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The symmetry of two-dimensional periodic structures can be seen, for
example, on wallpaper, but it is of great importance in crystals, where atoms are
regularly arranged in parallel planes. The symmetry of naturally occurring crystals is
very diverse, but each crystal in terms of the symmetry of external shapes can be
included in one of the 32 types (32 crystal classes), represented by the point groups
of symmetry. However, the set of symmetry types of the arrangement of atoms, i.e.
the symmetry types of the crystal structure, is much more numerous. Each crystal
can be classified into one of 230 types, the so-called space groups of symmetry. A
group as a mathematical formation represents a set of elements, (with certain rules,
given in Appendix D29 on groups), which in the case of crystals and their structure
relate to the so-called symmetry operations. The elements of such groups are
rotations, reflections (mirrorings), inversions (each position vector r is transformed
into a vector —r) and displacements (translations), including their combinations.
Symmetry operations are performed by means of symmetry elements, which are
rotational axes, reflection planes (mirror planes), or the centre of symmetry.
Symmetry operations convert the crystal structure, resp. the whole crystal, to a
position which is physically and geometrically indistinguishable from the original
position. That is, physical and the geometrical properties of the crystal do not change
at any point of the reference system after such an operation.

The above number of space groups was established by E. S. Fedorov and A.
Schoenflies in 1891 after a more extensive mutual correspondence, in the character
of only constructive procedure. Consistently, using the theory of groups and matrices,
the space groups were derived by F. Seitz in the 1930 (a series of articles in the
magazine Zeitschrift fiir Kristallographie). Next, using tensors, the derivation was
modified by W. H. Zachariasen (published just after World War Il in a book Theory of
X-Ray Diffraction in Crystals).

The derivation of 230 space groups is very demanding in scope and content,
and so for pedagogical purposes it is more appropriate to document the exact
derivation procedure on two-dimensional planar groups of periodic structures, of
which there are only 17. And that is the content of the third part of this text (part C).
However, this procedure is also for the first contact with space or planar groups very
demanding. The geometric construction of possible types of lattices, point groups and
plane groups, is therefore more appropriate, and represents the content of the first
part of this text (part A). The periodic planar structures can be seen as imprinted
patterns on the cloth, but they are also characterized by the arrangement of atoms
that appears on a section of a perfect crystal, or on its surface below the electron
microscope, or after imaging under an atomic force microscope (AFM). The first part
of the text is processed on the basis of A. Fingerland's lecture from 1969 presented



at the Colloquium of Czech and Slovak crystallographers in Smolenice (Slovakia). It
was based on the original ideas of A. Bravais from the middle of the 19th century. To
understand the essence of the description of symmetry types the geometric
construction is completely sufficient, and can be extended to three-dimensional
periodic structures.

The third part of this text (part C) is significantly more demanding, it uses group
theory and expression of spatial transformations using matrix, or tensor apparatus. It
represents the remarkable fact, that it is possible to derive all of the 230 types of
symmetry only using simple mathematical principles and the assumption of strict
periodicity of the crystal structure. The second part (Part B) serves to better
understand part C, and provides information on how to describe symmetry
operations using matrices, or tensors. The shapes of matrices and tensors
representing rotations and reflections in various crystal systems are given, as well as
the method of their application to the transformation of the coordinates of points in
space.

Many authors have dealt with the theory of crystal symmetry. Sometimes, as
first, is mentioned Johann Kepler's paper on the snowflake from 1611, in which he
tried to explain the origin of its hexagonal shape, but also described the tightest
arrangement of spheres in plane and space. The constancy of the angles between
crystal faces was stated by Nicolas Steno in 1669, and the idea of the structure
periodicity in crystals was published by René Just Haly in 1784. The symmetry of
external shapes - its 32 types —was described in 1830 by J. F. Ch. Hessel, and 14 lattice
types by A. Bravais in 1848. The search for symmetry types was completed in 1891 by
E. S. Fyodorov and A. Schoenflies, who derived 230 symmetry types of crystal
structures. The reader can learn more about this search in the book Symmetry of
crystals [23].



Part A
Geometric construction of plane symmetry types

Al Basic terms used in crystal structure description

Due to the periodicity of the crystal structure, a set of points can be found,
called lattice points, which are characterized by the same neighbourhood. In a two-
dimensional example (Fig. A1) such a set of equivalent points can be represented by
intersections of mutually perpendicular lines. In the crystal structure we can select
various sets of points with the same surrounding, periodically distributed in space —
more numerous and less numerous sets. The most numerous of them (in other words,
with the largest number of points per unit volume) forms a space lattice, in
connection with crystals, called a crystal lattice. For two-dimensional formations it is
a plane lattice.

When constructing the space lattice of the given structure, it can be assumed
from any point in space, the resulting lattice will always be the same, but somewhat
shifted. The figure shows two starting points in a planar lattice — point A and point B.
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The periodicity of the structure makes it possible to divide the building
particles of the crystal (atoms, ions) so that the same group of particles, called a
structural motif, is assigned to each lattice point (Figure Alb). When selecting a
structural motif, it is useful to consider the chemical composition of the substance so
that the structural motif consists of, for example, a complete molecule.

The crystal lattice is described by a triplet of non-coplanar vectors a, ,a, , as (in
the plane only pairs) called basis vectors, forming the so-called vector basis. Their
integer linear combinations form a set of lattice vectors A;:

AL = L1a1 + Lzaz + L3a3, (All)

whose endpoints form the space lattice of the crystal (L; are integers). The set of all
lattice vectors forms the translation group of the crystal.



With the help of a trio of basis vectors, a lattice is created unambiguously. At
however, the choice of basis vectors is not unambiguous for a previously known
lattice. The figure A2a shows a selection of several pairs, whose integral linear
combination creates the same planar lattice. There were therefore accepted certain
conditions for the choose of three vectors, originating from the XIX. century by A.
Bravais [1].
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These conditions require that the symmetry of the parallelepiped formed by the triple
of vectors corresponds to the symmetry of the lattice, the number of right angles
between the vectors of the triple is maximal and the volume of the parallelepiped is
minimal, i.e., that the vectors of the triple are as short as possible.

The triple thus chosen forms the triple of basis vectors of the lattice and the
corresponding parallelogram forms the unit cell. Successive translations (without
rotations) of the unit cell by all lattice vectors fill the entire volume of the crystal
without residue. The sizes of the basis vectors and the angles between them are lattice
parameters.

A line passing through at least two lattice points is a lattice line. The direction
of a lattice line with respect to a triplet of basis vectors is expressed by the coordinates
of the shortest lattice vector that is parallel to the line. The coordinates are put in
square brackets, e.g. [131], and the fact that the coordinate is negative is expressed
by a minus sign over the coordinate. In planar structures, only two coordinates are
used, of course. The directions of reflection lines in a planar structure may also be
denoted in this way, when the symbol m representing the reflection line to indicate
the direction of the reflection line, e.g. m34;. Other, abbreviated designations are also
used in this text, e.g. m, when the reflection line is parallel to the x-axis, or m; when
it is parallel to the vector a,. Given the periodicity of the crystal structure, each lattice
line is associated with a set of lattice lines parallel to it that pass through the individual
lattice points of the crystal, leaving none of them out. Such a set forms the set of the
lattice lines.

The reciprocal lattice of a crystal is of great importance in the description of the
crystal structure, especially in diffraction methods for its determination. It is obtained



by integral linear combinations of a triplet of reciprocal vectors, a®, a?, a®> which
with respect to a triplet of basis vectors a, , a, , a; is defined by scalar products:

a-a = & (i,j = 1,2,3), (A1.2)
where o;;=0if i#j,and §;=11if i=].

These relations imply that the vectors a;, a? and similarly a,, a' are perpendicular
to each other. In doing so, vectors with the same indices, e.g. a, and a? need not be
parallel. It is true a,  a? = a, a?cosa = 1, so if they are parallel (cos 0° = 1),
then the product of their magnitudes equals unity. This is where the name reciprocal
vectors comes from, because they have inverse (reciprocal) magnitudes to each other.
We do not give further details about reciprocal vectors because they are not needed
for planar periodic structures. Figure A2b shows a pair of basis vectors and a pair of
corresponding reciprocal vectors in dashed lines. The basis and reciprocal vectors are
used to express tensors representing symmetry operations, so their introduction is
important.

A2 Lattices of planar periodic structures

A planar lattice is characterized by two non-collinear vectors a; , a, - their sizes
and the angle between them, but also by the unit cell formed by these vectors. Since
the same planar lattice can be formed by integral linear combinations of different pairs
of vectors, for the sake of clarity, the vectors a, and a, should also be chosen in
accordance with the Bravais conditions as follows:

the symmetry of the unit cell must be identical to the symmetry of the
lattice

a right angle between the basis vectors is to be preferred

the areal content of the unit cell must be minimal.

The unit cells, as well as the lattices formed by different pairs of basis vectors,
differ from each other in their symmetry. By symmetry in this case, we mean the
existence of a set of geometric transformations — symmetry operations — by which the
lattice identifies with itself — gets to an equivalent position. The symmetry of a plane
lattice is represented by a set of lattice translations, rotational axes - perpendicular to
the plane of the lattice, and reflection lines lying in this plane. Unlike translations,
reflection and rotation operations do not change the position of at least one point on
the lattice, so these operations are called point symmetry operations, and this kind of



symmetry point symmetry. The set of these operations mathematically forms a group,
called a point group ( -~ Appendix D29).

The third Bravais condition can be satisfied by choosing the two shortest lattice
vectors. Bravais described his procedure as follows:

In a planar lattice, we choose an arbitrary lattice point O, and among the other
lattice points we search for the one closest to it. Let A be that point, then OA is the
smallest lattice parameter. Through the points O and A we draw lines Op and Am
perpendicular to the line OA, and in the bounded space pOAm we find the next closest
lattice point B.

Therefore, we proceed as follows: let vector a,; (Fig. A3) be the shortest lattice
vector of a given planar lattice. Both the direction and the magnitude of the second
shortest vector depend on the lattice type. For example, in a square lattice, we choose
the second shortest vector perpendicular to the first one, with both having the same
length. To find the second shortest vector in different types of lattices, we will refer to
Figure A3. We will show that it suffices to restrict ourselves to the cases where the
endpoint of the second shortest vector lies within the hatched region, including its
boundaries.

P c
k
A Diagram for determining
0 a, the types of planar
lattices
— Fig. A3

Also, if we plot the vector a, from the point O, its endpoint cannot lie inside the circle
bounded by the circle k, because it would be shorter than a,. Nor can it lie to the
right of the line ¢ (the line passes through the centre of the vector a,), because it
would be closer to point A from there than to point O. Nor will we take into account
the endpoints lying to the left of the line p, because the lattice which would thus be
formed would be merely the mirror image of the lattices which are formed when the
endpoint lies to the right of the line p. It would be essentially a top or bottom view of
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the same lattice. For the same reason, there is no need to consider the endpoints
below the OA line. This leaves only options a) to f), described in detail in the following.

a) The end point of the vector lies inside the hatched region, but not on its
boundaries. A oblique lattice is then formed, where the sizes of the basis vectors are
not equal and the vectors do not take a special angle (meaning angles of 90°, 60°, or
120°, respectively). The unit cell is in the shape of a parallelogram (Fig. Ad4a.). Both the
cell and the lattice are characterized by twofold axes of symmetry perpendicular to
the plane of the lattice; the reflection lines are absent. The twofold axes of symmetry
pass through the centre of the unit cell, its vertices, and the centres of the basis
vectors, and are thus distributed throughout the lattice. When rotated 360° about the
twofold axis, the lattice is twice brought to the equivalent position — identifies itself
with itself, hence such a symmetry operation is denoted by the symbol 2. The
corresponding point group of the symmetry of the lattice is denoted by the symbol 2
and has two elements {e, 2}, where symbol e represents the identity (rotation by 0°
and 360°, respectively) and symbol 2 the 180° rotation.

177 0
I L

a

case a) case b) Fig. A4

b) The end point of the vector a, lies on the semi-line p, but not at the point
Q. An orthogonal lattice is then formed, the unit cell being orthogonal (Fig. A4b.).
Both the lattice and the unit cell are characterized by twofold axes of symmetry and
two sets of reflection lines perpendicular to each other. The reflection lines are parallel
to the basis vectors and are both identical to the sides of the unit cell and pass through
the centres of the sides, perpendicular to them. A symmetry of this type is described
by a point group 2mm, which contains the following elements (i.e., symmetry
operations): {e, 2, M0, m[01]}, where mqqy, (resp. mpyq)) represents the reflection in
a line perpendicular to the basis vector a; (resp. a,). In square brackets next to the
symbol m are the coordinates of the vector perpendicular to the reflection line,
expressed in the vector system a,, a, .

11



¢) The end point of the second shortest lattice vector lies on the semi-line ¢, but
not at the point H. The lattice thus formed has twofold axes of symmetry and two sets
of reflection lines perpendicular to each other. It has the same point symmetry as the
lattice in the previous case (described by the 2mm group), but the unit cell formed
from the vectors a, , a, has only double axes of symmetry,
it has no reflection lines (Fig. A5.). Therefore, in accordance with the Bravais
conditions, new basis vectors b; , b, (drawn in dashed lines) are chosen which are
perpendicular to each other and form a unit cell with the same symmetry as the lattice,
which is orthogonal. The two sets of reflection lines are parallel to the vectors b, , b,
respectively. However, a unit cell formed from these vectors also has a lattice point in
the middle of its area and is therefore called centred cell. The unit cell formed from
vectors a, , a, is called primitive and has lattice points only at its vertices. If a centred
cell exists in the lattice, the lattice is also called centred.

d) The endpoint of the vector a, lies on the circle between Q and H, but not
at these points. The vectors a; , a, then have the same magnitude, forming a rhombic
cell. Both the lattice and the cell are characterized by twofold axes of symmetry and
two mutually perpendicular sets of reflection lines, but this time parallel to the
diagonals of the rhombus. This lattice represents the same type of symmetry as in case
c , is orthogonal. It has the symmetry described by the 2mm group, and again new
basis vectors b, ,b, can be chosen to form an orthogonal centred unit cell. The
reflection lines are parallel to the diagonals of the rhombus formed from the vectors
a, ,a,, not to its sides.

[ AT 717
V7 &7

case c) case d) Fig. A5

e) The end point of the vector a, is identical to the point Q . Both the lattice
and the unit cell have the symmetry of a square, i.e., fourfold axes of symmetry and
four sets of reflection lines (two parallel to the sides of the square and two parallel to
the diagonals of the square). The lattice is called square. Such a symmetry is described
by a point group denoted 4mm , which has the following elements: {e, 4,
42 43 M{10], M[01], M[11], m[ﬁ]},, where m;) and mpq,) represent the reflection lines
that are parallel to the basis vectors a, , a,, respectively, i.e., the sides of the unit cell,

12



and mpy4) and myyq; in lines that are parallel to the diagonals of the unit cell. The
symbols 4, 42,43 represent "powers" of 90° rotations, e.g. 4% represents a 270°
rotation.

f) The end point of the vector a, is the point H. The lattice has sixfold axes of
symmetry and six sets of reflection lines, successively rotated by 30°. The lattice is
called hexagonal.

case e) case

Such a symmetry is described by a point group 6mm, where the group contains
the following elements:
{e, 6,62,63, 6% 6°, my, msg, Mgy, Moy, M120, Mys0}- The numeric indices next to the
symbol m represent the angle, expressed in degrees, that the reflection line makes
with the basis vector a;.

There are 5 types of planar lattices in total (lattices ¢ and d are of the same
type). They are summarised in Table TA1. The five lattice types are characterized by
only four types of point symmetry. The point symmetry of a lattice determines its
membership in one of the four planar crystal systems listed in the table. In the
rectangular system, two types of unit cells are distinguished, namely primitive
(denoted by p) and centred (denoted by c). In the other systems there are only
primitive cells. The five types of planar lattices represent the 5 types of planar
translational symmetry, i.e., the 5 types of planar translation groups.

Tab. TA1 Plane lattices, crystal systems and point groups

Lattice Crystal system | Cell type Basis vectors Point groups
a) oblique p a, # a,, a + 90° 2
b) rectangular p
a, # a,, a = 90° 2mm
c), d) c
e) square p a, = a,, a = 90° 4mm
f) hexagonal p a, = a,, a = 120° 6mm

13



A3 Point groups of planar periodic structures

In the previous section, the symmetries of planar lattices were described. They
are characterized by four types of point groups, called holohedral (from Greek =
complete). In a planar periodic structure repeats a structural motif that is the same at
each of its lattice points. Also the structural motif has its own point symmetry, which
can be higher or lower than the point symmetry of the lattice. Therefore, the point
symmetry of a planar periodic structure can also be the same as the symmetry of the
lattice, it can also be lower, but not higher. That is, a planar periodic structure can have
the same symmetry operations as a lattice, but with less symmetric structural motif
the number of them may be smaller. Therefore, a planar periodic structure has a point
group identical to point group of lattice, or it is a subgroup of the lattice point group.
The four holohedral point groups together with their subgroups form the set of 10
point groups of planar periodic structures. The lattices of planar periodic structures
and their point groups are listed in Table TA1, the point groups and their subgroups in
the following text and in Table TA2.

The group 2mm has four elements: 2mm = {e, 2, m;q, Mjo1}}, Where e
represents the identity, 2 the 180° rotation about the twofold axis of symmetry, m,
the reflection in a line perpendicular to the basis vector @; and m,q; the reflection in
a line perpendicular to the basis vector a, . The numbers in square brackets (indices)
next to the symbols m represent the coordinates of the vector perpendicular to the
reflection lines in the system of basis vectors a;, a, . The subgroups of the group
2mm are the sets of operations

{e, 2}, designation of this group: 2,
{e,m[lo]}, designation of this group: m,
{e,m[m]}, designation of this group: m,

unless we also consider the trivial subgroups 1 = {e} and 2mm. The subgroup {e,2} is
denoted by the symbol 2, the other two by the common symbol m, because they
represent the same type of symmetry, differing only in the numbering of the basis
vectors, which one is considered as a; and which one as a,. If an orthogonal lattice
has a symmetry of 2Zmm, then a planar structure with such a lattice together with a
structure motif may have a symmetry described by the point groups 1,2, m, 2Zmm.
Point groups 1 and 2 also occur in the oblique system, they are characteristic of it, so
they are included in the oblique system. Only the m, and 2mm point groups are
included in the rectangular system.
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The group 4mm = {e, 4,4%,4°, my;q), M{g1), M(11], M(17)} expresses the point
symmetry of the square lattice (the symbol m,,) represents the reflection in the line
dividing the angle between the vectors a,,a,, the symbol mp1; in the line
perpendicular to the former). It has the following 8 non-trivial subgroups:

{e, 4%} = {e, 2}, group label: 2,
(where 42 = 2, because a double 90° rotation is a 180° rotation),
{e, 4,472,643}, group label: 4,
{ e, m[10]}» { e m[01]}»{ €, m[ll]}, { e, m[ﬁ]}, common labeling of groups: m,

{e,42, mj10), mjoy)}, {e,4% mp11), mp} common labelling of groups: 2mm .

Of these groups, all but the group {e, 4, 42, 43} are typical of the rectangular system in
their nature, so only the groups 4 = {e, 4, 42, 43} and 4mm are included in the square
system

The group 6mm = {e, 6,62 63 6% 6° my,msy, Mgy, Moy , M120, M50}
expresses the point symmetry of the hexagonal lattice. The notation mg, denotes
reflection in a straight line making an angle of 60° with the basis vector a;. It has the
following non-trivial subgroups:

{e, 63} = {e, 2}, group label: 2,

{e, 62,6%} = {e, 3,32}, group label: 3,

{e, 6,67, 63,6%6°}, group label: 6,

{e,mg},{e, ms,}, etc., common label of groups: m,

{e,6%,6% my,mgy , M0} {e, 62 6% msy, Mgy, Mys50}, common label: 3m .

Only the 3,3m, 6, 6mm groups are included in the hexagonal system.

TA2 Affiliation of point groups to the crystal systems

Crystal system Poi.nt groups Lattice poi.nt group
belonging to system (holohedric group)
oblique 1,2 2
rectangular m,2mm 2mm
square 4,4mm 4mm
hexagonal 3,3m,6,6mm 6mm

According to the point group the belonging of the planar structure to the crystal
system is judged. If the lattice has a symmetry higher than required by the crystal
system to which the structure belongs, it is said to be pseudo-symmetric. For example,

15



a lattice may have square symmetry, but the structural motif reduces the symmetry
to orthogonal The point groups listed in the last column of the table characterize the
symmetry of the lattices belonging to a given crystal system and are called holohedral
groups.

A4 Plane groups

Plane symmetry represents the periodic distribution of symmetry elements
(rotation axes, reflection planes) throughout the plane, the same in each unit cell.
Meanwhile, each planar periodic structure is characterized by one of five types of
translational symmetry and one of ten types of point symmetry. Combinations of
translation groups with point groups give rise to plane groups, but they cannot be
combined arbitrarily. For example, the translation group of a hexagonal lattice does
not combine with a 4mm point group. Combinations are only possible within a single
crystal system; they are listed in table TA3. The numbers of the plane groups that were
formed by direct combination (there are twelve of them) are marked in bold in the
table.

TA3 Plane groups

Group Type of unit  Point Symbol of plane group
|
number Crystal system cell group full abbreviated
1 ) 1 pl pl
oblique p
2 2 p211 p2
3 pilml pm
4 P m plgl pg
5 c clmil cm
6 rectangular p2mm pmm
7 p 2mm p2mg pmg
8 p2gg pPgg
9 c c2mm cmm
10 4 pa p4
11 square p padmm pdm
4mm
12 pagm pag
13 3 p3 p3
14 p3ml p3ml
3m
15 hexagonal p p31lm p31lm
16 6 p6 p6
17 6mm pébmm pébm
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The twelve types do not exhaust the symmetry of planar structures. The
structural motif, but also the lattice itself, in some cases induces a special element of
symmetry in the structure — a glide line. The corresponding operation — glide
reflection — consists of a reflection in the glide line and a subsequent translation
parallel to the glide line. The translational part of this operation does not belong to the
translation group, because the magnitude of the displacement (translation) is equal to
half the length of the shortest lattice vector parallel to the glide line; therefore, on its
own, it cannot represent a symmetry operation. The glide reflection does not belong
to the point group either, because it contains the translation — it is a specific element
of the plane group. Figure A7 shows part of a planar structure with glide lines.

