successive application 

of the rotations by 90° and 180° (→ B1.11), which together represent the rotation by 

270°: 4 ⋅ 42 = 43.  The product of the matrices representing the rotations about 90° and 

180° will indeed give the matrix representing the rotation about 270°: 

_0 −11 0 ` � _−1 00 −1` = _ 0 1−1 0` , 
 

which can be verified by using relation (B1.14). Of course, this is also true for other 

combinations of symmetry operations within a single crystal class. For the set of 



27 

 

matrices representing the symmetry operations of a crystal class to form a group, it 

must satisfy four conditions. 
  

The product of such two matrices gives a matrix that belongs to this group. This 

satisfies the closedness condition of the set forming the group. 
 

It can be further verified that the associative law holds for the product of matrices, 

which the reader can verify for himself. This satisfies the second of the conditions.  
 

Each of the above matrix clusters contains a unit matrix _1 00 1`, characterized by the 

fact that the product with another matrix does not change it. For example:  
 _1 00 1` ∙ _−1 00 1` =  _−1 00 1` 

 

The last condition, is the existence of an inverse element for each of the elements of 

the group, i.e. in this case the inverse matrix. Here we give an example from the square 

system, where, say, the inverse element to a rotation by 90° (the element denoted by 

the symbol 4) is a rotation by 270° (the element denoted by the symbol 4�), because 

their successive application is a rotation by 360°, i.e., a rotation to a position as 

without rotation. Expressed using the appropriate matrices: 

_0 −11 0 ` ∙ _ 0 1−1 0` = _1 00 1` . 
 

This verified all four conditions for the set of matrices representing the 

symmetry operations to form a group. 

 

An important characteristic of the transformation matrix is its determinant D. 

It is a number which, in the case of the matrix _-�� -��-�� -��` is calculated using the 

formula 
 q = -��-�� − -��-�� .                                       (B1.15) 

 

On the above matrices it can be seen that the determinants of the matrices 

representing rotations have the value +1, and the determinants of the matrices 

representing reflections have the value –1. Without proof, we will state that if the 

absolute value of the determinant of a matrix is equal to 1, it is a transformation in 

which the distances between any two points of the transformed object are preserved, 

i.e., there is no deformation of the transformed object. These are so-called orthogonal 

matrices. 
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 Another important characteristic of matrices is their trace S, which is the sum 

of the members located on the principal diagonal; in the case of a matrix notation of 

the form B1.3 

 � � -�� � -��  .                                         (B1.16) 
 

In representation theory, the name character of representation is used for this 

number. 

 

 

B2  Representation by tensors 
 

The tensor representation is essentially just a modification of the matrix 

representation.  In the matrix representation discussed in Section B1, the 

transformations were assumed to take place in a Cartesian coordinate system with R 

and S axes. This choice of coordinate system is easily applied in both rectangular and 

square systems.  In other systems (oblique and hexagonal) it is more convenient to 

adapt the direction of the coordinate axes to the direction of the pair of basis vectors 

and to consider their lengths as units in the respective directions. While this is possible 

also in matrix representation, it is not immediately apparent from the notation of the 

matrices what coordinate system is being used.  In the tensor representation, the basis 

vectors appear explicitly, directly in the notation of the tensors representing the 

corresponding symmetry operations. 
 

In the oblique crystal system, the basis vectors ��  and �� do not have equal 

lengths and take an angle different from the special angles 90° and 60° typical of the 

rectangular, square and hexagonal systems (→ part A2). The holohedral point group 2 

of this system contains only two elements, the identity and the rotation by 180°, 

represented by the matrices  
 8 � _1 00 1`  ,    2 � _−1 00 −1` . 

 

The tensor notation of these operators has the form (→ table TC2b) 
  

  r̿ � ���� +  ����             �	 � − ���� −  ����                   (B2.1) 
 

where  �� and �� are a pair of vectors reciprocal to the pair �� , �� (→ end of section 

A1). 
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In the rectangular system, the basis vectors are perpendicular to each other but 

have different lengths. The holohedral point group has four elements represented by 

matrices  
 8 � _1 00 1`  ,    2 � _−1 00 −1` ,  ![�9] � _−1 00 1` ,  ![9�] � _1 00 −1` ,  

 

or by tensors 
 rt 	 � ���� +  ����,   �	 � − ���� − ����, �	 �9 � − ���� + ����,   �	 9� � ���� − ���� .             (B2.2) 
 

The tensors representing the two rotations typical of a hexagonal system have the 

shape: J	 =  ���� −  ���� −  ���� ,        �	 =  ���� +  ���� −  ����     (B2.3) 
  

From the above examples it can be seen that the tensors also in the hexagonal 

system contain only integer coefficients for the dyads, which is a consequence of the 

use of the natural coordinate system. 
 

Starting from relations A1.2 and D30.18, the tensor �	 transforms the vector �� 

as follows: �� ∙ �	 = �� ∙  (−���� −  ����) = −�� 
 

because �� ∙ �� = 1 and �� ∙ �� = 0.  Tensor �	 has thus changed the direction of the 

vector �� to the opposite direction.  
 

 For matrix multiplication, relation B1.14 applies, and the rule for tensor 

multiplication is given in Appendix D30, as relation D30.7. As an example, the rotation 

by 90° applied twice, so it is a rotation by 180°. The rotation by 90° is represented by 

the tensor �	 =  ���� −  ����,  and the double rotation is expressed as the product of 

the tensors �	 ∙ �	 .  This product is to coincide with the tensor   �	  =  − ���� −  ���� 

representing the rotation by 180°: 
 �	 ∙ �	 = ( ���� −  ����) ∙ ( ���� −  ����) = =  ����  ∙ (���� −  ����) −  ���� ∙ (���� −  ����) = 

=  ��(�� ∙ ��)�� −  ��(�� ∙ ��)�� −  ��(�� ∙ ��)�� +  ��(�� ∙ ��)�� = 

= − ���� −  ���� = �	   ,  

for      �� ∙ �� = �� ∙ �� = 0    and    �� ∙ �� = �� ∙ �� = 1 .  

 

An important characteristic is the scalar of the tensor (→ D30.9), which is 

equivalent to the trace of the matrix.  The determinant corresponding to the tensor is 
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obtained by fitting the coordinates of the tensor (→ D30.15) to the matrix and then 

calculating as in the matrix.   

All significant tensors are listed in Tables TC2a and TC2b on page 48. 

 

 

B3 Elements of representation theory 

 

 Representation theory began to develop in the early 20th century. It found wide 

application not only in mathematics, but also in the consideration of various kinds of 

physical systems in terms of their symmetry.  For example, it has been applied in the 

classification of quantum states (energy levels) in atoms, molecules and crystals, in the 

determination of selection rules (allowed and forbidden quantum transitions), which 

is directly related to the spectra of electromagnetic radiation.  

The trace  of matrices play an important role in representation theory. We give 

one example – matrices representing the symmetry operations of the 2mm group (→ 

B1.10): 
 8 � _1 00 1`  ,    2 � _−1 00 −1` ,  ![�9] � _−1 00 1` ,  ![9�] � _1 00 −1` . 

       (B3.1) 

It has already been mentioned in section B1 that the determinants of the matrices 

representing rotations have the value +1, for reflections the value –1. However, the 

traces of the matrices, i.e. the sum of the elements in the principal diagonal, have a 

different meaning. The trace of the matrix representing the identity  e  has in this 

example the value S = 2, i.e. the same as the number of rows of the square matrix. This 

is related to the dimension of the space in which the symmetry operations are 

described. The trace of  the  matrix  representing  the  rotation  by 180° has value S = 

–2, and the traces of the matrices representing reflections have value S = 0. Different 

trace values correspond to different types of symmetry operations; they can be said 

to indicate the character (nature) of the symmetry operation, which probably led to 

the appropriate naming of this parameter. However, the numerical value of the 

character also depends on the particular type of representation. The trace values can 

also be verified on the matrices in the other crystal systems mentioned above. 

 As mentioned at the beginning of Section B, the matrix representation of 

symmetry operations is understood as the matrix assignment to each symmetry 

operation that ensures that the result of the successive application of two symmetry 

operations corresponds to the matrix obtained by the product of the respective 

assigned matrices. If a different matrix is assigned to each operation, then the group 
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of symmetry operations and the group of matrices are isomorphic. The name faithful 

representation is used for such a representation. However, representation theory also 

considers the so-called homomorphic representation (→ Appendix D29), where more 

symmetry operations are assigned to the same matrix, but keeping the condition 

stated in the first sentence of this paragraph. This gives rise to different 

representations, differing also in the characters of the individual operations. A 

homomorphic representation can be achieved, for example, by assigning one matrix 

to all symmetry operations belonging to a certain class of associated elements. In 

doing so, these matrices need not match in size (degree) the dimension of the space 

in which the symmetry operations are described. 

 A total trivial homomorphic representation is to assign the number 1 to all 

symmetry operations. The number 1 can be thought of as an element of a matrix of 

size 1×1. Such a "set" containing a single element satisfies all the group postulates in 

terms of multiplication, since it is closed, contains a neutral element which is itself an 

inverse element, and the associative law holds when multiplying between units. The 

following table shows three representations of the group 3m (denoted by a, b, c), 

which is a subgroup of the above-mentioned group 6mm (→ B1.12) and represents 

the symmetry operations of an equilateral triangle. In the first line there is a trivial 

representation in units, the representation in the second line is already richer, it also 

contains elements –1, which are assigned to reflections. In the first two rows these are 

homomorphic representations, one-dimensional representations. Only in the third 

line are the representations isomorphic, representing the so-called vector 

representation, which corresponds in degree of matrices to the dimension of the space 

in which the symmetry operations are described. 

 
 

 e 3 32 m0 m60 m120 

a 1 1 1 1 1 1 

b 1 1 1 –1 –1 –1 

c _1 00 1`
⎝
⎜⎛− 12 − √32√32 − 12 ⎠

⎟⎞
⎝
⎜⎛ − 12 √32

− √32 − 12⎠
⎟⎞ _1 00 −1` 

⎝
⎜⎛− 12 √32√32 12 ⎠

⎟⎞ 

⎝
⎜⎛ − 12 − √32

− √32 12 ⎠
⎟⎞ 

 

 

Matrices in different representations have different characters, which are the same 

for elements belonging to the same class of associated elements.  The 3m group has 

three classes of associated elements: {e}, {3, 32} and {m0, m60 , m120}, which can be 

verified using its multiplication table TC5 (in the tabular part of the text); the 

characters assigned to them are listed in the following table: 
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 e {3, 32} {m0, m60 ,  m120} 

a 1 1 1 

b 1 1 –1 

c 2 –1 0 

(B3.3) 

In two-dimensional space (in the plane), symmetry operations can be 

represented by "larger" matrices than 2×2, e.g. square matrices of size 3×3, or even 

larger. This is also true for multidimensional spaces. For example, the matrices (B3.1) 

can be expanded by both a row and a column, and the number 1 can be written in 

their intersection. This gives the form: 
 

u1 0 00 1 00 0 1v ,   u−1 0 00 −1 00 0 1v ,  u−1 0 00 1 00 0 1v, u1 0 00 −1 00 0 1v  .        (B3.4) 

 

The set of matrices thus expanded equally well represent the group �FF.    The above 

matrices can be expanded in even more complex ways, for example, by repeating the 

square matrix 2×2 in the principal diagonal of the expanded matrix, while leaving the 

other elements of the matrix zero. The augmented matrices from relation (B3.1) then 

take the form:   
 

w1 00 1 0 00 00 00 0 1 00 1x w−1 00 −1 0 00 00 00 0 −1 00 −1x w−1 00 1 0 00 00 00 0 −1 00 1x w1 00 −1 0 00 00 00 0 1 00 −1x 

(B3.5) 

A property of all these particular matrices is that, when transforming a four-

dimensional vector with coordinates R� ,  R� ,  R� ,  RA , the coordinates R�U   and R�U  of the 

resulting vector are not expressed as a combination of all four coordinates of the 

original vector, but only the first two, i.e. the coordinates R�  and  R�  . Similarly, the 

coordinates R�U   and RAU  are expressed as a combination of only the coordinates R�  and  RA . This means that the corresponding four-dimensional space in terms of the 

symmetry operations represented by matrices of the type (B3.5) can be divided into 

two independent, so-called invariant parts. The above statement can be seen well in 

its general notation: 
 

y
R�UR�UR�URAU

z = w
-�� -��-�� -�� 0 00 00 00 0 -�� -�A-A� -AA

x ∙ w
R�R�R�RA

x = y
-��R� + -��R�-��R� + -��R�-��R� + -�ARA-A�R� + -AARA

z   (B3.6) 
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The extension of the matrices can be even more complex, matrices of different 

sizes can be inserted into the main diagonal, creating so-called quasidiagonal matrices. 

Such extended matrices can be reduced to their original "smaller" form, hence they 

are called reducible, and the space in which such matrices act can thus be decomposed 

into invariant subspaces. Matrices that cannot be reduced are irreducible, and such 

matrices are important in representation theory. The definition of reducible and 

irreducible matrix representations relies precisely on the possibility of partitioning 

spaces into invariant subspaces in terms of the action of matrices in these spaces. 

One of the important theorems of representation theory states that the 

number of irreducible representations of any group of symmetry operations is equal 

to the number of classes of its associated elements. Therefore, the group 3m has 3 

irreducible representations, denoted in Table B3.2 by a, b, c. As the simplest example 

of a reducible representation, consider the group 2 (the oblique system), which 

contains only the identity e and the rotation by 180°, denoted by the symbol 2. This 

group has only two elements, so it can have at most two classes of associated 

elements, and these are {e} and {2}, so that there is only one element in each class. By 

the above theorem, this group can have only two irreducible representations. By 

relation (B1.8), two elements of this group are represented by matrices: 

8 � _1 00 1`  ,    2 � _−1 00 −1` , 
 

which, when compared to the augmented matrices (B3.5), have a similar structure, 

they look like augmented quasidiagonal matrices, formed by one-dimensional 

matrices 1 and –1, respectively. Therefore, this representation is reducible.  The two 

irreducible representations we are looking for, together with a third reducible 

representation, are listed in the following table, including the characters of the 

corresponding operations in each representation: 

 

Representations e 2 
 characters 

e        2 

 

 

(B3.7) a 1 1  1 1 

b 1 –1  1 –1 

c _1 00 1` _−1 00 −1`  2 – 2 

 

Group 2 is of great importance in crystallography and theoretical physics because it 

essentially represents two fundamental operations – identity and changing the value 

of some parameter to the opposite value. In three-dimensional space it is the reversal 

of the direction of vectors in the opposite direction, i.e. spatial inversion; when 
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considering time, it is the reversal of the direction of its passage, i.e. time inversion. 

This general group is often denoted by the symbol  L�. 
The characters of the representations of the 32-point groups are given, for example, 

in the Hammermesh monograph [20], but also on the Internet, e.g., at:   

       http://staff.ustc.edu.cn/~xjwu/qc/teaching/book/chracter%20table-1.pdf   

There are mathematical relations between the characters of the 

representations, but we will not state them here. Detailed information on 

representation theory can be found in many publications; we have listed only a few of 

them in the reference list: [8], [9], [15], [16], [17]. 
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Part C      

Derivation of planar symmetry groups 
 

C1  The concept of symmetry 

 

By symmetry of an object we mean the existence of a set of geometric 

transformations by which the object under consideration is brought to an equivalent 

position, it identifies itself with itself. Symmetry is an important characteristic of 

crystals, referring not only to their external shapes, but especially to the arrangement 

of atoms, i.e. the crystal structure. It is not a privileged property of crystals, but has a 

broader application, so it is appropriate to introduce the concept of symmetry more 

generally. 

We place an object in a fixed laboratory (external) coordinate system, and 

express some selected physical property of the object as a function {%�) of its position 

in this system. With the object we fix a second (internal) coordinate system, whose 

origin and coordinate axes will be bound to specific points of the object; therefore, 

this system changes with the object during transformations (deformations, motions, 

rotations) of the object. We then transform the object, limiting ourselves to only those 

transformations which preserve the distances between any two points of the object 

(for example, we turn it over). If the values of the function {%�)  are preserved at all 

points � of the laboratory system after such a transformation, the corresponding 

transformation is a symmetry operation of the object. For example, if a point of the 

object determined by the position vector �| is transformed to point �}  in a symmetry 

operation, the values of the function {(�) at these points must have been the same 

before the transformation; the corresponding points are referred to as equivalent. 

Transformations that do not change the distances between points of an object 

include displacements of the object - translations, rotations, inversions, in-plane 

reflections, and combinations of these. All such operations represent in the laboratory 

system transformations of position vectors of specific points of an object into other 

position vectors. For example, if a point K is moved to a point KUduring the 

transformation, the position vector � of point K is transformed into the vector �U of 

point KU, which is expressed symbolically by the relation 

�U =   S ∙  �                                                 (C1.1) 

where S represents the operator of the corresponding transformation. The dot 

between S and � does not represent an ordinary product, but an application of the 

operator S to the vector.  
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  The operator S generally has two parts - a part related to rotation or 

reflection, and a part related to translation. The part of the operator representing 

rotation or reflection is expressed by the matrix, or tensor �	 , the translation part by 

the vector �. (On representations of symmetry operations, see sections B1, B2, 

Appendix D30). 

The application of the operator S to the position vector is then written as 

follows: 

   S ∙  �  �   �U   �   � ∙  �	   �  �   �   � ∙  
�	  , �� ,                   (C1.2) 
 

where � ∙  �	  expresses the left scalar product of the tensor �	  with the position vector 

r . 

 

The use of the left scalar product proves useful when combining multiple 

transformations. Therefore, it is also convenient to  change the symbolic notation of S ∙  �    to � ∙  S .  The operator S in accordance with relation (C1.2) is written in the 

form:  

S ≡  
�	 , �� .                                                   (C1.3) 
 

This form, introduced by F. Seitz [4], will be used in later sections of the text to more 

easily formulate multiple uses of the same operator, or in the successive application 

of different operators. 

 

C2   Groups of symmetry operations 
 

Every object, including a crystal, has at least one symmetry operation - identity 

(we denote it by E), in which the points of the object transform into themselves. The 

identity operation is expressed by the relation 

�  �   � ∙ E                                                    (C2.1) 

valid for every vector � . In analogy with relation (C1.3), the identity operation 

operator is written in the form: 

E ≡  
r̿, 0� ,                                                   (C2.2) 

Fig. C1  

r 
Κ 

t 

Φ 
r’ 

Κ’ 
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where r̿ represents the identity tensor (unit matrix in the matrix representation). By 

breaking down this operation in more detail, we obtain the relation: 

 � ∙ E  =   � ∙ 
r̿, 0�   =  � ∙  r̿  +   �  =   � , 
 

because the vector is not changed by the scalar product with the identity tensor. 

  Suppose that the operators S� ≡ 
�	�, �I�  and S�  ≡  
�	 �, ��� represent two 

different symmetry operations. If we execute them in sequence, it is logical that the 

compound operation as a whole is again a symmetry operation. The application of the S� operator transforms the vector r into the vector �′ =  � ∙  S� and this is 

transformed into the vector �UU by the S� operator: 

�′′ =   �′ ∙  S�  =  (� ∙ S�) ∙ S� =  � ∙ (S� ∙ S�) .    
 

Applying the notation of the operations according to relation (C1.2), we obtain the 

result 

�UU = �� ∙ �	� + �� � ∙ S�  = 
�� ∙ �	� + ��� ∙ �	 �� + �� = 
 = � ∙ �	� ∙ �	 �  +  �� ∙ �	 �  + �� , 
  

so that the sequential application of the two operators S� and S� can be written 

symbolically as the product of the operators and expressed in the form 

 S� ∙  S�   =   
�	�, �I� ∙ 
�	 �, ���  = 
�	� ∙  �	 �,   �� ∙  �	 �  +  �� � .         (C2.3) 
 

If we reversed the order of the operations, we would get the result 

 S� ∙  S�   =   
�	 �, ��� ∙ 
�	�, �I�  = 
�	 � ∙  �	� ,   �� ∙  �	�  +  �� � 

 

which shows that swapping the order of operations may not lead to the same result, 

i.e. the product of symmetry operators may not be commutative.  

 The product of two operators can be generalized to the product of several 

operators S� ∙ S� ∙ S� .  .  . A special case is the n-fold application of the same operation 

(represented by the n-th "power" of the operator: S�). By successive application of 

relation (C2.3), it can be found (→ Appendix D1) to hold: 

 S�  =  
�	 p, � ∙  7r̿ +  �	  +  �	 �   +  … +  �	 p��:� ,                (C2.4) 
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where  �	 �  =   �	 ∙ �	 ,     �	 � =  �	 � ∙ �	  , etc.  The sum in the large bracket is symbolic 

and means that the operators  r̿ ,  �	 ,  �	 � , ... are successively applied to the vector  �, 

thus producing a set of vectors to be summed. The result has to be added to the vector 

produced by applying the operator �	 � to the initial vector r . 

 To each symmetry operation (operator S) there is an inverse operation 

(operator S��) that returns the object to its original position. Thus, for the inverse 

operation operator holds:   S ∙ S�� =  S�� ∙ S  =   E                                           (C2.5) 

Using this relation and relations (C2.2) and (C2.3), we obtain the form of the inverse 

operator: 

S��   ≡   
�	 ��, −� ∙  �	 ��� .                                    (C2.6) 
 

For completeness, it is worth recalling that the inverse operation is also a symmetry 

operation. 

 

In summary, it can be concluded that 

– the set of symmetry operations of a crystal, but also of any other object with respect 

to their successive application is a closed set, because the combination of even several 

symmetry operations will bring the object to a physically and geometrically equivalent 

position; therefore, their combination is also a symmetry operation; 

– in the successive application of several symmetry operations, the associative law 

holds, which follows from the associativity of vector addition and the associativity of 

tensor (matrix) multiplication; 

– in the set of symmetry operations there is always a so-called neutral symmetry 

operation, which is the identical operation E. It has the property that in conjunction 

with another operation, it does not change this one; 

 

– to every symmetry operation there exists an inverse operation with the property 

that by successive application of the symmetry operation and its inverse to it, an 

identical operation is produced. 

Therefore, the set of symmetry operations of an arbitrary object forms a group 

because it satisfies all the group postulates. Meanwhile, a binary group operation is a 

sequential application of operations (→ Appendix D29 on groups). 
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If the distances between any two points in an object are preserved in its 

transformation, this means that the lengths of the sides of the triangles are preserved 

and therefore their angles are preserved. Therefore, the scalar product of the position 

vectors of any two points of the object is also preserved. This has a significant effect 

on the tensor part of the symmetry operator because it must hold:   

�� ∙ ��  =  ��U ∙  ��U  = ��� ∙ �	 � ∙ ��� ∙ �	 � = ��� ∙ �	 � ∙ ��	 � ∙  ��� = �� ∙ ��	 ∙ �	 ��  ∙ ��  
 

The comparison of the beginning and end of the line implies that the scalar product of 

the tensor �	  with the conjugate tensor �	 � must be equal to the identity tensor r̿ . But 

this means that the conjugate tensor �	 � must simultaneously be an inverse tensor, 

i.e., it must hold  

 

  �	 � = �	 ��, resp. �	 = �	 ��� .                                 (C2.7) 
 

Tensors (matrices) representing symmetry operations must have this property. 

The corresponding matrices are referred to as rectangular. 

 

 

C3   Groups of symmetry operations of crystal structures 

 

In describing the symmetry of the crystal structure (i.e. the symmetry of the 

arrangement of atoms in the crystal), it is necessary to start from the lattice postulate. 

This states that any property of a crystal - macroscopic or microscopic - is invariant 

with respect to a translation by the lattice vector �� , the so-called lattice translation: 

  �� = ∑ ���� = ���� + ���� + ���� ,��c�                            (C3.1) 
 

where the vectors ��  represent the triplet of basis vectors (basis) of the crystal lattice 

and ��  are integers. The lattice postulate is expressed by the relation 

{(�) = {(� + ∑ ������c� ) ,                                    (C3.2) 
 

where {(�) represents a physical property of the crystal (scalar, vector, or tensor) as 

a function of spatial coordinates in the laboratory coordinate system. For example, the 

electron density varies periodically in a crystal (with a period at the level of the 

interatomic distances), so that by shifting the crystal by one or a few lattice vectors, 

the crystal will reach a physically identical position - at a given point in the laboratory 

system, all properties of the crystal will have the same value again. Thus translations 
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of a crystal by a lattice vector are symmetry operations, and given the circumstance 

that they are related to the lattice postulate, they are trivial symmetry operations. 

Note Effects at the edges of a finite crystal are not accounted for, or the reasoning is 

quite correct for the case of an infinitely large crystal. 

 

The translation operator T� representing translation by a lattice vector ��, according 

to relation (1.3) is expressed in the form 

 T�  ≡   
r̿, ���   =  
r̿,  ���� + ���� + �����  .                       (C3.3) 

 

It is not difficult to see that the set of all lattice translations (there are infinitely many) 

forms a group, the binary operation being the successive application of two 

translations, represented by the sum of the lattice vectors. It is called the translation 

group and will be denoted by the symbol T. Lattice translations form only a part of the 

symmetry operations of a crystal; they form a subgroup of the group of all symmetry 

operations, which include various rotations and reflections. The set of rotations and 

reflections has a finite number of elements. The group of all symmetry operations of 

a crystal is called the space group of the crystal and is referred to as G in this text. 

If S � 
�	 , �� represents a symmetry operation, then in accordance with relation 

(C2.3), the product S�� ∙ T� ∙ S also represents a symmetry operation.  In detailed 

notation, this product is represented by the expression (→ Appendix D2) 

S�� ∙ T� ∙ S  =   
r̿,  �� ∙  �	 �  ,   or     S ∙ T� ∙ S��  =   
r̿,  �� ∙ �	 ��� .       (C3.4) 

The identity tensor is in square brackets in the first place, so in both cases the resulting 

operation is a translation by the rotated lattice vector ��. This means that in addition 

to the vector �� the rotated vector (i.e., the scalar product �� ∙  �	 ) must also be an 

element of the translation group of the crystal. The relation (C3.4) can also be written 

in the form 

S�� ∙ T� ∙ S = T�U 
while in general the translations corresponding to the operators T� and T�U are not 

equal. These considerations hold for any translation belonging to the translation group 

T. That is, when the symbol S represents any element of the space group G and S�� its 

inverse, we can write the group equation 

S�� ∙ � ∙  S = �  ,  ⟹   � ∙ S = S ∙ � .                        (C3.5) 
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It follows from relation (C3.5) that the translation group T is an invariant subgroup of 

the space group G because its left and right cosets S ∙ � and S ∙ �  respectively, 

associated to any element S =  
�	 , �� of the space group, are the same. An element 

of S is the representative of the corresponding coset. Using additional elements S of 

the space group, additional cosets are created and the group G is thus decomposed 

into a subgroup T with representative of E =  
r̿, ��, and into cosets with 

representatives S� , S� , . . ., of which there are a finite number. Each coset contains an 

infinite number of elements, consisting of translation and a point operation, and in all 

its elements the point operation is the same; the elements of coset differ from each 

other only by different lattice translations. The location of the corresponding elements 

of point symmetry (rotation axes, reflection lines) in the crystal lattice is not crucial. 

The translational subgroup T of the space group G together with its cosets as 

units form a factor group, which is denoted by the symbol (G/T). The space group can 

then be expressed as the direct product of the translation group and the factor group: � =  � ∙ (�/�) = (�/�) ∙ �  .                               (C3.6) 
 

The elements of a factor group (i.e. a subgroup T + its cosets) are symbolically denoted 

by their representatives  E, S�, S� , S� . ..: 
 (�/�)   ↔   @E,  S�,  S�, S�  . . . E . 

 

In doing so, it is important to note that the set of representatives E, S�, S� , S� . ..  
need not form a group. The set of operations S�, S� , S� . . ., excluding the operation E , 

represents the non-trivial symmetry operations of the crystal structure. If the 

translational part of these operations is dropped, i.e., 
�	 � , ���  → 
�	 � , ��, what 

remains are operations that do not shift the crystal, i.e., they leave at least one point 

at the original location. Therefore, they are called point operations. These point 

operations, together with the identical operation E, form the point group of the crystal 

structure symmetry.   

Among the elements of the point group of a crystal represented by the 

operators  
r̿, �� , 
�	�, �� , 
�	 �, �� , . ..   and the elements of the factor group, there is 

a one-unique relationship, therefore 
 

the factor group and the point group of a crystal are isomorphic.  
 

The relation (C3.6) is the starting point in the search for possible types of crystal 

space  groups . It implies that all possible translation groups and all factor groups must 

first be known. However, factor groups are isomorphic to point groups, and so the task 

of finding all space groups reduces to finding all possible point groups and translation 

groups. One has to start with the point groups, because the translation groups – as will 
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be shown later – can be derived from the requirements imposed by the symmetry 

operations of the individual point groups on the basis vectors �� , �� , �� of the lattice. 

And further, point groups can be constructed from the obtained allowed point 

symmetry operations, which are defined by the periodicity of the crystal structure.  
 

Previous considerations have been concerned with both two- and three-

dimensional structures. However, to rigorously derive all point, translation and space 

groups of three-dimensional periodic structures is a task challenging in content but 

especially in scope.  From a pedagogical point of view, it is therefore appropriate to 

restrict ourselves to two-dimensional structures. In doing so, the methodology is the 

same as for three-dimensional structures. It was published by F. Seitz between 1934 

and 1936 in a series of articles in the Zeitschrift für Kristallography [2 - 5] and 

methodologically improved by W. H. Zachariasen in the book "Theory of X-Ray 

Diffraction", published in 1945 [6].  This text is based on Zachariasen's procedure, 

adapted to two-dimensional periodic structures.   

 

 

 

C4 Symmetry operations of two-dimensional periodic structures  
 

For two-dimensional periodic structures, symmetry operations include 

translations in the plane of the structure, rotations about axes perpendicular to this 

plane, and reflections in lines lying in the plane, as well as combinations of these 

operations. Rotation by 180°  coincides with inversion, which is a separate operation 

only in three-dimensional structures. The symmetry operations of planar structures 

can thus consist of a rotational part (understood in a broader sense together with 

reflections) and a translational part, so that the corresponding operators have the 

general form  S ≡ 
�	 , �� . 
In the following sections, the influence of the periodicity of planar structures 

on the rotation and translation part of the operators S  is described. This is essentially 

a search for allowed rotations and allowed translations that bring the structure to an 

equivalent position. For two-dimensional structures, translations are expressed by 

vectors with only two components; similarly, tensors are only two-dimensional. 
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C4.1 Tensor part of the operator S   

 

The tensor, and hence the second degree tensor, is used in this text as the 

operator that mediates the transformation in space. The transformation of a vector r 

into a vector �U   is expressed as the scalar product of this vector with the tensor: � ′  =   � ∙ �	                                                 (C4.1) 
 

If a two-dimensional tensor (i.e., a tensor consisting of two linearly independent 

dyads) transforms a pair of noncolinear vectors �� , �� into vectors  �� ,  �� , i.e., 

when �� ∙ �	 = ��    and      �� ∙ �	 = ��,                                 (C4.2) 
 

then tensor can be written in the form (→ Appendix D3) 
 �	  =   �� ��  +  �� �� ,                                      (C4.3) 

 

where the vectors ��, ��represent a pair of reciprocal vectors to the pair �� , �� . 
The tensor part of the operator S ≡ 
�	 , ��  represents such tensor transformations in 

which a certain set of points transforms into itself (point symmetry operations). 