N N N
A I = =
N RS X
¢ = = >
T N N
8 = = = Fig. A7

The structural motif is indicated by an ellipse, the glide lines are dashed and labelled
with g , the unit cell is highlighted in grey. Just by reflection in the glide line, the
structural motif does not get to the congruent position, it still has to move by half of
the lattice parameter along the glide line. Glide reflections are part of the four types
of symmetry of planar structures, denoted in Table TA3 by serial numbers 4, 7, 8 and
12.

In the oblique system, glide lines do not occur because there are no reflection
lines.

In the rectangular system, if the lattice is primitive, glide lines can arise by
transformation from reflection lines due to the influence of a structural motif (as seen
in Figure A7), so that in addition to the pm and p2mm groups, the pg, p2mg, and
p2gg groups also belong to this crystal system. If the lattice is centred, glide lines occur
in it even without the influence of the structural motif. Their presence in the structure
therefore does not represent a new type of symmetry, so that, for example, the c2gg
type does not appear in Table TA3 because it is identical to the p2gg type.

In the square system, the properties of an orthogonal lattice (orthogonal unit
cell) meet those of a lattice whose unit cell is rhombic (at point Q in Figure A3). Both
have a point symmetry described by a 2Zmm group, but differ in the orientation of the
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reflection lines. In the orthogonal lattice, the reflection lines are parallel to the sides
of the unit cell; in the rhombic lattice, the reflection lines are parallel to the sides of
the rhombic cell (Fig. A8.). Therefore, for a rhombic lattice, the typical glide lines are
parallel to the diagonals, which then also occur in a square lattice. Therefore, the
presence of such glide lines in the square structure does not represent a new type of
symmetry. However, a new type can be created by a structural motif that turns the
reflection lines parallel to the sides of the square unit cell into glide lines.

In the 4mm symbol, the first m refers to systems of reflection lines parallel to the
sides of the square, the second m to systems parallel to its diagonals. Therefore, in
addition to the symmetry type pAmm , the type p4gm can occur as a separate type in
the square system, but not the types p4mg and p4gg .

Y
—

Fig. A8

In the hexagonal system, there are no symmetry types in which the presence
of glide lines is induced by a structural motif. Also in the hexagonal lattice, the
symmetries of two types of lattices - orthogonal centred and rhombic (at point H in
Figure A3) — meet. In the orthogonal centred lattice, there are glide lines parallel to
both basis vectors, but in the rhombic centred lattice parallel to the diagonals of the
rhombus. Therefore, in the hexagonal lattice, their presence does not represent a new
type of symmetry.

Particular mention should be made of the plane groups denoted by numbers
14 and 15, which differ in the orientation of the structural motif with trigonal
symmetry with respect to the basis vectors of the hexagonal lattice. Therefore, the
reflection and glide lines are oriented differently in these groups.

A graphical representation of the 17 types of plane groups is given in the figure part of
this book.

A5 Symmetries of three-dimensional periodic structures

When searching for different types of space lattices differing from each other
by their symmetry, it is possible to start from the known five types of planar lattices
and proceed by analogy, i.e. search for the third shortest lattice vector. By such a
procedure it can be found that there are 14 types of space lattices (so-called Bravais
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lattices), characterized by 14 types of translation groups, which on the basis of their
point symmetry are classified into 7 crystal systems. Their point symmetry is
characterized by 7 so-called holohedral (i.e. complete) groups, which together with
their subgroups form a set of 32 point groups of three-dimensional periodic structures.

Structures whose structural motif has symmetry lower than the lattice or is
inappropriately oriented with respect to the lattice have symmetry lower than the
holohedral symmetry. These 32 point groups characterize the point symmetry of
crystals belonging to one of the 32 crystal classes. They determine the macroscopic
symmetry - the symmetry of the external shapes of well-developed crystals, but also
the symmetry of the physical properties of the crystals, which is manifested by their

anisotropy.

TA4 Lattices and point groups of three-dimensional structures

Crystal system

Triclinic

Monoclinic

Orthorombic

Tetragonal

Trigonal

Hexagonal

Cubic

Lattice parameters

a, dz, as
a,, @, as
a,, a,, as

a; = a3 =90° a,

al,az,a3
a1:a2:a3:900

a1: az,a3
a1=a2=a3=900

a1: a2:a3
a1=a2=a3¢900

a1 == az ) a3
a, = ap = 900,

s = 120°

a1 = az ) a3
a, = a, = 900,

ay = 120°

a1= a2=a3
a1:a2:a3:900
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Types of
lattices

P

p
(C11C3ll)

P, I F
(C1, G, G)

P, 1

Point groups

1,1

2
2,m,—
m

222
222, mm2,———
mmm

- 4
4,4,— ,422
m

_ 4 2 2
4dmm,42m,———
mmm



Table TA4 shows the distribution of lattice types and point groups into crystal
systems. The membership of a crystal in a crystal system is determined on the basis of
its point symmetry, i.e., its point group. The relations between lattice parameters in
individual crystal systems (system metrics) are also given in the table. In the last
column are the symbols of the point groups, while the last in the row is the symbol of
the holohedral group, expressing the symmetry of the lattice belonging to the
corresponding crystal system.

The table uses the unabbreviated international symbols to denote the point
groups. For example, the symbol 1 represents the inversion, 4 the fourfold inverse axis

(rotation combined with inversion), — the sixfold axis with the plane of symmetry

perpendicular to it, 3m the threefold axis lying in the reflection plane. The symbols in
the point group labels also have a specified order. For example, in the cubic system, if
a symbol consists of three symbols in a row, the first refers to an edge of the cube, the
second to a solid, and the third to a wall diagonal. When denoting the angle between
two basis vectors, the index of the third one is used. The symbol P represents primitive
unit cell, / body centred and F face centred unit cell. When several such symbols are
given in parentheses, it means that the corresponding lattice types are equivalent,
differing only in the choice of basis vectors. The index (e.g. C; , C,) is assigned
according to which of the faces of the unit cell is centred, the same rule for assigning
the index as for angles between basis vectors.

The structure of each crystal has a certain translational and point symmetry.
Their different combinations, together with the presence of different types of glide
planes and screw axes, produce 230 types of symmetry of three-dimensional periodic
structures, 230 space groups. Their detailed description is given in the international
tables [7].

In the following Table TA5 the numbers characterizing the multiplicity of
symmetry types of two- and three-dimensional periodic structures are given.

TA5 Number of groups in planar and space structures

Periodic Crystal Lattice types  Point groups Plane/Space
structures systems groups
Two 4 5 10 17
dimensional
Three 7 14 32 230
dimensional
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Part B

Representation of symmetry operations by matrices and tensors

The representation of symmetry operations by matrices (tensors) is understood
as such an assignment of a matrix (tensor) to each symmetry operation, which ensures
that the result of the successive application of two symmetry operations corresponds
to the matrix (tensor) that results from the product of the respective assigned matrices
(tensors). The set of symmetry operations in each crystal class forms a group, and,
crucially from a representational point of view, the corresponding matrices or tensors
also form a group in terms of the multiplication defined between the matrices or
tensors, respectively. In other words — if an element g of the group G of symmetry
operations is assigned the matrix M, , and an element h the matrix M, , then the
product gh of these two elements (i.e. their successive application) is assigned the
matrix that results from the product of the respective matrices MyM,. The mutually
unambiguous assignment of matrices (tensors) to symmetry operations thus gives rise
to an isomorphic group of matrices (tensors). The matrices, or tensors, are then
understood as operators by means of which the positions of points in space, i.e. their
spatial coordinates, are transformed (changed) by appropriate mathematical rules.

Bl Representation by matrices

In order to write about the representation of
symmetry operations by matrices, it is first necessary to A°
clarify the notion of matrix in the context of spatial SRR
transformation of objects. In spatial transformations, i
such as symmetry operations, individual points of the \
transformed object are moved to new positions. By }

relocating a point, its original x,y,z coordinates in the ,

external coordinate system are changedto x’,y’,z". For
example, moving a point by x, in the x-axis direction,
changes its coordinates to

!

x'=x4+x,, y =y, z'=2z.

If it is a rotation of the body by a certain angle, then such relationships are more
complicated. Consider the case of a rotation of a point A in the plane by an angle ¢
counter-clockwise about an axis perpendicular to this plane and passing through the
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origin of the coordinate system (Fig. B1). Let point A have coordinates x, y and hence

a distance from the origin of the coordinate system r = m; after rotation to
point A" it will take on the coordinates x’,y’, the relations being valid:
X =rcosa y = rsina
x' =rcos(a + @) y' = rsin(a + @)

or after modification:

x' =rcos(ad+ @) =rcosa cosep — rsina sing =xcos@ - ysing
y' =rsin(a+ @) =rsina cosp + rcosa sing =ycosg + xsing

and after appropriate reordering of members:

x'=xcos@—ysing
y' =xsing + ycos¢g . (B1.1)

This result is written symbolically in the form:

! cos —sin x

()= (g “eoss )G (312
in which there are two column matrices representing the positions of points (also
understood as position vectors) and one square matrix representing the
transformation of the point position. Only the rotation angle ¢ appears in the
transformation matrix, but neither the angle a of the original position of the point nor
its distance r from the origin of the coordinate system appear in it. Therefore, such a
matrix is suitable for calculating the change in coordinates of any point in the plane as
it is rotated about the origin of the coordinate system.

The product of the square transformation matrix with the column matrix is
indicated on the right-hand side of equation (B1.2), and rules are introduced for their
product such that the product returns to the original transformation equations (B1.1).
We will state these rules for the case of a square matrix of size 2 X 2, i.e., a matrix of
second degree:

(a11 a12) ’ (B1.3)

Az1 Az
where in the symbol a;; the first index represents the row number in the matrix, the
second the column number. Similarly, using the indices denoting the rows, the
coordinates in the column matrices are also expressed, where instead of the symbols
x and y we use the symbols x; and x, :

Gy ().
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In this notation of both square and column matrices, their product is expressed in the

()= a6 -

and rules of their product as follows:

form:

I I
X1 = Q11X T Q12X Xy = Ap1X1 + AxpX3, (B1.5)
or more generally:

a;i X; . (B1.6)

[
X = ijj

2
j=1

The matrix from equation (B1.2) will be used to determine the shape of the
matrices representing the symmetry operations appearing in all the point groups listed
in Section A. These are the rotations by 60°, 90° and their multiplicities, the reflections
in different lines, as well as the inversion, which is, however, identical to the rotation
by 180° in planar structures. Each of the ten point groups contains a so-called neutral
element — identity (denoted by the letter e), when the position of the points of the
object does not change, i.e. when it is a rotation by 0° (respectively by 360°), where
cos 0 =1 and sin 0 = 0; the neutral element thus corresponds to the so-called unit
matrix

cos@ —sing 1 0)_
(sin<p COS(p)—>(O 1)_8' (B1.7)

In each of the four planar crystal systems there is a holohedral point group, the
other point groups belonging to this system being subgroups of it. This also applies to
the corresponding matrices. It is therefore sufficient to give the form of the
transformation matrices representing the symmetry operations belonging to the
holohedral group of the respective system.

In the oblique system, the holohedral group is the group with label 2, which
contains only two elements: {e, 2}, i.e. the identity and the rotation by 180° (= Ttrad).
For this angle the relations: sin TT= 0, cos Tt = -1 hold, so these two operations are

represented by matrices:
(1 0 (-1 0
e=(0 1), 2=(O _1). (B1.8)

We will see that the matrix representing the element with symbol 2 will rotate every
position vector to the opposite one if we use the rules of B1.5:

(_01 _01) (2) - (:2) (B1.9)

This means that a rotation in the plane by 180° is also an inversion.
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In the rectangular system (symmetry of a rectangle), it is a group of 2mm that
contains the following elements (symmetry operations): {e, 2, M), m[01]}, where the
symbol mq4; represents the reflection in a line perpendicular to the basis vector a,
and the symbol myq; the reflection in a line perpendicular to the vector a,. The
matrices representing the elements of this group have the form:

(3 9 2= 0 ma= (D men= () %) @

The correctness of the above form of the matrices representing the reflection can be
verified by using the rules of B1.5, by applying these matrices to a vector with
coordinates (a, b):

-1 0 ay _(—a 1 0y /ay_(a
G DG=0) ( 2)G)=()
from which, as well as from figure B2, it can be seen that the first of the matrices has
changed to the opposite first coordinate of the vector, so that it is a reflection in the
y-axis (the vertical axis, perpendicular to the vector a, ), the second of the matrices the

second coordinate, so that it is a reflection in the x-axis (the axis perpendicular to the
vector a,).

<
<

az ,

a, Fig. B2 X

v

In the square system, the holohedral group is the 4mm group containing eight
elements: {e, 4, 42,4%,m10, M1}, M[11], Mp17y)- The symbols mpy; and mpq
represent reflections in the diagonals of the square unit cell. The matrices representing
the elements of this group have the form:

(09 a0 ) w0 we(h

Mmiio) = (_01 (1)); Mio1] = ((1) _01)' mpiq) = (_01 _01), mp1= ((1) (1))
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The hexagonal holohedral point group of 6mm, describing the symmetry of a
hexagon, has the largest number of elements:
{e, 6,62%,63,6% 6, my, m3g, Mgy, Moy, M120, M50}, Where the indices at the symbols
m express the angle formed by the reflection line with the basis vector a; and the
symbols 6,62,63 . . . represent rotations by 60°, 120°, 180° . . ... The corresponding
matrices have the form:

1 V3 1 3
_(1 0 - 2 2 2 _a_ 2 2 3_,_(—1 0
e=(, 1), 6= R A - =2=(, )
2 2 2 2
1 3 1 3 1 V3
6% =32= 2 2 ' 65= 2 2 m 1 0 Mag= 2 2
V3 1 V3 1 0 (0 —1) V31
2 2 2 2 2 2
1 V3 1 V3 1 V3
|72 2 _(—1 o) 2 2| . _| 2 2
60~ \/g 1 ’ 90 0 1)’ 120~ \/§ 1 ) 150= \/§ 1
2 2/ 2 2 / 2 2/

(B1.12)

In the matrices representing symmetry operations of the oblique, rectangular

and square systems, only integers (0, 1, -1) are located; in the hexagonal system,
fractions and even irrational numbers are situated. This is a consequence of the use of
the Cartesian coordinate system, whose coordinate axes take the angle 90°, although
the basis vectors a; and a,, and hence the axes of the so-called natural hexagonal
coordinate system, take the angle 120°. When using the natural coordinate system,
even in the hexagonal system, only integers are in the transformation matrices. For
example, rotating the hexagonal basis vector a, by 60° produces a vector (dashed in
Figure B3) that in the Cartesian system (left part of the figure) is projected onto the x-
axis at half its magnitude, so that it has a coordinate of 1/2, but its y-coordinate has a

[45) 4

~

X1

a

w-----
S
/\

Fig. B3
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value of v/3/2, which is then reflected in the transformation matrix. If, however,
turning is considered in terms of the natural coordinate system (right part of the
figure), the projection of the rotated vector in both directions determined by the pair
of basis vectors is evaluated by coordinates of magnitude 1. Therefore, even in a
transformation matrix expressed in the natural coordinate system, only integers stand
out. The transformation matrix of a rotation by 60° then has the form

6= (1 ‘01) , (B1.13)

and its effect on the vectors a;and a, will be verified. In the natural system, these
vectors are written as column matrices: ((1)) and ((1)) , SO we write their

transformations as products:

G 0)=0 G D=0
The result shows that rotating the vector a, by 60° counter-clockwise produces

a vector equal to the sum of a; + a,, and rotating the vector a, becomes the vector
_al .

Having given matrices representing the symmetry operations of all four
holohedral plane point groups, we can show that the matrices, like the symmetry
operations, form a group. This group is isomorphic to the group of symmetry
operations of the corresponding crystal class. The set of corresponding matrices forms
a group in terms of their multiplication with each other, which, however, needs to be
defined. By definition, the product of two square matrices A and B, whose elements
we denote by the symbols a;;, and b;; respectively, gives rise to a new square matrix
C, whose elements ¢;; are calculated according to the relation:

n
Cij = Zkaikbkj . (B114)

In two-dimensional space the addition index k takes only the values 1, 2.

We give an example from the square system, namely the successive application
of the rotations by 90° and 180° (- B1.11), which together represent the rotation by
270°: 4 (4% = 43, The product of the matrices representing the rotations about 90° and
180° will indeed give the matrix representing the rotation about 270°:

0 -1 -1 0y _ (0 1

(1 0)'( 0 —1)_(—1 0)’
which can be verified by using relation (B1.14). Of course, this is also true for other
combinations of symmetry operations within a single crystal class. For the set of
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matrices representing the symmetry operations of a crystal class to form a group, it
must satisfy four conditions.

The product of such two matrices gives a matrix that belongs to this group. This
satisfies the closedness condition of the set forming the group.

It can be further verified that the associative law holds for the product of matrices,
which the reader can verify for himself. This satisfies the second of the conditions.

Each of the above matrix clusters contains a unit matrix ((1) (1)), characterized by the

fact that the product with another matrix does not change it. For example:

1 0 -1 0y_ (-1 0
(o 1) (o 1)_ (o 1)
The last condition, is the existence of an inverse element for each of the elements of
the group, i.e. in this case the inverse matrix. Here we give an example from the square
system, where, say, the inverse element to a rotation by 90° (the element denoted by
the symbol 4) is a rotation by 270° (the element denoted by the symbol 43), because

their successive application is a rotation by 360°, i.e., a rotation to a position as
without rotation. Expressed using the appropriate matrices:

0 -1 0 1, _/1 O
(1 0) (—1 0)_(0 1)'
This verified all four conditions for the set of matrices representing the
symmetry operations to form a group.

An important characteristic of the transformation matrix is its determinant D.
a;; Agp

is calculated using the
azq azz) g

It is a number which, in the case of the matrix (

formula

D = allazz - a12a21 . (B115)

On the above matrices it can be seen that the determinants of the matrices
representing rotations have the value +1, and the determinants of the matrices
representing reflections have the value —1. Without proof, we will state that if the
absolute value of the determinant of a matrix is equal to 1, it is a transformation in
which the distances between any two points of the transformed object are preserved,
i.e., there is no deformation of the transformed object. These are so-called orthogonal
matrices.
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Another important characteristic of matrices is their trace S, which is the sum
of the members located on the principal diagonal; in the case of a matrix notation of
the form B1.3

S=a4;tay, . (B1.16)

In representation theory, the name character of representation is used for this
number.

B2 Representation by tensors

The tensor representation is essentially just a modification of the matrix
representation. In the matrix representation discussed in Section B1, the
transformations were assumed to take place in a Cartesian coordinate system with x
and y axes. This choice of coordinate system is easily applied in both rectangular and
square systems. In other systems (oblique and hexagonal) it is more convenient to
adapt the direction of the coordinate axes to the direction of the pair of basis vectors
and to consider their lengths as units in the respective directions. While this is possible
also in matrix representation, it is not immediately apparent from the notation of the
matrices what coordinate system is being used. In the tensor representation, the basis
vectors appear explicitly, directly in the notation of the tensors representing the
corresponding symmetry operations.

In the oblique crystal system, the basis vectors a; and a, do not have equal
lengths and take an angle different from the special angles 90° and 60° typical of the
rectangular, square and hexagonal systems ( — part A2). The holohedral point group 2
of this system contains only two elements, the identity and the rotation by 180°,
represented by the matrices

(5 9. 2= 0.

The tensor notation of these operators has the form (- table TC2b)
I=a'a, + a’a, 2= —a'a, — d’a, (B2.1)

where a! and a? are a pair of vectors reciprocal to the pair a; , a, (— end of section
Al).
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In the rectangular system, the basis vectors are perpendicular to each other but
have different lengths. The holohedral point group has four elements represented by

matrices
=0 9 250 0 mua= (3 Dmen= (3 ).

or by tensors

I =a'a, + a’a,, 2= —a'a, — a?a,,
Mlo = — alal + azaz, MOl = alal - azaz . (822)

The tensors representing the two rotations typical of a hexagonal system have the

shape:

= a'a, — a*a, - a*a,, 6= a'a,+ a'a,— a’a, (B2.3)

Wl

From the above examples it can be seen that the tensors also in the hexagonal
system contain only integer coefficients for the dyads, which is a consequence of the
use of the natural coordinate system.

Starting from relations A1.2 and D30.18, the tensor 2 transforms the vector a,;
as follows:

a,-2=a, (—a‘a, — a*a,) = —a,

because a, - a' = 1and a, - a®> = 0. Tensor 2 has thus changed the direction of the
vector a, to the opposite direction.

For matrix multiplication, relation B1.14 applies, and the rule for tensor
multiplication is given in Appendix D30, as relation D30.7. As an example, the rotation
by 90° applied twice, so it is a rotation by 180°. The rotation by 90° is represented by
the tensor 4 = a'a, — a’a,, and the double rotation is expressed as the product of
the tensors 4 - 4 . This product is to coincide with the tensor 2 = — ala, — a’a,
representing the rotation by 180°:

=l

-4 = (ad'a, — a*a,)) - (a‘a, — a%a,) =

ala, - (ata, — a*a,) — a’a, - (ata, — a*a,) =

al(a, aYa, — a(a, a®)a, — a*(a,-aVa, + a*(a,-a*)a, =
= —a'a, — a’a, =2 ,

for a,a'=a,-a*=0 and a,-a'=a,-a*=1.

An important characteristic is the scalar of the tensor (- D30.9), which is
equivalent to the trace of the matrix. The determinant corresponding to the tensor is
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obtained by fitting the coordinates of the tensor (-~ D30.15) to the matrix and then
calculating as in the matrix.