Therefore, there exists a nonempty set of position vectors, for which  � =   � ∙ �	  ,     
or in another notation 
 � ∙ �	   –  � = �  �  � ∙ ��	 −  r̿� = �  , 

 

 respectively in the designation  �	 = ��	 −  r̿� : 
 � ∙  �	  = �  .                                                  (C4.4) 

Since the tensor part of the symmetry operator must satisfy condition (C2.7), i.e. �	 � =�	 �I, resp.  �	 = �	 ��I  the relation (→ Appendix D4) holds for the same posiZon 

vectors �	 ∙ � = �    →   ��	 −  r̿� ∙ � = � , t. j. 
 �	  ∙  � = �  .                                                  (C4.5) 
 

Equations (C4.4) and (C4.5) are satisfied trivially for � = � , i.e., for the origin of the 

reference frame, so no restrictions are then placed on the tensor �	. This is the case for 

any rotation of the plane about the origin of the reference frame (to avoid confusion 

- it is a rotation about an axis perpendicular to the plane). If the above equations are 

to hold for arbitrary � ≠ �, the tensor �	 must be incomplete. An incomplete tensor 

can be either zero or linear (consisting of only one dyad).  
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If the tensor �	 is zero, then �	  =  �	  −  r̿  =  �, which implies 
 �	 =  r̿ , 
i.e. it is an identical transformation.  

If the tensor T	 is linear, then there is only one dyad 
 �	  = �; ,                                                    (C4.6) 
 

and according to equations (C4.4) and (C4.5):  � ∙ �;  =   �; ∙  � =  0 .  
 

For a non-zero vector  �, both vectors of the dyad �; must be perpendicular to vector � . This means that the tensor �	  is convenient to write in the form  
 �	  = ��� ,                                                  (C4.7) 

where  s  is a scalar and � a unit vector perpendicular to the vector  � . Recall that the 

vector  �  points to invariant points when transformed by the tensor 
 

�	 =  r̿  + �	  =  r̿  +  ��� . 
 

Now we calculate how the vector � is transformed by the tensor  �	 =  r̿  +  ��� ∶ 
 �′ = � ∙ �	 =  � ∙ �r̿  +  ����   =   � +  ��  =   (1 +  �)� . 
 

We require that the symmetry operation preserves lengths, i.e., it must be the case 

that  (1 + s) = ±1, which implies that the scalar s can take only two values :  0, −2.  
 

The case  s = 0  leads to  �	  =  r 	 i.e. to an identity transformation. If  � = −2 , the 

tensor  �	  has the form �	  = −2��  and the tensor � ���: 
 

�	 =  r̿ −  2�� ,                                           (C4.8) 
 

whereby this tensor (→ Appendix D5)   
  

a) preserves the components of the vectors perpendicular to the vector �  

b) transforms the components parallel to � to the opposite.    
 

It is thus a reflection in a line perpendicular to the vector �; the line in question is 

called the reflection line (mirror line) (marker m). In the following, these operations 

are described in more detail. 
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C4.1.1   Rotation 

 

Let the basis of a planar structure be a pair of vectors �� , �� , its reciprocal pair 

being ��, ��. Let the vectors �� , �� form an angle α . Let the tensor �	  represent the 

rotation of the vectors �� , �� by an angle Z such that ��  →  �� ,   ��  →  �� . By 

relation (C4.3), the tensor �	  then takes the form: 
 

�	 �   �� ��  �  �� ��  . 
 

We express the vectors �� ,  �� as a linear 

combination of the original vectors �� , ��: 
 �� � ���  �  ��� 

                      �� � V�� �  ��� ,          %C4.9)                                                    
  

where the scalar coefficients �, �, V, � are the 

coordinates of the vectors �� ,  �� with respect 

to the basis vectors �� ,  �� . The next task will 

be to calculate these coordinates.  
 

The scalar product of the first of the equations (C4.9) with the vector �� gives: 
 �� ∙ �� �   %���  �  ���) ∙ ��   �  �%�� ∙ ��)   �  �%�� ∙ ��)   �   � . 
 

Similarly, we obtain the other scalar coefficients: 
 � � �� ∙ ��, � � �� ∙ ��, V � �� ∙ ��, � �  �� ∙ �� .             (C4.10) 
 

Calculating the scalar products in relations (C4.10), we obtain the scalar coefficients as 

functions of the magnitudes of the basis vectors �� ,  �� , and the angles Z and 1 (→ 

Appendix D6). After plugging their values into the transformation relations (C4.9), we 

obtain: 
 

�� � sin%1 � Z)sin 1 ��  �  -�-�
sin Zsin 1 �� 

 

�� � � -�-�
sin Zsin 1 ��  � sin%1 � Z)sin 1 �� . 

 

Finally, we fit the vectors �� and �� to the transformation tensor: 
 

�	 � ���� sin%1 � Z)sin 1  �  ���� -�-�
sin Zsin 1 � ���� -�-�

sin Zsin 1  � ���� sin%1 � Z)sin 1  . 
(C4.11) 

Fig. C3 

 d 1  a 
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This tensor mediates the rotation of the plane defined by the vectors �� ,  �� taking an 

angle 1, by an angle Z measured in the same sense as the deviation of the vector  �� 

from the vector �� . If we require it to represent the symmetry operation of a planar 

periodic structure, the angle Z cannot be arbitrary. The tensor must transform each 

lattice vector ��  =  ����  +  ���� (��  - integers) into another lattice vector.  
 

For further considerations, it is more convenient to express the tensor (C4.11) 

more concisely using the scalar coordinates Φ�$  of the form 
 

�	 = Φ������ +  Φ������ + Φ������  + Φ������ .          (C4.12) 
 

The transformation of the lattice vector is then written as follows: 
 ��U =  �� ∙ �	 = (���� + ����) ∙ �	 = (����� + �����) �� + (����� + �����) �� = 
 

=  ��U ��  +  ��U �� . 
 

If the vector ��U  is also to be a lattice vector, then the numbers ��U   and  ��U  must be 

integers.  This condition must be satisfied for arbitrary integers �� , �� ,, which is only 

possible when the coordinates ��$of the tensor �	  are integers, that is, when 

��$   =   � � ∙ �	 ∙  � $   =  integer .                         (C4.13) 
 

If the coordinates of the tensor are integers, then its first scalar, i.e. the sum of the 

coordinates in the principal diagonal, is also an integer.  
 

For a tensor of the form (C4.11), it follows that the integer n must equal the sum of sin(1 − Z)sin 1 + sin(1 + Z)sin 1 = 2 cos Z = � . 
 

That is, cos Z = �/2, so that the cosine function can take on only a few discrete values: 

– 1,  – 0,5 , 0,  0,5  , 1,, and hence the angle of rotation Z expressed in degrees only 

values (if we consider angles less than 360o ): 
 

0o, 60o, 90o, 120o, 180o, 240o, 270o, 300o .                   (C4.14) 
 

Substituting φ = 0 into relation (C4.11), we obtain a tensor representing the identity 

operation, i.e. the improper: 
 r̿  =   ����  +   ����  . 

 
Substituting Z = 60°  (= (2� 6⁄ )rad) gives a tensor that realizes a 60° rotation, which 

we denote by �	. If we consider only the rotation operation as an element of the group, 

not a tensor, we will use the symbol 6, i.e. without the two commas and written in 
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plain, not bold, type. Also, multiple applications of the element 6, i.e. its "powers" 6�, 6�, 6A, 6B, 6C, are symmetry operations, representing rotations of angles 

120°,180°,240°,300° and 360°. A 360° rotation is considered equivalent to a 0° 

rotation, so it is an identical operation denoted by e. These rotations (symmetry 

operations) together as a set, form a group with elements @8, 6, 6�, 6�, 6A, 6BE.  The 

corresponding group is denoted by the symbol 6, because the structure gets to the 

identical position 6 times during 360° rotation. An isomorphic group with group 6 is 

formed by the corresponding tensors: 

 r̿ , �	 , �	�, �	�, �	A, �	B, while r̿   ≡ �	C 

 

The group 6 is cyclic and the element 6, whose powers generate all other elements of 

the group, is the generating element of the group.  

 

Note. The symmetry operations given in this case form a group, the group operation 

being the successive application of the operations. With this group is isomorphic the 

group of the corresponding tensors, the group operation being the scalar product 

between the tensors.  
 

From the allowed rotations expressed by the angles (C4.14), several cyclic point 

groups can be constructed, which are listed in Table TC1 below. 

 

 

TC1 Allowed rotations and their groups 

Group 

symbol 

Elements of cyclic groups 

Marking and corresponding 

rotations in degrees  

Operators of 

generating 

elements 

 

1 
e  

0 
r̿ 

2 
e,   2 

0, 180 
�	 

3 
e,   3,    32 

0, 120, 240 J	 

4 
e,  4,    42,    43 

0, 90, 180, 270 �	 

6 
e,  6,    62,    63,    64,   65 

0, 60, 120, 180, 240, 300 �	 
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TC2a     Tensors of generating elements of cyclic groups 

 

 r̿  =   ����  +   ����  . 
�	  =  − ���� −  ���� = −rt 	. 

 

J	 =  ���� £− 12 − √3¤
2 cos 1sinα ¦ +  ���� -�-�

√3¤
2 1sinα −  ���� -�-�

√3¤
2 1sinα

+  ���� £− 12 + √3¤
2 cos 1sinα ¦ 

 

�	 = − ���� cos 1sinα +  ���� -�-�
1sinα −  ���� -�-�

1sinα +  ���� cos 1sinα  

 

�	 =  ���� £+ 12 − √3¤
2 cos 1sinα ¦ +  ���� -�-�

√3¤
2 1sinα −  ���� -�-�

√3¤
2 1sinα

+  ���� £+ 12 + √3¤
2 cos 1sinα ¦ 

 

 

In most cases, the size of the vectors is chosen to be the same, i.e. -� = -�. The 

angle 1 for the J	 and �	 tensors is usually chosen 1 = 120° and for the �	 tensor 1 =90°. This simplifies the expression of the tensors considerably and gives the following 

form: 

 

TC2b r̿  =   ����  +   ����   �	 =  − ���� −  ���� = −I ̿J	 =  ���� −  ���� −  ����   �	 =  ���� −  ���� �	 =  ���� +  ���� −  ���� 
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C4.1.2   Reflection 
 

According to relation (C4.8), the tensor representing reflection has the form (for 

reflection tensor we will use the symbol �	  instead of �	  ) 
 �	 � r̿  −  2�� , 

where � is the unit vector perpendicular to the reflection line (lying in the plane of the 

structure). If reflection is to be a symmetry operation of a periodic structure, an 

arbitrary lattice vector must transform again into a (generally different) lattice vector. 

If the vectors �� , �� form the basis of a planar lattice, then in such a coordinate system 

the tensor �	  must have integer coordinates (relation C4.13).  We modify the general 

form of the tensor �	  to a binomial: 

 �	  =   M�� ����   +   M�� ����    +   M�� ����   +  M�� ����     = 
 = ��(M����   +   M����) + ��(M����   +  M����) = ���� + ���� , 

 (C4.15) 

where ��, �� are the right vector coordinates of the tensor �	 . We also express the 

tensor �	  in terms of the left vector coordinates 

 �	  = (M����   +   M����)�� + (M����  +  M����)�� = ���� + ���� . 

 (C4.16) 

We use these results to modify the tensor �	 = �	 −  r̿   (label before C4.4): 

�	 = �	  −  r̿ =  ��(�� − ��) + ��(�� − ��) = (�� − ��)�� + (�� − ��) �� 

 (C4.17) 

However, this tensor also has a form (relations C4.7, C4.8 and the text between them) 

�	 = −2�� . 
It can be shown (→ Appendix D7) that this is only possible when to the vector u are 

parallel the vectors 

(�� − ��),   (�� − ��),   (�� − ��),   (�� − ��). 
The unit vector u is perpendicular to the reflection line, and moreover parallel to some 

lattice vectors of both the direct and reciprocal lattice. It follows that a reflection line 

can only be a line with the property that the perpendicular to it has the direction of 

the lattice vector of the direct and reciprocal lattice at the same time.  

Denote the shortest lattice vector parallel to the unit vector u as ;� and the 

corresponding reciprocal lattice vector parallel to it as ;�. When the vectors ;� and ;� 
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are parallel to each other, then it can be shown (→ Appendix D8) that there exists a 

pair of vectors ;� ,  ;� ,  which are perpendicular to each other and form the 

orthogonal basis of the lattice. However, this implies that not only the perpendicular 

to the reflection line, but also the reflection line itself is parallel to some lattice vector 

of the direct lattice and simultaneously to some lattice vector of the reciprocal lattice. 

It follows that reflection lines (i.e.  reflections) can only exist in lattices in which 

orthogonal basis cells can be chosen.  

The specific shapes of the tensors are given in the Appendices. Tensors in 

orthogonal bases are described in Appendix D14, tensors in hexagonal systems in 

which the basis vectors �� and �� are not perpendicular to each other are described 

in Appendix D25. Appendix D26 gives the shapes of tensors in orthohexagonal bases. 
 

C4.1.3   Tensors of multiple rotations and combinations with reflection                                                   

 

When a planar periodic structure is characterized by symmetry operations, 

which are both rotations and reflections, the symmetry operations are their multiple 

applications, but also their combinations with each other. The tensors representing 

rotations are given in Table TC2b, the general form of the tensor representing 

reflections is given by relation C4.8. In this section the form of the tensors representing 

multiple rotations, i.e., the "powers" of the tensors given in Table TC2b, as well as the 

tensors that arise from combinations of rotations with reflections, are justified in 

detail. The transformations of the lattice vectors mediated by these tensors are also 

given. 

 

Multiple rotations 

Rotation about the twofold axis occurs in all crystal systems and is expressed 

by the tensor �	 = −I̿ = (− ���� −  ����). In the rectangular crystal system, the basis 

vectors ��, �� make an angle of 90°, while they do not have the same length.  

However, the preceding relation with these vectors holds even when these vectors are 

not perpendicular to each other.  When rotated by 180� , expressed by the tensor −I,̿ 
each lattice vector �� turns into −�� , i.e., into a vector with the opposite direction. 

A double application of such a rotation is assigned a tensor: 

 �	 ∙ �	 = (− ���� −  ����) ∙ (− ���� −  ����) = �−I ̿� ∙ �−I ̿� = I ̿, 
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that is identity tensor. This operation brings the structure back to its original position, 

since a 180° rotation is itself an inverse operation. 
 

Rotation about the threefold axis occurs only in the hexagonal crystal system 

and is described by the tensor J	 � %���� �  ���� −  ����). The vectors ��, �� make 

an angle of 120° and together with the vector  – (�� +  ��) point from the origin to 

the vertices of the equilateral triangle whose centre lies at the origin.  This tensor 

transforms the lattice vector �� = ���� + ���� as follows: 

 (���� + ����) ∙ (���� −  ���� −  ����) = ���� − ���� − ���� 

 

It follows that the point with position vector �� (�� = 1, �� =  0) is transformed to the 

position occupied (before the transformation) by the point with position vector �� ,  
while the point with position vector �� , is transformed to the position −(�� + ��). 

This corresponds to a cyclic change of the positions of the vertices of the equilateral 

triangle.   

     The double application of the rotation about the threefold axis is represented by a 

tensor: 
 J	� = J	 ∙ J	 = (���� −  ���� −  ����) ∙ (���� −  ���� −  ����) = 
 = (− ���� −  ���� +  ����) , 

 

which transforms the lattice vector �� = ���� + ���� as follows: 
 

 (���� + ����) ∙ (− ���� −  ���� +  ����) =  −(���� + ����) + ���� 

 

A point with position vector �� is transformed to position −(�� + ��),  and a point 

with position vector �� is transformed to position �� .  Again, this is a cyclic change of 

the positions of the vertices of the triangle, but by rotation in the opposite direction. 

Applying the rotation three times around the threefold axis brings the structure 

to its original position, so that the tensor representing this transformation coincides 

with the identity tensor: 

 J	 ∙ J	� = (���� −  ���� −  ����) ∙ (− ���� −  ���� +  ����) = =  ���� +  ���� +  ���� −  ���� =  ���� +  ���� = r̿ . 

 

 Rotation about the fourfold axis occurs only in the square crystal system and is 

described by the tensor �	 =  ���� −  ����. The vectors ��, �� have the same length 
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and make an angle of 90°. The lattice vector �� � ���� � ���� is transformed by this 

tensor as follows: 
 %���� � ����) ∙ %���� �  ����) = ���� − ���� . 

 

The vector �� is rotated into the direction of the vector �� , and the vector �� into the 

direction of the vector −��.  
 

The double application leads to a 180° rotation, which coincides with the rotation 

about the double axis, as can be seen from the product of tensors: 
 �	  ∙ �	 = (���� −  ����) ∙ (���� −  ����) = − ���� −  ���� = − r̿ = �	 

 

The triple application will provide a tensor: 
 �	 ∙ �	 ∙ �	 = �	 ∙ �− r̿ � = − �	 = − ���� +  ���� , 
 

which rotates the vector �� in the direction −�� and the vector �� in the direction of 

the vector ��. 
 

The rotation about the sixfold axis occurs only in the hexagonal crystal system 

and is represented by the tensor �	 =  ���� +  ���� −  ���� . The vectors ��, �� make 

an angle 120° and together with the vector  −(�� +  ��) point from the origin of the 

reference frame to the vertices of the equilateral triangle.  This tensor transforms the 

lattice vector  �� = ���� + ���� as follows: 
 (���� + ����) ∙  (���� +  ���� −  ����) = ���� + ���� − ���� . 
 

That is, it rotates vector �� in the direction determined by the sum of vectors �� +  ��,  that is, in the direction that divides the angle between vectors �� and �� , 

while rotating vector �� in the direction of vector −�� . 
 

A double application of rotation about the sixfold axis is identical to a single 

rotation about the threefold axis, hence the corresponding tensor has the same form: �	� = J	 .  

The triple rotation represents a rotation about 180�, so the corresponding 

tensor coincides with the negatively taken identity tensor: �	� = − r̿ .    
 

The fourfold application of rotation about the sixfold axis coincides with the 

twofold application of rotation about the threefold axis, i.e. 6�A = J	�, so this tensor 

does not need to be mentioned separately either.  

A special form is up to the fivefold application, where the tensor can be 

obtained as the product of the tensors �	 ∙ J	�, which will give the result:  (���� +  ���� −  ����) ∙ (− ���� −  ���� +  ����) = − ���� +  ���� +  ���� . 
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This tensor rotates the vector �� in the direction of the vector � �� and the 

vector �� in the direction determined by the sum of the vectors �� +  �� . 
 

 

Combination of rotation with reflection 

 
  

Reflection only exists in lattices in which a orthogonal unit cell can be selected, 

whether primitive or centred; is absent in the oblique crystal system. It should be 

noted that an orthogonal unit cell (centred) can also be chosen in the hexagonal 

system, which provides advantages in determining the distribution of symmetry 

elements in the unit cell (→ section C7).  

In Appendix D14, different variations of the shape of the reflection tensor are 

given. In orthogonal lattices, a pair of mutually perpendicular basis vectors ��,  �� , 

are chosen, and in the case of a reflection line parallel to the vector �� , the tensor 

representing the reflection takes the form: 
 �	 � = r̿ − 2���� ;                                                (a) 

 

when reflection in a line parallel to the vector ��, only the indices change. 

 

In the hexagonal system, the basis vectors ��, ��  are not perpendicular to 

each other, and in this case it is convenient to choose an orthohexagonal unit cell and 

express the tensor in the form (→ appendices D14, D26):   
 �	 = r̿  −  2;�;� ,                                               (b) 
 

where the reflection line is perpendicular to the vector ;� . In Appendix D25, the 

tensors representing reflections are also expressed using the basis vectors ��, �� . 
 

The tensor representing the combination of rotation with reflection is 

expressed as the product of the corresponding tensors: ©	 ∙ �	 , where ©	 represents one 

of the rotation tensors.  
 

The combination of reflection with rotation about the twofold axis is assigned a 

tensor: �	 ∙ �	 = �−I ̿� ∙ �r̿ − 2�� � = − r̿ + 2�� . 
 

Reflection is applied in orthogonal lattices where the basis vectors ��, �� are 

perpendicular to each other.   Then the tensor    �	   can be written in the form �	 � =
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� r̿ − 2�����, respectively  �	 � = �r̿ − 2�����, depending on whether the reflection 

line is parallel to vector �� or vector ��, respectively.  

The combination of tensor �	 � with the rotation tensor �	 will give the result: 
 �	 ∙ �	 � = �−I ̿� ∙ �r̿ − 2���� � = − r̿ + 2���� . 
 

This tensor transforms the lattice vector �� as follows: 
 (���� + ����) ∙ �r̿ − 2����� = ���� + ���� − 2���� = −���� + ���� . 
 

The same result is obtained by a separate reflection  in a line parallel to the vector �� , 

which is represented by the tensor �	 �: 
 (���� + ����) ∙ �r̿ − 2����� = ���� + ���� − 2���� = −���� + ���� . 
 

That is, the combination of reflection in a line parallel to the vector �� and rotation 

about the twofold axis leads to the same result as reflection in a line parallel to the 

vector �� . This is consistent with the multiplication table of the �FF  group, which 

is also consistent with the fact that changing the order of rotation and reflection leads 

to the same result.  This statement can also be verified using the product of tensors: 
 �	 � ∙ �	 = �r̿ − 2����� ∙ �−I ̿� = − r̿ + 2���� . 
 

This result is also correct in the square system, but in the hexagonal system one has to 

consider the shape of the tensors given in Appendix D25. 
 

The rotation by 90° about the fourfold axis passing through the origin of the 

reference frame is represented by the tensor (���� − ���� ). The combination of 

reflection with this rotation is associated with a tensor whose shape depends on which 

reflection line it is. If the reflection is in the line in which the vector ��  lies, the tensor 

has the form  �	 � = ���� − ����,  so that the product yields the tensor 
 �	 ∙ �	 � = (���� − ���� ) ∙ (���� − ���� ) = − ���� − ���� . 
 

The product �	J ∙ �	 � gives the tensor 
 (−���� +  ����) ∙ (���� − ���� ) =  ���� + ���� . 
 

The second of these two tensors represents the reflection in the diagonal of the 

square that passes through the origin of the reference frame, the first of two tensors 

reflection in the second diagonal of the square. 
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C4.2  Translational part of operator S  

 

In the previous sections - on rotations 

and reflections - the tensor part �	  of the 

symmetry operator S ≡ 
�	, ��  has been fully 

described.  When considering the translational 

part � of operator S it is convenient to start from 

Figure C4. A square lattice is drawn on it. If we 

rotate it by 90° around point A or around point 

B, it will identify with itself, i.e. we perform a 

symmetry operation. However, if we rotate the 

lattice by the same angle about point C, the lattice will only come to an equivalent 

position after adding a suitable translation t , which is not a lattice translation, i.e., it 

does not belong to the translation group.  In this case, the operator S , if it is to be the 

operator of the symmetry operation, must have two parts, a rotational and a non-

lattice translational one. 

There are several translations t , which can be used to bring the lattice to an 

equivalent position after its first rotation about the point C.  It can be seen from the 

figure that the size of the vector t need not exceed the dimensions of the unit cell, but 

any lattice vector �� can be added to it; in doing so, the transformation remains a 

symmetry operation. The operator representing such a transformation has the form S ≡ 
�	, � � ���.    

The point symmetry operations, represented by the tensor part of the operator 

S, are elements of point groups, which in the case of crystals have a finite number of 

elements. Multiple applications of a point operation after a certain number of steps 

lead to an identical operation (e.g., a triple application of a 120° rotation, or a double 

application of reflection). Therefore, there exists a natural number m, for which �	 ª  � r̿ (we assume that m is the smallest such number). For the corresponding operator S, 

then (relation (C2.4)) holds: 
 Sª  ≡   «r̿ ,   � ∙ ¬r̿   �  �	  �  �	 � � . . . � �	 ª��­® .                   (C4.18) 

 

If  Sª is to be a symmetry operation, then 
 � ∙ ¬r̿   �  �	  �  �	 � � . . . � �	 ª��­ � ��  ,                      (C4.19) 
 

that is, an m-fold application of the operator S must represent a lattice translation. 

The expression in the large bracket ¬r̿   �  �	  �  �	 � � . . . � �	 ª��­ has the name 

Fig. C4 

A B 

C 
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characteristic tensor of the operation S .  If we substitute any of the tensors �	, J	, �	 

or  �	 representing the generating elements of the point groups (Table TC2) after the 

tensor �	 , the sum of the terms of the characteristic tensor equals zero. Proving this 

statement by calculation, except for the �	 tensor, is tedious, but its truth can be quite 

easily verified graphically (→ Appendix D9). That is, in the case of the above tensors, Sª = 
r̿ , �� , whatever � might be. In these cases, the constraints on the vector t do 

not follow from relation (C4.19). 
 

Another case is the operation S � 
�	  , �� , where �	 =  r̿  − 2��. For this tensor, 

the following holds 
 �	 � = �r̿ –  2��� ∙ �r̿ –  2���  =   r̿ −  2�� –  2�� +  4�� =  r̿ . 

 

We verify that the characteristic tensor 7�	 : of this operation is non-zero: 
 7�	 :  = r̿  + �	  =   r̿ + r̿ –  ���  =  2�r̿ –  ���, 
 

so that equation (C4.19) does not admit an arbitrary vector � , which must satisfy the 

condition 
 � ∙ 7�	 :  = � ∙ 2�r̿ –  ��� = 2[� − (� ∙ �)�] = �¯ .                           (C4.20) 
 

The expression (� ∙ �)� represents the component of the vector � parallel to the 

vector �, so the expression [� − (� ∙ �)�] represents the component perpendicular to 

the vector � , i.e. parallel to the reflection line. It follows from equation (4.20) that this 

component must be equal to half of the lattice vector parallel to the reflection line. As 

mentioned above, it is sufficient to restrict to vectors � , whose size does not exceed 

the dimensions of the unit cell (for example, the size of the basis vector �I). Then for 

vector  �  we can write the relation 
 [� − (� ∙ �)�] =   ] '2^ �I ,                                    (C4.21) 

 

in which  j  can only take values  j = 0, ±1 .  No constraints are placed on the component 

perpendicular to the reflection line. The case j = 0 represents ordinary reflection, the 

case j = ±1 corresponds to reflection with a glide. This means that in such an operation, 

after reflection in a straight line, the whole structure still needs to be shifted along the 

reflection line by half of the identity period, i.e., a translation that does not belong to 

the translation group needs to be performed. The operator with a glide then takes the 

form 
�	 I , �I/2�,                                                   (C4.22) 



57 

 

where the index "1" at the tensor �	 � denotes the reflection in a line parallel to the 

vector �I . The location of the glide lines in the lattice is described in C7.5 .   

 

 

 

C4.3 Summary of possible symmetry operations 

 

 
Operators representing symmetry operations of two-dimensional periodic 

structures are written in the general form S ≡ 
�	, ��. Operators of trivial operations 

include the identity tensor r̿ and the lattice vector ��: S ≡ 
r̿, ���. Non-trivial 

operations include rotations and reflections, represented by tensors, which we denote 

by the symbols �	,  J	 ,  �	 ,  �	   and �	 , their powers and combinations with lattice 

translation, as well as with special non-lattice translations. 

Non-trivial symmetry operations are divided into open and closed. A closed 

operation with operator S ≡ 
�	, �� is said to be one for which (→ text before relation 

C4.18 ) 

 Sª  =  
r̿, ��.                                           (C4.23) 

 

The term closed operation is related to the fact that (in the laboratory coordinate 

system) the sum of the vectors 

 � ,    � ∙ S ,   � ∙ S�, . . . ,   � ∙ Sª�� 

 

forms a closed geometric figure (polygon). Closed operations include all rotations and 

reflections. For planar structures, the only open operation is glide reflection. For 

closed operations, it is always possible to make the translational part t of the operator 

zero, i.e., S ≡ 
�	, ��, by a suitable choice of the position of the origin of the coordinate 

system. 

 

According to the value of the determinant of the corresponding tensor, a 

distinction is made between proper and improper symmetry operations. If the 

determinant of the tensor |�	| = +1, the operation is proper, if |�	| = −1, it is an 

improper operation. The determinants of all tensors representing rotations �	,  J	 ,  �	 ,  �	  

have value +1, the determinant of the tensor �	   representing reflection has value –1 

(→ Appendix D10). 
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An overview of possible symmetry operations is given in the following table 

TC3. The first column lists all operators that represent possible symmetry operations. 

 

 

 

TC3 Possible symmetry operation 

Operators 
�	, ±� 

Restriction of 

translational part 

Name of 

operation 
Operation 


r̿, �� t  =  0 identity 

closed proper 

[�	, t] no rotation 

[J	, t] no rotation 

[�	, t] no rotation 

[�	, t] no rotation 

[�	 , t] � − (� ∙ �)� = � reflection closed improper 

[�	 , t] � − (� ∙ �)� = ± �/2 glide reflection 
open  

[r̿, t] � = ��	  � lattice translation 

 

 

 

C5 Point groups 

 

Table TC3 on the previous page lists the possible symmetry operations of planar 

periodic structures. If the translational part t is omitted from their operators, what 

remains are the operators of the point operations, i.e., the operators representing the 

elements of the point groups. The operator 
�	, �� mediates a rotation of 60°, but the 

symmetry operations are also rotations of multiples of this angle, i.e., rotations of 

120°, 180°, etc. The operators of these rotations are "powers" of the 
�	, �� operator, 

by which is meant its multiple use. The magnitudes of the rotations that bring the 

planar periodic structure to equivalent positions are given in C4.1.1, in the line 

denoted as relation (C4.14). At the end of that article, in Table TC1, these rotations are 

classified into groups. No rotation combinations other than the above are possible. For 

example, if we assume that 90° and 120° rotations belong to the same group, the 

combination of the two, i.e. 210° rotation, would also have to belong to this group. 

However, the latter is not a symmetry operation of planar periodic structures, so the 
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two rotations mentioned above cannot belong to the same point group. Proceeding in 

this way, it is possible to construct five pointgroups of rotations, all of which are cyclic. 

The point operations include the reflection represented by the tensor �	  . A 

repeated application of reflection returns the object to its initial position, so that the 

reflection is itself an inverse operation. Therefore, the reflection group m has only two 

elements, the identity e and the reflection !: F ≡ @8, !E.  Therefore, the scalar 

product of the tensor  �	   with itself must be equal to  the identity tensor: �	 ∙ �	 = r̿ , 
because the tensor �	  must also be an inverse tensor of itself. The tensors �	  and r̿ , 
given the scalar product as a binary operation, form an isomorphic group with the 

point group m. 