All significant tensors are listed in Tables TC2a and TC2b on page 48.

B3 Elements of representation theory

Representation theory began to develop in the early 20th century. It found wide
application not only in mathematics, but also in the consideration of various kinds of
physical systems in terms of their symmetry. For example, it has been applied in the
classification of quantum states (energy levels) in atoms, molecules and crystals, in the
determination of selection rules (allowed and forbidden quantum transitions), which
is directly related to the spectra of electromagnetic radiation.

The trace of matrices play an important role in representation theory. We give
one example — matrices representing the symmetry operations of the 2mm group (-

B1.10):
G D 2= 2) mw=(G ) men=( 5

(B3.1)
It has already been mentioned in section B1 that the determinants of the matrices

e

representing rotations have the value +1, for reflections the value —1. However, the
traces of the matrices, i.e. the sum of the elements in the principal diagonal, have a
different meaning. The trace of the matrix representing the identity e has in this
example the value S = 2, i.e. the same as the number of rows of the square matrix. This
is related to the dimension of the space in which the symmetry operations are
described. The trace of the matrix representing the rotation by 180° has value S =
-2, and the traces of the matrices representing reflections have value S = 0. Different
trace values correspond to different types of symmetry operations; they can be said
to indicate the character (nature) of the symmetry operation, which probably led to
the appropriate naming of this parameter. However, the numerical value of the
character also depends on the particular type of representation. The trace values can
also be verified on the matrices in the other crystal systems mentioned above.

As mentioned at the beginning of Section B, the matrix representation of
symmetry operations is understood as the matrix assignment to each symmetry
operation that ensures that the result of the successive application of two symmetry
operations corresponds to the matrix obtained by the product of the respective
assigned matrices. If a different matrix is assigned to each operation, then the group
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of symmetry operations and the group of matrices are isomorphic. The name faithful
representation is used for such a representation. However, representation theory also
considers the so-called homomorphic representation (—» Appendix D29), where more
symmetry operations are assigned to the same matrix, but keeping the condition
stated in the first sentence of this paragraph. This gives rise to different
representations, differing also in the characters of the individual operations. A
homomorphic representation can be achieved, for example, by assigning one matrix
to all symmetry operations belonging to a certain class of associated elements. In
doing so, these matrices need not match in size (degree) the dimension of the space
in which the symmetry operations are described.

A total trivial homomorphic representation is to assign the number 1 to all
symmetry operations. The number 1 can be thought of as an element of a matrix of
size 1x1. Such a "set" containing a single element satisfies all the group postulates in
terms of multiplication, since it is closed, contains a neutral element which is itself an
inverse element, and the associative law holds when multiplying between units. The
following table shows three representations of the group 3m (denoted by a, b, c),
which is a subgroup of the above-mentioned group 6mm (- B1.12) and represents
the symmetry operations of an equilateral triangle. In the first line there is a trivial
representation in units, the representation in the second line is already richer, it also
contains elements —1, which are assigned to reflections. In the first two rows these are
homomorphic representations, one-dimensional representations. Only in the third
line are the representations isomorphic, representing the so-called vector
representation, which corresponds in degree of matrices to the dimension of the space
in which the symmetry operations are described.

e 3 32 mo Meo Mm120
1 1 1
b -1 -1 -1
1 3 1 3 1 V3 1 V3
. (1 0) 2 _7\ 2 7\ (1 0) 2 7\ 2 _7\‘
0 1V 1|43 1 3 1 0 -1 V3 o1 V3 1
2 _E/ 2 _E/ 2 5/ 2 2 /

Matrices in different representations have different characters, which are the same
for elements belonging to the same class of associated elements. The 3m group has
three classes of associated elements: {e}, {3, 3%} and {mo, Mmeo, M120}, Which can be
verified using its multiplication table TC5 (in the tabular part of the text); the
characters assigned to them are listed in the following table:
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e {3,3% {mo, meo, M120}
a 1 1 1
b 1 -1
c 2 -1 0

(B3.3)

In two-dimensional space (in the plane), symmetry operations can be

represented by "larger" matrices than 2x2, e.g. square matrices of size 3X3, or even

larger. This is also true for multidimensional spaces. For example, the matrices (B3.1)

can be expanded by both a row and a column, and the number 1 can be written in
their intersection. This gives the form:

1 0 0 -1 0 O -1 0 0 1 0 O
(O 1 O) ) ( 0 -1 0) ) ( 0 1 O), (O -1 O) . (B3.4)
0 0 1 0 0 1 0 0 1 0 0 1

The set of matrices thus expanded equally well represent the group 2Zmm. The above
matrices can be expanded in even more complex ways, for example, by repeating the
square matrix 2%X2 in the principal diagonal of the expanded matrix, while leaving the
other elements of the matrix zero. The augmented matrices from relation (B3.1) then
take the form:

100 0, .~1 0 0 O -1 0 0 0y ,/1L 0 0 O
010 0[O0 -1 00 0 1 0 0)[0 -1 00
0010 00 -1 0 00 —-10)J{o o0 1 0
00 0 1 00 0 -1/\oo0 o 1/ \o o0 0 -1

(B3.5)

A property of all these particular matrices is that, when transforming a four-
dimensional vector with coordinates x; , x,, x5, x4, the coordinates x; and x; of the
resulting vector are not expressed as a combination of all four coordinates of the
original vector, but only the first two, i.e. the coordinates x; and x, . Similarly, the
coordinates x3 and x, are expressed as a combination of only the coordinates x5 and
X4 . This means that the corresponding four-dimensional space in terms of the
symmetry operations represented by matrices of the type (B3.5) can be divided into
two independent, so-called invariant parts. The above statement can be seen well in
its general notation:

l4
X1 aj; Qg 0 0 X1 a11X1 + Q12X

!
X2 | _ [ Q21 Q22 0 0 N 2 I S TS + azx; (B3.6)
X5 0 0 A3z A3y X3 A33X3 + A34%, :
X} 0 0 Q43 Q4 X4 (43X3 1 AgqXy
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The extension of the matrices can be even more complex, matrices of different
sizes can be inserted into the main diagonal, creating so-called quasidiagonal matrices.
Such extended matrices can be reduced to their original "smaller" form, hence they
are called reducible, and the space in which such matrices act can thus be decomposed
into invariant subspaces. Matrices that cannot be reduced are irreducible, and such
matrices are important in representation theory. The definition of reducible and
irreducible matrix representations relies precisely on the possibility of partitioning
spaces into invariant subspaces in terms of the action of matrices in these spaces.

One of the important theorems of representation theory states that the
number of irreducible representations of any group of symmetry operations is equal
to the number of classes of its associated elements. Therefore, the group 3m has 3
irreducible representations, denoted in Table B3.2 by a, b, c. As the simplest example
of a reducible representation, consider the group 2 (the oblique system), which
contains only the identity e and the rotation by 180°, denoted by the symbol 2. This
group has only two elements, so it can have at most two classes of associated
elements, and these are {e} and {2}, so that there is only one element in each class. By
the above theorem, this group can have only two irreducible representations. By
relation (B1.8), two elements of this group are represented by matrices:

00 =)

which, when compared to the augmented matrices (B3.5), have a similar structure,
they look like augmented quasidiagonal matrices, formed by one-dimensional
matrices 1 and —1, respectively. Therefore, this representation is reducible. The two
irreducible representations we are looking for, together with a third reducible
representation, are listed in the following table, including the characters of the
corresponding operations in each representation:

. characters
Representations e 2 5
e
1 1 1 1 (B3.7)
-1 1 -1
1 0 -1 0
c (0 1) ( 0 —1) 2| -

Group 2 is of great importance in crystallography and theoretical physics because it
essentially represents two fundamental operations — identity and changing the value
of some parameter to the opposite value. In three-dimensional space it is the reversal
of the direction of vectors in the opposite direction, i.e. spatial inversion; when
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considering time, it is the reversal of the direction of its passage, i.e. time inversion.
This general group is often denoted by the symbol C;.

The characters of the representations of the 32-point groups are given, for example,
in the Hammermesh monograph [20], but also on the Internet, e.g., at:

http://staff.ustc.edu.cn/~xjwu/qgc/teaching/book/chracter%20table-1.pdf

There are mathematical relations between the characters of the
representations, but we will not state them here. Detailed information on
representation theory can be found in many publications; we have listed only a few of
them in the reference list: [8], [9], [15], [16], [17].
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Part C
Derivation of planar symmetry groups

Cl The concept of symmetry

By symmetry of an object we mean the existence of a set of geometric
transformations by which the object under consideration is brought to an equivalent
position, it identifies itself with itself. Symmetry is an important characteristic of
crystals, referring not only to their external shapes, but especially to the arrangement
of atoms, i.e. the crystal structure. It is not a privileged property of crystals, but has a
broader application, so it is appropriate to introduce the concept of symmetry more
generally.

We place an object in a fixed laboratory (external) coordinate system, and
express some selected physical property of the object as a function Q (7) of its position
in this system. With the object we fix a second (internal) coordinate system, whose
origin and coordinate axes will be bound to specific points of the object; therefore,
this system changes with the object during transformations (deformations, motions,
rotations) of the object. We then transform the object, limiting ourselves to only those
transformations which preserve the distances between any two points of the object
(for example, we turn it over). If the values of the function Q(r) are preserved at all
points r of the laboratory system after such a transformation, the corresponding
transformation is a symmetry operation of the object. For example, if a point of the
object determined by the position vector 1 is transformed to point r;, in a symmetry
operation, the values of the function Q(r) at these points must have been the same
before the transformation; the corresponding points are referred to as equivalent.

Transformations that do not change the distances between points of an object
include displacements of the object - translations, rotations, inversions, in-plane
reflections, and combinations of these. All such operations represent in the laboratory
system transformations of position vectors of specific points of an object into other
position vectors. For example, if a point K is moved to a point K'during the
transformation, the position vector r of point K is transformed into the vector r’ of
point K’, which is expressed symbolically by the relation

r=S-r (C1.1)

where S represents the operator of the corresponding transformation. The dot
between S and r does not represent an ordinary product, but an application of the
operator S to the vector.
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The operator S generally has two parts - a part related to rotation or
reflection, and a part related to translation. The part of the operator representing
rotation or reflection is expressed by the matrix, or tensor <T>, the translation part by
the vector t. (On representations of symmetry operations, see sections B1, B2,
Appendix D30).

The application of the operator S to the position vector is then written as
follows:

S-r=r’=r-$+t=r-[$,t], (C1.2)

wherer - ® expresses the left scalar product of the tensor ® with the position vector
r.

The use of the left scalar product proves useful when combining multiple
transformations. Therefore, it is also convenient to change the symbolic notation of
S-r tor-S. The operator S in accordance with relation (C1.2) is written in the
form:

S = [®,t]. (C1.3)

This form, introduced by F. Seitz [4], will be used in later sections of the text to more
easily formulate multiple uses of the same operator, or in the successive application
of different operators.

C2 Groups of symmetry operations

Every object, including a crystal, has at least one symmetry operation - identity
(we denote it by E), in which the points of the object transform into themselves. The
identity operation is expressed by the relation

r = r-E (C2.1)

valid for every vector r. In analogy with relation (C1.3), the identity operation
operator is written in the form:

E = [L0], (C2.2)
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where 1 represents the identity tensor (unit matrix in the matrix representation). By
breaking down this operation in more detail, we obtain the relation:

r-E = r-[iO] =r-1+ 0 = r,

because the vector is not changed by the scalar product with the identity tensor.

Suppose that the operators S; = [<T>1, tl] and S, = [f?)z,tz] represent two
different symmetry operations. If we execute them in sequence, it is logical that the
compound operation as a whole is again a symmetry operation. The application of the
S, operator transforms the vector r into the vector ' = r - S; and this is
transformed into the vector 1"’ by the S, operator:

T'”: T'" SZ = (T'Sl)'SZI 1"'(51'52).

Applying the notation of the operations according to relation (C1.2), we obtain the
result

' =(r-® +t,)S, =[(r @ +t) ®,]+t, =

=r @, D, +t,-P, +1t,,

so that the sequential application of the two operators S; and S, can be written
symbolically as the product of the operators and expressed in the form

Sl - SZ = [q=)1, tl] - [(T)z, tZ] = [q=)1 - (?)2, tl - (?)2 + tz] . (C23)

If we reversed the order of the operations, we would get the result
SZ - Sl = [52, t2] - [(T)li tl] = [52 - (T)l ) tz - (T)l + tl]

which shows that swapping the order of operations may not lead to the same result,
i.e. the product of symmetry operators may not be commutative.

The product of two operators can be generalized to the product of several
operators S; - S, - S3. . . Aspecial case is the n-fold application of the same operation
(represented by the n-th "power" of the operator: S™). By successive application of
relation (C2.3), it can be found (- Appendix D1) to hold:

st =[@n t- {1+ @ + ® + ..+ ®" 1], (C2.4)
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where @2 = & -®, @3 = P2-P,etc. The sum in the large bracket is symbolic
and means that the operators i, <T>, P2 , ... are successively applied to the vector ¢,
thus producing a set of vectors to be summed. The result has to be added to the vector
produced by applying the operator ®" to the initial vector r.

To each symmetry operation (operator S) there is an inverse operation
(operator S71) that returns the object to its original position. Thus, for the inverse
operation operator holds:

S:S71=8S81.S = E (C2.5)

Using this relation and relations (C2.2) and (C2.3), we obtain the form of the inverse
operator:

S—l

Il
[r—
Sl
b
|
(o
S
L
—]

(C2.6)

For completeness, it is worth recalling that the inverse operation is also a symmetry
operation.

In summary, it can be concluded that

—the set of symmetry operations of a crystal, but also of any other object with respect
to their successive application is a closed set, because the combination of even several
symmetry operations will bring the object to a physically and geometrically equivalent
position; therefore, their combination is also a symmetry operation;

— in the successive application of several symmetry operations, the associative law
holds, which follows from the associativity of vector addition and the associativity of
tensor (matrix) multiplication;

— in the set of symmetry operations there is always a so-called neutral symmetry
operation, which is the identical operation E. It has the property that in conjunction
with another operation, it does not change this one;

— to every symmetry operation there exists an inverse operation with the property
that by successive application of the symmetry operation and its inverse to it, an
identical operation is produced.

Therefore, the set of symmetry operations of an arbitrary object forms a group
because it satisfies all the group postulates. Meanwhile, a binary group operation is a
sequential application of operations (—» Appendix D29 on groups).
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If the distances between any two points in an object are preserved in its
transformation, this means that the lengths of the sides of the triangles are preserved
and therefore their angles are preserved. Therefore, the scalar product of the position
vectors of any two points of the object is also preserved. This has a significant effect
on the tensor part of the symmetry operator because it must hold:

ryr, =11, = @) (1, @) =(r; @) (P 15) =71, (®- D) "1,

The comparison of the beginning and end of the line implies that the scalar product of
the tensor @ with the conjugate tensor CTJC must be equal to the identity tensor I . But

this means that the conjugate tensor <T>C must simultaneously be an inverse tensor,
i.e., it must hold

c=® 1, resp.® = d;'. (C2.7)

S

Tensors (matrices) representing symmetry operations must have this property.
The corresponding matrices are referred to as rectangular.

C3 Groups of symmetry operations of crystal structures

In describing the symmetry of the crystal structure (i.e. the symmetry of the
arrangement of atoms in the crystal), it is necessary to start from the lattice postulate.
This states that any property of a crystal - macroscopic or microscopic - is invariant
with respect to a translation by the lattice vector A; , the so-called lattice translation:

AL = l:3=1 Llal = L1a1 + Lzaz + L3a3 ) (C31)

where the vectors a; represent the triplet of basis vectors (basis) of the crystal lattice
and L; are integers. The lattice postulate is expressed by the relation

Q) =Q(r+Xi,La), (C3.2)

where Q(r) represents a physical property of the crystal (scalar, vector, or tensor) as
a function of spatial coordinates in the laboratory coordinate system. For example, the
electron density varies periodically in a crystal (with a period at the level of the
interatomic distances), so that by shifting the crystal by one or a few lattice vectors,
the crystal will reach a physically identical position - at a given point in the laboratory
system, all properties of the crystal will have the same value again. Thus translations
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of a crystal by a lattice vector are symmetry operations, and given the circumstance
that they are related to the lattice postulate, they are trivial symmetry operations.

Note Effects at the edges of a finite crystal are not accounted for, or the reasoning is
quite correct for the case of an infinitely large crystal.

The translation operator T, representing translation by a lattice vector 4;, according
to relation (1.3) is expressed in the form

TL = [T,AL] = [I, L1a1 + LZaZ + L3a3] . (C33)

It is not difficult to see that the set of all lattice translations (there are infinitely many)
forms a group, the binary operation being the successive application of two
translations, represented by the sum of the lattice vectors. It is called the translation
group and will be denoted by the symbol T. Lattice translations form only a part of the
symmetry operations of a crystal; they form a subgroup of the group of all symmetry
operations, which include various rotations and reflections. The set of rotations and
reflections has a finite number of elements. The group of all symmetry operations of
a crystal is called the space group of the crystal and is referred to as G in this text.

IfS= [<T>, t] represents a symmetry operation, then in accordance with relation
(C2.3), the product S71- T, - S also represents a symmetry operation. In detailed
notation, this product is represented by the expression (- Appendix D2)

S1T,:S = [LA,-®], or S:T,-S'=[LA4,-®71. (c34)
The identity tensor is in square brackets in the first place, so in both cases the resulting

operation is a translation by the rotated lattice vector A;. This means that in addition

to the vector A; the rotated vector (i.e., the scalar product A4; - CTJ) must also be an
element of the translation group of the crystal. The relation (C3.4) can also be written
in the form

S_l'TL'S=TLI
while in general the translations corresponding to the operators T, and T, are not
equal. These considerations hold for any translation belonging to the translation group

T. That is, when the symbol S represents any element of the space group G and S~ 1 its
inverse, we can write the group equation

S1.T-S=T,= T-S=S-T. (C3.5)
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It follows from relation (C3.5) that the translation group T is an invariant subgroup of
the space group G because its left and right cosets S:T and S:T respectively,
associated to any element S = [<T>, t] of the space group, are the same. An element
of S is the representative of the corresponding coset. Using additional elements S of
the space group, additional cosets are created and the group G is thus decomposed
into a subgroup T with representative of E = [i, O], and into cosets with
representatives S; ,S,, ..., of which there are a finite number. Each coset contains an
infinite number of elements, consisting of translation and a point operation, and in all
its elements the point operation is the same; the elements of coset differ from each
other only by different lattice translations. The location of the corresponding elements
of point symmetry (rotation axes, reflection lines) in the crystal lattice is not crucial.
The translational subgroup T of the space group G together with its cosets as
units form a factor group, which is denoted by the symbol (G/T). The space group can
then be expressed as the direct product of the translation group and the factor group:
G=T-(G/T)=(G/T)-T . (C3.6)

The elements of a factor group (i.e. a subgroup T + its cosets) are symbolically denoted
by their representatives E,S;,S,,S; ...

(G/T) o {E S, Sy Ss ...}.

In doing so, itis important to note that the set of representatives E, S;,S, , S5 ...
need not form a group. The set of operations S, S, , S5 ..., excluding the operation E,
represents the non-trivial symmetry operations of the crystal structure. If the
translational part of these operations is dropped, i.e., [<T>l-, tl-] - [CTJi, 0], what
remains are operations that do not shift the crystal, i.e., they leave at least one point
at the original location. Therefore, they are called point operations. These point
operations, together with the identical operation E, form the point group of the crystal
structure symmetry.

Among the elements of the point group of a crystal represented by the
operators [T, 0] , [<T>1, 0] , [CTJZ, 0] , ... and the elements of the factor group, there is
a one-unique relationship, therefore

the factor group and the point group of a crystal are isomorphic.

The relation (C3.6) is the starting point in the search for possible types of crystal
space groups . It implies that all possible translation groups and all factor groups must
first be known. However, factor groups are isomorphic to point groups, and so the task
of finding all space groups reduces to finding all possible point groups and translation
groups. One has to start with the point groups, because the translation groups —as will
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be shown later — can be derived from the requirements imposed by the symmetry
operations of the individual point groups on the basis vectors a, , a, , a; of the lattice.
And further, point groups can be constructed from the obtained allowed point
symmetry operations, which are defined by the periodicity of the crystal structure.

Previous considerations have been concerned with both two- and three-
dimensional structures. However, to rigorously derive all point, translation and space
groups of three-dimensional periodic structures is a task challenging in content but
especially in scope. From a pedagogical point of view, it is therefore appropriate to
restrict ourselves to two-dimensional structures. In doing so, the methodology is the
same as for three-dimensional structures. It was published by F. Seitz between 1934
and 1936 in a series of articles in the Zeitschrift fiir Kristallography [2 - 5] and
methodologically improved by W. H. Zachariasen in the book "Theory of X-Ray
Diffraction”, published in 1945 [6]. This text is based on Zachariasen's procedure,
adapted to two-dimensional periodic structures.

C4 Symmetry operations of two-dimensional periodic structures

For two-dimensional periodic structures, symmetry operations include
translations in the plane of the structure, rotations about axes perpendicular to this
plane, and reflections in lines lying in the plane, as well as combinations of these
operations. Rotation by 180° coincides with inversion, which is a separate operation
only in three-dimensional structures. The symmetry operations of planar structures
can thus consist of a rotational part (understood in a broader sense together with
reflections) and a translational part, so that the corresponding operators have the
general form S = [<T>, t] .

In the following sections, the influence of the periodicity of planar structures
on the rotation and translation part of the operators S is described. This is essentially
a search for allowed rotations and allowed translations that bring the structure to an
equivalent position. For two-dimensional structures, translations are expressed by
vectors with only two components; similarly, tensors are only two-dimensional.
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C4.1 Tensor part of the operator S

The tensor, and hence the second degree tensor, is used in this text as the
operator that mediates the transformation in space. The transformation of a vector r
into a vector ' is expressed as the scalar product of this vector with the tensor:

r' =r-o® (C4.1)
If a two-dimensional tensor (i.e., a tensor consisting of two linearly independent
dyads) transforms a pair of noncolinear vectors a,, a, into vectors d,, d,, i.e.,
when

a,-®=d, and a, ®=d,, (C4.2)

then tensor can be written in the form (— Appendix D3)

® = a'd, + a*d,, (C4.3)

where the vectors a®, a®represent a pair of reciprocal vectors to the paira, , a, .
The tensor part of the operator S = [<T>, t] represents such tensor transformations in
which a certain set of points transforms into itself (point symmetry operations).
Therefore, there exists a nonempty set of position vectors, for which

r=r-9o,
or in another notation

r®-r=0=r-(d6-1)=0,
respectively in the designation T = (C?) - T) :

r-T=0. (C4.4)
Since the tensor part of the symmetry operator must satisfy condition (C2.7), i.e. <T>C =

@1, resp. P = <T>c_1 the relation (- Appendix D4) holds for the same position
vectors

®r=r - (&-1)-r=0, t.j.

T-r=0. (C4.5)

Equations (C4.4) and (C4.5) are satisfied trivially for r = 0, i.e., for the origin of the
reference frame, so no restrictions are then placed on the tensor T. This is the case for
any rotation of the plane about the origin of the reference frame (to avoid confusion
- it is a rotation about an axis perpendicular to the plane). If the above equations are
to hold for arbitrary r # 0, the tensor T must be incomplete. An incomplete tensor
can be either zero or linear (consisting of only one dyad).
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D ||

If the tensor T is zero, then T=0d-1= 0, which implies

=l
I

I,
i.e.itis an identical transformation.

If the tensor T is linear, then there is only one dyad
T =ab, (Ca.6)

and according to equations (C4.4) and (C4.5): r -ab = ab-r= 0.

For a non-zero vector 1, both vectors of the dyad ab must be perpendicular to vector

r . This means that the tensor T is convenient to write in the form

T = suu, (Ca.7)
where s is a scalar and u a unit vector perpendicular to the vector r . Recall that the
vector r points to invariant points when transformed by the tensor

O=1+4T =1+ suu.
Now we calculate how the vector u is transformed by the tensor @ = 1 + suu :
W=u-®=u-(I1+suu) = u+su = (1 + s)u.

We require that the symmetry operation preserves lengths, i.e., it must be the case
that (1 +s) = £1, which implies that the scalar s can take only two values : 0, —2.

The case s=0 leadsto @ = I i.e. to an identity transformation. If s = =2, the
tensor T hasthe form T = —2uu and the tensor @ :
®=1- 2uu, (C4.8)

whereby this tensor (= Appendix D5)

a) preserves the components of the vectors perpendicular to the vector u
b) transforms the components parallel to u to the opposite.

It is thus a reflection in a line perpendicular to the vector u; the line in question is
called the reflection line (mirror line) (marker m). In the following, these operations
are described in more detail.
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C4.1.1 Rotation

Let the basis of a planar structure be a pair of vectors a, , a, , its reciprocal pair

being al, a?. Let the vectors a, ,a, form an angle a . Let the tensor @ represent the
rotation of the vectors a,,a, by an angle ¢ such that a; - d,, a, — d,. By

relation (C4.3), the tensor @ then takes the form:
®= a'd, + a*d, .

We express the vectors d, , d, as a linear

combination of the original vectors a, , a,: ‘flz d
d, =pa, + qa, d> _a &
d2 =raq + sa,, (C49) \\\ : )
where the scalar coefficients p, g, r, s are the Rl a
. . \ a
coordinates of the vectors d, , d, with respect k >
1
to the basis vectors a, , a, . The next task will ! \S&a1 Fig. C3
1

be to calculate these coordinates.

The scalar product of the first of the equations (C4.9) with the vector a! gives:
d,-a'= (pa, + qay)-a’ =pa;-a’) + qa-a’) = p.
Similarly, we obtain the other scalar coefficients:
p:dl'al, q=d1'a2,7"=d2'a1, S=d2'a2. (C410)

Calculating the scalar products in relations (C4.10), we obtain the scalar coefficients as
functions of the magnitudes of the basis vectors a, , a, , and the angles ¢ and a (-

Appendix D6). After plugging their values into the transformation relations (C4.9), we
obtain:

sin(a — @) a, sin @
sina a, sina
a, sin @ sin(a + @)
dz = — a1 + _—az .
a, sina sin a

Finally, we fit the vectors d; and d, to the transformation tensor:

- sin(a — @)
® =ala,——= + a'a, _ ‘a, ,
sin a, sina a, sina

a, sin @ a, sin @

2

sin(a + @)
sina
(C4.11)

a,
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This tensor mediates the rotation of the plane defined by the vectors a; , a, taking an
angle a, by an angle ¢ measured in the same sense as the deviation of the vector a,
from the vector a, . If we require it to represent the symmetry operation of a planar
periodic structure, the angle ¢ cannot be arbitrary. The tensor must transform each
lattice vector A; = Lia; + L,a, (L; - integers) into another lattice vector.

For further considerations, it is more convenient to express the tensor (C4.11)
more concisely using the scalar coordinates ®;; of the form

® = d,,ata, + P,a'a, + ©,,a%a, + P,,a%a, . (C4.12)

The transformation of the lattice vector is then written as follows:

A, = A, -®=(La; + Lyay)- D = (L1Dgq + Ly ®yy) ay + (L1 Dy + Ly Pypp) a, =
= Lllal + L,2a2 .

If the vector A] is also to be a lattice vector, then the numbers L and L, must be
integers. This condition must be satisfied for arbitrary integers L, , L, ,, which is only
possible when the coordinates ®;;of the tensor @ are integers, that is, when

®; = a; @ a’ = integer. (C4.13)

If the coordinates of the tensor are integers, then its first scalar, i.e. the sum of the
coordinates in the principal diagonal, is also an integer.

For a tensor of the form (C4.11), it follows that the integer n must equal the sum of
sin(a — @) N sin(a + @)
sina sina

=2cos@p =n.

Thatis, cos ¢ = n/2, so that the cosine function can take on only a few discrete values:
-1, -0,5,0, 0,5, 1, and hence the angle of rotation ¢ expressed in degrees only
values (if we consider angles less than 360° ):

0°, 60°, 90°, 120°, 180°, 240°, 270°, 300° . (C4.14)

Substituting ¢ = 0 into relation (C4.11), we obtain a tensor representing the identity
operation, i.e. the improper:

I = a'a, + a*a, .

Substituting ¢ = 60° (= (2m/6)rad) gives a tensor that realizes a 60° rotation, which

we denote by 6. If we consider only the rotation operation as an element of the group,
not a tensor, we will use the symbol 6, i.e. without the two commas and written in
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plain, not bold, type. Also, multiple applications of the element 6, i.e. its "powers"
62,63,6% 6°,6° are symmetry operations, representing rotations of angles
120°,180°,240°,300° and 360°. A 360° rotation is considered equivalent to a 0°
rotation, so it is an identical operation denoted by e. These rotations (symmetry
operations) together as a set, form a group with elements {e, 6, 62,63, 6% 6°}. The
corresponding group is denoted by the symbol 6, because the structure gets to the
identical position 6 times during 360° rotation. An isomorphic group with group 6 is
formed by the corresponding tensors:

162,63,6%, 65 whilel = 6°

ol
=\

I,

The group 6 is cyclic and the element 6, whose powers generate all other elements of
the group, is the generating element of the group.

Note. The symmetry operations given in this case form a group, the group operation
being the successive application of the operations. With this group is isomorphic the
group of the corresponding tensors, the group operation being the scalar product
between the tensors.

From the allowed rotations expressed by the angles (C4.14), several cyclic point
groups can be constructed, which are listed in Table TC1 below.

TC1 Allowed rotations and their groups
. Operators of
Elements of cyclic groups .
Group . _ generating
Marking and corresponding

symbol ) ] elements
rotations in degrees

e -
1 0 |
) e, 2 >
0, 180
e, 3, 32 —
3 3
0, 120, 240
e, 4, 4, &

S
Eal

0, 90, 180, 270
e, 6, 6% 6° 6% 6
0, 60, 120, 180, 240, 300

()}
)|
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TC2a Tensors of generating elements of cyclic groups

I = a'a, + a?a, .
2 = —ala, — a’a, = 1.
= ) 1 33cosa ) a; 33 1 ) a, V3 1
3=aa|—z———— +taa,—]——aa,————
2 2 sina a, 2 sina a; 2 sina
b g2 1+i/§cosa
a‘a,| —=-+—
2 2 2 sina
= cosa a, 1 a, 1 cos a
4=—-aqala, + ala,———— a’a, —~—+ a*a,—
sina a, sina a, sina sina
= 1 Y3cosa a; V3 1 a,V3 1
6 = a1a1 +=———— 1 —1—_—— azal—z—_—
2 2 sina a, 2 sina a, 2 sina

L2 <+1+i/§cosa>
ala, | +=-+—

2 2 sina

In most cases, the size of the vectors is chosen to be the same, i.e. a; = a,. The
angle «a for the 3 and 6 tensors is usually chosen o = 120° and for the 4 tensor a =

90°. This simplifies the expression of the tensors considerably and gives the following
form:

TC2b
I = a'a, + a’a,
2= —ad'a, - a’a, = -1
3 = a'a, — a’a, — a’a,
4= a'a, — a’a,
6= a'a, + ala, — a’a,
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C4.1.2 Reflection

According to relation (C4.8), the tensor representing reflection has the form (for
reflection tensor we will use the symbol M instead of @)

M=1— 2uu,

where u is the unit vector perpendicular to the reflection line (lying in the plane of the
structure). If reflection is to be a symmetry operation of a periodic structure, an
arbitrary lattice vector must transform again into a (generally different) lattice vector.
If the vectors a; , a, form the basis of a planar lattice, then in such a coordinate system

the tensor M must have integer coordinates (relation C4.13). We modify the general
form of the tensor M to a binomial:

M = Mll a1a1 + M12 alaz + M21 a2a1 + MZZ a2a2 =

== al(Mllal + Mlzaz) + aZ(M21a1 + Mzzaz) == a1A1 + aZAZ )
(C4.15)
where A;, A, are the right vector coordinates of the tensor M. We also express the

tensor M in terms of the left vector coordinates

lv[ - (M11a1 + Mlzaz)al + (M21a1 + Mzzaz)az - A1a1 + Azaz .
(Ca.16)
We use these results to modify the tensor T=M-1 (label before C4.4):

=3Il

=M - 1= a'(4, —a) + a*(4, — a,) = (A' — a')a, + (4% — @?) a,
(Cc4.17)

However, this tensor also has a form (relations C4.7, C4.8 and the text between them)
T = —2uu.

It can be shown (- Appendix D7) that this is only possible when to the vector u are
parallel the vectors

(4, —ay), (A, —a,), (A'—a'), (A* —a?).

The unit vector u is perpendicular to the reflection line, and moreover parallel to some
lattice vectors of both the direct and reciprocal lattice. It follows that a reflection line
can only be a line with the property that the perpendicular to it has the direction of
the lattice vector of the direct and reciprocal lattice at the same time.

Denote the shortest lattice vector parallel to the unit vector u as b, and the
corresponding reciprocal lattice vector parallel to it as b!. When the vectors b, and b!
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are parallel to each other, then it can be shown (- Appendix D8) that there exists a
pair of vectors b, , b, , which are perpendicular to each other and form the
orthogonal basis of the lattice. However, this implies that not only the perpendicular
to the reflection line, but also the reflection line itself is parallel to some lattice vector
of the direct lattice and simultaneously to some lattice vector of the reciprocal lattice.
It follows that reflection lines (i.e. reflections) can only exist in lattices in which
orthogonal basis cells can be chosen.

The specific shapes of the tensors are given in the Appendices. Tensors in
orthogonal bases are described in Appendix D14, tensors in hexagonal systems in
which the basis vectors a; and a, are not perpendicular to each other are described
in Appendix D25. Appendix D26 gives the shapes of tensors in orthohexagonal bases.

C4.1.3 Tensors of multiple rotations and combinations with reflection

When a planar periodic structure is characterized by symmetry operations,
which are both rotations and reflections, the symmetry operations are their multiple
applications, but also their combinations with each other. The tensors representing
rotations are given in Table TC2b, the general form of the tensor representing
reflections is given by relation C4.8. In this section the form of the tensors representing
multiple rotations, i.e., the "powers" of the tensors given in Table TC2b, as well as the
tensors that arise from combinations of rotations with reflections, are justified in
detail. The transformations of the lattice vectors mediated by these tensors are also
given.

Multiple rotations

Rotation about the twofold axis occurs in all crystal systems and is expressed
by the tensor 2=-1= (— ala, — a*a,).Intherectangular crystal system, the basis
vectors a;,a, make an angle of 90°, while they do not have the same length.
However, the preceding relation with these vectors holds even when these vectors are
not perpendicular to each other. When rotated by 180 °, expressed by the tensor -1,
each lattice vector 4; turns into —A; , i.e., into a vector with the opposite direction.

A double application of such a rotation is assigned a tensor:

Nl
—l

2= (-ala - @a) (~ala; ~ alay) = (1) (1) =T,
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that is identity tensor. This operation brings the structure back to its original position,
since a 180° rotation is itself an inverse operation.

Rotation about the threefold axis occurs only in the hexagonal crystal system

and is described by the tensor 3 = (a'a, — a%a, — a%a,). The vectors a,, a, make
an angle of 120° and together with the vector - (a; + a,) point from the origin to
the vertices of the equilateral triangle whose centre lies at the origin. This tensor
transforms the lattice vector A; = L;a, + L,a, as follows:

(Lia; + Lya,) - (a1a2 - a2a1 - azaz) =La, - La, — Lya,

It follows that the point with position vector a, (L; = 1,L, = 0) is transformed to the
position occupied (before the transformation) by the point with position vector a, ,
while the point with position vector a, , is transformed to the position —(a; + a,).
This corresponds to a cyclic change of the positions of the vertices of the equilateral
triangle.

The double application of the rotation about the threefold axis is represented by a
tensor:

32=3.3 = (a'a, — a’a, — a’a,) - (a‘a, — a’a, — a’a,) =
= (- a'a, — ala, + a*a,),

which transforms the lattice vector A; = L;a, + L,a, as follows:
(L1a1 + Lzaz) : (_ a1a1 - alaz + azal) == —(L1a1 + Llaz) + L2a1

A point with position vector a, is transformed to position —(a,; + a,), and a point
with position vector a, is transformed to position a, . Again, this is a cyclic change of
the positions of the vertices of the triangle, but by rotation in the opposite direction.

Applying the rotation three times around the threefold axis brings the structure
to its original position, so that the tensor representing this transformation coincides
with the identity tensor:

= a'a, + a*a, + a*a, — a’a, = a'a, + a*a, =1.

Rotation about the fourfold axis occurs only in the square crystal system and is

described by the tensor 4 = a'a, — a’a,. The vectors a4, a, have the same length
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and make an angle of 90°. The lattice vector 4; = L,a; + L,a, is transformed by this
tensor as follows:

(Lya; + La,) - (alaz - a2a1) = Lia, — Lya, .

The vector a; is rotated into the direction of the vector a, , and the vector a, into the
direction of the vector —a;.

The double application leads to a 180° rotation, which coincides with the rotation
about the double axis, as can be seen from the product of tensors:

=l
Nl

-4 = (a‘a, — a*a,) - (a‘a, — a’a,) = —a'a, — a’a, = —1=

The triple application will provide a tensor:

=l
|

13=T(-1)=-1=-d'a, + aa,,

which rotates the vector a, in the direction —a, and the vector a, in the direction of
the vector a;.

The rotation about the sixfold axis occurs only in the hexagonal crystal system
and is represented by the tensor 6 = a'a, + a'a, — a2a, . The vectors a,, a, make
an angle 120° and together with the vector —(a,; + a,) point from the origin of the
reference frame to the vertices of the equilateral triangle. This tensor transforms the
lattice vector A; = L,a; + L,a, as follows:

(L1a1 + Lzaz) - (alal + alaz - azal) = Llal + Llaz - L2a1 .

That is, it rotates vector a, in the direction determined by the sum of vectors
a; + a,, thatis, in the direction that divides the angle between vectors a; and a, ,
while rotating vector a, in the direction of vector —a, .

A double application of rotation about the sixfold axis is identical to a single
rotation about the threefold axis, hence the corresponding tensor has the same form:
62=3.

The triple rotation represents a rotation about 180°, so the corresponding

tensor coincides with the negatively taken identity tensor: 63=—1.

The fourfold application of rotation about the sixfold axis coincides with the

twofold application of rotation about the threefold axis, i.e. 6% = ?2, so this tensor
does not need to be mentioned separately either.
A special form is up to the fivefold application, where the tensor can be
obtained as the product of the tensors 6 - 32, which will give the result:
(ata, + a'a, — a*a,) - (- ata, — a'a, + a*a,) = — a'a, + a*a, + a*a,.
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This tensor rotates the vector a, in the direction of the vector — a, and the
vector a, in the direction determined by the sum of the vectors a; + a, .

Combination of rotation with reflection

Reflection only exists in lattices in which a orthogonal unit cell can be selected,
whether primitive or centred; is absent in the oblique crystal system. It should be
noted that an orthogonal unit cell (centred) can also be chosen in the hexagonal
system, which provides advantages in determining the distribution of symmetry
elements in the unit cell (- section C7).

In Appendix D14, different variations of the shape of the reflection tensor are
given. In orthogonal lattices, a pair of mutually perpendicular basis vectors a;, a, ,
are chosen, and in the case of a reflection line parallel to the vector a,, the tensor
representing the reflection takes the form:

Ml = T - 2a2a2 ; (a)

when reflection in a line parallel to the vector a,, only the indices change.

In the hexagonal system, the basis vectors a,, a, are not perpendicular to
each other, and in this case it is convenient to choose an orthohexagonal unit cell and
express the tensor in the form (- appendices D14, D26):

M=1- 2b'bh,, (b)

where the reflection line is perpendicular to the vector b, . In Appendix D25, the
tensors representing reflections are also expressed using the basis vectors a,, a, .

The tensor representing the combination of rotation with reflection is

expressed as the product of the corresponding tensors: I - IVI, where N represents one
of the rotation tensors.

The combination of reflection with rotation about the twofold axis is assigned a
tensor:

i-Mz(—T)-(T—Zuu)z—i+2uu.

Reflection is applied in orthogonal lattices where the basis vectors a,, a, are
perpendicular to each other. Then the tensor M can be written in the form l\=/[1 =
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(T - 2a%a,), respectively M, = (1— 2a'a,), depending on whether the reflection
line is parallel to vector a, or vector a,, respectively.

The combination of tensor l\=’l1 with the rotation tensor 2 will give the result:
2-M, =(-1)-(1-2a%a,) = -1+ 2a%a,.
This tensor transforms the lattice vector A; as follows:
(Lia, + Lya,) - (1-2a'a,) = Lya, + L,a, — 2L,a, = —L,a, + L,a,.

The same result is obtained by a separate reflection in a line parallel to the vector a, ,

which is represented by the tensor l\=’12:
(L1a1 + Lzaz) ) (T - Zalal) = Llal + Lzaz - 2L1a1 = _Llal + Lzaz .

That is, the combination of reflection in a line parallel to the vector a, and rotation
about the twofold axis leads to the same result as reflection in a line parallel to the
vector a, . This is consistent with the multiplication table of the Zmm group, which
is also consistent with the fact that changing the order of rotation and reflection leads
to the same result. This statement can also be verified using the product of tensors:

M, -2 =(1-2a%a,)-(-1) = -1+ 2a%a,.

This result is also correct in the square system, but in the hexagonal system one has to
consider the shape of the tensors given in Appendix D25.

The rotation by 90° about the fourfold axis passing through the origin of the
reference frame is represented by the tensor (a'a, — aa, ). The combination of
reflection with this rotation is associated with a tensor whose shape depends on which
reflection line it is. If the reflection is in the line in which the vector a, lies, the tensor

has the form M; = a'a, — a%a,, so that the product yields the tensor
4-M, = (aa, — a’a, ) - (a'a, — aa,) = — a'a, — a’a, .
The product 33 . 1\7[1 gives the tensor
(—a'a, + a*a,) - (a*a, — a*a,) = a'a, + a*a, .

The second of these two tensors represents the reflection in the diagonal of the
square that passes through the origin of the reference frame, the first of two tensors
reflection in the second diagonal of the square.
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C4.2 Translational part of operator S

In the previous sections - on rotations

and reflections - the tensor part @ of the

symmetry operator S = [3, t] has been fully A [

described. When considering the translational
part t of operator Sitis convenient to start from

Figure C4. A square lattice is drawn on it. If we C

rotate it by 90° around point A or around point
B, it will identify with itself, i.e. we perform a Fig. C4

symmetry operation. However, if we rotate the

lattice by the same angle about point C, the lattice will only come to an equivalent
position after adding a suitable translation t, which is not a lattice translation, i.e., it
does not belong to the translation group. In this case, the operator S, if it is to be the
operator of the symmetry operation, must have two parts, a rotational and a non-
lattice translational one.

There are several translations t , which can be used to bring the lattice to an
equivalent position after its first rotation about the point C. It can be seen from the
figure that the size of the vector t need not exceed the dimensions of the unit cell, but
any lattice vector A; can be added to it; in doing so, the transformation remains a
symmetry operation. The operator representing such a transformation has the form
S=[ot+A4,)

The point symmetry operations, represented by the tensor part of the operator
S, are elements of point groups, which in the case of crystals have a finite number of
elements. Multiple applications of a point operation after a certain number of steps

lead to an identical operation (e.g., a triple application of a 120° rotation, or a double
=m
application of reflection). Therefore, there exists a natural number m, for which® =

I (we assume that m is the smallest such number). For the corresponding operator S,
then (relation (C2.4)) holds:

sm= e T+3+8+.48" '} (C4.18)
If S™ is to be a symmetry operation, then
= =m-1

tT+3+3 +..+3 }=4, (C4.19)

that is, an m-fold application of the operator S must represent a lattice translation.