Combining the reflection group with the rotation groups produces four 

additional point groups. These are no longer cyclic, two generating elements are 

needed to create them. In total, this amounts to 10 types of point groups, which are 

listed in Table TC4. 

 

The combination of a cyclic group and reflection group is expressed as their 

direct product. For example: group �FF = @8, 4, 4�, 4�E ∙ @8, !E ≡ @4E ∙ @!E The 

group � is an invariant subgroup of the group 4mm, so its decomposition into cosets 

is of the form �FF = @4E + @4E ∙ !, where the reflection ! is the representative of 

a single coset.  

 

TC4       Point groups 

Symbols of  

groups 
Elements of groups (symmetry operations) 

Generating  

elements 

1 e e 

2 e , 2 2 

3 8 , 3 , 3� 3 

4 8 , 4 , 4� , 4� 4 

6 8 , 6 , 6� , 6� , 6A , 6B 6 

m e , m ! 

2mm 8 , 2 , !³ , !´  2, !³  

3m 8 , 3 , 3�, !9 , !C9 , !��9 3, !9 

4mm 8 , 4 , 4� , 4� , !³ , !´ , !³´ , !´³ 4, !³ 

6mm 8 , 6 , 6� , 6� , 6A , 6B , !9 , !C9 , !��9 , !�9, !D9, !�B9  6, !9 

 

The symbology used in Table TC4 has the following meaning: the symbols !³ , !´  in the 2mm group represent the reflections in the lines labeled R, S , which 

are perpendicular to each other and parallel to the basis vectors ;� (x-direction) and ;� (y-direction). The symbols !³´ , !´³ in the 4mm group represent two other 
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possible reflection operations, namely in the lines that divide the angle between the R, S lines in half, which are the diagonals of the square. The symbols !C9 , !��9, etc., 

denote reflections in lines rotated with respect to !9 by 60°, 120°, etc. In other parts 

of the text relating to reflection operators, the indices 1 and 2, representing the 

directions of the basis vectors, are often used instead of the indices R, S. 
 

The creation of a group using generating elements is illustrated by the example 

of a 2mm group (→ Appendix D11), which has only four elements. This procedure can 

also be verified using a graphical construction (→ Appendix D12). 
 

The following figure shows a graphical representation of point groups. In the 

circles symbolizing the groups are marked the symmetry elements – the n-fold axes as 

n-polygons and the reflection lines as line segments. Small solid circles are used to 

mark all the equivalent positions of one point of the plane into which this point is 

transformed by the symmetry operations of the corresponding group. The more 

elements a point group contains, the more equivalent points it produces. The number 

of equivalent points coincides with the number of elements of the group, i.e. the 

number of symmetry operations in the group. 
 

Among the ten point groups, there are a few that are subgroups of a group with 

more elements. For example, the group 6mm contains subgroups 6, 3m and 3, if we 

do not count the trivial subgroup 1 . The group 4mm contains the subgroups 4, 2mm, 

2 and  m. Subgroups with fewer elements are characterized by structures whose 

structural motif has lower point symmetry than the lattice. 
 

The successive application of two symmetry operations is referred to as the 

"product" between two elements of a point group, i.e. as the realization of a group 

operation between two elements of a point group; the result is another element of 

the group. The products are compiled into a clear table, called a multiplication table. 

The following table TC5 shows the products in a group 2mm . The left column shows 

6mm 2mm m 3m 4mm 

1 2 3 4 6 

Fig. C5 
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the first terms of the product, the top row the second terms, the intersection of 

column and row shows the result of their product, i.e. the result of their successive 

application. For example, the product of elements 2 and !#, that is, their successive 

application in the order given, is equivalent to the direct application of element !µ  .  
The product of the elements !# and !µ is equivalent to a rotation of 2, so that the 

presence of reflections in two mutually perpendicular directions is inextricably linked 

to the presence of a rotation about the twofold axis. The table of this group is 

symmetric with respect to the diagonal, because when the two symmetry operations 

are applied in this case their order does not matter.   
 

TC5    Multiplication table 

      of group 2mm 

 e 2 !³ !´ 

e e 2 !³ !´ 

2 2 e !´ !³ !³ !³ !´ e 2 !´ !´ !³ 2 e 

 

From the point of view of the algebra of groups, each point group containing a 

reflection can be expressed as the direct product (→ Appendix D29 on groups) of the 

corresponding cyclic group and the two-element group of the reflection. This fact is 

expressed in the algebra of groups by the notation ¶ ∙ F ≡ @�E ∙ @!E, 

where n and {n} represent, respectively, the cyclic group with n elements (related to 

the n-fold axis of symmetry) and m resp. {m} the two-element group of the reflection. 

The point groups and in particular their generating elements will be used in the 

search for different types of translational symmetry – in determining the set of 

translation groups. 

 

 

 

C6   Translation  groups 
 

The search for types of translational symmetry of planar structures is essentially 

a matter of determining the possible types of pairs of basis vectors �� , �� of planar 

lattices. There is a relationship between the point symmetry operations of planar 

structures and the basis vectors, expressed by the condition (→ relation C4.13) 
 

��$ = �� ∙ �	 ∙ �$ = integer,                              (C6.1) 



62 

 

 

which requires the scalar coordinates of the tensor to be integers. We exploit the 
condition by successively inserting the tensors representing the generating elements 
of the individual point groups into relation (C6.1) (Table TC2).  The other elements of 
the groups that are not generating do not impose new conditions on the choice of the 
vectors �� , �� . We go through all the point-groups from table TC4 in turn.   
 

 

 

C6.1 Lattices of structures with point groups 1, 2 

 

Group 1 

 The identity tensor r̿  � ���� � ����  represents the generating element of this 
group. Its coordinates are integers ( I11 = 1,  I12 = 0, I21 = 0,  I22 = 1), so condition (6.1) is 
automatically satisfied, it does not impose any constraints on the basis vectors; the 
vectors �� , �� need not be of the same length, nor do they form a special angle. 
 

Group 2 

The generating element is represented by the tensor � r̿ �   �% ���� � ����). The 

coordinates of the tensor � r̿  are again integers, no restrictions on the vectors �� , �� 
follow from relation (C6.1). Planar periodic structures with point groups 1 and 2 have 
the same type of lattice. They may differ by the symmetry of the structural motif 
embedded to each of its lattice points.  

 

 

 

 

C6.2 Lattices of structures with point groups 3, 6 

 

The generating elements in these groups correspond to tensors (→ TC2) 
 

J	 �  ���� £� 12 � √3¤
2 cos 1sin α¦ �  ���� -�-�

√3¤
2 1sin α �  ���� -�-�

√3¤
2 1sin α

�  ���� £� 12 � √3¤
2 cos 1sin α¦ 

 

a2 

a1 

Lattice type  1 

Fig. C6 
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�	 �  ���� £+ 12 − √3¤
2 cos 1sin α¦ +  ���� -�-�

√3¤
2 1sin α −  ���� -�-�

√3¤
2 1sin α + 

 

+ ���� £+ 12 + √3¤
2 cos 1sin α¦ 

 

or in a more concise general notation   
 

 

�	  =    ���� �  +    ����  �  +   ���� V  +   ���� � . 
 

The tensor �	 has coordinates 
 

� = 12 − √3¤
2 cos 1sin α      � = -�-�

√3¤
2 1sin α      V = − -�-�

√3¤
2 1sin α      � = 12 + √3¤

2 cos 1sin α  . 
 

The q and r coordinates of the J	 and �	 tensors are the same, differing only in 
the coordinates p and s . The coordinates p, q, r, s are determined by the magnitudes 
of the basis vectors and the angle α between them. If all coordinates are to be integers, 
this places conditions on the ratio of the magnitudes of the basis vectors and on the 
magnitude of the angle between them. If we subtract the coordinate p from the 

coordinate s, regardless of whether the tensor is J	 or �	, we get (the number n is 
supposed to be integer): 

 � − � = √3 cos 1sin α = � , 
 

from where, after modification, we obtain 
 

sin α = ¸ 33 + �� . 
 

Next, multiply the coordinates q and r with each other, substituting the obtained value 
after sinα. The product � ∙ V must also be equal to an integer: 
 

 

� ∙ V = 34 ∙ 3 + n�
3 = 3 + ��

4   . 
 

This equation has integer solutions for odd n , i.e. for n = 1, 3, 5, ... . Let us check each 
option. 
 

For n = 1, the product � ∙ V =  1, and since both q and r are integers, q = r = 1 and  
 

sin α = ¸ 33 + �� = ¸ 33 + 1 = √32  ,    there for α = 60°, or 120°.      
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 The result q = r = 1 further implies that the magnitudes of the basis vectors �� , �� are 
the same. The angle between them is 60°, or 120°, however, both choices of angle lead 
to the same lattice, as can be seen graphically. 
 

For n = 3 we get sin α = 1/2 (i.e. α = 30°, or 150°), and � ∙ V �  3. This means that 

either q = 1, r = 3, or conversely, q = 3, r = 1. Let us choose α = 30°.  If we choose q = 1, 

then -� � -�√3,  and the opposite choice, i.e. r = 1, gives -� � -�√3. Both cases 

represent the same type of lattice, as in the case n = 1 .  

Examining the remaining choices , i.e., n = 5, etc., we would find that they lead again 

to the same type of lattice as shown in the following Figure C7.   

 

 

Among all possible pairs of vectors �� , �� , a pair with equal sizes -� �  -� ,   taking 

an angle α = 120°, is  chosen  by  convention  in  this  type of  lattice. In doing so, �� � �� ∙ J	,  or �� �  ��  ∙ �	�. The lattice in the figure has a typical hexagonal symmetry. 

An orthogonal cell with basis vectors ;� and  ;� (→ Figure C7), also called 

orthohexagonal cell, may also be chosen in this lattice, on the basis of which the 

positions of the reflection lines are more easily determined. There are three equivalent 

choices of orthohexagonal cells, differing in their mutual rotation by 60°.   

 As mentioned above, due to the similarity of coordinates, the J	 tensor 

generates the same lattice as the �	 tensor. Groups 3 and 6 , like groups 1 and 2, differ 

in that they describe planar structures with the same lattice but different structural 

motifs. 

 

 

 

 

 

 

 

a1 

a1 

a2 

n = 1 

n = 3 

Lattice type 2 

Fig.  C7 b1 

b2 

a1 

a2 
a2 

a1 

a2 
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C6.3  Lattices of structures with point group 4 

 

The generating element of the group corresponds to tensor �	 (→ tab. TB2): 
 

�	 � � ���� cos 1sinα �  ���� -�-�
1sinα �  ���� -�-�

1sinα �  ���� cos 1sinα  . 
 

We start with the coordinate � �  cos 1 /sin 1, which, like the other coordinates, is 

supposed to be an integer. From here we express sin 1 : 
 

sin α � 1W1 � ��  . 
 

By multiplying the second and third coordinates together, after inserting the 

calculated sin 1, we get: 
 1 �  �� �  � ∙  V . 
 

Adding integers after � gradually gives more possibilities.  
  

With p = 0  sin α � 1, so 
 �  90°, also the product q⋅ r  = 1, so -� � -� , so the lattice 

is tetragonal (square). 

With p = 1 sin α � 1 √2⁄  , , so 
 �  45°,  or 135°. Then q⋅ r  = 2, so there are two 

possibilities: 

-� � -� √22  , or    -� � -� √22  . 
 

From the set of different pairs, vectors of equal length (-� = -�) and perpendicular to 

each other are selected as the basis.  Then �� �  �� ∙ �	 . 
 

 

 

 

 

 

Fig. C8 

Lattice type 3 p = 0 

p = 1 

a1 

a1 

a1 a1 

a2 

a2 a2 a2 
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C6.4  Lattices of structures with point group m 

 

The tensor  �	  �  r̿  �  2�� corresponds to the generating element in the 

group m (Section C4.1.2), where u is the unit vector perpendicular to the reflection 

line m. That section states that both the reflection line and the direction perpendicular 

to it are parallel to the directions of the lattice vectors of the direct and reciprocal 

lattice simultaneously. Thus, we could choose the basis vectors �� , �� such that one 

is parallel to the reflection line and the other is perpendicular to it. 

 

However, let us consider more 

generally and assume that, for 

example, vector �� is perpendicular to 

the reflection line and vector �� makes 

an angle 1 with vector ��. In Fig. C9, 

the corresponding pair of reciprocal 

vectors �� , ��  is drawn in dashed 

lines. Under such assumptions, we will 

look for the conditions that must be satisfied for the coordinates of the tensor �	  to 

be integer. We first compute the scalar coordinates of the tensor in the system with 

the basis vectors �� , �� according to relation (C4.13): 
 M�$ � � � ∙  �	  ∙  � $    . 
That's what we get: 
 M��  �  �� ∙ �	  ∙ �� �  �� ∙ � r̿ � 2��� ∙ ��  �   
�� ∙   r̿  �  2%�� ∙  �)�� ∙ �� �    

 

        �  ��� �  2-� �� ∙  ��   � ��� �  2��� ∙  �� � ��� ∙  �� � �1 

 M��  �  �� ∙ �	  ∙ ��   �  �� ∙ � r̿ � 2��� ∙  �� �   0 
 M�� � �� ∙ �	  ∙ ��   �  �� ∙ � r̿ � 2��� ∙ �� �   
�� ∙ r̿ �  2%�� ∙ �)�� ∙ �� �   
 

        �  ��� �  2-� cos
 �� ∙ �� �  
 � 0 � 2-� cos
 -� cos%π/2 � α) � �2 -�-� cos α  . 
        M��  �  �� ∙ �»  ∙ ��  �  �� ∙ � r̿ � 2��� ∙ �� �  �� ∙ �� �  2 %�� ∙  �)%� ∙ ��)  �  1 . 

 

If we require that the number M�� is also integer, the condition must be satisfied 
 -� cos 1 � -�2 � .                                                   %C6.2) 

Fig. C9 

a2 

a1 

a1
 

a2
 

u 

m 
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That is, the magnitude of the projection of the vector �� onto the vector �� should be 

equal to an integer multiple of half the magnitude of the vector ��.  If n = 0 , then the 

projection is zero and the vector �� is perpendicular to the vector ��, so the lattice is 

orthogonal. Meanwhile, the ratio of the lengths of these vectors can be arbitrary, so 

the unit cell is orthogonal (lattice A in Figure C 10).  

When n = ± 1 , the ratio of the sizes of the basis vectors can again be arbitrary, 

but their orientation relative to each other must be such that the projection of the 

vector �� onto the vector �� is exactly half its size (in Figure C10 lattice B). 

 

 

If n is an even number, an A-type lattice is always produced, if it is odd, a B-type lattice.  

But even a B-type lattice is orthogonal, although the unit cell constructed from the 

vectors �� , �� is not orthogonal. In accordance with the requirement that the 

symmetry of the unit cell should match the symmetry of the lattice (Bravais 

conditions), a pair of basis vectors ;�, ;� , is introduced in this case to form a 

orthogonal cell, but with a lattice point also in the middle of the cell. Such a unit cell is 

called centred, in contrast to the primitive cell formed by the vectors �� , �� , which 

has a smaller area content but a symmetry not matching the symmetry of the lattice. 

The name centred lattice is used for a lattice in which an orthogonal centred primitive 

cell can be chosen. In centred lattices, reflection with glide is applied, i.e. there are 

glide lines in them (→ relations C4.21 and C4.22). 
 

By integer linear combinations of the primitive-cell basis vectors �� , ��, we 

obtain the position vectors of all lattice points. The set of all translations of type �� ����� � ����, where ��  are integers, forms the full translation group �¼ of the 

corresponding lattice, for which we use the name primitive translation group. 

However, the integer linear combination of the vectors ;�, ;� cannot be used to 

obtain the position vectors of lattice points lying in the middle of the cells. Therefore, 

the group �½ of analogous linear combinations ¾� � ��;� � ��;� is not identical to 

the full translation group, it is less numerous, forming an invariant subgroup of it. To 

a1 

a2 

a1 

a2 

b1 

b2 

Fig. C10 A B 
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obtain the position vectors of all lattice points, we need to add to each translation ¾� 

a translation 

�½ � 12 ;� + 12 ;� , 
 

thus achieving a match with the full translation group. In this case, the full translation 

group of the centred lattice, which is identical to the primitive translation group of �¼ , 
can be written as a sum:   �¼ = �½ + �½ ∙ �½ .                                          (C6.3) 
 

The second term of the sum represents the coset of the group �¼ with respect to the 

subgroup �½. The dot between translation �½ and group �½ has the meaning of a group 

operation, in this case the successive applications of an element of group �½ and 

translation �½.   

 

C6.5  Lattices of structures with point groups 2mm, 3m, 6mm, 4mm 

 

In the 2mm group, the generating elements are 180° rotation and reflection, 

i.e., the elements represented by the �	 and �	  tensors. The �	 tensor does not impose 

requirements on the ratio of the sizes of the basis vectors, nor on the angle between 

them. Therefore, the lattice of a planar periodic structure with symmetry described by 

the 2mm group must be as required by reflection, i.e., it must be orthogonal. Thus, the 

2mm group does not require the existence of another type of lattice symmetry. 
 

In the 3m and 6mm groups, the generating elements are represented by the 

tensors J	 and �	 , respectively, �	 and �	  . The planar periodic structure, in which 

symmetry with generating tensors J	 or �	 is enforced, has a hexagonal lattice.  

Therefore, it is described by a pair of basis vectors �� , ��  of equal size and 

conventionally taking an angle 
 =  120°. It follows that the projection of the 

magnitude of the vector �� in the direction of the vector �� is equal to its half 

magnitude: -� cos
 =  -�/2, thus satisfying condition (C6.2) of corollary C6.4 on 

structures with group m . Thus, reflection is a natural symmetry operation of these 

structures.  Thus, the requirements of the 3m and 6mm groups do not lead to a new 

type of lattice symmetry. 
 

Even the 4mm group does not generate a new type of lattice symmetry. Even 

group 4 already requires a tetragonal lattice that satisfies condition C6.2, so the other 

elements in the group related to reflections no longer impose new conditions on 

lattice symmetry. 
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C6.6  Summary of lattice types, crystal systems 

 

In C6.1 to C6.5, the types of lattices that are compatible with the symmetry 

operations of the point groups of planar periodic structures have been described. 

These are 5 types of lattices that are characterized by different metrics and different 

shapes of the unit cells. These cells are called 
 

oblique,  

rectangular (orthogonal) primitive, 

rectangular (orthogonal) centred, 

square, 

hexagonal. 

 

The two types of orthogonal cells have the same external shape, differing only 

in that the centred cell has a lattice point at its centre. The two cells - and the 

corresponding lattices - are therefore classified in the same group. This gives rise to 

four types of lattices, for which the name crystal system is used. Table TC6 below lists 

the crystal systems, the types of unit cells, the data on the basis vectors (system 

metrics), and the point groups to which these types are related. 

 

TC6 Crystal systems, their metrics and symmetry 

 Crystal system  Type of cell Basis vectors Point groups 

1 oblique p -� + -� , 1 ≠ 90° 1, 2 

2 

3 
rectangular 

p 

c 
-� ≠ -� , 1 = 90° m, 2mm 

4 square p -� = -� , 1 = 90° 4, 4mm 

5 hexagonal p -� = -� , 1 = 120° 3, 3m, 6, 6mm 

 

The table lists 4 crystal systems, 5 types of planar lattices (unit cells, translation 

groups) and 10 types of point groups. At least two point groups are associated with 

one crystal system. In this connection it should be noted that in each crystal system 

the symmetry of the lattice corresponds to the point group with the largest number of 

elements, i.e. it has the maximum possible point symmetry. For example, the lattice 

of a structure belonging to the hexagonal system always has a point symmetry 

described by a 6mm group. This point group has 12 elements of symmetry, the most 

compared to the other point groups of the hexagonal system. Groups with fewer 

elements are characterized by structures with lower symmetry. The symmetry 

reduction is not induced by a reduction in the symmetry of the lattice, but by the 
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insertion of a structural motif into the lattice that has a lower symmetry than the 

lattice. This fact is discussed in more detail in later sections of this text, in the 

derivation of the 17 types of plane groups. In each of the four crystal systems, the 

symmetry of the lattice is characterized by the most numerous point group, which is 

always given at the end of the line corresponding to the system. These groups - 2, 

2mm, 4mm and 6mm are called holohedral, which can be translated as full or 

complete. 

 

 

C7   Positions of symmetry elements in unit cells 

 

At the beginning of C4.2, it is stated that the translational part t of the operator S ≡ 
�	, �� can be zero only in those cases where the corresponding element of 

symmetry (rotation axis, reflection line) passes through a lattice point, or other 

suitably placed point in the plane of the lattice. However, this is only true if we consider 

this point to be the origin of the reference frame. Otherwise, even if an element of 

symmetry passes through a lattice point but we consider the operation with respect 

to another reference point, this may not be true. However, there exists a set of points 

in the lattice, displaced with respect to the position of the rotation axis (or reflection 

line), with respect to which the translational part of the symmetry operators is 

identical to some lattice vector �� , so that it does not contain a non-lattice translation 

t. The positions of such points can be obtained from relation (g) derived in Appendix 

D13. 

The relation (g) of Appendix D13 expresses the condition that must be satisfied 

by:  

the position vector �? of the displacement of the origin of the reference frame, 

the tensor �	  representing the rotation, and the translation �� + �, in order for the 

total translation term of the symmetry operator to be zero:   
 �? ∙ �r̿ − �	 � +  �� + � = �  . 
 

In this part of text, we will look for positions �? of the reference points such 

that only the non-lattice translation t is zero. That is, we will look for position vectors �? that satisfy the condition 
 �? ∙ �r̿ − �	 � = ��  .                                             (C7.1) 

 

 

Note: The +AL  and  – AL vectors are equivalent in this respect. 
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In this way, we obtain the positions of points in the lattice at which the rotation axes 

transforming the lattice to the equivalent position can be placed without the need for 

additional non-lattice translation. The result depends on the particular tensor 

representing the rotation (or reflection) as well as on the type of lattice, so all 

individual cases need to be considered. 

 

The translational parts of the operators with the same tensor part, which represent 

operations with respect to the symmetry elements distributed in the basis cell based 

on relation (C7.1), differ from each other only by the lattice vectors. Therefore, when 

decomposing the plane group, the corresponding symmetry operations belong to 

one coset.   (C7.1a) 

 

 

C7.1  Twofold rotation axis 

 

The twofold axis of rotation is typical of oblique and rectangular crystal systems. 

The basis vectors ��,  �� in these systems are of different lengths, whereas in the 

rectangular system they are perpendicular to each other. However, twofold axes also 

occur in the square and hexagonal systems. 

The tensor representing the rotation about the twofold axis has the form (→ tab. 

TC2b): �	  ≡  − ���� −  ���� = −r̿ , 
 

so after inserting into relation (C7.1) we get 
 

  �? ∙ �2r̿� = ��     �   2�? =  �� .                                (C7.2a) 
 

We express the position vector  �? as a linear combination of the basis vectors ��,  �� 

of the corresponding lattice: �? = V��� + V���, where V�,  V� are its scalar coordinates. 

This is also how we express a lattice vector: �� = ���� + ���� , where ��  can be any 

positive and negative integers. So we ask to satisfy the condition: 
 2(V��� + V���) = ���� + ���� .                                 (C7.2b) 

 

By comparing the scalar coordinates of the vectors on the two sides of equation we 

obtain: V� = ��/2  ,   V� = ��/2 . 
 

If we restrict ourselves to positions in a single unit cell, it is sufficient to consider only 

positive coordinate values and values less than 1. Thus, V� = 0, 1/2.  Then only the 

following combinations of coordinates of the vector �? are possible: 
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 %0,0), ]0, 12^ , ]12 , 0^ , ]12 , 12^ . 
 

That is, the twofold axis of symmetry can lie at the origin of the reference frame (�?=0), 

at the centre of the basis vectors _�? � �� ��  or   �? � �� �� ` and at the centre of the 

unit cell _�? � I� �� �  I� �� `.  Larger values of the coordinates V�  already refer to 

positions belonging to adjacent unit cells (represented by empty ellipses in Figure C13 

on the next page; lattice points in the left part of the figure by small solid circles). It 

should be noted that the twofold axes are arranged in this way in all types of lattices, 

hence also in the square and hexagonal lattices. So the rotation operators about axes 

not passing through the origin of the reference frame, whose position satisfies 

condition C7.1 , have the form (→ Appendix D19) : 
 
�r̿, ��, 
�r̿, ���, 
�r̿, ���, 
�r̿, �� � ���.                       (C7.2c) 

For example, the operator 
�r̿, ���, representing a rotation about an axis passing 

through the centre of the vector ��, moves the point at the end of the vector �� to 

the origin of the coordinate system, which follows from the transformation relation 
 ��U � �� ∙ 
�r̿, ��� �  �� ∙ ��r̿� � �� � ��� � �� � 0 . 
 

The symmetry operations represented by these four operators belong to one 

coset in the decomposition of the plane group, because the translational parts of the 

operators represent only different lattice vectors, i.e., elements of the translation 

group. 

 

 

If it is a centred lattice in which there are lattice points with position vectors �¿ � �� � �� �� �  �� �� , then condition (C7.2b) needs to be added: 
 2%V��� � V���) � ���� � �� �� � ���� � �� �� .                    (C7.2d) 

 

For the coordinates of the vector  �?  we thus get the conditions: 
 

Fig. C13 

�� 

�I 

�� 

�� 
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V� � ��2 �  14   , V� � ��2 � 14  . 
 

In addition to the above combinations of �? vector coordinates valid for the primitive 

lattice, the following combinations are also possible in a centred lattice within a single 

unit cell: 

]14 , 14^ , ]14 , 34^ , ]34 , 14^ , ]34 , 34^ , 
 

corresponding to the positions shown by the ellipses with a cross in Figure C14. 

 

When the rotation axis is shifted to a point with position vector �? , the corresponding 

operator has the form SÀ � 
�	 , �? ∙ �r̿ � �	 �� (→ relation (h) in Appendix D13). With a 

twofold axis of symmetry, �	 � �r̿ , so the operator takes the form  SÀ � 
�r̿, 2�?� . 

When the double axis is located, for example, at a position with coordinates (1/4, 3/4), 

then the vector �? � %1 4⁄ )�I � %3 4⁄ )�� and the operator takes the form    

S ≡ Á�r̿ ,  12 �� � 32 ��Â .                                         %C7.2e) 

 

As an example, this operator transforms a point with position vector � � � (i.e. a point 

lying at the origin of the reference frame), into a point with position vector   � � %1 2⁄ )�I � %3 2⁄ )�� � �� � %1 2⁄ )�I � %1 2⁄ )��, i.e., to another lattice point of 

the centred lattice. 

 

 

C 7.2 Fourfold rotation axis 

 

The fourfold axis of rotation is typical of a square crystal system. The basis 

vectors ��,  �� in this system are of the same length and perpendicular to each other. 

We use the same procedure as for the twofold axis. The tensor representing rotation 

by 90° about the fourfold axis has the form (→ tab. TC2b): 
 �	  ≡   ���� �  ����,  �    r̿ � �	 �  ���� �  ���� � ���� �  ���� . 
 

Fig. C14 
a1 

a2 a2 

a1 
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In the relation (C7.1) we add  �? � V��� � V���  and the difference of the tensors r̿ ��	 : %V��� � V���) ∙ %� ���� �  ���� � ���� �  ����) � �� . 
 

After performing the scalar product of the vector �? with the tensor �r̿ � �	�, we get 

the result: V��� � V��� � V��� � V��� � %���� � ����) .                   (C7.3a)  
 

By comparing the coordinates at the vectors ��,  �� on the left and right sides of 

equation: 

(a)   V� � V� � ��  ,    (b)  V� � V� � �� . 
 

Adding relations (a) and (b) yields  2V� � �� � ��, so that if we restrict to non-negative V� we get the values 0, %1 2⁄ ) , 1, 1%1 2⁄ ), 2, ... .  If  V� � 0  , then it follows from relation 

(a) that  V� can only take integer values. Considering only non-negative values, then   V� � 0, 1, 2, …  If V� � 1/2  ,  then it follows from relation (a)  

 

 

 

 

 

 

 

 

 

 

that  V�  can also take only half-integer values 1/2, 3/2, ... Restricting to values of   V�  

and  V� less than 1, for a vector �? we get only two possibilities: �? � � and �? �%1 2⁄ )�� � %1 2⁄ )�� , i.e. the fourfold axes can only be located at the origin of the 

reference frame (the unit cell) and in the middle of the unit cell. The other positions, 

shown by empty squares in the figure, already belong to adjacent cells.  

 The rotation operators 90° about the axes located at the beginning of the 

reference frame or in the middle of the unit cell have the form (→ Appendix D20): ����� � ����, ��, resp. ����� � ����,  ���.                     (C7.3b) 
 

These two operators represent symmetry operations belonging to the same coset of 

the plane group, since their translational parts differ only in the lattice vectors.  

 In the square lattice, the twofold rotation axes are also applied, and the result 

obtained in the previous article holds for their positions. The two positions overlap 

a2 

a1 

Fig. C15 
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with the positions of the fourfold axes, so that in the square lattice the twofold axes 

are located as independent only at the centre of the basis vectors. It should be noted, 

however, that point group 4 contains a subgroup 2. The distribution of the twofold 

and fourfold rotational axes in the square lattice is in Figure C15. 

 

C 7.3  Threefold rotation axis  

 

The threefold axis of rotation is typical of the hexagonal crystal system, but the 

lattice is also characterized by sixfold axes. The basis vectors ��,  �� in this system are 

chosen to be of the same length and to make an angle with the magnitude of 120°. To 

find the location of the threefold axes, we again use relation (C7.1). The tensor 

representing the rotation about the threefold axis has the form (→ tab. TC2b): 

 J	  ≡   ���� −  ���� −  ���� ,   �   r̿ − J	 = + ���� −  ���� + ���� +  2���� . 
 

Substituting �? = V��� + V��� and the difference of the tensors into the relation 

(C7.1) gives: 
 (V��� + V���) ∙ (+ ���� −  ���� + ���� +  2����) = (���� + ����) 
 

and after performing the scalar product: 
 +V��� − V��� + V��� + 2V��� = (���� + ����) .                   (C7.4) 
 

For scalar coordinates the following conditions apply: 
 

(a)  V� + V� = �� ,          (b)   2V� − V� = �� . 
 

From the sum of equations (a) and (b) : 3V� = �� + �� , so the coordinate V� can take 

the values 0, 1/3, 2/3, 1, .... Condition (a) then implies the following possibilities for 

the coordinate combination:  
 

(0, 0), (1/3, 2/3), (2/3, 1/3), (1, 0), (0, 1), (1, 1), ... . 
 

 The rotation operator by 120° about the axis located at position (1/3, 2/3), 

based on relation (h) from Appendix D13, has the form 
J	,  �I +  ��� and the operator 

associated with the second position (2/3, 1/3) has the form 
J	,  �I� . 
 

 The location of the threefold axes in the unit cell is shown in the following 

Figure C16, with the axes belonging to adjacent base cells shown by empty triangles. 

It is important to note that the hexagonal lattice is also characterized by sixfold axes 

of symmetry. Threefold axes without the presence of sixfold axes occur in the 
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structure only when the symmetry of the structure is lower than the symmetry of the 

lattice, which is caused by the lower symmetry of the structural motif.   

 

 

 

 

C 7.4  Sixfold rotation axis 

 

The sixfold rotational axis is typical of a hexagonal crystal system. The basis 

vectors ��,  �� in this system are conventionally chosen to be of the same length and 

subtend an angle of magnitude 120°.  The tensor representing the rotation about the 

six-fold axis has the form (→ tab. TC2b): 
 �	  ≡   ���� �  ���� �  ���� ,   �   r̿ � �	 � � ���� � ���� �  ���� . 
 

Adding the vector �? � V��� � V��� and the difference of the tensors to the 

relation (C7.1), we get 
 %V��� � V���) ∙ %����� � ���� �  ����) � %���� � ����) 

 

and after performing the scalar product: 
 �V��� � V��� � V��� � %���� � ����) .                          (C7.5) 

 
From here we obtain the conditions for the scalar coordinates: 
 

(a)  V� � �� ,     (b)   V� � V� � �� , 
 

from which the possibilities are:   V� = 0, 1, 2, ...  and  V� = 0, 1, 2, .... This means that 

there can be a single sixfold axis in the basis cell - at the origin of the reference frame. 

The other possibilities already correspond to positions in adjacent cells. Figure C16 

also shows the positions of the twofold and threefold axes, which are part of the set 

of symmetry elements of the hexagonal lattice. Fourfold axes do not occur in the 

hexagonal lattice. 

 

Fig. C16 a1 

a2 

a1 

a2 
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C 7.5   Reflection line and glide line 

 

Reflection lines (mirror lines) occur in all orthogonal lattices, i.e. lattices in 

which a pair of mutually perpendicular basis vectors �� and �� can be chosen. This 

possibility is offered in orthogonal, square as well as hexagonal lattices. The tensors 

representing reflection in the line in which the basis vectors �� , respectively �� , lie, 

are of the form 
 �	 � �  ���� � ���� , resp.  �	 � � � ���� � ���� . 

For the difference of tensors  r̿ � �	   we thus obtain the expressions 

r̿ � �	 � � 2���� ,     resp.  r̿ � �	 � � 2���� . 
 

Substituting into equation (C7.1) in the case of tensor �	 �, we obtain the relation: %V��� � V���) ∙ %2 ����) � %���� � ����)                            (C7.6) 
 

and from it the condition for coordinate V� :   2 V� � �� .  
 

In doing so, no conditions are placed on the V� coordinate of the �? vector, which is 

natural because the mirror line parallel to the �� vector cannot be localized in this 

direction. However, the coordinate V� in the region belonging to the unit cell can take 

only two values: V� � 0, 1/2 . Analogously, for the tensor �	 � no conditions are 

imposed on the coordinate V� , the coordinate V� can only take on the values 0, 1/2 . 
 

 

Reflection lines complete the set of symmetry elements of orthogonal lattices, 

occurring along rotational axes. In Figure C17a, they are shown by bold lines and 

denoted by the letters !. reflection lines belonging to adjacent cells are shown by 

empty rectangles. 

In a hexagonal lattice, three equivalent orthogonal unit cells can be chosen, 

rotated by 60° relative to each other, which is related to the distribution of the 

a2 

a1 m2 m2 

m1 

m1 

Fig. C17a 
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reflection lines in the lattice. The distribution of the reflection lines, as well as other 

elements of symmetry in the unit cells of the seventeen planar groups, is illustrated in 

the figure section of the text.  

The reflection operator in a line parallel to the vector �� and shifted in the 

direction of the vector �� by the coordinate V� � 1/2, based on relation (h) from 

Appendix D13, has the form 
 
�	 �, ��� ≡ 
r̿ � 2 ���� , ��� .                                  (C7.7) 

 

For example, this operator transforms a lattice point r = 0 to a lattice point with 

position vector �� and a point with position vector �� back to r = 0 (→ Appendix D14).  
 

When one is dealing with a centred lattice in which there are lattice points with 

position vectors �¿ � �� � ��/2 � ��/2 , the condition (C7.6) needs to be extended. 

For a tensor �	 �, this is the case: 
 %V��� � V���) ∙ %2 ����) � %���� � ��/2 � ���� � ��/2),          %C7.8) 
 

where for the coordinate V� of the vector �? we get the condition: 2 V� � �� � 1/2, 

while no conditions are imposed on the coordinate V�. This means that within a 

single unit cell, the coordinate V� can take values 1/4 and 3/4 , which are however 

realized in addition to the values 0, 1/2 obtained for the primitive cell, as shown in 

the following figure. 

 

 

However, reflection in such lines, if it is to be a symmetry operation, is 

associated with a translation of half the length of the basis vector parallel to the 

reflection line, in accordance with relations (C4.21) and (C4.22), as we will show in the 

following example. The reflection operator in a line parallel to the vector �� and 

shifted in the direction of the vector �� to a position with coordinate V� � 1/4, based 

on relation (h) from Appendix D13, has the form: 
 S ≡ 
r̿ � 2 ����, ��/2�.                                          (C7.9) 

 

Fig. C17b 
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This operator, unlike operator (C7.7), transforms a lattice point with position 

vector � � 0 to a point with position vector ��/2 ,  but where the lattice point is not 

located. Therefore, the operation represented by operator (C7.9) is not a symmetry 

operation. If this operator is to represent a symmetry operation, it must contain an 

additional non-lattice translation t , which moves the lattice to an equivalent position. 

Therefore, the condition ��/2 + � = �¿  respectively, must be required if the vectors  

t  and �¿  are expressed in terms of scalar coordinates in the basis ��,  ��: 
 ��/2 + ±��� + ±��� = ���� + ���� + ��/2 + ��/2 ,                        (C7.10) 
 

which leads to the conditions: ±� = �� + 1/2   and   ±� = �� . 
 

Within a unit cell, it suffices to restrict to the coordinate values �$  = 0, 1, which yields 

the coordinate values ±�, which are shown in the following table: 
 ¯I ¯� �I ��  ¯I ¯� �I �� 

0 0 1/2 0  1 0 3/2 0 

0 1 1/2 1  1 1 3/2 1 

 

If  ±� = 3/2, then there is a displacement of (3⁄2) �� , which is the sum of the non-

lattice translation of ��/2 and the lattice translation of ��; however the lattice 

translation, as a trivial symmetry operation, can be omitted from the considerations. 

In doing so, only lattice translations are involved in the direction of the vector �� . 
Thus, in all cases, a non-lattice translation equal to half of the basis vector �� must be 

added to the operator (C7.9) if it is to represent the symmetry operation. Therefore, 

the corresponding symmetry operator has the form 
 S ≡ 
r̿ − 2 ����, ��/2 + ��/2 �                                  (C7.11) 
 

Analogous modifications concern reflection in lines parallel to the vector �� . 

 

Remark. If we substitute the vector �� into the relation (C7.10) instead of the vector �¿, then  for  the values  of the coordinates of  the vector  t  we would get  t1 = 0, 1 , t2 

= 1/2 , 3/2, which, together with the translation ��/2, appearing in the operator, again 

represent only lattice translations. 

 

 Glide line 
 

This element of symmetry occurs not only in centred lattices, but also in 

primitive ones, but where it is a consequence of the shape of the structural motif. 

According to the TC3 table, reflection with glide is represented by the operator 
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�	 , �/2�, where � is one of the basis vectors of the rectengular cell to which the glide 

line is parallel. If we consider specifically the basis vector �� , the tensor expressing the 

reflection in the line identical to this vector has the form:  �	 � � r̿ � 2 ���� , and the operator of glide reflection  
 
r̿ � 2 ����,  ��/2 � 

 

This operator expresses a reflection with a shift in the line of vector  ��, so the 

symmetry operation consists of a reflection in this line and a shift represented by the 

vector  ��/2 . The tensor part of the operator is the same as in the case of reflection 

without glide, and so we can use relation (C7.6) to find other positions �? of the glide 

line in the unit cell. For completeness, we repeat this procedure: r̿ � �	 � � 2���� , 
 

and after plugging it into equation (C7.1) we get the relation: 
 %V��� � V���) ∙ %2 ����) � %���� � ����)                            (C7.12) 

 

and from it the condition for the coordinate V� :  
 2 V� � �� 

 

Also in this case, no conditions are placed on the V� coordinate of the �? vector. 

However, the coordinate V� in the region belonging to the unit cell can take only two 

values: V� � 0, 1/2 . This means that there are two glide lines belonging to the unit 

cell, one lying in the vector  �� , the other parallel to it and intersecting the vector �� 

in the middle.  

The operator representing the reflection with the glide in the glide line shifted 

to the centre of the unit cell, in analogy with relation (C6.10), then takes the form 
r̿ � 2 ����,    ��/2 � ��� .                             (C7.13) 
 

This operator transforms, for example, a point with position vector �� to position  ��/2 and a point with position vector 0 to position  ��/2 � ��.  

The same procedure can be applied to glide lines parallel to vector �� ; glide 

lines parallel to vector  �� are indicated in the figure. 

 

Fig. C18 
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C 8   Plane groups 

 

In previous considerations of the symmetry of planar periodic structures, all 

allowed symmetry operations have been found, as well as 10 point groups and 5 

translation groups (lattice types), which have been classified into four crystal systems. 

This created the conditions for determining the set of plane groups. When this 

condition is considered in terms of the relationship 
 � �  � ∙ (�/�) = (�/�) ∙ �  ,                              (C8.1) 

 

which allows one to construct plane groups (→ relation C3.6), it follows that both 

translation subgroups T of plane groups � and their point groups, which are 

isomorphic to factor groups (G/T), are already available. This makes it possible to 

proceed immediately to the construction of plane groups. 

Each plane group G contains an infinite number of elements representing 

symmetry operations – translations, rotations, reflections and their combinations. 

These elements can be divided into cosets with respect to the invariant translation 

subgroup T of the group G. The elements of the translation group are only lattice 

translations, represented by the translation operators 
r̿, ���. A coset of a planar 

group G includes all its elements which are combinations of a particular element of its 

point group with all elements of the translation group. Thus, it includes the symmetry 

operations of the group G, which differ from each other only in the translational part 

– the different lattice vectors ��. Elements of cosets are then represented by 

operators S � 
�	, ��  with the same tensor part �	 , but with different translational 

parts t . Any of its elements can be chosen to represent a coset, but it is convenient to 

choose the one whose translational part is zero; the representatives of the cosets are 

then the elements of the point group. In the case where there is a glide line in the 

structure, the translational part of the representative of the corresponding coset 

cannot be zero. According to Table TC3 and relation (C4.22), its operator has the form 
�	 , �/2� , where � is one of the basis vectors of the orthogonal lattice. This means 

that the translational part of the coset representative is then not an element of the 

translation group. However, two elements of the same coset can differ from each 

other only by a lattice vector, i.e. by an element of the translation group. 

The cosets as units are elements of a factor group, but the set of repre-

sentatives of these cosets – including the neutral element – may not form a group if 

any one of them contains a nonzero translational part. However, the group is formed 

by their tensor parts, namely the point group, which is isomorphic to the factor group 
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(G/T). This isomorphism makes it possible to apply some important relations valid in 

point groups to the factor group, specially to the representatives of cosets. 

The point groups of planar periodic structures are divided into two sets – groups 

1, 2, 3, 4, 6, m with one generating element and groups 2mm, 3m, 4mm, 6mm with 

two generating elements. The groups of the second set are formed by the direct 

product of any of the cyclic groups 2, 3, 4, 6 with the two-element reflection group m , 

i.e. as the product of the groups 
 ¶ ∙ F  ,  resp.  F ∙ ¶ ,                                          (C8.2) 

 

where the symbol ¶ represents one of the cyclic groups. The commutativity of relation 

(C8.2) can be verified using multiplication tables (→ Tables section).  

Due to the isomorphism of the factor group with the point group of the planar 

structure, based on relation (C8.2), the factor group (G/T) in relation (C8.1) can be 

replaced by the direct product ¶ ∙ F : 
 � = � ∙ (�/�)   ⟹  � = � ∙ ¶ ∙ F .                         (C8.3a) 

 

The plane group G expressed by this relation is formed by combining the 

elements of the point group of a planar structure with all the elements of its 

translation group. Only symmetry groups of planar periodic structures in which there 

are no glide lines generated by the structural motif can be expressed in this way. These 

are the thirteen so-called symmorphic plane groups. In doing so, there may be two 

special cases − when only the group of proper rotations n is involved, e.g., the group 

3 with elements @8, 3, 3�E, or only the reflection group m with elements @8, !E. In 

these cases, the plane group can be written in the form 
 � = � ∙ ¶ ,  or   � = � ∙ F .                             (C8.3b) 

 

The representatives of the cosets are then the elements of the point groups, e.g.  3, 3�, ! ,  to which the operators 
J	, ��, 
J	�, ��, resp. 
�	 , �� correspond. The operators 

have such a simple form when the rotation axis is located at the origin of the reference 

frame, or when the reflection line is identical to some basis vector of the orthogonal 

lattice. Otherwise, the operators also contain a translational part (→ Appendix D13, 

→ part C7), so then they have the more general form [©	, �] or 
�	 , ��, where ©	 

symbolizes the rotation tensor belonging to one of the cyclic groups.  

 In some three-dimensional structures there are screw axes, so that the 

corresponding symmetry operation has an integral translational part in addition to the 

rotational part. That is, the symmetry operator must have the form S �
�	, ��, where t 

represents the non-lattice translation. However, in planar periodic structures, 

operations of this kind do not occur, so by placing the origin of the reference frame in 
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the rotation axis, the translational part of the operator  S  can be made equal to zero. 

The operator 
�	, �� is then changed to 
�	, ��, or operator [©	, �] to [©	, �]. This greatly 

simplifies further considerations and calculations (→ beginning of Section C4.2, or the 

derivation of the transformation formula in Appendix D13). The possibility of 

transforming [©	, �] � [©	, �] is regularized by the fact that no constraints are placed on 

the vector t according to Table TC3. If it is not a reflection associated with a glide, the 

reflection can also be assigned the operator 
�	 , �� without a translation term, by a 

suitable choice of the position of the origin of the reference frame. 

 The decomposition of the group G into subclasses is expressed in the above two 

cases by the relations 
 � = � + � ∙ [©	, �] + � ∙ [©	 �, �] + ⋯ + � ∙ [©	 p��, �],    
resp. � = � + � ∙ 
�	 , �� .                                           (C8.4) 

 

where [©	 � , �] represents the operator belonging to the i-th element of the cyclic group 

associated with the n-fold axis of symmetry. If there are no glide lines in the planar 

structure, then even combinations of rotations with reflection represent point 

operations, and the representatives of cosets can be elements of point groups. The 

number of members of the decomposition into cosets coincides with the number of 

elements of the point group. 

If these are centred lattices (they are all orthogonal and reflection is applied), 

the decomposition (C8.4) involves the group �Ä , which can be decomposed into two 

parts according to relation (C6.3): �Ä = �½ + �} ∙ �½. The decomposition of a plane 

group G into cosets thus acquires twice the number of members; for example, in the 

case of a point reflection group: 
 � = �Ä + �Ä ∙ 
�	 , �� = (�½ + �} ∙ �½) + (�½ + �} ∙ �½) ∙ 
�	 , �� = 
 = �½ + �} ∙ �½ + �½ ∙ 
�	 , �� + �½ ∙ �} ∙ 
�	 , ��.                (C8.5) 
 

Thus, if we decompose the group G into cosets according to the subgroup �½ , it has 

up to three cosets instead of one. The translation �} = (;� + ;�)/2  commutes with 

the operations of the group �½ , is represented by the operator 
r̿, (;� + ;�)/2�, and 

its product with the operator 
�	 , �� yields the result 
�	 , (;� + ;�)/2 �. The 

representatives of the three cosets are thus the elements to which the operators are 

assigned: 
 
r̿, (;� + ;�)/2� ,    
�	 , �� ,   
�	 , (;� + ;�)/2 � .                     (C8.5b) 
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The third of these operators is the product of the first and the second one, which, 

although they do not commute with each other, swapping their order when 

transforming an arbitrary lattice point leads to resulting positions whose position 

vectors differ only by one of the basis vectors of the centred cell. We support the claim 

by a calculation in the case of reflection in a line parallel to the vector ;� , when the 

reflection tensor has the form  �	 I = r̿ − 2;�;� (→ Appendix D14) 
 
r̿, ;�/2 + ;�/2� ∙ 
�	 I, �� = 
�	 I, ;�/2 − ;�/2  �,   

 
�	 I, �� ∙ 
r̿, ;�/2 + ;�/2� = 
�	 I, ;�/2 + ;�/2 �. 
 

That is, the representative of the coset of group G can be anyone of these two 

products, since the difference of their translational parts is equal to the lattice vector ;�, i.e., an element of the translation group. The coset with representative 
�	 , �� 

contains ordinary reflection, the coset with representative 
�	 , (;� + ;�)/2 � contains 

reflection with glide in lines that are shifted with respect to the position of the vectors ;� and  ;� (→ relations (C4.22), (C7.11)). 
 

 The relations (C8.3.a) and (C8.3.b) give rise to 12 planar groups by direct 

products of translation groups with point groups. This number can be arrived from 

Table TC6 (→ p. 70) by multiplying the number of point groups by the number of 

translation groups in each crystal system. To these twelve groups one has to add a 

group that differs from a similar group only by the mutual orientation of the reflection 

lines of the lattice and the reflection lines of the structural motif (→ article C8.4 on the 

hexagonal system). In total, there are thirteen symmorphic groups. 

 However, the total number of planar groups is 17, and obtaining four more 

plane groups, i.e. four more types of symmetry, requires a different procedure. These 

are the groups that describe the symmetry of structures with primitive lattices in 

which glide lines occur as a consequence of the specific symmetry of the structural 

motif (→ Appendix D18). The procedure for deriving the aforementioned four types 

relies on an analogy between two relations – the relation between the elements of the 

point groups and the relation between the representatives of the cosets of the plane 

group. There is a relation between the elements of cyclic groups �, J, �, � and the 

reflection operation m: 
 � ∙ ! ∙ � = ! , 
 

where n represents an element of one of the groups �, J, �, � (for example, the 

element 3�). The relation can be verified using multiplication tables of point groups, 

(→ TC5), and also in the appendices, where it is supported by the relations D15(c), 
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D16(d) and D17(c). Due to the isomorphism of factor groups with point groups, the 

validity of the analogous relation is also required for the coset representatives in this 

case, when the presence of glide lines in the structure is involved: 
 �©	 , �] ∙ 
�	  , �� ∙ [©	 , �] = 
�	  , � + ��� ,                          (C8.6) 
 

where t is one of the allowed translations according to Table TC3. Reflection with glide 

displaces the entire structure, so that subsequent rotation can no longer bring it to its 

original position. The relation (C8.6) expresses the requirement that the resulting 

position of the translated point differs from the original one by a lattice vector. The 

element with operator 
�	  , �� and the element with operator 
�	  , � + ��� are 

equivalent representatives of the same coset, since they differ from each other only 

by different lattice translations of �� .  This means that elements with representations [�	  , �/2] and [�	  , −�/2] (→ tab. TC3), for example, belong to the same coset, 

because the difference of their translational parts is equal to the basis vector � ,  i.e., 

the shortest lattice vector. The element represented by the operator 
�	  , �� belongs 

to one of the cosets of the plane group, but is not an element of its point or translation 

group, since it represents the inseparable union of reflection and translation.  

Relation (C8.6), in addition to relation (C4.19), imposes additional conditions on 

the translational part of the operators S � 
�	, ��. These two conditions allow us to 

correctly choose the representatives of the cosets and to construct the factor groups. 

 

 

Influence of the symmetry of the structural motif 

 

The symmetry of a planar periodic structure depends on both the symmetry of 

the lattice and the symmetry of the structural motif. The symmetry of the lattice is 

characterized by both point symmetry and translational symmetry, but we consider 

the symmetry of the structural motif only locally, i.e., only its point symmetry. For 

rotations of a certain angle, or for reflections, if these operations are to be symmetry 

operations of the whole structure, not only the lattice but also the structural motif 

must be brought to an equivalent position. That is, the corresponding operation must 

be a joint symmetry operation of both the structural motif and the lattice, it must be 

an element of both the point group of the lattice and the point group of the motif. This 

is possible if and only if the point group of the lattice and the point group of the motif 

share at least one subgroup. Their largest common subgroup then characterizes the 

point symmetry of the entire planar structure. 
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For example, if a lattice is characterized by a symmetry described by a point 

group � ≡ @8, 4, 4�, 4�E and a structural motif by a point group � ≡ @8, 6,6�, 6�, 6A, 6BE, so their only common subgroup is the group � ≡ @8, 2E related to the 

180° rotation represented by the elements 2 ≡ 4� ≡ 6� in these groups. 

If a structural motif were characterized by, e.g., a fivefold axis of symmetry, i.e., 

a group Å ≡ @8, 5, 5�, 5�, 5AE, which (with the exception of the identity e) does not 

share an element with any of the crystallographic point groups, then the symmetry of 

the structure, irrespective of the type and symmetry of its lattice, would be described 

by the plane group with the lowest symmetry, i.e., group p1 (→ table TA3). Conversely, 

if a structural motif is, e.g., circularly symmetric, its point symmetry group contains 

rotations of arbitrary angles, so that a subgroup of this group is any crystallographic 

point group. The largest common subgroup is then the lattice point group, which 

determines the point symmetry of the entire planar periodic structure regardless of 

the high symmetry of the structural motif. 

 

It follows from the preceding discussion that the point group of the planar periodic 

structure coincides with the largest common subgroup of the point group of the 

lattice and the point group of the structural motif.  

(C8.7) 
 

With reflection lines present simultaneously in both the lattice and the 

structural motif, the mutual parallelism of the respective reflection lines is important 

so that they can be symmetry elements of the whole structure. This circumstance 

manifests itself in a special way in the hexagonal crystal system, where the different 

orientations of the reflection lines of the motif and the lattice lead to two different 

types of symmetry. 
 

A special case is a structural motif that generates reflection with glide (glide 

reflection). In centred lattices, such reflections is due to the arrangement of lattice 

points, but in primitive lattices it is due to the shape of the structural motif (→ Figure 

A7, → Appendix D18). Glide reflections is not a point symmetry operation, so the 

largest common subgroup rule, as in the case of motif and lattice point groups, does 

not apply. A glide reflection is an element of a plane group, it belongs neither to the 

point group nor to the translation group, but it belongs to a separate coset of the plane 

group, it is a representative of it. Such a structural motif is related to four other types 

of symmetry, it conditions the existence of four other plane groups. 
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In the following parts of text, the plane groups characterizing different 

types of symmetries of planar periodic structures are described, successively 

according to the different crystal systems. The description starts with the 

oblique system, in which there is the smallest number of symmetry operations. 

 

 

 

C 8.1  Oblique system 

 

Point groups  I � @8E  and � � @8, 2E are included in the oblique crystal system. 

In this system there exists only the primitive translation group �¼ , so that by its direct 

product with the point groups we obtain two planar groups denoted by p1, p2 : 
 

p1  :  �� = �¼ ∙ @8E  �  �¼  
  

p2  :  �� = �¼ ∙ @8, 2E . 
 

The first of these groups has no coset, the decomposition of the second into cosets 

takes the form: �� = �¼ + 2 ∙ �¼ 
 

or by replacing element 2 of point group 2 with the appropriate operator: 
 �� = �¼ + [�	, �] ∙ �¼ .                                         (C8.8) 
 

Note: The operator representing an element of the point group should be written only 

as a tensor �	 , but the notation with the translational part, in this case zero, allows in 

the following to distinguish operators representing differently localized symmetry 

elements and already expresses an element of the planar group. 

 

The symmetry type �� is typical for all planar periodic structures characterized 

by the combination of the translation group �¼ with point group 2; they belong to the 

oblique system no matter how high the symmetry of the lattice is. 
 

The elements of group p1 are only translations, so the operators of all its 

elements have the form 
r̿, ���, where �� represents a lattice translation. 
 

The group p2 contains as a subgroup the group p1, plus elements which as 

operators have the form 
�	, ���. There are four twofold axes per unit cell, one passing 

through the origin of the reference frame, and the corresponding operator 
�	, �� has 

a  zero  translation term. Operators representing rotations about axes that are 
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localized away from the origin of the reference frame have a nonzero translational 

term t , which depends on the position of the axis and has the form (→ Appendix D19):  
 
�	, ���, 
�	, ���  a   
�	, �� � ��� . 

 

The symmetry operations represented by these four operators belong to one coset in 

the decomposition of the plane group, since the operators differ from each other only 

by different lattice vectors. The representative of the coset can be any of them, most 

appropriately the element 
�	, �� without a translation term. 
 

The localization of the twofold rotation axes in the unit cell was described in 

Section C6.7, for completeness we present the corresponding figure: 

 

 

The oblique system includes two of the 17 plane groups, which we will enter in 

a table that we will gradually add: 

 

Plane groups 
        

number 1 2 3 4 5 6 7 8 9 
symbol p1 p2        

 

number 10 11 12 13 14 15 16 17  
symbol          

 

 

C8.2  Rectangular system 

 

The rectangular crystal system includes two translation groups, the primitive �¼ 

and the centred �Ä , and two point groups, the 2mm holohedral group and its subgroup 

m, with its second subgroup 2 belonging to the oblique system. In the first part of this 

section, the plane groups related to structures with a primitive lattice – the translation 

group �¼ will be derived, in the second part the plane groups of structures with a 

centred lattice – the translation group �Ä will be derived. 

 

p1 p2 
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C8.2.1   Rectangular system,  primitive lattice 
 

An orthogonal lattice that is not centred is characterized by two basis vectors ��, ��, which are perpendicular to each other, and do not have the same magnitude. 

The plane groups in this case can be expressed as the direct product of the primitive 

translation group �¼ with the m or 2mm point groups. For the rectangular system, the 

presence of reflections – ordinary or with glide – is crucial. If there are glide reflections 

in lines parallel to one basis vector, then it is a group m. The presence of glide 

reflections in two lines perpendicular to each other is inextricably linked to rotation 

about the double axis (→ multiplication table TB5), so in that case it is already a group 

2mm. 

 

Group m 
 

The combination of the translation group �¼ with a simple reflection in the line 

identical to the vector ��, represented by the operator 
�	 �, �� ≡ 
r̿ − 2�����, yields 

a planar group: � = �¼ ∙ @8, !E, 
 

whose decomposition into cosets has the form 
 � = �¼ + �¼ ∙ 
�	 �, �� . 
 

The same type of symmetry will be given by reflection in the line identical to the vector ��, represented by the operator 
�	 �, �� ≡ 
r̿ − 2����� , so the index at the tensor �	   

will be omitted. This gives rise to the third plane group in the sequence, which has label �! and decomposition into cosets:  
 �!:           �� = �¼ + �¼ ∙ 
�	 , ��. 
  

The combination of the group �¼ and the glide reflection yields another group, 

with label pg and decomposition into cosets 
 �Q:            �A = �¼ + �¼ ∙ 
�	 , ��, 

 

where t represents the translations ��/2  and  ��/2 respectively, depending on 

whether the tensor is  �	 � or  �	 �. For a more detailed discussion of the group of this 

type, see Appendix D18. It should be noted that both cases involve symmetries of 

structures in which there are reflection lines or glide lines parallel to only one of the 

basis vectors. 
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The distribution of symmetry elements in the plane groups �� and �A is shown 

in the following figure, where the reflection lines are indicated by continuous  

 

thick lines and the glide lines by dashed lines. Their localization in the unit cell has been 

justified in section C7. It should be noted that of the three reflection lines, only the two 

lower ones belong to the unit cell, the third one already belongs to the adjacent higher 

cell. 

 

Group 2mm 
 

The 2mm holohedral group can be expressed as a direct product of its subgroups: 
 �FF � @2E ∙ @!E . 
 

Therefore, the corresponding plane group can also be written as a direct product of 

the translation group with subgroups 2 and m: 
 � � �¼ ∙ @2E ∙ @!E 
 

or after explicitly decomposing the elements of the 2mm group: 
 � � �¼ ∙ �FF � �¼ ∙ 78, 2, !# , !µ : . 
 

The symmetry operations of such a plane group, i.e., its elements, include 

translations, rotations about twofold axes, reflections in two systems of lines parallel 

to the basis vectors, and combinations of these operations.  The possibility of glide 

reflection must also be taken into account, as can be seen from both relation (C4.21) 

and Table TC3. 
 

The symmetry operations in the plane group � can be represented by the 

rotation operator 
�	, ��, the reflection operators 
�	 �, ��, 
�	 �, ��, the glide reflection 

operators 
�	 �, ��/2� and 
�	 �, ��/2�,, the translation operators 
I,̿ ��� as well as 

combinations of these operators. An identical operation, which is an integral part of a 

group, is represented by the operator 
I,̿ ��. 
 

pm pg 
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Starting from the above facts, we 

describe a type of symmetry that is 

characterized by the presence of 

rotations 
�	, �� and ordinary reflections 
�	 �, �� and 
�	 �, �� in lines parallel to 

the basis vectors. A plane group with 

this symmetry is denoted by the symbol �2!!, has order number 6, and its 

decomposition into cosets has the form: 
 �2!!:  �C � �¼ � �¼ ∙ 
�	, �� � �¼ ∙ 
�	 �, �� � �¼ ∙ 
�	 �, �� . 
 

Another type of symmetry is obtained by replacing one of the ordinary  

reflection  in the �2!! group by a glide reflection. For example, we replace the 
�	 �, �� operator of the reflection in the line identical to the vector �� by the 
�	 �, ��/2� operator.  The product of this operator with the rotation operator gives the 

result: 
�	, 0� ∙ 
�	 �, ��/2� � 
�	 �, ��/2�, 
 

thus an operator of ordinary reflection in a line parallel to the vector ��, but shifted in 

the direction of the vector �� by a quarter of its length (→ part C7). In doing so, the 

glide lines remain in place of the original reflection lines without glide, but the 

reflection lines perpendicular to them are shifted, as shown in the figure of this plane 

group. The planar group is denoted by p2mg and its coset decomposition is of the 

form: 
 

  �2!Q:        �Ç � �¼ � �¼ ∙ 
�	, �� � �¼ ∙ 
�	 �, ��/2� � �¼ ∙ 
�	 �, ��/2�. 
 

Replacing even the second reflection operator by a glide reflection  operator 

will give the last type of symmetry structure with an orthogonal primitive lattice. 