= = =2 =m-1
The expression in the large bracket {I + O+ D +...+CI)m } has the name
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characteristic tensor of the operation S . If we substitute any of the tensors f, §, 4
or 6 representing the generating elements of the point groups (Table TC2) after the
tensor @, the sum of the terms of the characteristic tensor equals zero. Proving this
statement by calculation, except for the 2 tensor, is tedious, but its truth can be quite
easily verified graphically (- Appendix D9). That is, in the case of the above tensors,
Sm = [T,O] , Whatever t might be. In these cases, the constraints on the vector t do

not follow from relation (C4.19).

Another case is the operation S = [1\7[ , t] , Where M = I — 2uu. For this tensor,
the following holds

M2 =(1- 2uu)- (I- 2uu) = 1- 2uu- 2uu + 4uu = 1.
We verify that the characteristic tensor {l\=’l} of this operation is non-zero:
M} =T+M = T+1- 2uu = 2(I- uu),

so that equation (C4.19) does not admit an arbitrary vector t , which must satisfy the
condition

t-{(M} =¢t-2(1- uu) =2[t— (t-wul] = 4,. (C4.20)

The expression (t-u)u represents the component of the vector t parallel to the
vector u, so the expression [t — (& - u)u] represents the component perpendicular to
the vector u, i.e. parallel to the reflection line. It follows from equation (4.20) that this
component must be equal to half of the lattice vector parallel to the reflection line. As
mentioned above, it is sufficient to restrict to vectors t , whose size does not exceed
the dimensions of the unit cell (for example, the size of the basis vector a;). Then for
vector t we can write the relation

[t — (t- wu] = (JE) ay, (C4.21)

in which j can only take values j=0, £1. No constraints are placed on the component
perpendicular to the reflection line. The case j = 0 represents ordinary reflection, the
case j =1 corresponds to reflection with a glide. This means that in such an operation,
after reflection in a straight line, the whole structure still needs to be shifted along the
reflection line by half of the identity period, i.e., a translation that does not belong to
the translation group needs to be performed. The operator with a glide then takes the
form

[M,,a,/2], (Ca4.22)
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where the index "1" at the tensor l\=’l1 denotes the reflection in a line parallel to the
vector a4 . The location of the glide lines in the lattice is described in C7.5 .

C4.3 Summary of possible symmetry operations

Operators representing symmetry operations of two-dimensional periodic
structures are written in the general form S = [CT), t]. Operators of trivial operations
include the identity tensor I and the lattice vector A;: S= [T, AL]. Non-trivial
operations include rotations and reflections, represented by tensors, which we denote
by the symbols f, ?, 7l-, 6 and l\=/[, their powers and combinations with lattice
translation, as well as with special non-lattice translations.

Non-trivial symmetry operations are divided into open and closed. A closed
operation with operator S = [CT), t] is said to be one for which (- text before relation
C4.18)

sm = [L,0]. (C4.23)

The term closed operation is related to the fact that (in the laboratory coordinate
system) the sum of the vectors

r, r-S, r-S%,..., r-Sm1

forms a closed geometric figure (polygon). Closed operations include all rotations and
reflections. For planar structures, the only open operation is glide reflection. For
closed operations, it is always possible to make the translational part t of the operator
zero,i.e., S = [CT), 0], by a suitable choice of the position of the origin of the coordinate
system.

According to the value of the determinant of the corresponding tensor, a
distinction is made between proper and improper symmetry operations. If the
determinant of the tensor |®| = 41, the operation is proper, if |®| = —1, it is an
improper operation. The determinants of all tensors representing rotations 2, ?3, 4,6
have value +1, the determinant of the tensor M representing reflection has value -1
(- Appendix D10).
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An overview of possible symmetry operations is given in the following table
TC3. The first column lists all operators that represent possible symmetry operations.

TC3 Possible symmetry operation
Operators Restriction of Name of .
= . . Operation
[dD, t] translational part operation
[T, t] t=20 identity
(2, t] no rotation
[3, 1] no rotation closed proper
[4, t] no rotation
[6, 1] no rotation
[l\=/l, t] t—(t-wu =0 reflection closed improper
[l\=/l, t] t—(t-wu==+a/2 glide reflection
open

1, t] t=A4,70 lattice translation

C5 Point groups

Table TC3 on the previous page lists the possible symmetry operations of planar
periodic structures. If the translational part t is omitted from their operators, what
remains are the operators of the point operations, i.e., the operators representing the
elements of the point groups. The operator [E 0] mediates a rotation of 60°, but the
symmetry operations are also rotations of multiples of this angle, i.e., rotations of
120°, 180°, etc. The operators of these rotations are "powers" of the [ﬁ, 0] operator,
by which is meant its multiple use. The magnitudes of the rotations that bring the
planar periodic structure to equivalent positions are given in C4.1.1, in the line
denoted as relation (C4.14). At the end of that article, in Table TC1, these rotations are
classified into groups. No rotation combinations other than the above are possible. For
example, if we assume that 90° and 120° rotations belong to the same group, the
combination of the two, i.e. 210° rotation, would also have to belong to this group.
However, the latter is not a symmetry operation of planar periodic structures, so the
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two rotations mentioned above cannot belong to the same point group. Proceeding in
this way, it is possible to construct five pointgroups of rotations, all of which are cyclic.

The point operations include the reflection represented by the tensor M.A
repeated application of reflection returns the object to its initial position, so that the
reflection is itself an inverse operation. Therefore, the reflection group m has only two
elements, the identity e and the reflection m: m = {e,m}. Therefore, the scalar

product of the tensor M with itself must be equal to the identity tensor: M-M= T,
because the tensor M must also be an inverse tensor of itself. The tensors M and i,
given the scalar product as a binary operation, form an isomorphic group with the
point group m.

Combining the reflection group with the rotation groups produces four
additional point groups. These are no longer cyclic, two generating elements are
needed to create them. In total, this amounts to 10 types of point groups, which are
listed in Table TC4.

The combination of a cyclic group and reflection group is expressed as their
direct product. For example: group 4mm = {e, 4,42, 43} - {e,m} = {4} - {m} The
group 4 is an invariant subgroup of the group 4mm, so its decomposition into cosets
is of the form 4mm = {4} + {4} - m, where the reflection m is the representative of
a single coset.

TC4 Point groups

Symbols of . Generating
groups Elements of groups (symmetry operations) elements

1 e e

2 e,?2 2

3 e,3,3? 3

4 e,4,4%,43 4

6 e,6,6%,6%,6%,6° 6

m e,m m
2mm e,2,my,my 2, my
3m e,3,3%,mg,mgy, Myz0 3, m,
4mm e,4,4%,4% ,my,my,my, ,myy 4, m,
émm  e,6,6%,6%,6%,6%,my, Mgq, Myzo , Mg, Moy, Myso 6, m,

The symbology used in Table TC4 has the following meaning: the symbols
my ,my in the 2mm group represent the reflections in the lines labeled x, y , which
are perpendicular to each other and parallel to the basis vectors b, (x-direction) and

b, (y-direction). The symbols my,,m,, in the 4mm group represent two other

y
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possible reflection operations, namely in the lines that divide the angle between the
x,y lines in half, which are the diagonals of the square. The symbols m¢, , m4,, etc.,
denote reflections in lines rotated with respect to m, by 60°, 120°, etc. In other parts
of the text relating to reflection operators, the indices 1 and 2, representing the
directions of the basis vectors, are often used instead of the indices x, y.

The creation of a group using generating elements is illustrated by the example
of a 2mm group (- Appendix D11), which has only four elements. This procedure can
also be verified using a graphical construction (- Appendix D12).

The following figure shows a graphical representation of point groups. In the
circles symbolizing the groups are marked the symmetry elements — the n-fold axes as
n-polygons and the reflection lines as line segments. Small solid circles are used to
mark all the equivalent positions of one point of the plane into which this point is
transformed by the symmetry operations of the corresponding group. The more
elements a point group contains, the more equivalent points it produces. The number
of equivalent points coincides with the number of elements of the group, i.e. the
number of symmetry operations in the group.

D

">
X

Fig. C5

Among the ten point groups, there are a few that are subgroups of a group with

more elements. For example, the group 6mm contains subgroups 6, 3m and 3, if we
do not count the trivial subgroup 1. The group 4mm contains the subgroups 4, 2mm,
2 and m. Subgroups with fewer elements are characterized by structures whose
structural motif has lower point symmetry than the lattice.

The successive application of two symmetry operations is referred to as the
"product" between two elements of a point group, i.e. as the realization of a group
operation between two elements of a point group; the result is another element of
the group. The products are compiled into a clear table, called a multiplication table.
The following table TC5 shows the products in a group 2mm . The left column shows
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the first terms of the product, the top row the second terms, the intersection of
column and row shows the result of their product, i.e. the result of their successive
application. For example, the product of elements 2 and m,,, that is, their successive
application in the order given, is equivalent to the direct application of element m,, .
The product of the elements m,, and m,, is equivalent to a rotation of 2, so that the
presence of reflections in two mutually perpendicular directions is inextricably linked
to the presence of a rotation about the twofold axis. The table of this group is
symmetric with respect to the diagonal, because when the two symmetry operations
are applied in this case their order does not matter.

TC5 Multiplication table
of group 2mm

e 2 my my
e e 2 my my
2 2 e my my
my my my e
my my my 2 e

From the point of view of the algebra of groups, each point group containing a
reflection can be expressed as the direct product (- Appendix D29 on groups) of the
corresponding cyclic group and the two-element group of the reflection. This fact is
expressed in the algebra of groups by the notation

n-m = {n}-{m},
where n and {n} represent, respectively, the cyclic group with n elements (related to
the n-fold axis of symmetry) and m resp. {m} the two-element group of the reflection.

The point groups and in particular their generating elements will be used in the
search for different types of translational symmetry — in determining the set of
translation groups.

C6 Translation groups

The search for types of translational symmetry of planar structures is essentially
a matter of determining the possible types of pairs of basis vectors a,, a, of planar
lattices. There is a relationship between the point symmetry operations of planar
structures and the basis vectors, expressed by the condition (- relation C4.13)

®; =a; @ a’ = integer, (C6.1)
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which requires the scalar coordinates of the tensor to be integers. We exploit the
condition by successively inserting the tensors representing the generating elements
of the individual point groups into relation (C6.1) (Table TC2). The other elements of
the groups that are not generating do not impose new conditions on the choice of the
vectors a, , a, . We go through all the point-groups from table TC4 in turn.

C6.1 Lattices of structures with point groups 1, 2

Group 1

The identity tensor I = a'a, + a*a, represents the generating element of this
group. Its coordinates are integers (l11=1, 112=0, I21=0, l22=1), so condition (6.1) is
automatically satisfied, it does not impose any constraints on the basis vectors; the
vectors a; , a, need not be of the same length, nor do they form a special angle.

Group 2
The generating element is represented by the tensor — I = —(a'a; + a*a,). The

coordinates of the tensor — I are again integers, no restrictions on the vectors a,, a,
follow from relation (C6.1). Planar periodic structures with point groups 1 and 2 have
the same type of lattice. They may differ by the symmetry of the structural motif
embedded to each of its lattice points.

/ / /

/ / / Lattice type 1
a
7 e

C6.2 Lattices of structures with point groups 3, 6

The generating elements in these groups correspond to tensors (- TC2)

= ) 1 33cosa ) a; 33 1 ) a, V3 1
3=aa|—z———— a,———— a‘a;,———
2 2 sina a, 2 sina a, 2 sina
+ g2 1+i/§cosa
a‘a,| —=+—
2 2 2 sina
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= ) 1 33cosa ) a; V3 1 5 a, Y3 1
6=aa|+-———— +aa,—]—— a‘a;,————
2 2 sina a, 2 sina a, 2 sina
b +1+i/§cosa
a‘a e
2 2 2 sina
or in a more concise general notation
® = ala,p + ala, q + a’a,r + a’a,s.
The tensor 6 has coordinates
1 33cosa ali/§ 1 azi/§ 1 1 Y3cosa
=——— =—— r=—-——— S==—+—= :
P 2 2 sina 1 a, 2 sina a, 2 sina 2 2 sina

The g and r coordinates of the 3 and 6 tensors are the same, differing only in
the coordinates p and s . The coordinates p, g, r, s are determined by the magnitudes
of the basis vectors and the angle a between them. If all coordinates are to be integers,
this places conditions on the ratio of the magnitudes of the basis vectors and on the
magnitude of the angle between them. If we subtract the coordinate p from the
coordinate s, regardless of whether the tensor is 3 or 6, we get (the number n is
supposed to be integer):

cos a

s—p=+3

: =n,
Sin

from where, after modification, we obtain

3
3+n?’

sin a =

Next, multiply the coordinates g and r with each other, substituting the obtained value
after sina. The product g -  must also be equal to an integer:

3 3+n? 3+4+n?
A =
TT=4""3 4
This equation has integer solutions for odd n, i.e.forn=1, 3, 5, ... . Let us check each
option.

Forn=1, the product q - r = 1, and since both q and r are integers, g =r =1 and

S _ 3 —\/§ there f = 60° 0r 120°
T2 351- 2 ere for o = ,0or .

sin a =
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The result g =r = 1 further implies that the magnitudes of the basis vectors a, , a, are
the same. The angle between them is 60°, or 120°, however, both choices of angle lead
to the same lattice, as can be seen graphically.

For n = 3 we get sina = 1/2 (i.e. « = 30°, or 150°), and q - r = 3. This means that
eitherg=1, r=3, or conversely, g =3, r= 1. Let us choose o = 30°. If we choose g =1,

then a, = a;V/3, and the opposite choice, i.e. r = 1, gives a; = a,V3. Both cases
represent the same type of lattice, asinthecasen=1.

Examining the remaining choices, i.e., n = 5, etc., we would find that they lead again
to the same type of lattice as shown in the following Figure C7.

L ) ) ) )
n=1
° — ° °
ai ai
° e &2 az )
a
n= 3 ° ./
ai \\\

Lattice type 2

Among all possible pairs of vectors a, , a, , a pair with equal sizes a; = a,, taking
anangle a=120° is chosen by convention in this type of lattice. In doing so, a, =

a,3, ora, = a; . 62. The lattice in the figure has a typical hexagonal symmetry.
An orthogonal cell with basis vectors b; and b, (- Figure C7), also called
orthohexagonal cell, may also be chosen in this lattice, on the basis of which the
positions of the reflection lines are more easily determined. There are three equivalent
choices of orthohexagonal cells, differing in their mutual rotation by 60°.

As mentioned above, due to the similarity of coordinates, the 3 tensor
generates the same lattice as the 6 tensor. Groups 3 and 6, like groups 1 and 2, differ

in that they describe planar structures with the same lattice but different structural
motifs.
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C6.3 Lattices of structures with point group 4

The generating element of the group corresponds to tensor 4 (- tab. TB2):

cos a o4 1 , Gy 1 ,  Cosa
—+ aa,———— a‘a,——+ a‘a,——.
sina a, sina a, sina sina

We start with the coordinate p = cos a /sin a, which, like the other coordinates, is
supposed to be an integer. From here we express sin « :

1
el

By multiplying the second and third coordinates together, after inserting the

sin a =

calculated sin a, we get:
14+ p*=gq-r.
Adding integers after p gradually gives more possibilities.

Withp=0 sina = 1,so ¢ = 90°, also the productg/r =1,so a; = a,, so the lattice
is tetragonal (square).
With p=1sina = 1/V2,, so @ = 45° or 135°. Then g/t =2, so there are two
possibilities:

V2 V2

a2=a17, or a1=a27.

From the set of different pairs, vectors of equal length (a; = a,) and perpendicular to

each other are selected as the basis. Thena, = a; - 4.

[ ] a» [} [ ] [ ] [} [ ] [ ]
p=0 | Lattice type 3
[} [ ] [} [ ] [ ] [ ]

65



C6.4 Lattices of structures with point group m

The tensor M = I — 2uu corresponds to the generating element in the
group m (Section C4.1.2), where u is the unit vector perpendicular to the reflection
line m. That section states that both the reflection line and the direction perpendicular
to it are parallel to the directions of the lattice vectors of the direct and reciprocal
lattice simultaneously. Thus, we could choose the basis vectors a; , a, such that one
is parallel to the reflection line and the other is perpendicular to it.

However, let us consider more

generally and assume that, for

example, vector a, is perpendicular to a‘A a

the reflection line and vector a, makes ﬂ

an angle a with vector a;. In Fig. C9, >

the corresponding pair of reciprocal “ \\ “
vectors al, a®> is drawn in dashed m Mo Fig. C9

lines. Under such assumptions, we will

look for the conditions that must be satisfied for the coordinates of the tensor M to
be integer. We first compute the scalar coordinates of the tensor in the system with
the basis vectors a; , a, according to relation (C4.13):

M. =ai-l\7[-aj

ij
That's what we get:

=
|

RS
=

M - al = al-(i—Zuu)'al = [a1' I- Z(al'u)u]'alz

= [a; — 2a;u]- a' =[a, - 2a,]' a

- - (- 2u0) @' = [a;T— 2(a; wu] -’ -

= [a, — 2a, cosau]-a® =

a
= 0 — 2a, cosaa' cos(n/2 —a) = —2-2cosa .
a,

My, = a, M -a? = a,-(I1-2uu)-a®> = a,-a®> - 2 (a,- w)(u-a?) = 1.
If we require that the number M, is also integer, the condition must be satisfied

aq
a,cosa = 711 (C6.2)
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That is, the magnitude of the projection of the vector a, onto the vector a; should be
equal to an integer multiple of half the magnitude of the vector a,. If n=0, then the
projection is zero and the vector a, is perpendicular to the vector a;, so the lattice is
orthogonal. Meanwhile, the ratio of the lengths of these vectors can be arbitrary, so
the unit cell is orthogonal (lattice A in Figure C 10).

When n = £ 1, the ratio of the sizes of the basis vectors can again be arbitrary,
but their orientation relative to each other must be such that the projection of the
vector a, onto the vector a, is exactly half its size (in Figure C10 lattice B).

A Fig. C10 B

If nis an even number, an A-type lattice is always produced, if it is odd, a B-type lattice.
But even a B-type lattice is orthogonal, although the unit cell constructed from the
vectors a;, a, is not orthogonal. In accordance with the requirement that the
symmetry of the unit cell should match the symmetry of the lattice (Bravais
conditions), a pair of basis vectors b;, b,, is introduced in this case to form a
orthogonal cell, but with a lattice point also in the middle of the cell. Such a unit cell is
called centred, in contrast to the primitive cell formed by the vectors a,, a, , which
has a smaller area content but a symmetry not matching the symmetry of the lattice.
The name centred lattice is used for a lattice in which an orthogonal centred primitive
cell can be chosen. In centred lattices, reflection with glide is applied, i.e. there are
glide lines in them (- relations C4.21 and C4.22).

By integer linear combinations of the primitive-cell basis vectors a, , a,, we
obtain the position vectors of all lattice points. The set of all translations of type A; =
Lia, + L,a,, where L; are integers, forms the full translation group T, of the
corresponding lattice, for which we use the name primitive translation group.
However, the integer linear combination of the vectors b;, b, cannot be used to
obtain the position vectors of lattice points lying in the middle of the cells. Therefore,
the group T}, of analogous linear combinations B, = L;b, + L, b, is not identical to
the full translation group, it is less numerous, forming an invariant subgroup of it. To
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obtain the position vectors of all lattice points, we need to add to each translation B,
a translation

1
2

1

tb= >

b,+=b,,

thus achieving a match with the full translation group. In this case, the full translation
group of the centred lattice, which is identical to the primitive translation group of T, ,
can be written as a sum:

Tp = Tb + tb b Tb . (C63)

The second term of the sum represents the coset of the group T}, with respect to the
subgroup T,. The dot between translation &, and group T}, has the meaning of a group
operation, in this case the successive applications of an element of group T}, and
translation ¢ty,.

C6.5 Lattices of structures with point groups 2mm, 3m, 6mm, 4mm

In the 2mm group, the generating elements are 180° rotation and reflection,
i.e., the elements represented by the 2 and M tensors. The 2 tensor does not impose
requirements on the ratio of the sizes of the basis vectors, nor on the angle between
them. Therefore, the lattice of a planar periodic structure with symmetry described by
the 2mm group must be as required by reflection, i.e., it must be orthogonal. Thus, the
2mm group does not require the existence of another type of lattice symmetry.

In the 3m and 6mm groups, the generating elements are represented by the
tensors 3 and IVI, respectively, 6 and M . The planar periodic structure, in which
symmetry with generating tensors 3 or 6 is enforced, has a hexagonal lattice.
Therefore, it is described by a pair of basis vectors a,, a, of equal size and
conventionally taking an angle a = 120°. It follows that the projection of the
magnitude of the vector a, in the direction of the vector a, is equal to its half
magnitude: a, cosa = a,/2, thus satisfying condition (C6.2) of corollary C6.4 on
structures with group m . Thus, reflection is a natural symmetry operation of these
structures. Thus, the requirements of the 3m and 6mm groups do not lead to a new
type of lattice symmetry.

Even the 4mm group does not generate a new type of lattice symmetry. Even
group 4 already requires a tetragonal lattice that satisfies condition C6.2, so the other
elements in the group related to reflections no longer impose new conditions on
lattice symmetry.
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C6.6 Summary of lattice types, crystal systems

In C6.1 to C6.5, the types of lattices that are compatible with the symmetry
operations of the point groups of planar periodic structures have been described.
These are 5 types of lattices that are characterized by different metrics and different
shapes of the unit cells. These cells are called

oblique,
rectangular (orthogonal) primitive,
rectangular (orthogonal) centred,
square,

hexagonal.

The two types of orthogonal cells have the same external shape, differing only
in that the centred cell has a lattice point at its centre. The two cells - and the
corresponding lattices - are therefore classified in the same group. This gives rise to
four types of lattices, for which the name crystal system is used. Table TC6 below lists
the crystal systems, the types of unit cells, the data on the basis vectors (system
metrics), and the point groups to which these types are related.