However, the glide lines cannot lie in the basis vectors, since the combination of glide 

reflection in such a line with rotation by 180° is equivalent to ordinary reflection, as 

seen in the previous case. The glide lines must be shifted within one quarter (even 

three quarters → part C7) of the length of the basis vector. The reflection operator 

with a glide line parallel to the vector �� then has the form 
�	 � , ��/2 � ��/2� (→ 

formula C7.11).  The product of this operator with the rotation operator gives the 

result: 
 
�	, �� ∙ 
�	 � , ��/2 � ��/2� � 
�	 � , ��/2 � ��/2�, 

 

p2mm 
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i.e., again glide reflection, but in a line parallel to the vector �� and displaced by ��/4 . 
The corresponding plane group has the symbol �2QQ and its decomposition into 

cosets has the form: 
 �2QQ:  �È � �¼ � �¼ ∙ 
�	, �� � �¼ ∙ 
�	 �, ��/2 � ��/2� � �¼ ∙ 
�	 �, ��/2 � ��/2�. 
 

The operator representing the glide reflection in a line parallel to the vector �� and 

shifted to position %3/4)�� has the form 
�	 �, ��/2 � %3/2)���, its translational part 

differs from the operator 
�	 �, ��/2 � ��/2� by the lattice vector �� , so that the 

corresponding operations belong to one coset of the plane group. 

This exhausted all types of symmetries of planar periodic structures with 

primitive orthogonal lattices, so that five groups were added to the table:  
 

pm, pg, p2mm,  p2mg  and  p2gg. 

 

 

 

 

 

 

 

 

 

Plane groups 
        

number 1 2 3 4 5 6 7 8 9 
symbol p1 p2 pm pg  p2mm p2mg p2gg  

 

number 10 11 12 13 14 15 16 17  
symbol          

 

 

 

C8.2.2   Rectangular  system,   centred lattice 

 

We express the translation group �Ä of a centred lattice by decomposing it into 

an incomplete translation subgroup �½ and a coset with respect to this subgroup:  �Ä � �½ � �½ ∙ �½ ,                                               (C8.9) 
 

where �½ � ;�/2 � ;�/� , and ;� and ;� are the basis vectors in the centred lattice 

(→ relation C6.3 and the text preceding it, → relation C8.5).  

p2mg p2gg p2mm 
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Group m 
 

Also in the centred lattice, these will be combinations of the translation group with the 

point groups m and 2mm. We start by combining the group m with the group �Ä , so 

we first write the plane group as their direct product: 
 � � �Ä ∙ @8, !E. 
 

The coset breakdown by translational subgroup �Ä  looks like this:  
 � = �Ä + �Ä ∙ ! , 
  

or by replacing the element ! of the point group by its tensor operator: 
 � = �Ä + �Ä ∙ 
�	 , ��. 
 

A better view of the set of symmetry elements and their distribution in the unit 

cell is obtained by decomposing the plane group � into cosets according to the 

incomplete translation group �½, i.e. according to relation (C8.9). This allows a better 

assessment of the symmetry of the centred lattice structure. When we use their tensor 

operators instead of the group elements, and consider reflections in lines parallel to 

the vector ;�, the decomposition into cosets takes the form (→ relation C8.5): 
 � = �½ + �½ ∙ �½ + �½ ∙ 
�	 �, �� + �½ ∙ �½ ∙ 
�	 �, ��. 
 

The first of the cosets - �½ ∙ �½ - completes the group �½ to the full translation 

group �Ä , with the element with operator 
r̿, (;� + ;�)/2� as its representative (→ 

relation C8.5b). The representative of the second coset is the element with operator 
�	 �, �� representing the ordinary reflection in the line in which the vector ;� lies. The 

representative of the third coset is the operator we obtain as the product: 

�½ ∙ 
�	 �, �� = Ár̿ ,   12 (;� + ;�)Â ∙ 
�	 �, �� = Á�	 I ,   12 ;� − 12 ;� Â. 
 

By reversing the order in the product of the operators we get: 
 
�	 �, �� ∙ �½ = 
�	 �, �� ∙ Ár̿, 12 (;� + ;�)Â = Á�	 I, 12 ;� + 12 ;� Â, 

 

which implies that the results of the products differ only by the basis vector ;�, so 

that both elements can be representatives of the same coset.  

The operator 
�	 I, ;�/2 + ;�/2  � represents a glide reflection in a line 

parallel to the vector ;� , but shifted in the direction of the vector ;� by a quarter of 

its length. Details of an operator of this type are given in the text preceding relation 

(C7.11). 
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It is worth noting that in addition to the ordinary reflection represented by the 

operator 
�	 �, ��, there cannot exist a glide reflection in the same line, represented by 

the operator 
�	 I, ;�/2 �. The product of these operators yields the operator 
r̿, ;�/2�, which is not a symmetry operator because the translation of ;�/2 is not 

itself part of the translation group. 

Thus, we obtain another plane group which is a combination of a centred 

translation group �Ä and a point group m , in which both ordinary reflections and glide 

reflections occur as symmetry operations. The distribution of these symmetry 

elements in the unit cell is described in Section C7.  

The symbol n! is used for this group and it is listed as the fifth in the order of 

plane groups: n!  : �B  �  �Ä ∙ @e, !E , 

while the decomposition of the group into cosets has already been discussed above. 

 

 

Group 2mm 
 

We first express the plane group as the direct product of the translation group �Ä and the point group 2mm: 
 � � �Ä ∙ @2!!E �   �Ä ∙ @2E ∙ @!E � �Ä ∙ @8, 2E ∙ @8, !E � �Ä ∙ 78, 2, !# , !µ:. 
 

The decomposition of the group � into cosets can be done with respect to the 

complete translation subgroup �Ä, but also with respect to the incomplete translation 

subgroup �½, as in the case of the group m . The latter method will give more 

information about the symmetry elements and their localization in the unit cell. 
 

The decomposition of the planar group � by the translation subgroup �Ä  has 

four members, three of which are cosets, similar to the decomposition of the group �C 

for the primitive lattice: 
 � � �Ä � ��	, �� ∙ �Ä � ��	 � , �� ∙ �Ä � ��	 � , �� ∙ �Ä . 
 

The decomposition by the group �½ has eight members, seven of which are 

cosets, and directly expresses all operations or symmetry elements in the structure 
 

cm 
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� � �½ � É½ ∙ �½ � �½ ∙ 
�	, �� � �½ ∙ �½ ∙ 
�	, �� �  
 � �½ ∙ 
�	 �, �� � �½ ∙ �½ ∙ 
�	 �, �� � �½ ∙ 
�	 �, �� � �½ ∙ �½ ∙ 
�	 �, ��. 

 

The eight members of the decomposition can be divided into three sets. The 

first and second members represent the complete translation group �Ä.   

The second set includes the third, fifth and seventh members, represented by 

operators for which the translation �½ does not occur, so they are zero-translation 

operators. All of them are also part of the group �C, denoted p2mm.    

The third set includes three terms in which the �½ translation is already present, 

so we can write them in the general form 
 
�	, �� , 
�	 �, �� and 
�	 �, ��, 

 

where according to relation (C8.5b) � � %;� � ;�)/2. Such a combination of symmetry 

elements does not occur in the symmetry types described so far, so it represents its 

next type, the ninth planar group �D, denoted by c2mm. 
 

The operator  
�	, �� ≡ 
�	, %;� � ;�)/2� represents a rotation about a twofold 

axis located at a point with position vector %;� � ;�)/4, which is a typical location for 

a centred lattice (→ Fig. C14), while other possible positions of this axis, are given in 

Section C7.  Operators 
�	 �, %;� � ;�)/2� and 
�	 �, %;� � ;�)/2� represent glide 

reflections in two mutually perpendicular lines, shifted by 1/4 the length of the basis 

vectors.  A more detailed description of these is given in the text before relation 

(C6.14). Meanwhile, the presence of glide lines in which the basis vectors lie is ruled 

out, because combining an operator representing a glide reflection, i.e., 
�	 �, ;�/��, 

for example with the operator 
�	 �, %;� � ;�)/2�, yields 
r̿, ;� � ;�/2�, which is a 

translation that does not belong to the translation group, so it is not a symmetry 

operation. 

Thus, the next planar group is the group �D, 

denoted by the symbol c2mm, shown in the adjacent 

figure. However, the glide line markers do not appear 

in the international symbol of group �D, because glide 

lines are a natural part of structures with centred 

lattices. 
 n2!! ∶        �D  �  �Ä ∙ @e, 2, !# , !µE 
 

Based on the considerations of the centred lattice in the rectangular system, 

two more groups were added to the table of planar groups: cm and c2mm . 

 

c2mm 
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Plane groups  
        

number 1 2 3 4 5 6 7 8 9 
symbol p1 p2 pm pg cm p2mm p2mg p2gg c2mm 

 

number 10 11 12 13 14 15 16 17  
symbol          

 

 

 

C8.3   Square system  

 

The tetragonal crystal system includes only one type of translation group – the �¼  group representing the primitive lattice, and two  point groups: 4, 4mm. The unit 

cell is determined by two basis vectors  �� and �� , which are perpendicular to each 

other and have the same size.  

 

The group 4 is cyclic, with a single generating element represented by the 

operator [�	, �] ≡ [ ���� −  ���� , �], and its direct product with the group �¼ yields 

the first of the plane groups belonging to the square system: 
 

p4  :   ��9 = �¼ ∙ @4E ≡ �¼ ∙ @8, 4, 4�, 4�E, 
 

or after decomposition into cosets 
 

p4  :   ��9 = �¼ + [�	, �] ∙ �¼ + [�	�, �] ∙ �¼ + [�	�, �] ∙ �¼ ,     (C8.10)                                                       

while 
 [�	�, �] ≡ 
�	, 0� ≡ 
−r̿, 0�  and  [�	�, �] ≡ [− ���� +  ���� , �] (→ C4.1.3). 
 

There are two fourfold axes per unit cell (→ article C7.2), one localized at the 

origin of the reference frame, the other at the centre of the unit cell. Operations 

related to the second position are represented by operators (→ Appendix D20):  
 
�	, ���, 
�	�, �� + ���, [�	�, ��] 

 

whose translational parts differ from the operators in relation (C8.10) only by different 

lattice vectors, i.e.  different elements of the translation group. This means that the 

symmetry operations represented, for example, by the operators [�	�, �] and [�	�, ��] 

belong to one coset of the plane group and each of them can be its representative. 
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Two twofold axes are also localized in the unit cell of the square lattice, at 

positions %1/2, 0) , (0, 1/2), with the corresponding rotations of 2 being identical to 

the rotations of 4�. The operators of these rotations have the form (→ Appendix D19)  
�	, ��� ≡ [�	�, ��]  resp. 
�	, ��� ≡ [�	�, ��] ,  
 

and differ from the operator [�	�, �] only by the translational part augmented by lattice 

vectors. Therefore, the corresponding operations belong to the same coset of the 

plane group as the operations represented by the operator [�	�, �]. The decomposition 

(C8.10) of the group ��9 is thus complete. 

 

The group 4mm has two generating elements, it can be obtained by the direct 

product of the group 4 with the reflection group m: �FF = � ∙ F ≡ @4E ∙ @!E. The 

plane group is obtained by its direct product with the translation group �¼ 
 � =   �¼ ∙ @4E ∙ @!E ≡ �¼ ∙ @4E ∙ @�	 E 

 

As shown in Table TC3, there are two variants of reflection in planar structures – 

ordinary reflection and glide reflection, which must be taken into account. Therefore, 

when expressing the plane group, we write the direct product in a more general form 

that takes this into account: 
 � =   �¼ ∙ @4E ∙ @�	 , ±��� + ±���E . 
 

The possible values of the coordinates ±� and ±� are obtained from the condition (C8.6) 

expressed by the relation: [©	 , �] ∙ [�	  , �] ∙ [©	 , �] = [�	  , � + ��], which we modify for 

this particular case: 
 [�	 , �] ∙ [�	 , ±��� + ±���] ∙ [�	 , �]   =   [�	 , ±��� + ±��� +  ��] . 
 

This equation implies constraints on the values of ±�  (→ Appendix D16): 

 ±� = ±� =  0, or   ±� = ±� = 1/2 ,   �    � = � , or   � = (�� + ��)/�.      (C8.11) 

 

Thus we get two mutually distinct plane groups, in the first case the group 
 

p4mm   :    ��� =   �¼ ∙ @4E ∙ 7�	 , �:, 
 

in the second case, the group 
 

p4gm    :    ��� =   �¼ ∙ @4E ∙ 7�	 , �:, 
 

or after decomposition into subclasses: 

 



98 

 

 

p4mm  :      ��� � �¼ � ��	� ∙ �¼ � ��	�� ∙ �¼ � ��	�� ∙ �¼ � ��	 # , �] ∙ �¼ +  
       +[�	 µ  , �] ∙ �¼ + [�	 #µ  , �] ∙ �¼ + [�	 µ# , �] ∙ �¼                       (C8.12) 

 

p4gm  :       ��� = �¼ + [�	] ∙ �¼ + [�	�] ∙ �¼ + [�	�] ∙ �¼ +  [�	 ³ , �] ∙ �¼ + 
 +[�	 ´ , �] ∙ �¼ + [�	 ³´ , �] ∙ �¼ + [�	 ´³ , �] ∙ �¼                         (C8.13) 

 

We will describe these two groups in more detail, because the brief method 

given does not point to important details. The 4mm group has eight elements, and in 

addition to rotations, it also contains reflection in lines parallel to the sides (mx , my) 

and diagonals (mxy , myx) of the unit cell, so that a more detailed description of the 

plane group p4mm takes the form 
 �4!!:           ��� =   �¼ ∙ 78, 4, 4�, 4�, !³, !´, !³´, !´³:, 

 

while its decomposition into cosets has already been given above.   

 

As in the case of group ��9, it is appropriate to consider all symmetry elements 

distributed in the unit cell. The distribution of the rotation axes is the same as for group ��9, but in this case the distribution of the reflection lines must also be considered. 

According to the results presented in C7.5, the reflection lines parallel to the basis 

vector �� incident to the unit cell are represented by two operators (→ relation C8.7): 
 [�	 # , �] ≡ 
�	 � , �� ≡ 
r̿ − 2 ���� , �� = [ ���� −  ���� , �],   

 

 
�	 � , ��� ≡ 
r̿ − 2 ���� , ��� = [ ���� −  ���� , ��], 
 

and reflections in lines parallel to vector �� by two other operators 
 [�	 µ  , �] ≡ 
�	 � , �� ≡ 
r̿ − 2 ���� , �� = [− ���� +  ���� , �], 

     

    
�	 � , ��� ≡ 
r̿ − 2 ���� , �� � = [− ���� +  ���� ,  �� ]. 
 

The operators [�	 � , �] and [�	 � , ��] differ from each other only in their translational 

part, namely the elements of the translation group, so the corresponding operations 

belong to one coset of the plane group. The same is true for the operations 

represented by the operators [�	 � , �] and [�	 � , ��].  

The reflection operator in the line identical to the diagonal xy of the unit cell 

(passing through the origin of the reference frame) has the form (→ end of Section 

C4.1.3): 
 
�	 #µ  , �� ≡ 
�	 �� , �� = [ ���� +  ����, �] ,                       (C8.14) 
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and the reflection operator in a line perpendicular to it (and also passing through the 

origin of the reference frame): 
 
�	 µ# , �� ≡ 
�	 �� , �� = [− ���� −  ����, �]. 
 

The reflection operators [�	 # , �], [�	 µ  , �], 
�	 #µ  , �� and 
�	 µ# , ��  act in the 

decomposition of the plane group ��� as representatives of its cosets. However, glide 

lines are a natural part of the symmetry of the square lattice (→ the figure at the end 

of this part, or the figure in the appendices), which makes it appear as if the 

decomposition (C8.12) of the plane group ��� is incomplete. However, operators 

representing glide reflections can be obtained from operators of ordinary reflections 

by adding certain lattice translations, i.e., certain elements of the translation group. In 

terms of operators, the addition of a translation can be realized as the product of the 

corresponding operator with the translation operator [r̿ , ��],, where �� is an element 

of the translation group. The operators representing the glide reflections in lines 

parallel to the xy diagonal (their labels are in Appendices D21 and D22) are obtained 

by the following products: 

 M��Ê ∶    [ ���� +  ���� , �] ∙ [r̿ , �� ] = [ ���� +  ���� , �� ] , 
 M��½ ∶    [ ���� +  ���� , �] ∙ [r̿ , �� ] = [ ���� +  ���� , �� ] . 

 

The operators representing the glide reflections in lines parallel to the diagonal yx have 

the form: 

 

M21b  :     [− ���� −  ���� , �] ∙ [r̿ , �� ] = [− ���� −  ���� , �� ] , 
 

M21 c :     [− ���� −  ���� , �] ∙ [r̿ , �� ] = [− ���� −  ���� , �� ] . 

 

A more detailed discussion of these operators is given in Appendices D21 and 

D22. Appendix D21 also gives examples showing that glide reflections is equivalent to 

a sequential application of ordinary reflection and rotation about one of the axes of 

symmetry.   The above fact implies that the decomposition (C8.12) of the p4mm group 

is complete.   

 

The next plane group, denoted p4gm, differs from the previous one by 

assuming the presence of glide reflections in lines parallel to both the sides and the 

diagonals of the unit cell.  Thus, in the reflection operators of the decomposition 

(C8.13) of a plane group, the non-lattice translation � = ��/� + ��/� (→ relation 
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C8.11) comes into play, so that the decomposition of the group into cosets takes the 

form: �4Q!:           ��� � �¼ � ��	� ∙ �¼ � ��	�� ∙ �¼ � ��	�� ∙ �¼ � 
 ���	 � , I��� � I���� ∙ �¼ � ��	 � , I��� � I���� ∙ �¼ � 
 ���	 �� , I��� � I���� ∙ �¼ � ��	 �� , I��� � I���� ∙ �¼ . 

 

 

The data in Appendices D23 and D24 show that ��	 � , ��/2 � ��/2� operator 

represents a reflection with glide ��/2  in a line parallel to the vector �� and shifted 

to position  ��/4, the operator ��	 � , ��/2 � ��/2� reflection with glide ��/2 in a line 

parallel to the vector �� and shifted by ��/4, and then a third operator ��	 �� , ��/2 ���/2� reflection with glide ��/2 � ��/2  in a line identical to diagonal xy of the unit 

cell. The fourth operator ��	 �� , ��/2 � ��/2� represents an ordinary reflection in a 

line parallel to the diagonal yx , while the operator ��	 �� , ��/2 � ��/2� , i.e. the 

operator with the translation part changed by the lattice vector ���, represents a glide 

reflection in a line identical to the diagonal yx .   

In this group, there are three other reflections without glide within the unit  cell 

that are not visibly represented in its decomposition (C8.13), but, as in the p4mm 

group, their operators are formed by adding a lattice translation to the operators 

representing the glide reflection. Details are given in Appendix D24; a list of the 

operators of the p4gm group belonging to the unit cell is given in Appendix D23.  
 

The next table includes three square lattice groups, p4, p4mm and p4gm. 
 

Rovinné grupy 

číslo 1 2 3 4 5 6 7 8 9 
značka p1 p2 pm pg cm p2mm p2mg p2gg c2mm 

 

číslo 10 11 12 13 14 15 16 17  
značka p4 p4mm p4gm       
          

 

   p4   p4gm p4mm 
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C8.4 Hexagonal system 

 

In the hexagonal system, only the primitive lattice described by the primitive 

translation group �¼ , but four point groups apply: 3, 3m, 6 and 6mm, the last one being 

holohedral.  The holohedral group includes the multiplicities of the 60° rotation, 

denoted by the symbols 6, 6�, 6�, 6A, 6B, plus the set of reflections in the six lines, 

which are denoted by the symbols !9 , !�9 , !C9 , !D9 , !��9, !�B9; the indices 

express the angle that these lines take with the basis vector ��.  

The unit cell in the hexagonal system is by default determined by the vectors  �� , �� , which have the same length and conventionally take the angle 120°.  Such a 

unit cell is primitive. An alternative is the centred orthohexagonal cell introduced in 

C6.2. Some of its properties, including the shape of the rotation and reflection 

operators, are described in Appendix D26, not included in the main text. 
 

The point group 3 in combination with the translation group �¼ gives rise to the 

planar group p3 : 
 �3:          ���  =  �¼ ∙ @3E ≡ �¼ ∙ @e, 3, 3�E, 
 

and after decomposition into cosets: 
 ���  =  �¼ + �¼ ∙ 
3�, �� + �¼ ∙ 
3��, ��. 
 

The tensor representing the 120° rotation , i.e. generating element of the cyclic group 

{3}, written using the basis vectors �� , �� , has the form according to Table TC2b: J	 = ���� − ���� − ���� . 
 

There are 3 threefold axes per unit cell, with localizations (0, 0), (1 3⁄ ,2 3⁄ )  and  (2 3⁄ , 1 3⁄ )  .  
The operators representing the respective rotations have the form  
 
J	, 0�,  
J	, �� + ���,  resp. 
J	, ��� , 
 

and differ only in the translational part by different lattice vectors, so that the 

corresponding elements of the plane group belong to one coset. The operators 

representing rotations by 240° about the axes localized at these positions have an 

analogous shape. 
 

The point group 3m combined with the translation group �¼ gives rise to two 

plane groups, denoted by the symbols p3m1 and p31m, which differ from each other 

by the orientations of the reflection lines with respect to the basis vector  ��.   Both 
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groups are formed by the direct product    � =  �¼ ∙ @3!E  , but they differ in the detail 

of the elements of the point group:  

 �3!1 ∶      ��A = �¼ ∙ @e, 3, 3�, !�9, !D9, !�B9E 

 �31! ∶      ��B = �¼ ∙ @e, 3, 3�, !9, !C9, !��9E. 
 

 

The notation of these groups after decomposition into cosets:  
 ��A  = �¼ + �¼ ∙ 
3�, �� + �¼ ∙ 
3��, �� + �¼ ∙ 
M	 �9, �� + �¼ ∙ 
M	 D9, �� + �¼ ∙ 
M	 �B9, �� , 
 ��B  = �¼ + �¼ ∙ 
3�, �� + �¼ ∙ 
3��, �� + �¼ ∙ 
M	 9, �� + �¼ ∙ 
M	 C9, �� + �¼ ∙ 
M	 ��9, �� . 
 

Glide  lines also occur in both groups (→ images at the end of this article), with glide 

reflections belonging to the same coset as reflections in a line parallel to these glide  

lines. Appendix D27 gives a more detailed description of reflections in the p31m group, 

Appendix D28 covers reflections in the p3m1 group. 
 

The point group 6 combined with the translation group �¼ produces a plane 

group with ordinal number 16, denoted by the symbol p6:  
 �6:          ��C  =  �¼ ∙ @6E ≡  �¼ ∙ @e, 6, 6�, 6�, 6A, 6BE , 

 

with a breakdown of the cosets: 
 ��C  = �¼ + �¼ ∙ 
6�, �� + �¼ ∙ 
6��, �� + �¼ ∙ 
6��, �� + �¼ ∙ 
6�A, �� + �¼ ∙ 
6�B, �� . 
 

In this plane group, there are no reflections, but for the unit cell, in addition to one 

hexagonal axis with localization (0, 0),   there are 2 threefold axes with localizations (1 3⁄ , 2 3⁄ ) and (2 3⁄ , 1 3⁄ ) , and three twofold axes with localizations (1 2⁄ , 0),(0, 1 2⁄ ) - (1 2⁄ , 1 2⁄ ). The operators of the threefold axes have the same form as for 

the group p3, i.e. 
 
J	, �� + ���,  resp. 
J	, ��� ,  
 

differ from each other only by lattice translations, so that the corresponding 

operations belong to one coset of the plane group p6.  
 

The twofold axis operators have the same form as in the group p2, i.e.: 
 
�	, ���, 
�	, ���  a 
�	, �� + ���, 
 

and the same is true for them as for operators related to threefold axes of symmetry. 
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The point group 6mm combined with the translation group �¼ produces a plane 

group with the sequence number 17, denoted by the symbol p6mm; it is the last of the 

set of plane groups. 
 

It is written as a direct product: 
 ��Ç �  �¼ ∙ @6E ∙ @!E , 

 

The tensor representing the 60° rotation, i.e. generating element of the cyclic 

group {6}, written using the basis vectors �� , ��, has the form according to Table 

TB2b: �	 = ���� + ���� − ���� 
 

and the operator of the corresponding element of the plane group (with zero 

translation): 
�	, ��. When we choose the generating element of the point group {m} to 

be a mirror in the line parallel to the vector ��, the tensor of this operation, denoted 

by the symbol �	 9, has the form (→ Appendix D25) 
 �	 9 = ���� − ���� − ���� 
 

and the corresponding operator of the plane group element 
�	 9, ��. Appendix D25 

also lists the operators of the other rotations and reflections applied in the p6mm 

group. 

 When we want to include glide lines in the considerations, we write the 

reflection operator in the form 
�	 9, ��, where the translation t must satisfy condition 

(C8.3): 
�	, �� ∙ 
�	 9, �� ∙ 
�	, �� = 
�	 9, � + �¯ �, 
 

where �¯ is a lattice vector. According to the result obtained in Appendix D17, within 

the unit cell, only the translation � = � satisfies this condition. This means that despite 

the presence of glide reflections, the representatives of all cosets of this plane group 

can be ordinary reflections, i.e., reflection operators without a translation term: 
 ��Ç  = �¼ + �¼ ∙ 
6�, �� + �¼ ∙ 
6��, �� + �¼ ∙ 
6��, �� + �¼ ∙ 
6�A, �� + �¼ ∙ 
6�B, �� + 

 +�¼ ∙ 
M	 9, �� + �¼ ∙ 
M	 �9, �� + �¼ ∙ 
M	 C9, �� + �¼ ∙ 
M	 D9, �� + 
 +�¼ ∙ 
M	 ��9, �� + �¼ ∙ 
M	 �B9, �� . 

 

Note that the operator 
6��, �� is identical to the operator 
3�, ��, and the 

operator 
6��, �� to the operator 
2�, ��, and that the threefold and twofold axes of 
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symmetry are also distributed in the hexagonal unit cell, as mentioned above for the 

group p6. 

Adding translation group elements to the translation members of the reflection 

operators produces operators representing either a combination of reflection with 

lattice translation or glide reflections. Due to the circumstance that the set of 

reflections of the group p6mm coincides with the sum of the sets of reflections in the 

groups p31m and p3m1, it is not necessary to give further information about them. 

However, some details are given in Appendices D27 and D28, which refer to groups 

p31m and p3m1.   

There are 5 planar groups included in the hexagonal system: 
 

p3 ���   �   �¼ ∙ @3E   
p3m1 ��A � �¼ ∙ @3E ∙ @!�9E 

p31m ��B   �   �¼ ∙ @3E ∙ @!9E 

p6 ��C � �¼ ∙ @6E   
p6mm ��Ç � �¼ ∙ @6E ∙ @!E 

 

 

 

The hexagonal system has been used to exhaust the last types of symmetries of planar 

periodic structures and the corresponding plane groups have been determined. The 

following table lists the symbols of all 17 planar groups. 

 

    p3    p3m1  p31m 

  p6   p6mm 
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Plane groups 

number 1 2 3 4 5 6 7 8 9 
symbol p1 p2 pm pg cm p2mm p2mg p2gg c2mm 

 

number 10 11 12 13 14 15 16 17  
symbol p4m p4mm p4gm p3 p3m1 p31m p6 p6mm  

 
 

An overview of all the plane groups with their assignment to crystal systems is 

given in Table TA3 in Section A and repeated in the tabular section.  In the figure 

section, the shape and distribution of structural motifs is indicated for each plane 

group - in addition to the shape of the unit cell. In the figure section you will also find 

a schematic representation of the wallpaper patterns, with the symmetry belonging to 

the corresponding plane group. Their author is Edmund Dobročka, the creator of the 

program for drawing them [24].   
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C9    Black-white groups 

 

In addition to the spatial coordinates of the atom expressing its position in the 

unit cell, another parameter was considered that could characterize some of its 

physical or chemical properties and take two or more values (e.g., the direction of the 

magnetic moment). A parameter with two values was already the subject of 

consideration in 1929 by the German mathematician Heinrich Heesch [25], who in his 

doctoral thesis gave the name black–white to the respective symmetry groups. 

The consistent derivation of 58 types of black–white point groups (three-

dimensional) is associated with the 1951 work of the Russian crystallographer A. V. 

Shubnikov [26]. Shubnikov began to use the term anti-symmetry, which has its origin 

in the opposition of states corresponding to two possible values of the anti-symmetry 

parameter. For example, in antiferromagnetics there are two opposite orientations of 

the magnetic moments of the atoms, which contributed to the use of the threefold 

naming of these groups - the black–white, magnetic, and Shubnikov groups. The 

increase in the number of parameters characterizing the atom in the unit cell results 

in an increase in the number of symmetry types, for example, for crystal point groups 

from 32 to 58. Black–white groups can be applied, for example, to characterize the 

symmetry of printed fabrics or wallpapers with periodic alternation of two colours in 

a structural motif. 

A. V. Shubnikov together with N. V. Belov in 1964 published a book entitled 

Colored symmetry [27], in which they considered the case of several possible values 

of another parameter of the atom, and under the influence of the name black- white 

groups, the name colour groups was coined.  These, however, will not be the subject 

of this text, as it is too difficult a topic in scope. To describe the effect of increasing the 

number of parameters of an atom on the number of types of symmetry, the example 

of black-white groups will suffice. This topic is also dealt with, for example, in the book 

by A. V. Shubnikov, V. A. Koptsik:  Symmetry in Science and Art [28]. 
 

The principle of the construction of black-white groups in the plane will be 

illustrated by the example of a structural motif whose two possible colours (black –

white) alternately change after the application of a certain symmetry operation, such 

as translation. When a structural motif is translated from a certain position by a 

symmetry operation to another position (equivalent in terms of spatial symmetry), but 

in which it should have the opposite colour, the complete identification of the 

structure is only achieved when the colour of the translated structural motif changes. 
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From a mathematical point of view, the colour transformation can be expressed 

symbolically by the number –1, understood as a colour transformation operator 

(colour inversion operator, anti-symmetry operator), which is added to the operator 

representing the corresponding spatial operation (rotation, reflection, or translation). 

However, another symmetry operation can be used to bring the structural motif to a 

position in which the same colour is required; colour preservation can be expressed by 

the application of the operator represented by the number +1.  A pair of numbers 

(operators) –1, +1, in terms of the binary multiplication operation forms a group, in 

this case called the group of inversion  and denoted by the symbol Ë ≡ @1, −1E, or by 

Shubnikov Ë ≡ @1, 1UE. The comma over the symbol of the symmetry operation was 

also used by Shubnikov for other spatial operations associated with the transformation 

of colour, or more generally – with the change of the value of the anti-symmetry 

parameter.  For example, the rotation by 90° about the fourfold axis of symmetry 

associated with the change of colour was denoted by the symbol 4U. 
 

Note We will use an asterisk instead of a comma in this text: 4U → 4∗. 
 

It should be noted that in structures in which there are two alternating colours, only 

some symmetry operations are combined with a colour change, so they form only part 

of the corresponding set of symmetry operations – each black-white symmetry group 

contains both "with asterisk" and "without asterisk" operations. 

 The black-white groups (we denote them by M) related to the group G of spatial 

transformations are formed on the basis of its subgroup H with index 2 (H has half of 

the elements of G). The elements of subgroup H are space transformations (rotations, 

reflections, translations) without combining with a colour change, while all other 

elements of group G, i.e., the elements of the coset � − Í they are written in the 

symbolic form (� − Í)1∗ with a colour change. The notation of the black-white group 

M thus takes the form:  
 M = Í + (� − Í)1∗ 

 

This construction of black-white groups applies directly to both point and translation 

groups, but for space (and planar) groups, as discussed below, there are two types of 

black-white groups.  
 

 To illustrate the properties of black-white point groups, the following figure will 

serve. 
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The point group G of the left object contains the rotations by 0°, 120° and 240° 

(symbols 8, 3, 3�,) associated with the threefold axis of symmetry perpendicular to the 

plane of the triangle and passing through its centre, and furthermore the reflections 

with labels !9, !C9 and !��9 , in the three planes perpendicular to the plane of the 

triangle, which make angles 60° to each other.  In each of these transformations, the 

object is identified with itself. Thus, the one-colour point group G contains the 

following elements: 
 � ≡ @8, 3, 3�, !9 , !C9 , !��9 E. 
 

The object on the right side of the figure identifies with itself after rotations by 0°, 120° 

and 240°, and this set of symmetry operations - without colour change - with the labels 8, 3, 3�, forms a subgroup with index 2 of the group G. However, after reflections, the 

object only reaches the congruent position after the black and white colours have been 

interchanged.  Therefore, the reflection must be combined with the colour inversion, 

represented by an asterisk.  The black-white point group M then has the following 

elements: 
 M ≡ @8, 3, 3�,  !9∗  ,   !C9∗  ,   !��9∗  E. 
 

The symmetry of the left object in this view represents the symmetry of a monochrome 

wallpaper, the symmetry of the right object, a two-colour one.  
 

  Based on such considerations, we show how point, translation, and even plane 

black- white symmetry groups of planar periodic structures are formed. 

 

Black–white point groups 

 

There are 10 types of point groups in planar two-dimensionally periodic 

singlechrome structures, which are listed in both Tables TA2 and TA3 and illustrated in 

the figure. These are the groups that have been denoted in the previous text by the 

symbols  
 

1, 2, m, 2mm, 3, 3m, 4, 4mm, 6, 6mm . 

Fig. C9.1 
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The following table lists the elements of these groups. 

 

 Table C9.1 

 Symbols Elements of groups 

1 1 {e} 

2 2 {e, 2} 

3 m {e, !} 

4 2mm {e, 2, !# , !µ} 

5 3 { 8, 3, 3�} 

6 3m @ 8, 3,  3�, !9, !C9, !��9 E 

7 4 { 8, 4, 4�, 4�} 

8 4mm � 8, 4, 4�, 4�, !# , !µ , !#µ  , !µ#� 

9 6 @8, 6,  6�, 6�, 6A, 6B, E 

10 6mm @8, 6,  6�, 6�, 6A, 6B, !9, !�9, !C9, !D9, !��9, !�B9E 

 

We will create black-white groups by finding subgroups with index 2 in 

each of the given point groups.  The other elements of the group, forming a coset 

of the group, will be associated with a colour change, so we will add the 

appropriate asterisk to them.   

 

The point group denoted by the symbol 1 has only one element, the identity, so 

it has no subgroup.  

 

Point group 2 has two elements, with the identity - the element marked e being 

its only subgroup with index 2. So the corresponding black-white group has the 

following composition:    @8, 2∗E . 
 

The point group m also has only two elements, identity and reflection, so the 

corresponding black-white group consists of the elements @8, !∗E . 
 

There are two subgroups of index 2, @8, 2E and @8, !#E , (respectively 78, !µ:) in 

the 2mm point group, so that two black-white groups can be formed:   78, 2, !#∗  , !µ∗ : and 78, !# , 2∗ , !µ∗ :.  The group 78, !µ , 2∗ , !#∗ : is equivalent to the 

latter;  it is just a change of coordinate axis labels, so it does not represent a new 

type of symmetry.   
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Point group 3 has an odd number of elements, so it cannot contain a subgroup 

with index 2. 

 

In the point group 3m there is only one suitable subgroup, the cyclic group of 

rotations @8, 3, 3�E, so the corresponding black-white group consists of elements:  @8, 3, 3�, !9∗  , !C9∗ , !��9∗ E 

 

Point group 4 has a single subgroup with index 2, namely @8, 4�E, so the 

corresponding black-white group has the composition:  @8, 4�, 4∗, 4�∗E. 
 

Three subgroups with index 2 are present in the 4mm point group, and thus the 

same number of black-white groups: � 8, 4, 4�, 4�, !#∗ , !µ∗  , !#µ∗ , !µ#∗ �,    � 8, 4�,!# , !µ, 4∗, 4�∗, !#µ∗ , !µ#∗ � ,  � 8, 4�, !#µ  , !µ# , 4∗, 4�∗, !# ∗ , !µ∗ � 

 

The point group 6 has a single subgroup with index 2, the group @8, 6�, 6AE, so 

there is a single black-white group associated with it: @8, 6�, 6A, 6∗, 6�∗,   6B∗E. 

 

There are three suitable subgroups in the 6mm group, so there are also three 

black-white groups: 

 @8, 6,  6�, 6�, 6A, 6B, !9∗ , !�9∗ , !C9∗ , !D9∗ , !��9∗ , !�B9∗ E, @8,  6�, 6A, !9, !C9, !��9,  6∗, 6�∗, 6B∗, !�9∗ , !D9∗ , !�B9∗ E, @8,  6�, 6A, !�9, !D9, !�B9,  6∗, 6�∗, 6B∗, !9∗ , !C9∗ , !��9∗ E. 
 

On the next page is a table of black-white groups, followed by a graphical 

representation of them. 
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  Table C9.2 

Group 

symbol 

Group 

number 
Black-white point groups 

1  No subgroup 

2 1 �e, 2∗�                                    

m 2 @8, !∗E                                    
2mm 

3 

4 

78, 2, !#∗  , !µ∗ : ,  

 78, !# , 2∗ , !µ∗ : 

3  No subgroup with index 2 

3m 5 @8, 3, 3�,   !9∗  , !C9∗ , !��9∗ E 

4 6 @8, 4�, 4∗, 4�∗E 

4mm 

7 

8 

9 

� 8, 4, 4�, 4�,  !#∗ ,  !µ∗  , !#µ∗ , !µ#∗U �   

� 8, 4�, !# , !µ ,   4∗,  4�∗, !#µ ∗ , !µ#∗ �   

� 8, 4�, !#µ  , !µ# ,   4∗,  4�∗, !# ∗ , !µ∗ � 

6 10 @8, 6�, 6A, 6∗, 6�∗, 6B∗E 

6mm 

11 

12 

13 

@8, 6,  6�, 6�, 6A, 6B, !9∗ , !�9∗ , !C9∗ , !D9∗ , !��9∗ , !�B9∗ E @8,  6�, 6A, !9, !C9, !��9, 6∗, 6�∗, 6B∗,   !�9∗ , !D9∗ , !�B9∗ E @8,  6�, 6A, !�9, !D9, !�B9,  6∗, 6�∗, 6B∗, !9∗ , !C9∗ , !��9∗ E. 
 

 

Fig. C9.2 

 

 

12 11 13 

7 6 10 9 8 

1 2 3 4 5 
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Translational black–white groups 

They are constructed in a similar way to the black–white point groups.  That is, 

a subgroup with index 2 is selected from the translation group T whose elements will 

not be associated with a colour change, all other translations - i.e. not belonging to this 

subgroup - are given a colour change operator. Due to the infinite number of elements 

of the translation group, this selection is not unambiguous, but it must preserve the 

two-dimensional periodicity of the structure; the black–white motifs must alternate 

regularly in both fundamental directions. On the left side of Figure C9.3 is a single-

colour structure with a oblique lattice and a simple structural motif, a black ring at the 

beginning of the unit cell. One unit cell is highlighted in grey. On the right side of the 

image is a black–white structure in which the colours of the structural motif alternate. 

It is obtained so that after translation in the direction of the basis vector by one of its 

length, the colour of the structure motif changes. It can be seen from the figure that 

the unit cell, coloured grey, representing the smallest regularly repeating object, is 

then larger. While the original single-colour cell had one structural motif, the black and 

white unit cell has two black and two white motifs. 

The regular alternation of colour imposes conditions on the coordinates ��  of 

the lattice vectors �� � ���� � ���� determining the position of the black–white 

structural motifs, respectively. Such a lattice vector simultaneously represents a 

translation t from the origin of the coordinate system to the corresponding lattice 

point. According to the right part of Figure C9.3, the sum of the coordinates 

corresponding to the black motifs is an even number, for the white ones an odd 

number. This distinguishes t translations from �∗.  translations. Similarly, the asterisk 

distinguishes the translation group T of a single-colour structure from the translation 

group �∗, containing half of the translations combined with the colour change. For 

example, the elements of group T are translations 0, ��, 2��, 3��, ��, �� � ��, …  and 

the elements of group �∗ are translations ��∗  , ��∗ , 3��∗  , ….. 

The situation is the same in the rectangular, square and hexagonal lattices, 

where only primitive unit cells are considered. However, the situation looks different 

in an orthogonal lattice with a centred unit cell, where two structural motifs – one in 

the corner and the other in the centre of the unit cell – are attributed to this cell. In 

Fig. C9.3 
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the construction of black-white lattices, two possibilities come into play there. The first 

option is to proceed similarly to the primitive cells, i.e., the colour of both motifs will 

change after translation by the length of the basis vector; the second option is to 

change the colour after translation by %1 2⁄ )%�� � ��), so that the motif in the corner 

of the cell will be black, for example, and the motif in the centre of the cell will be 

white. These two options are shown in the following figure, along with the original 

single-colour structure. 

Thus, in planar periodic structures, there are not many possibilities to construct black-

white translation groups. The two types exist only in the orthogonal centred lattice, so 

there is not even a need to summarize them in the resulting table. We do not consider 

colour alternation in units larger than the unit cell. 

 

 

Plane black–white groups 

 

Elements of the plane symmetry groups include translations, forming the 

translation group, as well as point group operations, i.e. elements of the point group. 

In doing so, the set of translations forms an invariant subgroup T of the plane group.  

Two types of black-white planar groups are distinguished. The groups of the first kind 

are those whose translation subgroup T does not contain colour-changing translations.  

The colour change is associated only with operations belonging to the point group. The 

unit cell of such groups is of the same size as that of the corresponding single-colour 

group. In plane groups of the second kind, the translation group �∗ contains half of the 

translations combined with colour change; the unit cell is then larger than the 

corresponding single-colour cell. In these groups there may be cases where the colour 

change involves only translations, or both translations and point operations.   

 

We will not go into the construction of all black-white plane groups, we will just 

give some simpler examples to give an indication of how this is done.  

 

Fig. C9.4 
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Figure C9.5 shows the distribution of the structural motifs (triangles) in the 

plane group p1 (left part of the figure) and the black-white group derived from it. The 

group p1 does not contain point symmetry operations, therefore the colour change is 

only related to translations. After each translation by the basis vector, the colour of 

the structural motif changes. The grey colour indicates the unit cell of both single-

colour and black-white structures. It can be clearly seen that in the black-white 

structure, the identity period in both directions of the lattice is twice as large as in the 

single-colour one.   

 

 

The plane group p2 serves as another example. Its point group {e,2} contains 

only two elements, the identity and the 180° rotation, and so does the corresponding 

black-white point group, the two elements @8, 2∗E.  Therefore, there is only one black-

white plane group of the first kind. In Figure C9.6, the group p2 and its black-white 

point group of the first kind are shown side by side. The sizes of their unit cells are the 

�, @8E �∗, @8EFig. C9.5 

Fig. C9.6 �, @8, 2E �, @8, 2∗E 

�∗, @8, 2E �∗, @8, 2∗E Fig. C9.7 
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same. Two black-white groups of the second kind are shown in Figure C9.7. Since these 

are groups in which the colour change is also associated with translations, their unit 

cells are larger.  In the left part, the colour change is only associated with translation, 

in the right part, both translation and rotation.     
 

 The situation is similar for the plane group pm, whose point group contains only 

two elements {e,m}, so there is only one pointwise black-white group @8, !∗E.  
 

For the planar group pg, a glide line is typical. A glide reflection is an element of 

symmetry that belongs neither to the point group nor to the translation group, but 

only to the plane group, because it is a combination of point and translation 

operations. Having stated this, it will be obvious that the symbol @8, QE that we will use 

does not represent a point group. It is a representation of a coset in the plane group 

pg with respect to the invariant subgroup of translations. The structural motif in the 

following figures represents two triangles, the first one being identified with the 

second one after being reflected in the line of the basis vector (vertical in the figure) 

and shifted by half its length. After this introduction, we can draw four more pictures: 

a picture of a single-coloured group, one group of the first kind (Fig. C9.8), and two 

groups of the second kind with a larger unit cell (Fig. C9.9). 

 

The cm-group, unlike the previous cases, has a centred lattice, which means 

that a glide line occurs in it regardless of the symmetry of the structural motif. The 

corresponding point group also has only two elements @8, !E in this case, but the 

translation group �Î also contains translations with half-length basis vectors.  As 

already mentioned in the section on translation black-white groups, when the colour 

�, @8, QE �, @8, Q∗E Fig. C9.8 

�∗, @8, QE �∗, @8, Q∗E Fig. C9.9 
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changes after the translation %1 2⁄ )%-� � -�), the size of the unit cell does not change 

when the symmetry is extended to black-white. (Fig. 9.10).   

 

 

But there is another type of black-white symmetry in plane structures with a 

centred lattice. when the colour changes after translation by the full length of the basis 

vector, so that when it is a translation group �∗.  As can be seen from Figure C9.11, the 

unit cell is four times the size. It can be noticed in the figures that the position of the 

glide lines, which are a natural part of the centred lattices, is preserved, while in some 

cases there is a change  Q → Q∗. 
 

 

 

Fig. C9.10 

�Î , @8, !E �Î , @8, !∗E 

�Î∗, @8, !E �Î∗, @8, !∗E 

�∗, @8, !E Fig. C9.11 �∗, @8, !∗E 
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The construction of two-colour, i.e., black-white groups (point, translation, and 

space), is based on the decomposition of the single-colour group into a subgroup with 

index 2 and the corresponding coset; the anti-symmetry parameter s then takes two 

values.  All elements of the coset are combined with the anti-symmetry operation, i.e. 

with the second value of the parameter s . In the construction of multicolour groups, 

when the parameter s can take n values (n - "colours"), the decomposition of the 

single-colour group into an invariant subgroup with index n and the corresponding n - 

1 cosets is used.  The elements of the cosets are then successively combined with the 

operators representing the individual values of the parameter s  and thus other types 

of symmetry are generated.  However, in the case of plane point groups, the set of 

invariant subgroups with index greater than 2 is not large. 
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Appendices 

 

 
D1 Multiple operator application   

 

Ak   S� ∙  S�   =   
�	 �, �� � ∙ 
�	 �, �� � =  
�	 � ∙  �	 � ,   ��  ∙  �	 �  + �� � ,    tak 
 S ∙  S  =   
�	 , � � ∙ 
�	 , � � =  
�	 ∙ �	  ,   � ∙ �	 +  �� =  
�	 � ,   � ∙ �	 +  ��  , 
 S ∙  S ∙  S  =   
�	 � ,   � ∙  �	  +  �� ∙  
�	 , � �  =   
�	 � ∙  �	 ,   (� ∙  �	  +  �)  ∙  �	 +  � � = 

      =   
�	 � , � ∙  �	 �  +  � ∙  �	  +  � � =   
     =   
�	 �  , � ∙  � r̿  +  �	  +  �	 � ��  
   

 S�  =  
�	 �, � ∙  �r̿  + �	  +  �	 �  +  … + �	 p��
�� 

 
 

 

D2    Product of operators   S ∙ T� ∙  S�� 
 

This product of operators is expressed by (C2.3): 
 S� ∙ S�   =   
�	�, �� � ∙ 
�	 �, ��� =  
�	� ∙  �	 �,   �� ∙  �	 � +  ���       (a) 
 

Ak   S� =  S =  
�	 , � �   a   S� = T� = 
r̿, ��� ,   then  
 S ∙  T�  =   
�	 , � � ∙ 
r̿, ���  =   
�	 ∙  r̿ ,   � ∙ r̿ + �� �  =   
�	 , � + �� � .        (b) 
 

The inverse operation is expressed by writing (C2.6):  
 S�� �  
�	 ��, − � ∙  �	 ��� 
 

and its product with expression (b) based on (a) gives the result 
 S ∙ T� ∙  S�� =   
�	 , � + ��� ∙ 
�	 ��, − � ∙  �	 ��� = 

 = 
�	 ∙ �	 ��, É ∙ �	 �� +  �� ∙ �	 �� −  É ∙ �	 ��� = 
                  

   =   
r̿ , �� ∙  �	 ��� ,                                                       (c) 
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so that the result is an operator representing the translation by the rotated lattice 

vector. 

 
Applying this combined operator S ∙ T� ∙  S�� to the position vectors ��  and ��  

yields the vectors ��U  �  ��   �  �� ∙ �	 ��  ,   ��U  �  ��   �  �� ∙ �	 ��.  Their difference 

is equal to the difference of the original vectors, i.e.  
 ��U �  ��U   �  ��  �  ��  ,                              (d) 

 

which is a confirmation of the fact that the operation  S ∙ T� ∙  S�� represents a 

translation. Unlike translation, this result does not hold for rotation, as can be seen 

in the following figure.   

 

 

 

D3   Transformation tensor 

 

If the transformation tensor has the form  �	 � ���� � ����  , then the relations 

apply 

  �I ∙ �	 � �I ∙ %���� � ����) � %�I ∙ ��)�� � %�I ∙ ��)��            (a) 
 

By definition for reciprocal vectors   
 �Ï ∙ �Ð    �   Ñ�$   ,  resp.  �� ∙ �$   �   Ñ�$  , 
 

 i.e. if   i = j , then Ñ�$ � 1,   but if  & + ' ,  then Ñ�$ �  0 . 
 

Thus   �I ∙ ��  �   1 ,   but    �I ∙ �� �   0 , 
 

which, when substituted into relation (a), gives the result: 
 �� ∙ �	 � %�I ∙ ��)�� � %�I ∙ ��)�� � �� , 
 

which confirms that the tensor transforms the vector �� into the vector �� . 

 

r1,  r2 

r1', r2' 

r1 - r2  

r1' – r2'  translation rotation 

r1 

r2 



120 

 

D4  Properties of transformation tensor  

 

If the tensor �	  satisfies the conditions (C2.7), i.e.  
  �	 Ä  =  �	 �� , resp.   �	  =  �	 Ä�� , 
 

and we know that the definition of the conjugate tensor implies the equality 
   � ∙ �	 Ä = �	 ∙ �  , 
 

then we can the equation � ∙ �	 = �  from relation (C4.4) multiply by the conjugate 

tensor and make the adjustment 
 � ∙ �	 ∙ �	 Ä = � ∙ �	 Ä     ⇒   � ∙ r̿ = � ∙ �	 Ä     ⇒   � = � ∙ �	 Ä   ⇒    � = �	 ∙ � 
 

so � ∙ �	 = �	 ∙ � 
 

which means that the tensor, which leaves some points of the space in place during 

the transformation, is symmetric. 

 

 

 

D5  Transformation of vector components in reflection 

 

If the tensor mediating the symmetry operation has the form  �	 = rt − 2��, then 

the scalar product of the vector u   with this tensor gives the result 
 � ∙ �	 = � ∙ �r̿ − 2��� =  � ∙ r̿ − 2(� ∙ �)� = � − 2� = −�  . 
 

If we multiply the tensor  �	   by a scalar unit vector w , which is perpendicular to the 

vector u , the product with the identity tensor does not change it, and the scalar 

product  Ó ∙ � = �.  Therefore,  Ó ∙ �	 = Ó . 
That is, the vector  � = �� +  �Ó  is transformed as follows: 
 �U = � ∙ �	 = (�� +  �Ó) ∙ �r̿ − 2��� = (�� − 2��) + �Ó = −�� + �Ó 
 

so that the component perpendicular to the vector u does not change, the 

component parallel to it changes to the opposite. 
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D6   Calculation of scalar coefficients in transformation equations  

 

Taking the scalar product of the first of 

the equations (C4.9) with the vector ��, 

we get ;� ∙ �� � %��� � ���) ∙ �� � 
 � �%�� ∙ ��) � �%�� ∙ ��) � � . 

 

Similarly, we obtain the other scalar 

coefficients, so that: 
 � � ;� ∙ ��,    � � ;� ∙ ��,    V � ;� ∙ ��,   

 � �  ;� ∙ �� . 
 

In further modifications of these formulas, we use the relations between the 

magnitudes of the vectors: d� � -� ,   d� � -�, because the vectors b  are just the 

rotated vectors of � . From the definition of reciprocal vectors, the relations between 

the magnitudes of the direct and reciprocal vectors hold (see also the figure): 

%�� ∙ ��) � -�-� cos _π2 � α` � 1,    ⇒    -� � 1/%-� sin α) 

 %�� ∙ ��) � -�-� cos _π2 � α` � 1,    ⇒    -� � 1/%-� sin α) 

 

For the scalar p, after adding the results, we get 
 

� � ;� ∙ �� � d�-� cos _π2 � φ � α` � -� 1-� sin α  sin %α � φ) � sin %α � φ)sin α   . 
 

Similarly, we obtain relations for the other coefficients:  
 

� � -�-�
sin φsin α  ,       V � � -�-�

sin φsin α  , � � sin %α � φ)sin α   . 
 

 

D7  Vector coordinates of the tensor 

 

We multiply the equality %�� � ��) �� � %�� �  ��) �� � �2��   scalarly from the 

right-hand side by the vector ��: 
 %�� � ��)% �� ∙ ��) � %�� � ��)%�� ∙ ��) � �2�%� ∙ ��) 
 

 a 1 

 a 2 

 b 2 

 b 1 

 a 
1 

 a 
2 

 ϕ 

 α 
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By the definition of reciprocal vectors % �� ∙ ��) � 1  and  %�� ∙ ��) � 0, leaving only 

the difference of the vectors %�� � ��) on the left-hand side. On the right side, the 

result of the scalar product in parentheses is the scalar, so on the right side is the scalar 

multiple of the vector � . This means that the vectors � and %�� � ��) are parallel.  

By analogy, it can be shown that the vectors  %�� � ��), %�� � ��),  %�� � ��), are 

parallel to the unit vector �. 

 

D8  Reciprocal vectors  of orthogonal basis  

 

For a pair of basis vectors  ;� , ;� and their reciprocal pair ;� , ;�  the next relations 

are valid: 
 ;� ∙ ;� � 1            (a)    ;� ∙ ;� � 0            (b) 

 ;� ∙ ;� � 0  (c)    ;� ∙ ;� � 1  (d) 
 

If, by coincidence, the vectors ;� and ;� are parallel, one of them can be expressed as 

a scalar multiple of the other, e.g.,  ;� � � ;�,  and substituted into relation (c): ;� ∙ �;� �   0 , 
 

which implies that the vectors ;� and ;� are perpendicular to each other and form an 

orthogonal basis. Then the reciprocal lattice is also orthogonal, i.e. the vectors ;� and ;� are perpendicular to each other. 

 

D9  Property of the characteristic tensor 
 

Applying the characteristic tensor � ∙ @r̿   �  �	  �  �	 � � . . . � �	 ª��E to any transla-

tion  �  prescribes summation of the vectors   � � � ∙ r̿ ,     �� � � ∙ �	 ,       �� � � ∙ �	 �,  

etc. The first is the vector � itself, the second is rotated by the first application of the 

tensor  �	 ,  the third by two applications, etc.  The following figure shows two cases - 

when we substitute tensors J	 and �	 in place of  �	  . 

 

 t 

 t 1 = t · 3  t 2 = t · 32 

 t +  t 1  + t 2  =  0 

 t 

 t 1 = t · 4  

 t 2 = t · 42  

 t · 43  

 t + t 1 + t 2 + t 3 =  0 
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If we substitute the tensor �	 � �r̿ (→tab. TB2), for which the number m = 2, in 

place the tensor �	 , the sum of the terms that make up the characteristic tensor gives 

the result:  @r̿   +  �	 E = @r̿  − r̿ E = 0 . 

 

 

D10  Determinants of tensors – proper and improper operation  

 

Determinant of tensor �	 (→ tab. TC2) 
 �	 = − ���� cos 1sinα +  ���� -�-�

1sinα −  ���� -�-�
1sinα +  ���� cos 1sinα  

 

is calculated using its coordinates: 
 

ÕÕ − cos 1sinα -�-�
1sinα

− -�-�
1sinα cos 1sinα

ÕÕ = − cos� 1sin�α + 1sin�α = 1 − cos� 1sin�α = +1 . 
 

The determinant of the tensor of reflection �	  =  rt  −  2�� can be expressed only 

after its modification. Reflection occurs only in orthogonal lattices (→ article B4.1.2) 

in which the basis vectors �� and �� are perpendicular to each other. According to 

Appendix D14, the tensor of reflection in a line identical to the vector �� then takes 

the form:  
 �	 I = rt 	 −  2 ���� = ���� − ���� 
 

Therefore, the determinant of the tensor �	  is equal to 
 Ö�	 Ö = ×1 00 −1× = −1 . 
 

 

D11  Use of generating elements of the group 

 

For groups with one generating element, all its elements can be expressed as 

"powers" of this element. Such groups are cyclic groups, e.g. group 4 , which has four 

elements: � ≡ @8, 4, 4�, 4�E, between which the relations hold: 4 ∙ 4 = 4�,      4 ∙ 4 ∙ 4 = 4�,     4 ∙ 4 ∙ 4 ∙ 4 = 8 , 
 

so that all elements can be expressed as powers of element 4. The elements of the 

group can be represented by tensor operators between which the same relations hold. 
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As the simplest example of a group with two generating elements, consider the 

group �FF, which has four elements: �FF ≡ 78, 2, !# , !µ:, which will be 

represented by tensor operators. The group belongs to an rectangular system in which 

we choose the basis vectors such that the vector �� is parallel to the x-axis and the 

vector �� is parallel to the y-axis .  Between the basis vectors �� , �� and the reciprocal 

vectors �I , �� the relations 
 �� ∙ �� = 0 , �� ∙ �� = 0 ,       �� ∙  �� = 1 , �� ∙  �� = 1 . 
 

The tensors representing the elements of the �FF group have the shape (→ 

Table TC2b, → Appendix D14): 
 

identical operation              r̿  =  ����   +  ����  , 
 

rotation                                �	 ≡ − r̿  = − (����   +  ����), 
 

reflection in line x               �	 Ø ≡ �	 I = ���� − ���� , 
 

reflection in line y                �	 Ù ≡ �	 � = ���� − ���� . 
 

The generating elements can be either 2 and !# ,  or 2 and !µ. We choose the first 

option and compute products between tensors representing these elements: 
 �	 ∙ �	   =   (− r̿) ∙ (−r̿)  =   r̿ 
 

resulting in an identity tensor representing the neutral element of the group. 
 �	 ³ ∙ �	 ³ = (���� − ����) ∙ (���� − ����)  =  
  =   ��(�� ∙ ��) ��  −  ��(�� ∙  ��) ��   −  ��(�� ∙  ��) ��  +  ��(�� ∙  ��) ��  = 

 

 =   ���� +  ���� =  r̿  . 
 

The result is again the neutral element of the group. 
 �	 ³ ∙ �	  = (���� − ����) ∙ [−(���� + ����)] =  

        =   − [ ��(�� ∙ ��) ��  +   ��(�� ∙  ��) ��  −  ��(�� ∙  ��) �� −  ��(�� ∙  ��) ��]   = 

 

  =   − (���� − ����) =   −���� + ���� =   �	 µ   . 
 

The product  �	 ³ ∙ �	  results in the operator �	 µ representing the reflection in the line 

y . The product in reverse order will give the same result: �	  ∙ �	 ³ = �	 µ  . 
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This exhausted all products between the generating elements of the group, and 

thus obtained all elements of the group, represented by the operators r̿ , �	 , �	 ³ and �	 ´. The result is consistent with the multiplication table (→ TC5).  �	 ´ can also be used 

as the generating element, where.   �	 ´ ∙  �	  �   �	 ³ ; also in this case, swapping the 

order of the operators will give the same result. 

 

 

D12  Graphical representation of the application of two symmetry operations 

 

By reflecting point A in the x-axis, we get point X’. Rotating around the point O 

by 180°, point X’ is transformed into point X’’. This was a combination of two 

operations. We get the same result by applying a single operation - reflection in the y-

axis .   

 

 

 

 

 

 

 

 

Also from the figure it can be seen that reflection and 180° rotation commute. 

 

 

D13  Effect of reference frame displacement on the symmetry operator 

 

Let the rotation of the lattice 

point A about the point P to the point 

C be represented by the tensor �	  (→ 

figure). In general, point C need not be 

a lattice point, so an additional 

translation, which we denote by ��Û , is 

required to transform it to lattice point 

B . The additional translation ensures 

that the entire transformation is a 

symmetry operation. Starting from the 

labels in the figure, the next relationships apply  
 

+ = 
A‘‘ 

2 
A‘‘ 

my 

mx 

A‘

‘‘

A 

mx                         +                      2                     =              my                   

ro 

O 

B 

rB 

P 

rA 

pA 
tCB 

pB 

pC  

C A 
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Ü� �  ÜÝ ∙  �	        ÜÛ =  ÜÝ ∙  �	  +  ��Û  .                       (a) 
 

In general, the size of the translation ��Û need not exceed the dimensions of the unit 

cell, but the entire transformation remains a symmetry operation if an arbitrary lattice 

vector ��is added to it. Therefore, we write the translation of ��Û as the sum of the 

lattice translation of  �� and the non-lattice translation of t :  
 ��Û = �� +  � . 

 

The second of the relations (a) then takes the form 
 ÜÛ =  ÜÝ ∙  �	  +  �� +  �  .                                          (b) 
 

We express this operation with respect to the reference point O, using transformation 

relations (according to the figure) 
 ÜÝ = �Ý − �?                                                   (c) 

 ÜÛ = �Þ − �? ,                                                 (d) 

 

in which �?is the position vector of point P with respect to the new reference point O. 

Substituting transformations (c) and (d) into relation (b), we get 
 �Û − �? = (�Ý − �?) ∙  �	  +  �� + � 
 

and after modification 
 �Û = �? + �Ý ∙  �	 − �? ∙  �	 + �� + � ,  
or �Û = �Ý ∙ 
�	  ,   �? ∙ �r̿ − �	 � + �� + �� . 
 

The result shows that by changing the reference point, the shape of the operator 

changes. With respect to the point P, the operator has the form [�	 , �], but with respect 

to the point O for the same operation, it has the form 
 SÀ = 
�	 , �? ∙ �r̿ − �	 � + �� + �� .                                       (f) 

 

From relations (e) and (f), it follows that by changing the position of the origin of the 

reference frame, it is possible to make the translational part of the operator S zero, 

either the whole or just its non-lattice translation t. The whole translational part will 

be zero if the vector �? is chosen so that the condition 
 �? ∙ �r̿ − �	 � +  �� + � = � .                                       (g) 
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If we want only the non-lattice part  �  of the translation to be zero, we need to shift 

the origin of the reference frame by the vector �? , which must satisfy the condition 
 �? ∙ �r̿ − �	 � =  ��  . 
 