TC6 Crystal systems, their metrics and symmetry
Crystal system Type of cell Basis vectors Point groups
1 oblique p a, #a,,a #90° 1,2
2 p
3 rectangular c a, #a,,a =90° 'm,2mm
4 square p a, =a,,a =90° 4,4mm
5 hexagonal p a, =a,,a =120° 3,3m, 6, 6mm

The table lists 4 crystal systems, 5 types of planar lattices (unit cells, translation
groups) and 10 types of point groups. At least two point groups are associated with
one crystal system. In this connection it should be noted that in each crystal system
the symmetry of the lattice corresponds to the point group with the largest number of
elements, i.e. it has the maximum possible point symmetry. For example, the lattice
of a structure belonging to the hexagonal system always has a point symmetry
described by a 6mm group. This point group has 12 elements of symmetry, the most
compared to the other point groups of the hexagonal system. Groups with fewer
elements are characterized by structures with lower symmetry. The symmetry
reduction is not induced by a reduction in the symmetry of the lattice, but by the
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insertion of a structural motif into the lattice that has a lower symmetry than the
lattice. This fact is discussed in more detail in later sections of this text, in the
derivation of the 17 types of plane groups. In each of the four crystal systems, the
symmetry of the lattice is characterized by the most numerous point group, which is
always given at the end of the line corresponding to the system. These groups - 2,
2mm, 4mm and 6mm are called holohedral, which can be translated as full or
complete.

C7 Positions of symmetry elements in unit cells

At the beginning of C4.2, it is stated that the translational part t of the operator
S = [CT), t] can be zero only in those cases where the corresponding element of
symmetry (rotation axis, reflection line) passes through a lattice point, or other
suitably placed pointin the plane of the lattice. However, this is only true if we consider
this point to be the origin of the reference frame. Otherwise, even if an element of
symmetry passes through a lattice point but we consider the operation with respect
to another reference point, this may not be true. However, there exists a set of points
in the lattice, displaced with respect to the position of the rotation axis (or reflection
line), with respect to which the translational part of the symmetry operators is
identical to some lattice vector 4; , so that it does not contain a non-lattice translation
t. The positions of such points can be obtained from relation (g) derived in Appendix
D13.

The relation (g) of Appendix D13 expresses the condition that must be satisfied
by:

the position vector r, of the displacement of the origin of the reference frame,
the tensor @ representing the rotation, and the translation 4; + t, in order for the
total translation term of the symmetry operator to be zero:

ro-(I-®)+ A, +t=0 .

In this part of text, we will look for positions r, of the reference points such
that only the non-lattice translation t is zero. That is, we will look for position vectors
T, that satisfy the condition

ro-(I-®)=4,. (C7.1)

Note: The +A. and — A, vectors are equivalent in this respect.
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In this way, we obtain the positions of points in the lattice at which the rotation axes
transforming the lattice to the equivalent position can be placed without the need for
additional non-lattice translation. The result depends on the particular tensor
representing the rotation (or reflection) as well as on the type of lattice, so all
individual cases need to be considered.

The translational parts of the operators with the same tensor part, which represent
operations with respect to the symmetry elements distributed in the basis cell based
on relation (C7.1), differ from each other only by the lattice vectors. Therefore, when
decomposing the plane group, the corresponding symmetry operations belong to
one coset. (C7.1a)

C7.1 Twofold rotation axis

The twofold axis of rotation is typical of oblique and rectangular crystal systems.
The basis vectors a;, a, in these systems are of different lengths, whereas in the
rectangular system they are perpendicular to each other. However, twofold axes also
occur in the square and hexagonal systems.
The tensor representing the rotation about the twofold axis has the form (- tab.
TC2b):

2 = —a'a, - a’a, = -1,
so after inserting into relation (C7.1) we get
ro-(2) =4, = 2r,= A4,. (C7.2a)

We express the position vector 1, as a linear combination of the basis vectors a,, a,
of the corresponding lattice: r, = r;a, + r,a,, where ry, 1, are its scalar coordinates.
This is also how we express a lattice vector: A; = L,;a, + L,a, , where L; can be any
positive and negative integers. So we ask to satisfy the condition:

2(7’1(11 + rzaz) == L1a1 + Lzaz . (C72b)

By comparing the scalar coordinates of the vectors on the two sides of equation we
obtain:
T'1=L1/2, 7‘2=L2/2.

If we restrict ourselves to positions in a single unit cell, it is sufficient to consider only
positive coordinate values and values less than 1. Thus, r; = 0, 1/2. Then only the
following combinations of coordinates of the vector r, are possible:
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062 (.9) (.2

That s, the twofold axis of symmetry can lie at the origin of the reference frame (r,=0),

: 1 1
at the centre of the basis vectors (ro =-a, Or Ty =24, ) and at the centre of the

. 1 1 :
unit cell (ro =sa t+ a, ) Larger values of the coordinates 7; already refer to

positions belonging to adjacent unit cells (represented by empty ellipses in Figure C13
on the next page; lattice points in the left part of the figure by small solid circles). It
should be noted that the twofold axes are arranged in this way in all types of lattices,
hence also in the square and hexagonal lattices. So the rotation operators about axes
not passing through the origin of the reference frame, whose position satisfies
condition C7.1, have the form (- Appendix D19) :

[-10], [-La] [-La], [-1a, + a,]. (C7.2¢)
For example, the operator [—i al], representing a rotation about an axis passing

through the centre of the vector a;, moves the point at the end of the vector a, to
the origin of the coordinate system, which follows from the transformation relation

a,=a, [-La;]=a,-(-)+a,=—-a, +a,=0.

The symmetry operations represented by these four operators belong to one
coset in the decomposition of the plane group, because the translational parts of the
operators represent only different lattice vectors, i.e., elements of the translation

group.
sl
a, &2
o
®
a,; a,

Fig. C13

If it is a centred lattice in which there are lattice points with position vectors
1 1 .
A, = A, +-a, + -a,, then condition (C7.2b) needs to be added:
Q 2 2

2(7’1(11 + rzaz) == L1a1 + %al + LZaZ + %az . (C72d)

For the coordinates of the vector 1, we thus get the conditions:
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L, 1 L, 1
T‘1=7+Z , T‘2=7+Z.

In addition to the above combinations of r, vector coordinates valid for the primitive
lattice, the following combinations are also possible in a centred lattice within a single

(1 1) (1 3) (3 1) (3 3)
4)4 ) 4'4 ) 4'4 ) 4'4 )

corresponding to the positions shown by the ellipses with a cross in Figure C14.

O
® . ®
= ()
® ' ©®
o XD—
a

Fig. C14

unit cell:

a
N>y

When the rotation axis is shifted to a point with position vector r , the corresponding
operator has the form S = [<T>, T," (T - 5)] (— relation (h) in Appendix D13). With a
twofold axis of symmetry, ® = —1, so the operator takes the form Sg= [—i 2r0] .

When the double axis is located, for example, at a position with coordinates (1/4, 3/4),
then the vectorr, = (1/4)a, + (3/4)a2 and the operator takes the form

S = [—T, —a, += az] (C7.2€)
As an example, this operator transforms a point with position vector r = 0 (i.e. a point
lying at the origin of the reference frame), into a point with position vector

r=(1/2)a; + (3/2)a, = a, + (1/2)a; + (1/2)a,, i.e., to another lattice point of
the centred lattice.

C 7.2 Fourfold rotation axis

The fourfold axis of rotation is typical of a square crystal system. The basis
vectors a,, a, in this system are of the same length and perpendicular to each other.
We use the same procedure as for the twofold axis. The tensor representing rotation
by 90° about the fourfold axis has the form ( - tab. TC2b):

4 = a'a, - a*a,, > 1-4= a'a, — ala, + a*a, + a’a,.
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In the relation (C7.1) we add r, = r;a, + r,a, and the difference of the tensors I-

4:
(na, + nay) - (+ a*a, — ata, + a*a, + a*a,) =4, .

After performing the scalar product of the vector r, with the tensor (T — i), we get
the result:
T'1a1 - 7’1(12 + 7'2(11 + rzaz == (L1a1 + Lzaz) . (C73a)

By comparing the coordinates at the vectors a;, a, on the left and right sides of
equation:
(a) 7’1+7‘2=L1, (b) 7’2—7"1=L2.

Adding relations (a) and (b) yields 21, = L; + L,, so that if we restrict to non-negative

r, we get thevalues 0, (1/2),1,1(1/2),2,.... If r, = 0 , then it follows from relation

(a) that r; can only take integer values. Considering only non-negative values, then
rn=012,..1fr, =1/2 , thenit follows from relation (a)

ar >
¢ 0
¢

a

Fig. C15

that r; can also take only half-integer values 1/2, 3/2, ... Restricting to values of 7;
and 7, less than 1, for a vector r, we get only two possibilities: r, = 0 and r, =
(1/2)a, + (1/2)a,, i.e. the fourfold axes can only be located at the origin of the
reference frame (the unit cell) and in the middle of the unit cell. The other positions,
shown by empty squares in the figure, already belong to adjacent cells.
The rotation operators 90° about the axes located at the beginning of the
reference frame or in the middle of the unit cell have the form (- Appendix D20):
[a'a, — a*a,, 0], resp. [ata, — a’a,, a,]. (C7.3b)

These two operators represent symmetry operations belonging to the same coset of
the plane group, since their translational parts differ only in the lattice vectors.

In the square lattice, the twofold rotation axes are also applied, and the result
obtained in the previous article holds for their positions. The two positions overlap
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with the positions of the fourfold axes, so that in the square lattice the twofold axes
are located as independent only at the centre of the basis vectors. It should be noted,
however, that point group 4 contains a subgroup 2. The distribution of the twofold
and fourfold rotational axes in the square lattice is in Figure C15.

C 7.3 Threefold rotation axis

The threefold axis of rotation is typical of the hexagonal crystal system, but the
lattice is also characterized by sixfold axes. The basis vectors a;, a, in this system are
chosen to be of the same length and to make an angle with the magnitude of 120°. To
find the location of the threefold axes, we again use relation (C7.1). The tensor
representing the rotation about the threefold axis has the form (- tab. TC2b):

3 = ala, — a’a, — a’a,, = 1-3 =+a'a, — a'a, + a’a, + 2a%a,.
Substituting r, = r,a, + r,a, and the difference of the tensors into the relation
(C7.1) gives:

(na, + na,) - (+ ata; — a‘a, + a*a, + 2a*a,) = (L,a, + L,a,)
and after performing the scalar product:
+na, —na, +na, +2na, = (L1a, + L,a,) . (C7.4)
For scalar coordinates the following conditions apply:
(@ rn+mr, =L, (b) 2ry,—1 =1L,.

From the sum of equations (a) and (b) : 3r, = L, + L, , so the coordinate 7, can take
the values 0, 1/3, 2/3, 1, .... Condition (a) then implies the following possibilities for
the coordinate combination:

(0,0),(1/3,2/3),(2/3,1/3),(1,0), (0, 1), (1, 1), ....

The rotation operator by 120° about the axis located at position (1/3, 2/3),
based on relation (h) from Appendix D13, has the form [§, a;, + az] and the operator

associated with the second position (2/3, 1/3) has the form [?, al] .

The location of the threefold axes in the unit cell is shown in the following
Figure C16, with the axes belonging to adjacent base cells shown by empty triangles.
It is important to note that the hexagonal lattice is also characterized by sixfold axes
of symmetry. Threefold axes without the presence of sixfold axes occur in the
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structure only when the symmetry of the structure is lower than the symmetry of the
lattice, which is caused by the lower symmetry of the structural motif.

C 7.4 Sixfold rotation axis

The sixfold rotational axis is typical of a hexagonal crystal system. The basis
vectors a,, a, in this system are conventionally chosen to be of the same length and
subtend an angle of magnitude 120°. The tensor representing the rotation about the
six-fold axis has the form (- tab. TC2b):

6 = a'a, + a'a, — a*a,, = 1-6=—a'a, + a’a, + a’a,.

Adding the vector r, = r;a; + r,a, and the difference of the tensors to the
relation (C7.1), we get

(7‘1(11 + rzaz) - (_alaz + a2a1 + azaz) B (L1a1 + Lzaz)
and after performing the scalar product:

_rlaz + T2a1 + Tzaz = (L1a1 + Lzaz) . (C75)

From here we obtain the conditions for the scalar coordinates:
(a) 7’2=L1, (b) T'Z—T'1=L2,

from which the possibilities are: 1,=0,1,2,... and 1, =0, 1, 2, .... This means that
there can be a single sixfold axis in the basis cell - at the origin of the reference frame.
The other possibilities already correspond to positions in adjacent cells. Figure C16
also shows the positions of the twofold and threefold axes, which are part of the set
of symmetry elements of the hexagonal lattice. Fourfold axes do not occur in the
hexagonal lattice.
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C 7.5 Reflection line and glide line

Reflection lines (mirror lines) occur in all orthogonal lattices, i.e. lattices in
which a pair of mutually perpendicular basis vectors a, and a, can be chosen. This
possibility is offered in orthogonal, square as well as hexagonal lattices. The tensors
representing reflection in the line in which the basis vectors a, , respectively a, , lie,
are of the form

. = ata, — a*a, ,resp. M, = —a'a, + a’a,.

=l

For the difference of tensors I — M we thus obtain the expressions
I1-M, = 2a%a,, resp. I-M, =2ala,.
Substituting into equation (C7.1) in the case of tensor l\=’ll, we obtain the relation:
(na, + na;) - 2 a*a,) = (La; + Lya,) (C7.6)
and from it the condition for coordinater, : 21, =L, .
In doing so, no conditions are placed on the r; coordinate of the r, vector, which is

natural because the mirror line parallel to the a; vector cannot be localized in this
direction. However, the coordinate 7, in the region belonging to the unit cell can take

only two values: r, = 0,1/2. Analogously, for the tensor l\=/l2 no conditions are
imposed on the coordinate r, , the coordinate r; can only take on the values 0,1/2 .

a

a

Fig. C17a

Reflection lines complete the set of symmetry elements of orthogonal lattices,
occurring along rotational axes. In Figure C17a, they are shown by bold lines and
denoted by the letters m. reflection lines belonging to adjacent cells are shown by
empty rectangles.

In a hexagonal lattice, three equivalent orthogonal unit cells can be chosen,
rotated by 60° relative to each other, which is related to the distribution of the
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reflection lines in the lattice. The distribution of the reflection lines, as well as other
elements of symmetry in the unit cells of the seventeen planar groups, is illustrated in
the figure section of the text.

The reflection operator in a line parallel to the vector a; and shifted in the
direction of the vector a, by the coordinate r, = 1/2, based on relation (h) from
Appendix D13, has the form

[M;,a,] =[1-2a%a;, a,]. (C7.7)

For example, this operator transforms a lattice point r = 0 to a lattice point with
position vector a, and a point with position vector a, back tor=0 (- Appendix D14).

When one is dealing with a centred lattice in which there are lattice points with
position vectors A, = A, + a,/2 + a, /2, the condition (C7.6) needs to be extended.

For a tensor l\=/11, this is the case:
(T1a1 + rzaz) b (2 azaz) = (Llal + al/z + Lzaz + a2/2), (C78)

where for the coordinate r, of the vector r, we get the condition: 21, = L, + 1/2,
while no conditions are imposed on the coordinate r;. This means that within a
single unit cell, the coordinate r, can take values 1/4 and 3/4 , which are however
realized in addition to the values 0, 1/2 obtained for the primitive cell, as shown in
the following figure.

L gt

Fig. C17b

However, reflection in such lines, if it is to be a symmetry operation, is
associated with a translation of half the length of the basis vector parallel to the
reflection line, in accordance with relations (C4.21) and (C4.22), as we will show in the
following example. The reflection operator in a line parallel to the vector a, and
shifted in the direction of the vector a, to a position with coordinate r, = 1/4, based
on relation (h) from Appendix D13, has the form:

S=[1-2a?%a,, a,/2] (C7.9)
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This operator, unlike operator (C7.7), transforms a lattice point with position
vector r = 0 to a point with position vector a, /2, but where the lattice point is not
located. Therefore, the operation represented by operator (C7.9) is not a symmetry
operation. If this operator is to represent a symmetry operation, it must contain an
additional non-lattice translation t, which moves the lattice to an equivalent position.
Therefore, the condition a,/2 + t = A respectively, must be required if the vectors
t and A, are expressed in terms of scalar coordinates in the basis a,, a;:

a2/2+t1a1+t2a2 :L1a1+L2a2+a1/2+a2/2, (C710)
which leads to the conditions: t; = L; +1/2 and t, =1L,.

Within a unit cell, it suffices to restrict to the coordinate values L; = 0, 1, which yields
the coordinate values t;, which are shown in the following table:

L, L, t L, L,y L, t (%)
0 0 1/2 0 1 0 3/2 0
0 1 1/2 1 1 1 3/2 1

If t; = 3/2, then there is a displacement of (3/2) a; , which is the sum of the non-
lattice translation of a;/2 and the lattice translation of a;; however the lattice
translation, as a trivial symmetry operation, can be omitted from the considerations.
In doing so, only lattice translations are involved in the direction of the vector a, .
Thus, in all cases, a non-lattice translation equal to half of the basis vector a; must be
added to the operator (C7.9) if it is to represent the symmetry operation. Therefore,
the corresponding symmetry operator has the form

S=[1-2a%a,, a,/2 +a,/2] (C7.11)
Analogous modifications concern reflection in lines parallel to the vector a, .
Remark. If we substitute the vector A, into the relation (C7.10) instead of the vector
Ay, then for the values of the coordinates of the vector t we would get t1=0,1, t,

=1/2, 3/2, which, together with the translation a, /2, appearing in the operator, again
represent only lattice translations.

Glide line

This element of symmetry occurs not only in centred lattices, but also in
primitive ones, but where it is a consequence of the shape of the structural motif.
According to the TC3 table, reflection with glide is represented by the operator
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[l\=/l, a/2], where a is one of the basis vectors of the rectengular cell to which the glide
line is parallel. If we consider specifically the basis vector a, , the tensor expressing the
reflection in the line identical to this vector has the form:

l\=/l1 =1-2 a’a, , and the operator of glide reflection

[1-2a%a, a,/2]

This operator expresses a reflection with a shift in the line of vector a,, so the
symmetry operation consists of a reflection in this line and a shift represented by the
vector a,/2 . The tensor part of the operator is the same as in the case of reflection
without glide, and so we can use relation (C7.6) to find other positions r of the glide
line in the unit cell. For completeness, we repeat this procedure:

I-M, = 2a%a,,

and after plugging it into equation (C7.1) we get the relation:
(na, + na,) (2 a*a,) = (L,a, + L,a,) (C7.12)
and from it the condition for the coordinate 75, :
21, =1L,

Also in this case, no conditions are placed on the r; coordinate of the r, vector.
However, the coordinate 7, in the region belonging to the unit cell can take only two
values: r, = 0,1/2. This means that there are two glide lines belonging to the unit
cell, one lying in the vector a, , the other parallel to it and intersecting the vector a,
in the middle.

The operator representing the reflection with the glide in the glide line shifted
to the centre of the unit cell, in analogy with relation (C6.10), then takes the form

[1-2a%a, a,/2 +a,]. (C7.13)

This operator transforms, for example, a point with position vector a, to position
a,/2 and a point with position vector 0 to position a,/2 + a,.

The same procedure can be applied to glide lines parallel to vector a, ; glide
lines parallel to vector a; are indicated in the figure.

a

a

Fig. C18
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C 8 Plane groups

In previous considerations of the symmetry of planar periodic structures, all
allowed symmetry operations have been found, as well as 10 point groups and 5
translation groups (lattice types), which have been classified into four crystal systems.
This created the conditions for determining the set of plane groups. When this
condition is considered in terms of the relationship

G=T-(G/T)=(G/T)-T, (C8.1)

which allows one to construct plane groups (- relation C3.6), it follows that both
translation subgroups T of plane groups G and their point groups, which are
isomorphic to factor groups (G/T), are already available. This makes it possible to
proceed immediately to the construction of plane groups.

Each plane group G contains an infinite number of elements representing
symmetry operations — translations, rotations, reflections and their combinations.
These elements can be divided into cosets with respect to the invariant translation
subgroup T of the group G. The elements of the translation group are only lattice
translations, represented by the translation operators [i AL]. A coset of a planar
group G includes all its elements which are combinations of a particular element of its
point group with all elements of the translation group. Thus, it includes the symmetry
operations of the group G, which differ from each other only in the translational part
— the different lattice vectors A;. Elements of cosets are then represented by
operators S = [CT), t] with the same tensor part CT), but with different translational
parts t . Any of its elements can be chosen to represent a coset, but it is convenient to
choose the one whose translational part is zero; the representatives of the cosets are
then the elements of the point group. In the case where there is a glide line in the
structure, the translational part of the representative of the corresponding coset
cannot be zero. According to Table TC3 and relation (C4.22), its operator has the form
[l\=/l, a/2] , Where a is one of the basis vectors of the orthogonal lattice. This means
that the translational part of the coset representative is then not an element of the
translation group. However, two elements of the same coset can differ from each
other only by a lattice vector, i.e. by an element of the translation group.

The cosets as units are elements of a factor group, but the set of repre-
sentatives of these cosets — including the neutral element — may not form a group if
any one of them contains a nonzero translational part. However, the group is formed
by their tensor parts, namely the point group, which is isomorphic to the factor group
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(G/T). This isomorphism makes it possible to apply some important relations valid in
point groups to the factor group, specially to the representatives of cosets.

The point groups of planar periodic structures are divided into two sets — groups
1, 2, 3, 4, 6, m with one generating element and groups 2mm, 3m, 4mm, 6mm with
two generating elements. The groups of the second set are formed by the direct
product of any of the cyclic groups 2, 3, 4, 6 with the two-element reflection group m,
i.e. as the product of the groups

n-m,resp. m-n, (C8.2)

where the symbol n represents one of the cyclic groups. The commutativity of relation
(C8.2) can be verified using multiplication tables ( — Tables section).