Note: The +AL and – AL vectors are equivalent in this respect because the integer 

coordinates of the AL vector can be both positive and negative numbers. 
 

That is, if we want the symmetry operator expressed in terms of the new position to 

have the form  S ≡  
�	 , ���,  then the position vector �? must satisfy the modified 

condition (g) and we can express the operator in the form: 
 S ≡  
�	 , �? ∙ �r̿ − �	 �� .                                              (h) 

 

 

D14  Tensor of reflection 

 

A) The form of tensor 

 

According to relation (C4.8), the tensor representing reflection in a straight line has 

the form  �	 = r̿ − 2�� , 
 

where � is the unit vector perpendicular to the reflection line. In an rectangular 

system, where the basis vectors �� and �� are perpendicular to each other, the 

magnitudes of the basis and reciprocal vectors are reciprocal (inverted).  If the vector �� lies in the reflection line, the vectors  �� and �� are perpendicular to it, they can 

be expressed as scalar multiples of the vector � :  �� = -�� , �� = (1 -�⁄ )�, so the 

dyad �� can also be written in the form ���� because: 
 ���� = (1 -�⁄ )�-�� = ��. 

 

Therefore, the tensor  �	   in this case can be expressed in the form 
 �	 � = r̿ − 2���� , 
 

where the index 1 denotes the fact that the reflection line has the direction of the 

vector �� . If the reflection is in a line parallel to the vector ��, the tensor has the form �	 � = r̿ − 2���� . 
 

The tensors of reflection in the hexagonal system have a different shape because the 

basis vectors �� and �� are not perpendicular to each other; they are given in 
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Appendix D25. However, in this system it is also possible to choose an orthogonal unit 

cell that is centred, with the basis vectors ;� and ;� perpendicular to each other (→ 

Section C6.2), so that the tensors then have the shape (→ Appendix D26): 
 �	 � � r̿ � 2;�;� ,  �	 � = r̿ − 2;�;� . 

 

B) Effect of reference frame origin displacement on the tensor shape 

 

        According to C7.4, the operator of reflection in a line parallel to the vector �� and 

shifted in the direction of the vector �� to a position with coordinate V� = 1/2, has 

the form (relation C7.7): 
r̿ − 2 ���� ,   ���. 
 

This tensor transforms, e.g., a lattice point with position vector � = �� + �� into a 

lattice point with position vector ��, which can be verified by the following calculation: (�� + ��) ∙ 
r̿ − 2 ���� , ��� = (�� + ��) ∙ r̿ − (�� + ��) ∙ 2���� + �� =  
 

 = �� + �� − 2�� ∙ ���� − 2�� ∙ ���� + �� = �� + �� − � − 2�� + �� = �� . 
 

Thus, it can be verified that this operator transforms a lattice point with position vector 

r = 0 into a lattice point with position vector �� and a point with position vector �� 

into a lattice point with position vector r = 0 . 

 

 

D15  Product of operators  [�	, �]  ∙  [�	 , �]  ∙ [�	, �] 

 

For the product of operators, the general relation (C2.3) holds: 
 S� ∙ S� = [�	�, ��] ∙ [�	 �, ��]  =  [�	� ∙ �	 � ,  �� ∙  �	 � + ��] . 

 

In this particular case, it is the product of the three operators [�	, �] ∙ [�	 , �] ∙ [�	, �] , 

which is to be equal to the operator   [�	  , � + ��] .                                                (a) 
 

In a structure with 2mm point symmetry, there are two orthogonal sets of reflection 

lines, so there are two operators of reflection �	 ³   and  �	 ´ . We will successively 

compute the product [�	, �] ∙ [�	 ß , �] ∙ [�	, �], using the multiplication table TC5 of the 

2mm group: [�	, �] ∙ [�	 Ø , �] = [� ∙ �	 Ø , �] = [�	 Ù , �] 
 [�	 Ù , �] ∙ [�	, �] = [�	 Ù ∙ �	 , � ∙  �	  +  �] = [�	 Ø , − �] ,                      (b) 
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because the operator � rotates each vector in the plane by 180°, so that the vector � 

transforms to the vector – � .   According to relation (a), this result should be equal to: 
 
�	 ³ , −�� = 
�	 Ø ,   � + ���. 
 

That is, it must hold   − � =  � + ��  ⇒     2� = −�� = ��U  , resp. 
 2±���  +  2±��� = ���� + ����  . 

 

Based on this result, the coordinates ±� and ±� can only take discrete values  ±� = 0,1/2 , 1, 3/2 , … ,  ±� = 0, 1/2 , 1, 3/2 , … ,of which only the first two are actual 

within the unit cell.  
 

In the case when � = 0, relations (b) imply: 
 [�	, �] ∙ [�	 Ø , �] ∙ [�	, �] = [�	 Ø , �]                                   (c) 

 

 

 

D16  Product of operators  [�	, �]  ∙  [�	 , �]  ∙ [�	, �] 

 

The translational part of the operator has to fulfil the condition  
 
�	 , �� ∙ 
�	  , ±��� + ±���� ∙ 
�	 , �� = 
�	  , ±��� + ±��� + ���,             (a) 

 

where  �� =  ����  +  ����  , and ��  are integers. 
 

We carry out the products of the operators successively, starting from the formula for 

the product of the operators 
 S� ∙ S�   =   [�	�, ��] ∙ [�	 �, ��]  =  [�	� ∙ �	 � ,   �� ∙  �	 �  +  ��] . 
 [�	 , �] ∙ [�	 ³ , ±��� + ±���]  =   [�	 ∙ �	 ³ , ±��� + ±���]  =  [�	 ´³ , ±��� + ±���] ,   (b) 
 

because the combination of a 90° rotation with reflection in the x-axis is identical to 

reflection in the yx "diagonal" (→ multiplication table in the spreadsheet section). The 

next 90° rotation that follows moves the transformed point to the position as if it had 

been transformed by the  �	 ³  operation alone: 
 
�	 µ# , ±��� + ±���� ∙ 
�	 , ��  = 
�	 µ# ∙ �	 , (±��� + ±���) ∙ �	� =    = 
�	 # , − ±��� + ±����                                               (c) 
 



130 

 

Rotating the vector  ±��� � ±��� by 90° will cause the magnitude of the coordinates 

to change and the sign of one of them to change. The result of (c) is to be equal to the 

right hand side of relation (a), so equality is to be satisfied: 
 � ±��� + ±��� =   ±��� + ±��� +  ��      ⇒     −( ±� +  ±�)  = �� ,   ( ±� −  ±� ) = �� 
 

Due to the translational symmetry, it is sufficient to restrict to �� = 0, 1 and not to 

consider negative values. Then the following alternatives arise: 

 

L1 L2 t1 t2 

0 0 0 0 

0 1 1/2 1/2 

1 0 1/2 1/2 

1 1 1 0 

 

The last alternative is not interesting because it represents a lattice translation.  
 

In the case when � = �  equality follows from relations (b) and (c): 
 
�	, �� ∙  
�	 , �� ∙ 
�	, �� = 
�	 , ��                                           (d) 

 

 

 

D17  Product of operators  [�	 , �] ∙ [�	 9 , ±] ∙ [�	 , �]  
 

We will modify the expression incrementally, using the 6mm group 

multiplication table (→ spreadsheet): 
 

 [�	 , �] ∙ [�	 9 , �]   =   [�	 ∙ �	 9 , �]  =   [�	 �B9 , �] ,                         (a) 
 [�	 �B9 , �] ∙ [�	 , �] = [�	 �B9 ∙ �	 , � ∙ �	   +  �]  =  [�	 9 , � ∙ �	 ]                (b) 

 

We still need to compute the transformation of the vector t by the operator 6 , and it 

is convenient to write it in the component form � = ±���  +  ±���: 
 � ∙ � = (±� �� + ±���) ∙ (���� + ���� − ����) = 

 = ±��� + ±���  −  ±��� . 
         

Based on condition (C8.6), this result should equal the sum (�� and �� are integers) 
 ±���  +  ±��� + ���� + ���� 
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i.e. has to pay: ±��� � ±���  −  ±���  = ±��� +  ±��� + ���� + ���� , 
 

and after modification 
 −±��� + (±� − ±�)�� = ���� + ����    ⟹  ±� = ��,   ±� − ±� =  �� . 
 

By choosing different combinations of  �� and �� values, we get the possible values of  ±�  . When  �� = �� = 0,  ±� =  ±� = 0  results.  If  �� = 1, �� = 0, ±� = ±� = 1, i.e. 

already outside the interval 0 ≤  ±�  <  1, and similarly for other choices of ��   . This 

means that only the vector � = � is relevant within the unit cell, and integer linear 

combinations of basis vectors are relevant outside it.   

 

In the case that  t   is equal to zero, the equality follows from relations (a) and (b) 
 
�	 , �� ∙ 
�	  , �� ∙ 
�	 , �� = 
�	  , �� .                                   (c) 

 

 

D18  Glide reflection in primitive lattice   

 

In the case of the primitive translation group 7T¼: , the glide reflection shown 

in Table TC3 may also occur, which in this case is not due to lattice centration, but is 

related to the shape of the structural motif (→ Fig. A7). If the glide reflection is in a 

line identical to the basis vector ��,  the corresponding operator has the form 
�	 �, ��/2� ≡ 
r̿ − 2����, ��/2 �  (→ relation C4.22). The double application of glide 

reflection is then expressed by the operator: 
 
�	 �, ��/2� ∙ 
�	 �, ��/2� = 
r̿, ��� , 

triple application: 
r̿, ��� ∙ 
�	 �, ��/2� = 
�	 �, �� + ��/2�, 

quadruple application: 
 
�	 �, �� + ��/2� ∙ 
�	 �, ��/2� = 
r̿, 2��� . 
 

It follows from relation (C4.21) that in the glide reflection operator, the translation 

part ��/2 can also have a negative sign.  Multiple applications of the operator 
�	 �, − ��/2� then lead to another set of operators that differ from the previous ones 

only by the signs of the translational part. An infinite number of repetitions of such 

glide reflections yields a set of operations that form a group.  In doing so, the neutral 

element of the group is represented by the operator 
r̿, ��, which is obtained by the 



132 

 

product of a pair of arbitrary-free two operators differing only by the sign of the 

translational part, e.g.: 
 
�	 �, ��/2� ∙ 
�	 �, − ��/2� = 
r̿, �� . 
 

This means that there is a neutral element in the set of elements, there is an inverse 

element to each element, the set is closed in terms of the group operation, and since 

it is a multiplication of tensors and addition of vectors, the associative law holds in the 

group operation.  Thus, all the conditions for a set to form a group are satisfied. 

This group, we denote it by �Ê , can be decomposed into two subsets.  Elements 

of type 
r̿, ���� ,  i.e., elements without reflection, where n is an integer (positive, 

negative, or zero), are elements of the translation group �Ê , the other elements of the 

set forming a coset of the group �Ê with respect to its subgroup �Ê. The representative 

of a coset may be an element to which, for example, the operator 
�	 �, ��/2� 

corresponds. Based on this, we can express the group �Ê in the form: �Ê =  �Ê + 
�	 �, ��/2� ∙  �Ê . 
 

However, the group �Ê is only a subgroup of the full translation group �¼ of the 

orthogonal lattice, so the group �Ê does not represent all elements of the plane group. 

 

 

D19  Operators  
�	, �� 
 

There are four double rotation axes per orthogonal unit cell, which according 

to C7.1 are localized at positions with fractional coordinates: (0, 0),, (1/2,0), (0, 1/2)  and (1/2, 1/2 ) . The rotation about the axis located at the origin of the 

reference frame, i.e., at position (0, 0), is represented by the operator 
�	, 0� with zero 

translational part, but the operators representing rotations about the other axes have 

a non-zero translational part. 

Starting from the relation S ≡  
�	 , �? ∙ �r̿ − �	 �� (→ relation (h) in Appendix D13) and 

the equality �	 ≡ �	 = −r̿ , the translational part of the operator representing the 

rotation about the axis shifted to the position (1/2, 0), i.e., when �? = ��/2, is equal 

to the product: 12 �� ∙ 2r̿ = �� . 
  

At position (0, 1/2), the translational part of the operator is equal to the vector �� 

and in the third case to the vector �� + �� . Based on this, the operators representing 

the rotations about the twofold axes, incident to the unit cell, have the form: 
�	, 0�, 
�	, ���, 
�	, ���  and 
�	, �� + ���,  
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or 
�r̿, 0�, 
−r̿, ���, 
−r̿, ���  and 
−r̿, �� + ���.  
 

All operators have the same tensor part, while their translational parts differ from 

each other only by lattice vectors. Therefore, all symmetry operations represented 

by these four operators belong to the same coset of the plane group.  

 The operators of rotation about the twofold axes have the same form in the 

other crystal systems.  

 

D20  Operators  
�	, �� 

 

There are two fourfold rotation axes per unit cell of the square lattice, which, 

according to C7.2, are localized at positions with fractional coordinates: (0, 0), and (1/2, 1/2 ). The rotation about the axis located at the origin of the reference frame, 

i.e., at position (0, 0), is represented by the operator 
�	, 0� with zero translational 

part, but the operator representing the rotation about the other axis has a nonzero 

translational part. Starting from the relation S ≡  
�	 , �? ∙ �r̿ − �	 �� (→ Appendix D13, 

relation (h) ) and the equality �	 ≡ �	 =  ���� − ���� (→ tab TC2b), the translational 

part of the operator representing rotation about the axis shifted to the position (1/2, 1/2), i.e., when  �? = ��/2 + ��/2,  is equal to the product: 
 

]12 �� + 12 ��^ ∙ ( ���� + ���� − ���� + ����) = 12 �� − 12 �� + 12 �� + 12 �� = �� . 
 

This means that the operators representing the rotation about the fourfold axes 

localized at the origin or at the centre of the unit cell have the form 
 
�	, �� ≡ [���� − ����, �], resp. 
�	, ��� = [���� − ����,  ��] . 
 

These two operators have the same tensor part, while their translational parts differ 

from each other only by the lattice vector, so the symmetry operations represented 

by them belong to one coset of the plane group.  

 The repeated rotations by 90° about the axis localized at the centre of the unit 

cell are assigned to the operators 
 
�	�, ���,  and 
�	�, ��� , 
 

where the elements represented by the operators  
�	�, ��, 
�	�, ��� belong to the 

same coset, as do the elements with the operators 
�	�, �� , 
�	�, ��� . 
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D21  Reflections in plane group p4mm   

 

A natural part of the symmetry of the square lattice are the glide lines, which 

are parallel to, but not identical with, the diagonals of the unit cell (→ figure in this 

appendix).  According to C8.3, the plane group p4mm is formed by combining elements 

of the point group 4mm with elements of the translation group �¼,  but the glide 

reflection is not part of either of these groups because it is an element of the plane 

group only. However, glide reflection in a line parallel to the diagonal of the square is 

equivalent to successive applications of reflection in a line parallel to some basis vector 

(i.e., the side of the square) and rotation about a fourfold axis passing through the 

centre of the unit cell (i.e., the centre of the square; the corresponding axis is indicated 

by the symbol 4∗ in the figure).  Such a rotation, expressed with respect to the origin 

of the reference frame, is represented by the operator 
�	, ��� (→ article C7.2), which 

also has a translational part, so that it is an element of the plane group. The product 

of this operator with the reflection operator in the line identical to the vector �� : 
 
�	, ��� ∙ 
�	 �, 0� ≡ � ���� �  ����, ���  ∙ 
r̿ � 2 ���� , �� � � ���� �  ����,  ���, 

 

we obtain an operator whose tensor part coincides with the tensor part of the 

reflection operator 
�	 �� , ��, but differs from it in the translational part; we write it in 

the abbreviated form 
�	 �� , ���.  The non-zero translational part may be related to 

the glide, to the localization of an element of symmetry, or even to a combination of 

these, as in this case. A table of both rotation and reflection operators for this plane 

group is given in Appendix D22. 

 

 

 

We prove that the operator 
�	 �� , ��� ≡ � ���� �  ����, ��� represents a 

reflection with glide %�� � ��)/2 in the line, which is indicated in the figure by the 

M2A 

M1A 

M1

M2 

2a 

4* 

4 

2B 

M12B M12 M12A M21 M21B M21A 

M21C 
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symbol M��Ý. For example, a point with position vector �� transforms to a point �� ��� : 
 �� ∙ � ���� �  ����, ��� �  %�� ∙  ���� � �� ∙  ����) � �� � �� � � � �� , 
 

point with position vector �� to position 2�� : 
 �� ∙ � ���� �  ����, ��� �  %�� ∙  ���� � �� ∙  ����) � �� � � � �� � �� � 2�� , 
 

or point 0 to position �� . 

 

The results of other combinations of rotations with reflections document the 

fact that the operators representing reflections in mutually parallel lines (ordinary 

reflections and glide reflections) have the same tensor parts and differ only by 

translations belonging to the translation group. This fact implies that by changing the 

zero translation term in the symmetry operator to a nonzero one – by adding an 

element of the translation group (i.e., a lattice vector), we obtain operators of 

elements of the plane group belonging to the same coset. Operators with a non-zero 

translation term represent rotations about axes not passing through the origin of the 

reference frame and, in the case of reflections, in addition to the displacement of the 

reflection line, can also represent glide reflections. 
 

To illustrate, the following text show some combinations of symmetry 

operations in both numerical and graphical form. In the relations, symbols are used in 

accordance with the figure, e.g., rotation about the fourfold axis placed at the centre 

of the square by the symbol �∗. 

 �∗ ∙ M� � � ���� �  ����, ��� ∙ � ���� �  ����, �� � ������ �  ����, ��� � M��Û 
 

 

 M� ∙ �∗ � � ���� �  ����, �� ∙ � ���� �  ����, ��� � ����� �  ����, ��� � MI�â 

 

�∗ ∙ M� � � ���� �  ����, ��� ∙ �� ���� �  ����, �� � ����� �  ����, � ��� � MI�Þ 

+ = 

+ = 
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 M� ∙ �∗ � �� ���� �  ����, �� ∙ � ���� �  ����, ���� �� ���� �  ����,  ��� � M��Û 

 

 

 

 

 

 

When we note that the operators of reflection in lines parallel to the diagonals 

and passing through the origin of the reference frame have form 
 
�	 �� , �� � � ���� �  ����, ��    and   
�	 �� , �� � �� ���� �  ����, ��, 

 

so we can write the results of the previous four relations more concisely: 
 �∗ ∙ M� � M��Û � 
�	 ��, ��� , M� ∙ �∗ � MI�â � 
�	 �� , ��� , �∗ ∙ M� � MI�Þ � 
�	 �� , ���� , M� ∙ �∗ � M��Û � 
�	 �� , ��� , 
 

from where it can be better seen that the translational parts of the operators are 

elements of the translation group.  
 

It can be seen that next relations are also valid 
 �∗ ∙ M�� � 
�	 �, ��� ,   M�� ∙ �∗ � 
�	 �, ��� , 

 

which imply reflections in lines parallel to the basis vectors that pass through the 

centre of the unit cell, as well as relations 
 �∗ ∙ M�� � 
�	 �, 0� ∙ 
r̿, ����,          M�� ∙ �∗ � 
�	 �, �� ∙ 
r̿, ��� ,  
 

which imply that it is a combination of ordinary reflection with translation by a lattice 

vector. 

 

 

+ = 

+ = 
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D22  Operators in plane group p4mm   

 

 

M1 ��	 � , �� ≡ � ���� �  ���� , ��  

M1A ��	 � , �� � ≡ � ���� �  ���� , �� �  

M2 ��	 � , �� ≡ �� ���� �  ���� , ��  

M2A ��	 � , �� � ≡ �� ���� �  ���� , �� �  

M12 ��	 �� , �� ≡ � ���� �  ���� , ��  

M12A ��	 �� , �� � ≡ � ���� �  ���� , �� �  

M12B ��	 �� , �� � ≡ � ���� �  ���� , �� �  

M21 ��	 �� , �� ≡ �� ���� �  ���� , ��  

M21A ��	 �� , �� � �� � ≡ �� ���� �  ���� , �� � �� �  

M21B ��	 �� , �� � ≡ �� ���� �  ���� , �� �  

M21C 
�	 �� , 2�� � �� � ≡ �� ���� �  ���� , 2�� � �� �  

4 
�	, �� ≡ � ���� �  ���� , ��  

42 
�	�, �� ≡ 
�	, �� ≡ 
�r̿, ��  

43 
�	J, �� ≡ ������ �  ���� , ��  

4* 
�	, �� � ≡ � ���� �  ���� , �� �  

2A 
�	, �� � ≡ 
�r̿, �� �  

2B 
�	, �� � ≡ 
�r̿, �� �  

 

 

M12B M12 M12

A

M21 M21B M21

A

M21

C

M2A 

M1A 

M1 

M2 

2A 

4* 

4 

2B 
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D23  Operators  in plane group p4gm   

 

 

 

M1SA ��	 � , ��/2 � ��/2� ≡ � ���� �  ���� , ��/2 � ��/2�  

M1SB ��	 � , �� /2 � 3�� /2� ≡ � ���� �  ���� ,  �� /2 � 3�� /2�  

M2SA ��	 � , �� /� � �� /2� ≡ �� ���� �  ���� ,  �� /� � �� /2�  

M2SB ��	 � , 3�� /� � �� /2� ≡ �� ���� �  ���� , 3�� /� � �� /2�  

M12S  ��	 �� ,  ��/2 � ��/2� ≡ � ���� �  ���� ,  ��/2 � ��/2�  

M12A ��	 �� ,  ��/2 � ��/2� ≡ � ���� �  ���� ,  ��/2 � ��/2�  

M12B ��	 �� , ���/2 � ��/2� ≡ � ���� �  ���� , ���/2 � ��/2�  

M21A ��	 �� ,  ��/2 � ��/2� ≡ �� ���� �  ���� , ��/2 � ��/2�  

M21B ��	 �� , J��/2 � 3�� /2� ≡ �� ���� �  ���� , 3��/2 � 3��/2�  

M21SA ��	 �� ,  ��/2 � ��/2� ≡ �� ���� �  ���� ,  ��/2 � ��/2�  

M21SB 
�	 �� , 3�� /� � �� /2� ≡ �� ���� �  ���� , 3��/� � ��/2�   
4 
�	, �� ≡ � ���� �  ���� , ��,  

42 
�	�, �� ≡ 
�	, �� ≡ 
�r̿, ��  

43 
�	J, �� ≡ ������ �  ���� , ��  

4* 
�	, �� � ≡ � ���� �  ���� ,  �� �  

2A 
�	, �� � ≡ 
�r̿, �� �  

2B 
�	, �� � ≡ 
�r̿, �� �  

 

 

 

 

2B 

2A 

4* 

4 

M12A 

M12B 

M21A 

M21B 

M21SA 

M2SB M2SA M12S M21SB 

M1SA 

M1SB 
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D24  Reflections  in plane group p4gm   

 

In the p4gm group, only elements representing glide reflections are 

representative of cosets. However, ordinary reflections are also part of this plane 

group, and, as in the case of the p4mm group, these reflections are equivalent to the 

successive application of two operations belonging to this plane group. 

 

 

 

This statement will be verified in several cases, using the table of operators of 

this group given in Appendix D23. 
 

The reflection in the line marked by the symbol M21A is equivalent to the 

successive application of a rotation of 180° about an axis passing through the origin of 

the reference frame, represented by the operator 
 
�	�, �� ≡ 
�	, �� ≡ 
�r̿, �� , 

 

and glide reflection in the line denoted by the symbol M12S , represented by the 

operator ��	 �� , ��/2 � ��/2� ≡ � ���� �  ���� , ��/2 � ��/2� : 
 

 
�r̿, �� ∙ � ���� �  ���� ,  ��/2 � ��/2� � �� ���� �  ���� ,  ��/2 � ��/2� . 

 

In abbreviated form:  
�	, 0� ∙ M��ã � M��Ý , or by using the symbolic figure: 

 

 

2B 

2A 

4* 

4 

M12A 

M12B 

M21A 

M21B 

M21SA 

M2SB M2SA M12S M21SB 

M1SA 
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The reflection in the line denoted by the symbol M12A is equivalent to the successive 

application of a rotation by 180° about the axis passing through the origin of the 

reference frame represented by the operator 
�	, �� ≡ 
�r̿, �� and glide reflection in 

the line denoted by the symbol M21SA , with the operator 

 �� ���� �  ���� , ��/2 � ��/2�: 
 
�r̿, �� ∙ �� ���� �  ���� ,  ��/2 � ��/2� � � ���� �  ���� ,  ��/2 � ��/2� . 
 

In the abbreviated notation  
�	, �� ∙ M��ãÝ � M��Ý and using the symbolic figure: 

 

 

The reflection in the line denoted by the symbol M12B is equivalent to the successive 

application of a rotation by 90° about an axis passing through the centre of the unit 

cell represented by the operator 
�	, �� � and a glide reflection  in the line denoted by 

the symbol M2SA , represented by the operator �� ���� �  ���� , ��/2 � ��/2�: 
 � ���� �  ���� ,  �� � ∙ Á� ���� �  ���� ,   12 �� � 12 �� Â �

� Á���� �  ���� , � 12 �� � 12 �� Â . 
 

In shorthand notation 
�	, �� � ∙ M�ãÝ � M��Û  and using a symbolic figure: 

 

 

Note The operators �	  and �	  do not commute; changing the order of rotation and 

reflection will give different results.     

 

 

+ = 

+ = 

+ = 
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D25  Operators of reflection and rotation in hexagonal system 

 

In orthogonal cells whose basis vectors ��, �� are perpendicular to each other, 

the reflection tensors have a relatively simple shape. When reflection in a line identical 

to the vector �� they have the form �	 � � r̿ � 2���� , when 

reflection in a line identical to the vector �� the form �	 � � r̿ �2���� . In a hexagonal lattice, one can choose both a primitive 

unit cell and an orthogonal centred cell. In the primitive cell, 

the basis vectors have the same size |��| � |��| but they are 

not perpendicular to each other, so the tensor needs to be 

adjusted.   

The reflection tensor has the general form (→ relationC4.8): 
 �	 � r̿ � 2��, 
 

where � is the unit vector perpendicular to the reflection line. We modify the tensor 

by assuming that it is a reflection in the line identical to the vector �� while the goal is 

to replace the unit vectors � by the basis and reciprocal vectors.  

 The vector �  (→ image) is parallel to both the reciprocal vector  ��  and the 

vector �� � 2��,  so we can express it using these vectors, taking their magnitudes 

into account. According to the definition of reciprocal vectors, the relation 
 

1 � �� ∙ �� � |��| ∙ |��|  cos 30° � |��| ∙ |��| √32  , 
|��| � 2|��|√3 � 2|��|√3 . 

 

The size of vector �� � 2��: 

|�� � 2��| � 2|��|  cos 30° � 2|��| √32 � |��| √3. 
 

We will use the results to modify the 2�� dyad: 
 

2�� � 2�� |��|√32  %�� � 2��) 1|��|√3 � ���� � 2���� . 
The reflection tensor thus takes shape: 
 �	 � r̿ � 2�� � ���� � ���� � ���� � 2���� � ���� � ���� � ���� , 
 �	 9 � ���� � ���� � ���� . 
 

 

a1 

a2 

a2
 

a1
 

u 



142 

 

In the hexagonal system, this reflection is conventionally denoted by symbol mo . It is 

a reflection in a line identical to the basis vector �� ,  whose operator,  in orthogonal 

systems,  is denoted as �	 � . The operators of the other reflections, i.e., m30 , m90 , etc., 

are obtained by multiplying the operator �	 9 by operators representing multiples of 

the rotation by 60° , where the operator of this rotation is the tensor �	 = ���� +���� − ����.   

According to the multiplication table of the 6mm group, the following relations 

hold: �	 �9 = �	 9 ∙ �	,         �	 C9 = �	 9 ∙ �	�,       �	 D9 = �	 9 ∙ �	� = �	 9 ∙ �−r̿�, 
 �	 ��9 = �	 9 ∙ �	A,       �	 �B9 = �	 9 ∙ �	B . 
 

Based on these relationships, we obtain the results: 
 �	 �9 = ���� + ���� − ���� , 
 �	 C9 = ���� + ���� , 
 �	 D9 = −���� + ���� + ���� , 
 �	 ��9 = −���� + ���� + ���� , 
 �	 �B9 = −���� − ���� . 
 

Combinations of these reflections with rotations about axes not passing 

through the origin of the reference frame give reflections and glide reflections in 

differently displaced lines.   

 

For completeness, we will also list the rotation operators already expressed in C4.1.3 : �	 = ���� + ���� − ���� , 
 �	� ≡ J	 = ���� − ���� − ���� , 
 �	� ≡ �	 = −r̿ , 
 �	A ≡ J	� = −���� − ���� + ���� , 
 �	B = −���� + ���� + ���� . 
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D26  Operators of reflections and rotations in orthohexagonal basis 

 

In the hexagonal system, there are relations between the basis vectors �I, ��  

of the primitive cell and the basis vectors ;I, ;� of the orthohexagonal cell: 
 

 ;I ≡ �I,    ;� � �I � 2�� 

and vice-versa   �I ≡ ;I ,     �� � I� %;� � ;I). 
 

The following relations hold between 

the reciprocal vectors of the two bases: �� � ;� � ;� ,       �� � 2;� , 

and vice-versa   ;� � �� � �� ��  ,     ;� � �� �� . 
 

 For completeness we also give the magnitudes of these vectors, they are only 

necessary to derive the relationships between the reciprocal vectors: 
 |��| � |�I| � -I ,    |;I| � -I ,    |;�| � -I√3 . 

 |��| � |��| � 2-I√3 ,     |;�| � 1-I  ,    |;�| � 1-I√3  . 
 

We use the relations between the vectors of the direct space and the vectors 

of the reciprocal space to transform the tensors from the primitive to the 

orthohexagonal basis. 
 

In the orthohexagonal basis, the tensor of reflection in the line identical to the 

vector ;I has the form �	 9 � r̿ � 2;�;� � ;�;I � ;�;� , 
 

so there is no need to transform it. In particular, the tensor representing the rotation 

by 60° needs to be transformed. In the primitive basis it has the form: 
 �	 � ���� � ���� � ���� , 
 

which after transformation takes a more complicated form 
 

�	 � 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� , 
 

and which is the starting point to obtain tensors representing multiple rotations: 

 

b2 

a2 

  a1≡ b1 a1 

a2 

a2
 

a1
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�	� � �	 ∙ �	 ≡ J	 � � 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� , 
 �	� � �	 ∙ �	 ∙ �	 ≡ �	 � �r̿ , 
 

�	A � � 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� � ��	 , 
 

�	B � 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� , 
 �	C � r̿ . 