Due to the isomorphism of the factor group with the point group of the planar
structure, based on relation (C8.2), the factor group (G/T) in relation (C8.1) can be
replaced by the direct productn-m:

G=T-(G/T) = G=T-n-m. (C8.3a)

The plane group G expressed by this relation is formed by combining the
elements of the point group of a planar structure with all the elements of its
translation group. Only symmetry groups of planar periodic structures in which there
are no glide lines generated by the structural motif can be expressed in this way. These
are the thirteen so-called symmorphic plane groups. In doing so, there may be two
special cases — when only the group of proper rotations n is involved, e.g., the group
3 with elements {e, 3,3}, or only the reflection group m with elements {e,m}. In
these cases, the plane group can be written in the form

G=T-n,or G=T-m. (C8.3b)

The representatives of the cosets are then the elements of the point groups, e.g. 3,
32, m, to which the operators [3,0], [3%,0], resp. [M, 0] correspond. The operators
have such a simple form when the rotation axis is located at the origin of the reference
frame, or when the reflection line is identical to some basis vector of the orthogonal
lattice. Otherwise, the operators also contain a translational part (» Appendix D13,
— part C7), so then they have the more general form [n,t] or [1\71, t], where n
symbolizes the rotation tensor belonging to one of the cyclic groups.

In some three-dimensional structures there are screw axes, so that the
corresponding symmetry operation has an integral translational part in addition to the
rotational part. That is, the symmetry operator must have the form S E[CT), t], where t
represents the non-lattice translation. However, in planar periodic structures,
operations of this kind do not occur, so by placing the origin of the reference frame in
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the rotation axis, the translational part of the operator S can be made equal to zero.
The operator [a t] is then changed to [CT), 0], or operator [n, t] to [n, 0]. This greatly
simplifies further considerations and calculations ( —» beginning of Section C4.2, or the
derivation of the transformation formula in Appendix D13). The possibility of
transforming [, t] — [, 0] is regularized by the fact that no constraints are placed on
the vector t according to Table TC3. If it is not a reflection associated with a glide, the
reflection can also be assigned the operator [l\=/[, 0] without a translation term, by a
suitable choice of the position of the origin of the reference frame.

The decomposition of the group G into subclasses is expressed in the above two
cases by the relations

G=T+T-[MO0]+T-[@20]+--+T-@"7,0],
resp.
G=T+T-[M,0]. (C8.4)

where [}, 0] represents the operator belonging to the i-th element of the cyclic group
associated with the n-fold axis of symmetry. If there are no glide lines in the planar
structure, then even combinations of rotations with reflection represent point
operations, and the representatives of cosets can be elements of point groups. The
number of members of the decomposition into cosets coincides with the number of
elements of the point group.

If these are centred lattices (they are all orthogonal and reflection is applied),
the decomposition (C8.4) involves the group T, , which can be decomposed into two
parts according to relation (C6.3): T, =T}, + t;, - T,. The decomposition of a plane
group G into cosets thus acquires twice the number of members; for example, in the
case of a point reflection group:

G=T,+T.-[M0]= (T, +t, T) + (T, + t, Tp) - [M,0] =

=Ty +t, Ty +Tp-[M0]+T,-t, [M,0]. (C8.5)

Thus, if we decompose the group G into cosets according to the subgroup Ty, , it has
up to three cosets instead of one. The translation t, = (b; + b,)/2 commutes with
the operations of the group Ty, , is represented by the operator [i, (b, + bz)/Z], and
its product with the operator [l\=/l, 0] yields the result [l\=/l, (by+ b,)/2 ] The
representatives of the three cosets are thus the elements to which the operators are
assigned:

[I, (b, +by)/2], [M,0], [M, (b, +b,)/2]. (C8.5b)
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The third of these operators is the product of the first and the second one, which,
although they do not commute with each other, swapping their order when
transforming an arbitrary lattice point leads to resulting positions whose position
vectors differ only by one of the basis vectors of the centred cell. We support the claim
by a calculation in the case of reflection in a line parallel to the vector b, , when the

reflection tensor has the form 1\711 =1- 2b?b, (— Appendix D14)
[1, by/2 + b,/2]-[My,0] = [My,b,/2 — b,/2 |,
[My,0] [T, b,/2 + b,/2] = [My, b,/2+b,/2].

That is, the representative of the coset of group G can be anyone of these two
products, since the difference of their translational parts is equal to the lattice vector

b,, i.e., an element of the translation group. The coset with representative [l\=/l, 0]
contains ordinary reflection, the coset with representative [l\=’l, (b, + by)/2 ] contains
reflection with glide in lines that are shifted with respect to the position of the vectors
b, and b, (- relations (C4.22), (C7.11)).

The relations (C8.3.a) and (C8.3.b) give rise to 12 planar groups by direct
products of translation groups with point groups. This number can be arrived from
Table TC6 (- p. 70) by multiplying the number of point groups by the number of
translation groups in each crystal system. To these twelve groups one has to add a
group that differs from a similar group only by the mutual orientation of the reflection
lines of the lattice and the reflection lines of the structural motif (- article C8.4 on the
hexagonal system). In total, there are thirteen symmorphic groups.

However, the total number of planar groups is 17, and obtaining four more
plane groups, i.e. four more types of symmetry, requires a different procedure. These
are the groups that describe the symmetry of structures with primitive lattices in
which glide lines occur as a consequence of the specific symmetry of the structural
motif (—» Appendix D18). The procedure for deriving the aforementioned four types
relies on an analogy between two relations — the relation between the elements of the
point groups and the relation between the representatives of the cosets of the plane
group. There is a relation between the elements of cyclic groups 2, 3,4, 6 and the
reflection operation m:

n-m-n=m,

where n represents an element of one of the groups 2,3,4,6 (for example, the
element 32). The relation can be verified using multiplication tables of point groups,
(- TC5), and also in the appendices, where it is supported by the relations D15(c),
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D16(d) and D17(c). Due to the isomorphism of factor groups with point groups, the
validity of the analogous relation is also required for the coset representatives in this
case, when the presence of glide lines in the structure is involved:

[A,0]-[M,t]-[m,0] =[M,t+A4,], (C8.6)

where tis one of the allowed translations according to Table TC3. Reflection with glide
displaces the entire structure, so that subsequent rotation can no longer bring it to its
original position. The relation (C8.6) expresses the requirement that the resulting
position of the translated point differs from the original one by a lattice vector. The
element with operator [l\=/[ , t] and the element with operator [l\=/l ,t+ AL] are
equivalent representatives of the same coset, since they differ from each other only
by different lattice translations of A; . This means that elements with representations
[M,a/2] and [M,—a/2] (- tab. TC3), for example, belong to the same coset,
because the difference of their translational parts is equal to the basis vector a, i.e.,
the shortest lattice vector. The element represented by the operator [1\7[ , t] belongs
to one of the cosets of the plane group, but is not an element of its point or translation
group, since it represents the inseparable union of reflection and translation.

Relation (C8.6), in addition to relation (C4.19), imposes additional conditions on
the translational part of the operators S = [CT), t]. These two conditions allow us to

correctly choose the representatives of the cosets and to construct the factor groups.

Influence of the symmetry of the structural motif

The symmetry of a planar periodic structure depends on both the symmetry of
the lattice and the symmetry of the structural motif. The symmetry of the lattice is
characterized by both point symmetry and translational symmetry, but we consider
the symmetry of the structural motif only locally, i.e., only its point symmetry. For
rotations of a certain angle, or for reflections, if these operations are to be symmetry
operations of the whole structure, not only the lattice but also the structural motif
must be brought to an equivalent position. That is, the corresponding operation must
be a joint symmetry operation of both the structural motif and the lattice, it must be
an element of both the point group of the lattice and the point group of the motif. This
is possible if and only if the point group of the lattice and the point group of the motif
share at least one subgroup. Their largest common subgroup then characterizes the
point symmetry of the entire planar structure.
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For example, if a lattice is characterized by a symmetry described by a point
group 4 = {e, 4, 4%, 43} and a structural motif by a point group 6 = {e, 6,
62,63,6% 6°}, so their only common subgroup is the group 2 = {e, 2} related to the
180° rotation represented by the elements 2 = 42 = 63 in these groups.

If a structural motif were characterized by, e.g., a fivefold axis of symmetry, i.e.,
a group 5 = {e,5, 52,53, 5%}, which (with the exception of the identity e) does not
share an element with any of the crystallographic point groups, then the symmetry of
the structure, irrespective of the type and symmetry of its lattice, would be described
by the plane group with the lowest symmetry, i.e., group p1 (- table TA3). Conversely,
if a structural motif is, e.g., circularly symmetric, its point symmetry group contains
rotations of arbitrary angles, so that a subgroup of this group is any crystallographic
point group. The largest common subgroup is then the lattice point group, which
determines the point symmetry of the entire planar periodic structure regardless of
the high symmetry of the structural motif.

It follows from the preceding discussion that the point group of the planar periodic
structure coincides with the largest common subgroup of the point group of the
lattice and the point group of the structural motif.

(C8.7)

With reflection lines present simultaneously in both the lattice and the
structural motif, the mutual parallelism of the respective reflection lines is important
so that they can be symmetry elements of the whole structure. This circumstance
manifests itself in a special way in the hexagonal crystal system, where the different
orientations of the reflection lines of the motif and the lattice lead to two different
types of symmetry.

A special case is a structural motif that generates reflection with glide (glide
reflection). In centred lattices, such reflections is due to the arrangement of lattice
points, but in primitive lattices it is due to the shape of the structural motif (— Figure
A7, — Appendix D18). Glide reflections is not a point symmetry operation, so the
largest common subgroup rule, as in the case of motif and lattice point groups, does
not apply. A glide reflection is an element of a plane group, it belongs neither to the
point group nor to the translation group, but it belongs to a separate coset of the plane
group, it is a representative of it. Such a structural motif is related to four other types
of symmetry, it conditions the existence of four other plane groups.
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In the following parts of text, the plane groups characterizing different
types of symmetries of planar periodic structures are described, successively
according to the different crystal systems. The description starts with the
oblique system, in which there is the smallest number of symmetry operations.

C 8.1 Oblique system

Point groups 1={e} and 2 ={e, 2} are included in the oblique crystal system.
In this system there exists only the primitive translation group T, , so that by its direct
product with the point groups we obtain two planar groups denoted by p1, p2 :

pl : GL=Ty,-{e} =T,
p2 : G, =T, {e,2}.

The first of these groups has no coset, the decomposition of the second into cosets
takes the form:
G,=T,+2-T,

or by replacing element 2 of point group 2 with the appropriate operator:
G,=T,+[2,0]T,. (C8.8)

Note: The operator representing an element of the point group should be written only

as a tensor 2 , but the notation with the translational part, in this case zero, allows in
the following to distinguish operators representing differently localized symmetry
elements and already expresses an element of the planar group.

The symmetry type G, is typical for all planar periodic structures characterized
by the combination of the translation group T}, with point group 2; they belong to the

oblique system no matter how high the symmetry of the lattice is.

The elements of group pl are only translations, so the operators of all its

elements have the form [i, AL], where A; represents a lattice translation.

The group p2 contains as a subgroup the group pl, plus elements which as
operators have the form [7, AL]. There are four twofold axes per unit cell, one passing

through the origin of the reference frame, and the corresponding operator [7, 0] has
a zero translation term. Operators representing rotations about axes that are
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localized away from the origin of the reference frame have a nonzero translational
term t, which depends on the position of the axis and has the form ( — Appendix D19):

[2,a,],[2,a,] 2 [2,a;, + a,].

The symmetry operations represented by these four operators belong to one coset in
the decomposition of the plane group, since the operators differ from each other only
by different lattice vectors. The representative of the coset can be any of them, most

appropriately the element [f, 0] without a translation term.

The localization of the twofold rotation axes in the unit cell was described in
Section C6.7, for completeness we present the corresponding figure:

Ay

The oblique system includes two of the 17 plane groups, which we will enter in

a table that we will gradually add:

Plane groups
number 1 2 3 4 5 6 7 8 9
symbol pl p2

number 10 11 12 13 14 15 16 17
symbol

C8.2 Rectangular system

The rectangular crystal system includes two translation groups, the primitive T,
and the centred T, , and two point groups, the 2mm holohedral group and its subgroup
m, with its second subgroup 2 belonging to the oblique system. In the first part of this
section, the plane groups related to structures with a primitive lattice — the translation
group T, will be derived, in the second part the plane groups of structures with a

centred lattice — the translation group T, will be derived.
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C8.2.1 Rectangular system, primitive lattice

An orthogonal lattice that is not centred is characterized by two basis vectors
a;, a,, which are perpendicular to each other, and do not have the same magnitude.
The plane groups in this case can be expressed as the direct product of the primitive
translation group T, with the m or 2mm point groups. For the rectangular system, the
presence of reflections — ordinary or with glide —is crucial. If there are glide reflections
in lines parallel to one basis vector, then it is a group m. The presence of glide
reflections in two lines perpendicular to each other is inextricably linked to rotation
about the double axis ( » multiplication table TB5), so in that case it is already a group
2mm.

Group m

The combination of the translation group T, with a simple reflection in the line
identical to the vector a;, represented by the operator [1711, 0] = [T - 2a2a2], yields
a planar group:

G =T, {e,m},

whose decomposition into cosets has the form
G=T,+T, [M,,0].

The same type of symmetry will be given by reflection in the line identical to the vector
a,, represented by the operator [l\=’12, 0] = [T — 2a1a1] , so the index at the tensor M
will be omitted. This gives rise to the third plane group in the sequence, which has label
pm and decomposition into cosets:

pm: Gs =T, +T,-[M,0].

The combination of the group T, and the glide reflection yields another group,
with label pg and decomposition into cosets

pg: Gy =Tp+Tp-[l\=/[,t],

where t represents the translations a,;/2 and a,/2 respectively, depending on
whether the tensor is 1\7[1 or 1\7[2. For a more detailed discussion of the group of this
type, see Appendix D18. It should be noted that both cases involve symmetries of
structures in which there are reflection lines or glide lines parallel to only one of the
basis vectors.
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The distribution of symmetry elements in the plane groups G5 and G, is shown
in the following figure, where the reflection lines are indicated by continuous

ot P8

thick lines and the glide lines by dashed lines. Their localization in the unit cell has been
justified in section C7. It should be noted that of the three reflection lines, only the two
lower ones belong to the unit cell, the third one already belongs to the adjacent higher
cell.

Group 2mm
The 2mm holohedral group can be expressed as a direct product of its subgroups:
2mm = {2} - {m}.

Therefore, the corresponding plane group can also be written as a direct product of
the translation group with subgroups 2 and m:

G =T, {2} {m}
or after explicitly decomposing the elements of the 2mm group:

G=T,-2mm =T, {e,2,m,m, }.

The symmetry operations of such a plane group, i.e., its elements, include
translations, rotations about twofold axes, reflections in two systems of lines parallel
to the basis vectors, and combinations of these operations. The possibility of glide
reflection must also be taken into account, as can be seen from both relation (C4.21)
and Table TC3.

The symmetry operations in the plane group G can be represented by the
rotation operator [f, 0], the reflection operators [l\=/[1, 0], [l\=/[2, 0], the glide reflection
operators [l\7ll,a1/2] and [l\=’12,a2/2],, the translation operators [T,AL] as well as
combinations of these operators. An identical operation, which is an integral part of a

group, is represented by the operator [T 0].
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Starting from the above facts, we

describe a type of symmetry that is
characterized by the presence of

— p2mm
rotations [2, O] and ordinary reflections

[l\=/11,0] and [l\=/12, 0] in lines parallel to
the basis vectors. A plane group with

this symmetry is denoted by the symbol p2mm, has order number 6, and its
decomposition into cosets has the form:

p2mm: G =T, + T, [2,0] + T, - [M;, 0] + T, - [M,,0].

Another type of symmetry is obtained by replacing one of the ordinary
reflection in the p2Zmm group by a glide reflection. For example, we replace the
[1\712,0] operator of the reflection in the line identical to the vector a, by the
[l\=/[2, a2/2] operator. The product of this operator with the rotation operator gives the
result:

[2,0] - [M,,a,/2] = [M,,a,/2],

thus an operator of ordinary reflection in a line parallel to the vector a,, but shifted in
the direction of the vector a, by a quarter of its length (- part C7). In doing so, the
glide lines remain in place of the original reflection lines without glide, but the
reflection lines perpendicular to them are shifted, as shown in the figure of this plane
group. The planar group is denoted by p2mg and its coset decomposition is of the
form:

p2mg: G, =T, +T, [2,0] + T, [My, ay/2] + T, - [My, a,/2].

Replacing even the second reflection operator by a glide reflection operator
will give the last type of symmetry structure with an orthogonal primitive lattice.
However, the glide lines cannot lie in the basis vectors, since the combination of glide
reflection in such a line with rotation by 180° is equivalent to ordinary reflection, as
seen in the previous case. The glide lines must be shifted within one quarter (even
three quarters — part C7) of the length of the basis vector. The reflection operator
with a glide line parallel to the vector a, then has the form [1\7[2 , a/2 + a2/2] (-
formula C7.11). The product of this operator with the rotation operator gives the
result:

[2,0]-[M,,a,/2 + a,/2] = [M;,a,/2 + a,/2],
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i.e., again glide reflection, but in a line parallel to the vector a; and displaced by a, /4 .

The corresponding plane group has the symbol p2gg and its decomposition into
cosets has the form:

p2gg: Gg =Ty + Ty [2,0] + T, [My, a1/2 + a,/2] + T, - [My, a1 /2 + a,/2].

The operator representing the glide reflection in a line parallel to the vector a, and
shifted to position (3/4)a, has the form [1\7[1, a,/2 + (3/2)a,], its translational part
differs from the operator [l\=/ll,a1/2 + a2/2] by the lattice vector a, , so that the
corresponding operations belong to one coset of the plane group.

This exhausted all types of symmetries of planar periodic structures with
primitive orthogonal lattices, so that five groups were added to the table:

pm, pg, p2mm, p2mg and p2gg.

p2mm p 2:71g

Plane groups

number 1 2 3 4 5 6 7 8 9
symbol pl p2 pm pg p2mm p2mg p2gg
number 10 11 12 13 14 15 16 17
symbol

C8.2.2 Rectangular system, centred lattice

We express the translation group T, of a centred lattice by decomposing it into
an incomplete translation subgroup Ty, and a coset with respect to this subgroup:
TC = Tb + Tb * tb ’ (C89)

where t, = b, /2 + b, /2, and b, and b, are the basis vectors in the centred lattice
(— relation C6.3 and the text preceding it, — relation C8.5).
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Group m

Also in the centred lattice, these will be combinations of the translation group with the
point groups m and 2mm. We start by combining the group m with the group T; , so
we first write the plane group as their direct product:

G=T.-{e,m}.
The coset breakdown by translational subgroup T. looks like this:
G=T.+T.m,
or by replacing the element m of the point group by its tensor operator:
G=T.+T.[M,O0]

A better view of the set of symmetry elements and their distribution in the unit
cell is obtained by decomposing the plane group G into cosets according to the
incomplete translation group T}, i.e. according to relation (C8.9). This allows a better
assessment of the symmetry of the centred lattice structure. When we use their tensor
operators instead of the group elements, and consider reflections in lines parallel to
the vector b,, the decomposition into cosets takes the form ( - relation C8.5):

G=Ty+Ty ty, + Ty [M,0] + Ty -ty - [My, 0].

The first of the cosets - T}, - £, - completes the group T, to the full translation
group T, , with the element with operator [T, (b, + bz)/Z] as its representative (-
relation C8.5b). The representative of the second coset is the element with operator
[l\=/[1, 0] representing the ordinary reflection in the line in which the vector b, lies. The
representative of the third coset is the operator we obtain as the product:

— = 1 — — 1 1
tb ' [Ml’ 0] = [I, E(bl + bz)] ) [Ml’ 0] = [Ml, Ebl - Ebz ].
By reversing the order in the product of the operators we get:
— — -1 — 1 1
[Ml’ 0] ' tb = [Ml' O] ' I:I,E(bl + bz)] = I:Ml,zbl + Ebz ],

which implies that the results of the products differ only by the basis vector b,, so
that both elements can be representatives of the same coset.

The operator [l\=’11, b,/2+b,/2 ] represents a glide reflection in a line
parallel to the vector b, , but shifted in the direction of the vector b, by a quarter of
its length. Details of an operator of this type are given in the text preceding relation
(C7.11).
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It is worth noting that in addition to the ordinary reflection represented by the
operator [1\=/11, 0], there cannot exist a glide reflection in the same line, represented by
the operator [l\=’ll, b,/2 ] The product of these operators yields the operator

[i b1/2], which is not a symmetry operator because the translation of b, /2 is not
itself part of the translation group.

Thus, we obtain another plane group which is a combination of a centred
translation group T, and a point group m, in which both ordinary reflections and glide
reflections occur as symmetry operations. The distribution of these symmetry
elements in the unit cell is described in Section C7.

The symbol cm is used for this group and it is listed as the fifth in the order of
plane groups:

cm : Gs = T.-{e,m},
while the decomposition of the group into cosets has already been discussed above.

Group 2mm

We first express the plane group as the direct product of the translation group
T, and the point group 2mm:

G=T.-2mm}= T.-{2}-{m}=T.-{e,2}-{e,m} =T, {e, Z,mx,my}.

The decomposition of the group G into cosets can be done with respect to the
complete translation subgroup T, but also with respect to the incomplete translation
subgroup T}, as in the case of the group m . The latter method will give more
information about the symmetry elements and their localization in the unit cell.

The decomposition of the planar group G by the translation subgroup T. has
four members, three of which are cosets, similar to the decomposition of the group G
for the primitive lattice:

G=T.+[2,0] T, +[M,,0] T, +[M,,0]-T..

The decomposition by the group Ty, has eight members, seven of which are
cosets, and directly expresses all operations or symmetry elements in the structure
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G=Ty+ty, Ty +Ty-[2,0]+t, Ty [2,0] +
+Tb'[l\7[1ro] +tp Ty [ﬁlro] + Ty [1\7[2'0] tip Ty [1\7[2,0].

The eight members of the decomposition can be divided into three sets. The
first and second members represent the complete translation group T.