 

The reflection operators  m30 , m60,  etc. can already be obtained by the products that 

result from the multiplication table of the 6mm group: 
 

�	 �9 � �	 9 ∙ �	 �  �r̿ � 2;�;�� ∙ ]12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;�^ � 

 

� 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� , 
 

�	 C9 � �	 9 ∙ �	� � � 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� ,  
 �	 D9 � �	 9 ∙ �	� � �	 9 ∙ ��r̿� � ��	 9 � �;�;I � ;�;� , 
 

�	 ��9 � �	 9 ∙ �	A � � 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� ,  
 

�	 �B9 � �	 9 ∙ �	B � 12 ;�;I � 12 ;�;� � 32 ;�;I � 12 ;�;� . 
 

D27  Reflections in plane group p31m 

In this group, ordinary reflections  !9, !C9 and !��9 are applied in lines 

passing through the origin of the reference 

frame, and glide reflections !9ã , !C9ãÝ , !C9ãÛ , !��9ã in lines parallel to the 

reflection lines. Operators representing 

ordinary reflections were derived in 

Appendix D25, we list them again for 

completeness: 
 
�	 9, �� �  ����� � ���� � ����, ��, 
�	 C9, �� � ����� � ���� , ��, 


�	 ��9, �� � ������ � ���� � ���� , ��. 

m0 

m60 m120 

m0S 

m120S 

m60SA 

m60SB 
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Operators representing reflections in mutually parallel lines are distinguished from 

each other only by the translation term. The operator of ordinary reflection in a line 

passing through the origin of the reference frame has zero translation term, the 

translation term of the operator of glide reflection is a lattice vector, so that the 

corresponding operations belong to one coset. The operators of glide reflection have 

the following form: 

m0S :   
�	 9, �� � ��� ,  m60SA :  
�	 C9, ���,    m60SB : 
�	 C9, ���, 
 

m120S :  
�	 ��9, �� � ���. 
 

The correctness of these relationships is easily verified by simple examples. We will 

check how the m0S reflection transforms the points at the ends of the basis vectors ��  

and  ��: 
 �� ∙ 
�	 9, �� � ��� � �� ∙ ����� � ���� � ����, �� � ��� � 2�� � �� , 
 �� ∙ ����� � ���� � ����, �� � ��� � ��� � �� � �� � �� � � . 
 

In both cases it is a reflection with glide ��/2 in a line parallel to the vector �� , passing 

through the centre of the vector ��, i.e. the point with coordinates (0, ½), which we 

document with the following figures: 

 

 

 

D28  Reflections in plane group p3m1 

 

The next figure shows the positions of the threefold axes (triangles), the reflection 

lines (solid lines), and the glide lines (dashed lines) of the plane group p3m1. We 

express the operators of some of the reflections that are assigned symbols in the 

figure. The operator representing the reflection in the line marked in the figure by the 

symbol M90A , has the form: 

m0S 

a1 

a2 

a1/2 

m0S 

a2 

a1 a1/2 

a1/2

�� ⟹ 2�� � ��                                     �� ⟹ � . 
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�	 D9, �� � ������ � ���� � ���� , ��, 
 

has a zero translation term because the reflection line 

passes through the origin of the reference frame. The 

operators of the other reflection lines have translation 

terms that are elements of the translation group; they 

are integer linear combinations of the basis vectors ��, ��.  For a line 
 MD9Û ≡ 
�	 D9, ��� � ������ � ���� � ���� , ���, 
 

it is an ordinary reflection (no glide), in other cases it is 

a glide reflection of 
�� %�� � 2��), which is half the identity period along the glide line, 

or half the lattice parameter of the orthohexagonal cell. It is these reflection with glide: 
 MD9ã� ≡ 
�	 D9, ��� � ������ � ���� � ���� , ���, 

 MD9ã� ≡ 
�	 D9, �� � ��� � ������ � ���� � ���� , �� � ���, 
 MD9ã� ≡ 
�	 D9, 2�� � ��� � ������ � ���� � ���� , 2�� � ���, 

 
 

To verify the correctness of the expressions, we perform a transformation of 

several points in the glide line MD9ã� . We compute how the position vectors �� and �� are transformed and show the transformation graphically: 
 �� ∙ 
�	 D9, �� � ��� � �� ∙ ������ � ���� � ���� , �� � ��� � ��� � �� � �� �  ��  
 �� ∙ 
�	 D9, �� � ��� � �� ∙ ������ � ���� � ���� , �� � ��� � 
 � �� � �� � �� � �� � 2�� � 2�� . 
 

 

 

 

 

 

 

 

 

 

 

 

    M90S1     M90S2 

    M90A    M90B 

    M90S3 

12 %�� � 2��) 

 �� → �� 

a1 

a2 

 �� → 2�� � 2�� 

a1 

a2 
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D29  Basic information on groups 

 

Definition 

Let G be a set containing elements g� , g� , …  ,, on which a binary operation is defined, 

i.e., an operation that assigns another element to two elements g �  , g$   with a given 

order.  A set G with respect to a given operation forms a group if 
 

a)  the set G  is closed with respect to a given operation, i.e.  g �  , g$  ϵ  �, then also g � ⋅ g$ = go ϵ � (the dot between the elements of the group denotes the 

corresponding binary operation) 
  

b)  for a given operation, the associative law holds 

 

c)  there exists a neutral element  e  in the set G for which e ⋅ g = g ⋅ e = g  for every g ϵ G 

 

d)  for each element g of the set G, there exists an inverse element in G – denoted g�� 

– for which g ∙ g�� = e . 
 

For a binary operation, the commutative law need not hold. 

 

A group is, for example 

a)   the set of all integers with respect to addition, 

b)   the set of all vectors in n-dimensional space with respect to addition 

c) the set of complex numbers exp(2�i ∙ 0/4), exp(2�i ∙ 1/4), exp(2�i ∙ 2/4),exp(2�i ∙ 3/4), with respect to multiplication, if the numbers exp(2�i ∙ k/4) and exp(2�i ∙ (k + 4N)/4) are considered equal (N is an integer) 

d)  the set of rotations of the square about the centre by 90°,180° and 270°, together 

with the identical transformation, which has the meaning of a neutral element; a 

binary operation is the execution of two operations in succession. 

e)  the set of all tensors (of the same order) with non-zero determinant, with respect 

to multiplication 

f)    the two-element set @1, −1 E with respect to multiplication. 

 

The number of elements forming a group is called the order of the group. When a 

binary operation  is  applied  on  element  itself,  we  use the notation g ∙ g = g�, g� ∙
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g � g�, etc., referring to powers of the element, regardless of the nature of the binary 

operation.  

A cyclic group consists of all powers of some element of itself: -, -�,  -�, ….. The 

element whose powers yield the whole group is the generating element of the group.  

When expressing the elements of a group G explicitly, we write these in parentheses:  

� � @e, g�, g�, . . . g�E, where n is the order of the group. 

 

Isomorphism and homomorphism 

Two groups G and H are isomorphic if there exists a simple (mutually unambiguous) 

mapping of their elements g ↔ h such that if g� ↔  h�  and  go ↔  ho, then g� ∙ go  ↔h� ∙ ho as well. For example, the groups given as examples c) and d) are isomorphic .  

Two groups G and H are homomorphic if these groups do not have the same number 

of elements, so that several elements of the more numerous group are associated with 

one element of the less numerous group, but subject to the condition: if g� ↔  h� and go ↔  ho, then so too is g� ∙ go  ↔ h� ∙ ho.  The following diagram shows these two 

possibilities: 

 

Subgroup 

A subgroup H of a group G is any subset of G that satisfies the group postulates. For 

example, the group of rotations of 0°,180° is a subgroup of the group of rotations of 

0°,90°,180° and 270°. The quotient of the order of the group and the order of the 

subgroup is called the subgroup index. Group G is a supergroup of group H. 

Cosets 

Suppose that  Í ≡ @e, h� , h� , . . . E is  a  subgroup of group G. By the symbols  x ∙ Í  and Í ∙ x we mean the sets of elements 

x ∙ Í � @x ∙ e , x ∙ h� , x ∙ h� , . . . E ,    Í ∙ x  �  @e ∙ x , h� ∙ x , h� ∙ x , . . . E      
   

g1 ,  g2 , g3 , . . .    g1 ,  g2 , g3 , . .  g5 ,  g6 

 

 

 

h1 ,  h2 , h3 , . . .            h1 ,              h2 , 

isomorphism             homomorphism 
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If an element  x  belongs to a subgroup H, then the above sets are identical to the 

subgroup H, which follows from the first group postulate. If   x  does not belong to H, 

the above sets are called the right and left cosets, respectively, of the group G with 

respect to the subgroup H.  The coset  x ∙ Í has the same number of elements as the 

subgroup H, and these two sets do not have a single element in common. This means 

that if there is an element  y  in G  that is neither in H nor in x ∙ Í, there must be 

another coset  of  y ∙ Í. 

This is how group G can be decomposed into cosets  

� =  Í +  x ∙ Í   +   y ∙ Í +  …      =    [e, x, y, …  ] ∙ Í 
 � =  Í +  Í ∙ v  +   Í ∙ z  +   …     =    Í ∙  [e, v, z, …  ] 
 

The elements in square brackets are the representatives of cosets ; a coset can be 

represented by any of its elements. 

 

Conjugated elements and conjugated subgroups 

 

Let us select two elements -, d  from the group G.  If for each element x of the group 

G,  R ∙ - =  d ∙ R,  that is,  d =  R ∙ - ∙ R�� , then the elements -, d are called 

conjugated.  Each group consists of several classes of conjugated elements. For 

example, for groups of symmetry operations, one class includes all rotations of the 

same angle. 

If H is a subgroup of G, then the set of elements ì =  x ∙ Í ∙ x��   also forms a 

subgroup, which is called the conjugated subgroup with the subgroup of H.  A 

subgroup of H that is conjugated with itself, i.e., R ∙ Í ∙ R��  = Í, is an invariant 

subgroup of G, or also a normal divisor. An invariant subgroup has right and left cosets 

equal. Therefore, a subgroup with index 2 is always invariant. 

 

Factor group 

The invariant subgroup together with its cosets forms a special group whose elements 

are the cosets as wholes, with the role of the neutral element being played by the 

invariant subgroup itself. We call such a special group a factor group. The group 

operation between two cosets is the product of each element of one coset with each 

element of the other coset. The "product" of the cosets is then another coset, which 

can be expressed by the relation 

x ∙ Í ∙  y ∙ Í =  x ∙ y ∙ Í ∙ Í =   z ∙ Í , 
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whereby we have exploited the validity of the relations x ∙ y =  z ,   Í ∙ Í  =   Í . 
 

This procedure can be used to verify that the invariant subgroup, together with 

its cosets, satisfies all four group postulates. The factor group at the group G, 

constructed according to the subgroup H, is denoted by the symbol (�/Í) . 
The invariant subgroup of the space group of a crystal is the translation group. 

Elements of the point group of a crystal can be chosen as representatives of cosets 

(but not for all space groups), so that a factor group with a finite number of elements 

can represent a space group of a crystal that has an infinite number of elements. 

 

 

The direct product of groups 

If there is the same group operation in the groups H and K,  if for each h � Í and k � ì,  h ∙ k  =   k ∙ h, and if the only common element of these groups is the neutral element 

e , then the set of all elements g�$ =  h� ∙ k$ forms a group G , with the groups H and 

K being invariant subgroups of it. The order of the group G is equal to the product of 

the orders of the groups H and K, which means that no two elements of  g�$  are equal. 

Accordingly, a group G  with an invariant subgroup H can be expressed as the direct 

product of a subgroup H and a factor group (�/Í): 

� = Í ∙ (�/Í) = (�/Í) ∙ Í . 
  

 

D30  Basic information on tensors 

 

• The set of ordered pairs of vectors ��¾� , ��¾� , . ...  called dyads, can mediate 

a linear transformation of the space if we introduce the following operation: 

�∗ =  � ∙ (��¾� ,   ��¾� ,   . . . ) =  (� ∙ ��)¾�  + (� ∙ ��)¾� +   … , 
(D30.1) 

where �  and  �∗ are the original and transformed vectors, and the dot between 

the vectors represents the scalar product between the vectors. The set of dyads 

in parentheses is called the tensor and is denoted by the symbol �	 (bold, 

standing type, with two lines), so we can write the relation (D30.1) in a more 

concise form �∗ =  � ∙  �	                                               (D30.2) 
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• With respect to the definitional relation (D30.1), we write the tensor �	 in the 

form 
 �	 � %��¾� �  ��¾� + ⋯ ) = ∑ ��¾� �   ,                     (D30.3) 
 

where the + sign has only a symbolic meaning, because tensor algebra does 

not introduce a sum of dyads. 
 

• We call the operation � ∙  �	 the left scalar product of a vector and a tensor. The 

right scalar product is introduced by the relation 
 �∗∗ = �	 ∙  �  =   ��(¾� ∙  � )   +  ��(¾� ∙ � )  +  …        (D30.4) 

 
so that the left and right scalar products of a vector with the same tensor need 

not be the same. 

• If we swap the order of the vectors in all the dyads of the tensor 

 �	 = ∑ ��¾� �  ,   a conjugated tensor  �	Ä is formed �	Ä = ∑ ¾��� �                                               (D30.5) 
 

• From relations (D30.1) and (D30.4) it follows that 
 � ∙ �	  =  �	Ä ∙ �                                               (D30.6) 
 

• Two tensors are said to be equal if their left (or right) scalar products with any 

vector are equal to each other. 
 

• The scalar product of tensors �	  ∙  í	 is introduced by two transformations in 

succession:  �∗ =  � ∙  �	  �∗∗ =  �∗ ∙ í	  =  (� ∙  �	) ∙  í	    =   � ∙ (�	  ∙  í	) . 
 

If we write the tensors in the form  

�	Ä = b ��¾�
 
�

 ,       í	 =   b î$ï$
 
$

 

then for the product of tensors introduced in this way holds 
 �	Ä ∙ í	 = ∑ ∑ �� $ � �¾Ï ∙ î$�ï$                                       (D30.7) 

 

• The  unit  tensor  r̿t  , called  the  identity tensor,  is introduced  by the relation � ∙ r̿ = �  valid for all vectors. 
 

• The reciprocal (inverse) tensor  �	�I  to the tensor  �	  is introduced so that 
 �	�I ∙ �	  =  rt  =  �	 ∙ �	�I .                                      (D30.8) 
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It exists if and only if the determinant of the tensor � does not equal zero. 
 

 

• A tensor �	 is symmetric if for each vector � :    � ∙ �	 = �	 ∙  �.  

 

• The scalar  Tã of the tensor  �	  is a number which we obtain using the relation   
 Tã = ∑ (�� ∙ ¾�)� ,                                             (D30.9) 
 

that is, by performing a scalar product between the vectors in all dyads. and 

then summing the scalars. 
 

• The dyad vectors can be expressed in a coordinate system of three non-

complanar basis vectors �� , �� , ��, as their linear combination: 

�	 = b(��¾�) 
�

= b wb X�$
 
$

�$x ¾�
 
�

= b �$
 
$

ub X�$
 
�

¾�v = b �$îÐ
 
$

 

�	 = ��î� + ��î� + ��î� . 
 

A tensor consisting of any number of dyads can be reduced to three dyads in 

three-dimensional space (two dyads in the plane). The vectors îÐ are the right 

vector coordinates of the tensor.  

Similarly, the vectors ¾�, can be decomposed and the same tensor can be 

written using the left vector coordinates. 
 �	 = ï��� + ï��� + ï���  .                              (D30.10) 

 

• The determinant of a tensor is defined as the product of the mixed products 

of the basis vectors and the vector coordinates of the tensor: | �	  | = [(�1 × �2) ∙ �3] [(î1 ×  î2) ∙  î3] = [(ï1 × ï2) ∙ ï3] [(�1 × �2) ∙ �3] 
 (D30.11) 

If the determinant of the tensor equals zero, it is an incomplete tensor . That is, 

zero equals the mixed product of vector coordinates, i.e. the vectors î�  ,  
respectively ï�  lie in the same plane (then it is a planar tensor), or they are all 

parallel (a linear tensor). A planar tensor can be expressed by a pair of dyads, a 

linear one by a single dyad. 

 

• The tensor notation can be further modified so that the vector coordinates are 

also expressed as linear combinations of the basis vectors. This produces a nine-

membered 
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�	 � ±������ � ±������ � ±������ �� ±������ + ±������ + ±������ ++ ±������ + ±������ + ±������
 =  b ±�$

�$
���$ 

(D30.12) 

Where  ±�$ are the so-called scalar coordinates of the tensor (inappropriately, 

the components of the tensor). It is often more convenient to express the left 

vector coordinates ï�  as a linear combination of a triple of reciprocal vectors �� , �� , ��, thus changing the notation of the tensor and expressing it as a 

symbolic sum of dyads, with mixed coordinates: 
 �	 = ∑ ±�$�$ ���$   .                                            (D30.13) 

  

The coordinates  ±�$ and ±�$ are not the same. In this text only mixed coordinates 

are used, but for simplicity they are written with subscripts. A tensor using 

scalar coordinates will be written in the form 
 �	 = ∑ ±�$�$ ���$   .                                           (D30.14) 

 

• When tensor notation of the form (D30.14) is used, some tensors take on a 

more specific shape. 
 

Conjugate tensor 

�	Ä = b ±�$�$
�$��  ,  

Identity tensor r̿  = ����   +  ����  +  ���� 

For a symmetric tensor ±� $   =   ±$ �   , 
 

and for the determinant of tensor 

| �	 | = ñ±�� ±�� ±��±�� ±�� ±��±�� ±�� ±��
ñ . 

 

The scalar of tensor is expressed by the relation   
 Tã   =   ±��  +  ±��  +  ±��  . 
 

The tensor coordinates are obtained by the double scalar product   
 ±� $   =    �� ∙  �	 ∙  �$                                         (D30.15) 

 

• For the product of several tensors, the relations are valid 
 (�	  ∙  í	  ∙  ò	  ∙. . . . )Ä =    … ∙  ò	Ä ∙  í	Ä ∙  �	Ä  , 
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 %�	  ∙  í	  ∙  ò	  ∙. . . . )��   =   … ∙ ò	�� ∙  í	�� ∙  �	��  , 
 

and for the determinant of the product of two tensors 
    | �	  ∙  í	 |   =   | �	 | | í	 |                                   (D30.16) 

 

• The tensors of symmetry operations must preserve all distances and angles in 

the linear transformation, i.e. the scalar product of any two vectors 
 ��∗  ∙  ��∗ = (�� ∙  �	) ∙ (�� ∙  �	) = (�� ∙ �	) ∙ (�	Ä ∙  ��) =  �� ∙ ��   , 
 

which implies that the equality �	 ∙ �	Ä = r̿ should hold. That is, the conjugate 

tensor  �	Ä must be simultaneously an inverse tensor:   
 �	Ä =   �	�� . 
 

For the product of determinants by (D30.16), | �	 | | �	Ä | = | r̿ | =  1, and since 

the determinants of the tensor and its conjugate tensor are the same, | �	 |� = 1. This means that the determinant of the tensor, which preserves all lengths 

and angles in the transformation, is equal to 
 | �	 | = ± 1 .                                             (D30.17) 
 

• In in-plane transformations, the full tensor consists of two dyads and can be 

written using vector coordinates  
   �	 = ï��� + ï���  ,         
or by scalar coordinates 
 �	 = ±������ + ±������ + ±������ + ±������  . 
 

With such a tensor notation, the left scalar product with, e.g., the vector �� , 

based on relation A1.2, i.e., �� ∙ �$ =  Ñ�$,  gives the result:   
 �� ∙ �	 = �� ∙ (±������ + ±������ + ±������ + ±������) = ±���� + ±���� 

(D30.18) 
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Tables 

 

TA1    Plane lattices, crystal systems and point symmetry 

Lattice Crystal systems 
Cell 

type 
Basis vectors Point symmetry 

a) oblique p -�  ≠  -�  , 1  ≠  90° 2 

b) 
rectangular 

p -�  ≠  -�  , 1 =  90° 2mm 
c), d) c 

e) square p -�  =  -�  , 1 =  90° 4mm 

f) hexagonal p -�  =  -�  , 1 =  120° 6mm 

 

 

TA2 Point groups in crystal systems 

Crystal systems 
Point groups  

belonging to system   

Point group of lattice 

(holohedral group) 

oblique 1, 2 2 

rectangular m , 2mm 2mm 

square 4, 4mm 4mm 

hexagonal 3, 3m , 6 , 6mm 6mm 

 

 

TA3 Plane symmetry groups 

Group 

number 
Crystal system 

Type of 

unit cell 
Point 

group 

Symbol 

full                 short 

1 
oblique p 

1 p1 p1 

2 2 p211 p2 

3  
 
 

rectangular 

p 
 

m 

p1m1 pm 

4 p1g1 pg 

5 c c1m1 cm 

6 

p 

 
2mm 

p2mm pmm 

7 p2mg pmg 

8 p2gg pgg 

9 c c2mm cmm 

10 

square 

 

p 

4 p4 p4 

11 
4mm 

p4mm p4m 

12 p4gm p4g 

13  
 

hexagonal p 

3 p3 p3 

14 
3m 

p3m1 p3m1 

15 p31m p31m 

16 6 p6 p6 

17 6mm p6mm p6m 
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TA4 Lattices and point groups of three-dimensional structures   

  

Crystal system Lattice parameters Lattice type Point groups 

Triclinic 
-� ,  -� ,  -� 1� , 1� ,  1� 

P 1, 1  

Monoclinic 
-� ,  -� ,  -� 1� = 1� = 90°,   1� 

P 
(C1 , C3 , I ) 

2,  m,  
�K 

Orthorhombic 
-� ,  -� ,  -� 1� = 1� = 1� = 90° 

P,  I,  F 
(C1 , C2 , C3) 

222,  mm2,  
�K �K �K 

Tetragonal 

-� =  -� ,  -� 1� = 1� = 1� = 90° P,  I 
4, 4  , AK  , 422 

4mm,  4 2!, AK �K �K 
 

Trigonal 
 

-� =  -� = -� 1� = 1� = 1� ≠ 90° 
or: -� =  -� ,  -� 1� = 1� = 90°,    1� = 120° 

 
R 
 
 

P 

3, 3 , 32, 3!, 3 2! 

Hexagonal 
-� =  -� ,  -� 1� = 1� = 90°,    1� = 120° 

P 
6, 6  , CK  , 622 

6mm,  6 2!, CK �K �K 

Cubic 
-� =  -� = -� 1� = 1� = 1� = 90° 

P,  I,  F 
23,   

�K 3 ,   432 4 3!,  AK 3 �K 
 

 

 

TA5 Numbers in planar and spatial structures 

Structures Crystal systems Lattice types Point groups 
Plane/Space 

groups 

planar 4 5 10 17 

spatial 7 14 32 230 

 

 

TC1 Allowed rotations and their groups 

Group symbol Elements of groups 

(rotations in degrees) 
Generating elements 

(tensors) 

1 0 I  ( rt ) 

2 0, 180 2  ( �» ) 

3 0, 120, 240 3  ( J» ) 

4 0, 90, 180, 270 4  ( �» ) 

6 0, 60, 120, 180, 240, 300 6  ( �» ) 
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TC2a Tensors of generating elements of cyclic point groups 
  

  r̿ rt 	 =   ����  +   ����  . 
  �	 �	  =  − ���� −  ���� = −r̿ . 
  

J	 

J	 =  ���� £− 12 − √3¤
2 cos 1sinα ¦ +  ���� -�-�

√3¤
2 1sinα −  ���� -�-�

√3¤
2 1sinα

+  ���� £− 12 + √3¤
2 cos 1sinα ¦ 

  

�	 �	 = − ���� cos 1sinα +  ���� -�-�
1sinα −  ���� -�-�

1sinα +  ���� cos 1sinα  

  

�	 

�	 =  ���� £+ 12 − √3¤
2 cos 1sinα ¦ +  ���� -�-�

√3¤
2 1sinα −  ���� -�-�

√3¤
2 1sinα

+  ���� £+ 12 + √3¤
2 cos 1sinα ¦ 

 

TC2b r̿  =   ����  +   ����   �	  =  − ���� −  ���� = −rt 	 J	 =  ���� −  ���� −  ����   �	 =  ���� −  ���� �	 =  ���� +  ���� −  ���� 

 

TC3 Possible symmetry operations 

[�	, �] 
Restrictions on 

translation 

Name of 

operation 
Operations 

 

[r̿, t] t  =  0 identity closed proper 

[�	, t] no rotation  

[J	, t] no rotation  

[�	, t] no rotation  

[�	, t] no rotation  

[�	 , t] � − (� ∙ �)� = � reflection closed improper 

 

[�	 , t] � − (� ∙ �)� = ± ;�/2 glide reflection open operations 

[r̿, t] � = ��	  � lattice translation  
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TC4 Point groups and their elements 
 

Group 

symbols 
Group elements  

Generating 

elements 

1 e e 

2 e, 2 2 

3 8 , 3 , 3� 3 

4 8, 4 , 4� , 4� 4 

6 8 , 6 , 6� , 6� , 6A , 6B 6 

m e , m m 

2mm 8 , 2 , !³ , !´  2, m 

3m 8 , 3 , 3�, !9 , !C9 , !��9 3, m 

4mm 8 , 4 , 4� , 4� , !³ , !´ , !³´ , !´³ 4, m 

6mm 8 , 6 , 6� , 6� , 6A , 6B , !9 , !C9 , !��9 , !�9, !D9, !�B9  6, m 

 

 

 

  Table C9.2 

Group 

symbols 

Group 

number 
Black-white point groups 

1  has no subgroup 

2 1 �e, 2∗�                                    

m 2 @8, !∗E                                    
2mm 

3 

4 

78, 2, !#∗  , !µ∗ : ,  

 78, !# , 2∗ , !µ∗ : 

3  has no subgroup with index 2 

3m 5 @8, 3, 3�,   !9∗  , !C9∗ , !��9∗ E 

4 6 @8, 4�, 4∗, 4�∗E 

4mm 

7 

8 

9 

� 8, 4, 4�, 4�,  !#∗ ,  !µ∗  , !#µ∗ , !µ#∗U �   

� 8, 4�, !# , !µ ,   4∗,  4�∗, !#µ ∗ , !µ#∗ �   

� 8, 4�, !#µ  , !µ# ,   4∗,  4�∗, !# ∗ , !µ∗ � 

6 10 @8, 6�, 6A, 6∗, 6�∗, 6B∗E 

6mm 

11 

12 

13 

@8, 6,  6�, 6�, 6A, 6B, !9∗ , !�9∗ , !C9∗ , !D9∗ , !��9∗ , !�B9∗ E @8,  6�, 6A, !9, !C9, !��9, 6∗, 6�∗, 6B∗,   !�9∗ , !D9∗ , !�B9∗ E @8,  6�, 6A, !�9, !D9, !�B9,  6∗, 6�∗, 6B∗, !9∗ , !C9∗ , !��9∗ E. 
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TC5  Multiplication tables 

Group 2mm 

 e 2 !³ !´ 

e e 2 !³ !´ 

2 2 e !´ !³ !³ !³ !´ e 2 !´ !´ !³ 2 e 
 

Group  3m 

 e 3 32 m0 m60 m120 

e e 3 32 m0 m60 m120 

3 3 32 e m120 m0 m60 

32 32 e 3 m60 m120 m0 

m0 m0 m60 m120 e 3 32 

m60 m60 m120 m0 32 e 3 

m120 m120 m0 m60 3 32 e 
 

Group  4mm 

 e 4 42 43 mx mxy my myx 

e e 4 42 43 mx mxy my myx 

4 4 42 43 e myx mx mxy my 

42 42 43 e 4 my myx mx mxy 

43 43 e 4 42 mxy my myx mx 

mx mx mxy my myx e 4 42 43 

mxy mxy my myx mx 43 e 4 42 

my my myx mx mxy 42 43 e 4 

myx myx mx mxy my 4 42 43 e 

 

Group 6mm 

 e 6 62 63 64 65 m0 m30 m60 m90 m120 m150 

e e 6 62 63 64 65 m0 m30 m60 m90 m120 m150 

6 6 62 63 64 65 e m150 m0 m30 m60 m90 m120 

62 62 63 64 65 e 6 m120 m150 m0 m30 m60 m90 

63 63 64 65 e 6 62 m90 m120 m150 m0 m30 m60 

64 64 65 e 6 62 63 m60 m90 m120 m150 m0 m30 

65 65 e 6 62 63 64 m30 m60 m90 m120 m150 m0 

m0 m0 m30 m60 m90 m120 m150 e 6 62 63 64 65 

m30 m30 m60 m90 m120 m150 m0 65 e 6 62 63 64 

m60 m60 m90 m120 m150 m0 m30 64 65 e 6 62 63 

m90 m90 m120 m150 m0 m30 m60 63 64 65 e 6 62 

m120 m120 m150 m0 m30 m60 m90 62 63 64 65 e 6 

m150 m150 m0 m30 m60 m90 m120 6 62 63 64 65 e 



160 

 

Figures 
 

Single-chrome point groups  

 

 

 

 

 

 

 
 

Black-white point groups  

 

 

 
Označenie prvkov súmernosti 

zrkadlová priamka 

sklzná priamka 

dvojnásobná os 

trojnásobná os 

štvornásobná os 

šesťnásobná os 

6mm 2mm m 3m 4mm 

1 2 3 4 6 

12 11 13 

7 6 10 9 8 

1 2 3 4 5 
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Plane groups - placement of structural motif, positions of symmetry 

elements in unit cells and wallpaper pattern schemes 

 

 

 

Group 

symbol 

 

 

Structural motif in 

unit cell 

Arrangement of 

symmetry elements 

in the unit cell 

Scheme of the 

wallpaper patterns 

p1 

 
 

 
p2   

 
pm 

 
 

 
pg   

    
cm 

 

 

 

 
 

p2mm 
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p2mg 

  

 
p2gg 

  

 
c2mm 

  

 

p4 

  

 
p4mm 

 

  
 

    
p4gm 

 
 

 

 

p3 

  

 



163 

 

p3m1 

  

 
p31m 

  

 
p6 

  

    
p6mm 
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Designations used 

 

scalar quantities, coordinates �, �, X, �, R, S, V�, ±� 

vector quantities �, �, �, ��  

basis vectors of primitive cell  �� , �� , � 

basis vectors of centred cell  ;� , ;� , ; 

reciprocal vectors ��, ��, ;�, ;� 

tensors �	, �	  

symmetry operators 
�	 , �� 

group of operators  7�	 , �: 

plane groups �, �Ç,  
translation groups �, �¼ 

point groups 2mm,  m 

elements of point groups 2, m, 64, m60 

set of group elements 78, 2, !# , !µ: � @2!!E 

 

*) In the international tables (7), the symbols for groups are in plain, not bold, type. 

However, the same font is also used for the elements of the groups, which may lead 

to misunderstandings. Therefore, in this text, group symbols are in bold and their 

elements in regular type. For example, if the group is 2mm , its elements are: e, 2, mx, 

my . The set of all elements forming the group is written in parentheses: 78, 2, !# , !µ:. 
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