The second set includes the third, fifth and seventh members, represented by
operators for which the translation t,, does not occur, so they are zero-translation
operators. All of them are also part of the group G4, denoted p2mm.

The third set includes three terms in which the t,, translation is already present,
so we can write them in the general form

[2,t], [M,, t] and [M,, t],

where according to relation (C8.5b) t = (b, + b,)/2.Such a combination of symmetry
elements does not occur in the symmetry types described so far, so it represents its
next type, the ninth planar group G4, denoted by c2mm.

The operator [f, t] = [f, (b, + bz)/Z] represents a rotation about a twofold
axis located at a point with position vector (b, + b,) /4, which is a typical location for
a centred lattice (-~ Fig. C14), while other possible positions of this axis, are given in
Section C7. Operators [1\7[1, (b, + b;)/2] and [l\=’12, (b, + b;)/2] represent glide
reflections in two mutually perpendicular lines, shifted by 1/4 the length of the basis
vectors. A more detailed description of these is given in the text before relation
(C6.14). Meanwhile, the presence of glide lines in which the basis vectors lie is ruled
out, because combining an operator representing a glide reflection, i.e., [l\=/11,b1/2],
for example with the operator [1\7[1, (b, + b,)/2], yields [T,b1 + b,/2], which is a
translation that does not belong to the translation group, so it is not a symmetry
operation.

Thus, the next planar group is the group G,

c2mm

denoted by the symbol c2mm, shown in the adjacent I

figure. However, the glide line markers do not appear
in the international symbol of group G,, because glide
lines are a natural part of structures with centred
lattices.

c2mm : Go = T -{e,2,my,m,}

Based on the considerations of the centred lattice in the rectangular system,
two more groups were added to the table of planar groups: cm and c2mm .
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Plane groups
number 1 2 3 4 5 6 7 8 9
symbol pl p2 pm pg cm  p2mm p2mg p2gg c2mm

number 10 11 12 13 14 15 16 17
symbol

C8.3 Square system

The tetragonal crystal system includes only one type of translation group — the
T, group representing the primitive lattice, and two point groups: 4, 4mm. The unit
cell is determined by two basis vectors a; and a, , which are perpendicular to each
other and have the same size.

The group 4 is cyclic, with a single generating element represented by the
operator [4,0] = [ ala, — a%a,,0], and its direct product with the group T, yields
the first of the plane groups belonging to the square system:

p4 . Glo = Tp ) {4} = Tp ) {e! 4; 42) 43};
or after decomposition into cosets

p4 : Gyo=T,+[4,0]-T, +[4%0] T, + [4%0]-T,, (C8.10)
while

[4%2,0] = [2,0] = [-1,0] and [4%,0] = [~ a'a, + a’a,,0] (- C4.1.3).

There are two fourfold axes per unit cell (- article C7.2), one localized at the
origin of the reference frame, the other at the centre of the unit cell. Operations
related to the second position are represented by operators (- Appendix D20):

[i, al], [iz,al + az], (43, a,]

whose translational parts differ from the operators in relation (C8.10) only by different
lattice vectors, i.e. different elements of the translation group. This means that the

symmetry operations represented, for example, by the operators [13, 0] and [13, a|
belong to one coset of the plane group and each of them can be its representative.

96



Two twofold axes are also localized in the unit cell of the square lattice, at
positions (1/2,0), (0,1/2), with the corresponding rotations of 2 being identical to
the rotations of 42. The operators of these rotations have the form (- Appendix D19)

[2,a,] = [4%, a,] resp. [2,a,] = [4%,a,],

and differ from the operator [iz, 0] only by the translational part augmented by lattice
vectors. Therefore, the corresponding operations belong to the same coset of the

plane group as the operations represented by the operator [iz, 0]. The decomposition
(C8.10) of the group Gy is thus complete.

The group 4mm has two generating elements, it can be obtained by the direct
product of the group 4 with the reflection group m: 4mm = 4-m = {4} - {m}. The
plane group is obtained by its direct product with the translation group T},

G= T, {4} {m} =T, {4} (M)

As shown in Table TC3, there are two variants of reflection in planar structures —
ordinary reflection and glide reflection, which must be taken into account. Therefore,
when expressing the plane group, we write the direct product in a more general form
that takes this into account:

G = Tp - {4} - {lv[, t1a1 + tzaz} .

The possible values of the coordinates t; and t, are obtained from the condition (C8.6)
expressed by the relation: [, 0] - [M, ] - [[1,0] = [M,t + A,], which we modify for
this particular case:

[4,0]-[M, t,a, +t,a,]-[4,0] = [Mt,a, +t,a, + A,].

This equation implies constraints on the values of t; (—» Appendix D16):
t1=t2= 0, or t1=t2=1/2, = t=0,0r t=(a1+a2)/2 (C811)

Thus we get two mutually distinct plane groups, in the first case the group
pamm : Gy, = T,-{4}-{M,0},

in the second case, the group
pdgm : G, = T,-{4}- {1\7[, t},

or after decomposition into subclasses:
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pdmm : Gy =T, + (4] T, +[4%] T, + [#] - T, + [M,,0] - T, +

+[M,,0] " T, + [M,, ,0] - T, + [M,,,0] - T, (C8.12)

pagm : Gy, =T, +[4] T, + [4%]- T, + [4%] - T, + [M,,t] T, +

+[My, t] - T, + [Myy , t] - T, + [My, , 8] - T, (C8.13)

We will describe these two groups in more detail, because the brief method
given does not point to important details. The 4mm group has eight elements, and in
addition to rotations, it also contains reflection in lines parallel to the sides (mx, my)
and diagonals (myx, , myx) of the unit cell, so that a more detailed description of the
plane group p4mm takes the form

pdmm: G1= Ty {e, 4,4%,4%, my, my, myy, myx},

while its decomposition into cosets has already been given above.

As in the case of group G, it is appropriate to consider all symmetry elements
distributed in the unit cell. The distribution of the rotation axes is the same as for group
G19, but in this case the distribution of the reflection lines must also be considered.
According to the results presented in C7.5, the reflection lines parallel to the basis
vector a, incident to the unit cell are represented by two operators (- relation C8.7):

[M,,0] = [M;,0] = [1- 2 a%a,, 0] =[a'a, — a’a,, 0],
[M; ,a,] = [1-2a%a,, a,] =[a'a, — a’a,, a,],
and reflections in lines parallel to vector a, by two other operators
[M, ,0] = [M,,0] = [I-2ala,, 0] =[-a'a, + a%a,,0],
[M,,a,]=[1-2a'a,, a,;| =[-a'a; + a%a;, a,].

The operators [M; , 0] and [M, , a,] differ from each other only in their translational
part, namely the elements of the translation group, so the corresponding operations
belong to one coset of the plane group. The same is true for the operations
represented by the operators [l\=/[2 ,0] and [l\=/[2 ,aq].

The reflection operator in the line identical to the diagonal xy of the unit cell
(passing through the origin of the reference frame) has the form (= end of Section
C4.1.3):

[M,, ,0] = [M,,0] = [a'a, + a®a,,0], (C8.14)
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and the reflection operator in a line perpendicular to it (and also passing through the
origin of the reference frame):

[lv[yx ,0] = [ﬁz:[ ,0] = [_ alaz - azal, 0]

The reflection operators [l\=/lx ,0], [l\=/ly ,0], [l\=/lxy , 0] and [l\=/[yx , 0] act in the
decomposition of the plane group G, as representatives of its cosets. However, glide
lines are a natural part of the symmetry of the square lattice (- the figure at the end
of this part, or the figure in the appendices), which makes it appear as if the
decomposition (C8.12) of the plane group G;; is incomplete. However, operators
representing glide reflections can be obtained from operators of ordinary reflections
by adding certain lattice translations, i.e., certain elements of the translation group. In
terms of operators, the addition of a translation can be realized as the product of the
corresponding operator with the translation operator [T ,A.], where A; is an element
of the translation group. The operators representing the glide reflections in lines
parallel to the xy diagonal (their labels are in Appendices D21 and D22) are obtained
by the following products:

My, : [a‘a, + a?a,,0]-[1,a,]=[ala, + a%a,,a,],
My, : [ata, + a%a,,0]-[1,a,] =[a'a, + a%a,,a,].
The operators representing the glide reflections in lines parallel to the diagonal yx have
the form:
M : [—a'a, — a?a,,0]-[1,a,] =[- ala, — a%a,,a,],
Mac: [—a‘a, — a?a;,0]-[1,a,] =[-ala, — a%a,,a,].
A more detailed discussion of these operators is given in Appendices D21 and
D22. Appendix D21 also gives examples showing that glide reflections is equivalent to
a sequential application of ordinary reflection and rotation about one of the axes of

symmetry. The above fact implies that the decomposition (C8.12) of the p4mm group
is complete.

The next plane group, denoted p4gm, differs from the previous one by
assuming the presence of glide reflections in lines parallel to both the sides and the
diagonals of the unit cell. Thus, in the reflection operators of the decomposition
(C8.13) of a plane group, the non-lattice translation t = a;/2 + a,/2 (- relation
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C8.11) comes into play, so that the decomposition of the group into cosets takes the
form:

pdgm: Gip =Ty + (4] T, +[4%] T, + [4] - T, +
i 1 1 v 1 1

+[M1 ,Eal + Eaz] - Tp + [MZ ,Eal + Eaz] ) Tp +

+[lv[12 ,%al + %az] - Tp + [17121 ,%al + %az] ) Tp .

The data in Appendices D23 and D24 show that [l\=/[1 ,a,/2 + a,/2] operator
represents a reflection with glide a;/2 in a line parallel to the vector a; and shifted
to position a,/4, the operator [M, , @, /2 + a,/2] reflection with glide a, /2 in a line
parallel to the vector a, and shifted by a, /4, and then a third operator [1\7112 ,a,/2 +
a, /2] reflection with glide a, /2 + a,/2 in a line identical to diagonal xy of the unit
cell. The fourth operator [l\=/[21 ,a,/2 + a,/2] represents an ordinary reflection in a
line parallel to the diagonal yx , while the operator [1\7121 ,a,./2 —a,/2], i.e. the
operator with the translation part changed by the lattice vector —a,, represents a glide
reflection in a line identical to the diagonal yx .

In this group, there are three other reflections without glide within the unit cell
that are not visibly represented in its decomposition (C8.13), but, as in the p4Amm
group, their operators are formed by adding a lattice translation to the operators
representing the glide reflection. Details are given in Appendix D24; a list of the
operators of the p4gm group belonging to the unit cell is given in Appendix D23.

The next table includes three square lattice groups, p4, p4Amm and p4gm.

Rovinné grupy
Cislo 1 2 3 4 5 6 7 8 9
znacka pl p2 pm pg cm  p2mm p2mg p2gg c2mm

Cislo 10 11 12 13 14 15 16 17
znacka p4  pdmm pldgm

i
RO hA
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C8.4 Hexagonal system

In the hexagonal system, only the primitive lattice described by the primitive
translation group T}, , but four point groups apply: 3,3m, 6 and 6mm, the last one being
holohedral. The holohedral group includes the multiplicities of the 60° rotation,
denoted by the symbols 6,62, 63,6% 6°, plus the set of reflections in the six lines,
which are denoted by the symbols my,msy,mgy, Moy , My20, My150; the indices
express the angle that these lines take with the basis vector a; .

The unit cell in the hexagonal system is by default determined by the vectors
a,, a,, which have the same length and conventionally take the angle 120°. Such a
unit cell is primitive. An alternative is the centred orthohexagonal cell introduced in
C6.2. Some of its properties, including the shape of the rotation and reflection
operators, are described in Appendix D26, not included in the main text.

The point group 3 in combination with the translation group T}, gives rise to the
planar group p3:

p3: Gl3 = Tp - {3} = Tp - {e, 3, 32},
and after decomposition into cosets:
Gis = T, +T,[3,0]+ T, [3%0].

The tensor representing the 120° rotation , i.e. generating element of the cyclic group
{3}, written using the basis vectors a, , a, , has the form according to Table TC2b:

3 = a'a, — a%a, — a’a, .
There are 3 threefold axes per unit cell, with localizations (0,0), (1/3,
2/3) and (2/3, 1/3) .
The operators representing the respective rotations have the form

[§, 0], [?, a;, + az], resp. [?, al],

and differ only in the translational part by different lattice vectors, so that the
corresponding elements of the plane group belong to one coset. The operators
representing rotations by 240° about the axes localized at these positions have an
analogous shape.

The point group 3m combined with the translation group T, gives rise to two
plane groups, denoted by the symbols p3m1 and p31m, which differ from each other
by the orientations of the reflection lines with respect to the basis vector a,. Both
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groups are formed by the direct product ¢ = T}, - {3m} , but they differ in the detail
of the elements of the point group:

p3ml: Gy =T, {e,3,3% mszg, Mgy, Mys0}

p31m : 615 = Tp * {e; 3; 32rm0;m60rm120}'

The notation of these groups after decomposition into cosets:
Gua =Tp+ Ty [§' O] +Tp [§2' 0] tTp [1\730' 0] +Tp [1\790' 0] tTp [1\7150' 0] ’
Gis =Tp + Ty [§' 0] + Ty [§2'0] +Tp- [1\70' 0] + Ty [1\760' 0] + Ty [1\7120' 0].

Glide lines also occur in both groups (- images at the end of this article), with glide
reflections belonging to the same coset as reflections in a line parallel to these glide
lines. Appendix D27 gives a more detailed description of reflections in the p31m group,
Appendix D28 covers reflections in the p3m1 group.

The point group 6 combined with the translation group T, produces a plane
group with ordinal number 16, denoted by the symbol p6:

p6: G = T, {6} = T,-{e 66%6%6%6%},
with a breakdown of the cosets:
Gie =T, +T,[6,0]+T,[6%0]+T, [6%0]+T,[6%0]+T,-[6%0].

In this plane group, there are no reflections, but for the unit cell, in addition to one
hexagonal axis with localization (0, 0), there are 2 threefold axes with localizations
(1/3, 2/3) and (2/3, 1/3), and three twofold axes with localizations (1/2,0),
(0,1/2) a (1/2,1/2). The operators of the threefold axes have the same form as for
the group p3, i.e.

3,a, + a,), resp. [3,a1],

differ from each other only by lattice translations, so that the corresponding
operations belong to one coset of the plane group p6.

The twofold axis operators have the same form as in the group p2, i.e.:
[2,a,], [2,a,] a[2,a, + a,],

and the same is true for them as for operators related to threefold axes of symmetry.
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The point group 6mm combined with the translation group T, produces a plane
group with the sequence number 17, denoted by the symbol pémm; it is the last of the
set of plane groups.

It is written as a direct product:
Gi7 = Tp -{6} - {m},

The tensor representing the 60° rotation, i.e. generating element of the cyclic
group {6}, written using the basis vectors a,, a,, has the form according to Table
TB2b:

6 =a'a, + ala, — a’a,
and the operator of the corresponding element of the plane group (with zero
translation): [2, 0]. When we choose the generating element of the point group {m} to
be a mirror in the line parallel to the vector a,, the tensor of this operation, denoted
by the symbol l\=/[0, has the form (- Appendix D25)

M, = ala, — a’a, — a’a,
and the corresponding operator of the plane group element [1\7[0,0]. Appendix D25

also lists the operators of the other rotations and reflections applied in the p6mm

group.
When we want to include glide lines in the considerations, we write the
reflection operator in the form [l\=/lo, t], where the translation t must satisfy condition
(C8.3):
[6,0] - [M,,t]-[6,0] = [M,,t+A4,]

where A; is a lattice vector. According to the result obtained in Appendix D17, within
the unit cell, only the translation t = 0 satisfies this condition. This means that despite
the presence of glide reflections, the representatives of all cosets of this plane group
can be ordinary reflections, i.e., reflection operators without a translation term:

G, =T, +T,[6,0]+T,-[6%0]+T, [6%0]+T,[6%0]+T,[650] +
+T, - [Mo, 0] + T, - [M30,0] + T, - [Meo, 0] + T, - [Moy, 0] +
+Tp - [1\=/[120, O] + Tp - [1\=/[150, O] .

Note that the operator [EZ, 0] is identical to the operator [§, 0], and the
operator [33, 0] to the operator [i 0], and that the threefold and twofold axes of
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symmetry are also distributed in the hexagonal unit cell, as mentioned above for the
group p6.

Adding translation group elements to the translation members of the reflection
operators produces operators representing either a combination of reflection with
lattice translation or glide reflections. Due to the circumstance that the set of
reflections of the group p6mm coincides with the sum of the sets of reflections in the
groups p31m and p3m1l, it is not necessary to give further information about them.
However, some details are given in Appendices D27 and D28, which refer to groups
p31m and p3m1.

There are 5 planar groups included in the hexagonal system:

p3 Gz = T, {3}

p3m1l Gia =T, {3} {ms}
p3Im Gy = T, {3} {my)
p6 G = Tp - {6}

peémm G =Ty {6} {m}

F{e;
>
‘

W
2

The hexagonal system has been used to exhaust the last types of symmetries of planar
periodic structures and the corresponding plane groups have been determined. The
following table lists the symbols of all 17 planar groups.
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Plane groups
number 1 2 3 4 5 6 7 8 9
symbol pl p2 pm pg cm  p2mm p2mg p2gg c2mm

number 10 11 12 13 14 15 16 17
symbol pdm pdmm pldgm p3 p3ml p31m p6  pbmm

An overview of all the plane groups with their assignment to crystal systems is
given in Table TA3 in Section A and repeated in the tabular section. In the figure
section, the shape and distribution of structural motifs is indicated for each plane
group - in addition to the shape of the unit cell. In the figure section you will also find
a schematic representation of the wallpaper patterns, with the symmetry belonging to
the corresponding plane group. Their author is Edmund Dobrocka, the creator of the
program for drawing them [24].
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C9 Black-white groups

In addition to the spatial coordinates of the atom expressing its position in the
unit cell, another parameter was considered that could characterize some of its
physical or chemical properties and take two or more values (e.g., the direction of the
magnetic moment). A parameter with two values was already the subject of
consideration in 1929 by the German mathematician Heinrich Heesch [25], who in his
doctoral thesis gave the name black-white to the respective symmetry groups.

The consistent derivation of 58 types of black—white point groups (three-
dimensional) is associated with the 1951 work of the Russian crystallographer A. V.
Shubnikov [26]. Shubnikov began to use the term anti-symmetry, which has its origin
in the opposition of states corresponding to two possible values of the anti-symmetry
parameter. For example, in antiferromagnetics there are two opposite orientations of
the magnetic moments of the atoms, which contributed to the use of the threefold
naming of these groups - the black—white, magnetic, and Shubnikov groups. The
increase in the number of parameters characterizing the atom in the unit cell results
in an increase in the number of symmetry types, for example, for crystal point groups
from 32 to 58. Black—white groups can be applied, for example, to characterize the
symmetry of printed fabrics or wallpapers with periodic alternation of two colours in
a structural motif.

A. V. Shubnikov together with N. V. Belov in 1964 published a book entitled
Colored symmetry [27], in which they considered the case of several possible values
of another parameter of the atom, and under the influence of the name black- white
groups, the name colour groups was coined. These, however, will not be the subject
of this text, as it is too difficult a topic in scope. To describe the effect of increasing the
number of parameters of an atom on the number of types of symmetry, the example
of black-white groups will suffice. This topic is also dealt with, for example, in the book
by A. V. Shubnikov, V. A. Koptsik: Symmetry in Science and Art [28].

The principle of the construction of black-white groups in the plane will be
illustrated by the example of a structural motif whose two possible colours (black —
white) alternately change after the application of a certain symmetry operation, such
as translation. When a structural motif is translated from a certain position by a
symmetry operation to another position (equivalent in terms of spatial symmetry), but
in which it should have the opposite colour, the complete identification of the
structure is only achieved when the colour of the translated structural motif changes.
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From a mathematical point of view, the colour transformation can be expressed
symbolically by the number -1, understood as a colour transformation operator
(colour inversion operator, anti-symmetry operator), which is added to the operator
representing the corresponding spatial operation (rotation, reflection, or translation).
However, another symmetry operation can be used to bring the structural motif to a
position in which the same colour is required; colour preservation can be expressed by
the application of the operator represented by the number +1. A pair of numbers
(operators) =1, +1, in terms of the binary multiplication operation forms a group, in
this case called the group of inversion and denoted by the symbol R = {1, —1}, or by
Shubnikov R = {1, 1'}. The comma over the symbol of the symmetry operation was
also used by Shubnikov for other spatial operations associated with the transformation
of colour, or more generally — with the change of the value of the anti-symmetry
parameter. For example, the rotation by 90° about the fourfold axis of symmetry
associated with the change of colour was denoted by the symbol 4'.

Note We will use an asterisk instead of a comma in this text: 4’ — 4*.

It should be noted that in structures in which there are two alternating colours, only
some symmetry operations are combined with a colour change, so they form only part
of the corresponding set of symmetry operations — each black-white symmetry group
contains both "with asterisk" and "without asterisk" operations.

The black-white groups (we denote them by M) related to the group G of spatial
transformations are formed on the basis of its subgroup H with index 2 (H has half of
the elements of G). The elements of subgroup H are space transformations (rotations,
reflections, translations) without combining with a colour change, while all other
elements of group G, i.e., the elements of the coset G — H they are written in the
symbolic form (G — H)1* with a colour change. The notation of the black-white group
M thus takes the form:

M=H+ (G- H)1"
This construction of black-white groups applies directly to both point and translation

groups, but for space (and planar) groups, as discussed below, there are two types of
black-white groups.

Toillustrate the properties of black-white point groups, the following figure will
serve.
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Fig. C9.1

The point group G of the left object contains the rotations by 0°, 120° and 240°
(symbols e, 3, 32%,) associated with the threefold axis of symmetry perpendicular to the
plane of the triangle and passing through its centre, and furthermore the reflections
with labels m,, mgy and m,,, , in the three planes perpendicular to the plane of the
triangle, which make angles 60° to each other. In each of these transformations, the
object is identified with itself. Thus, the one-colour point group G contains the
following elements:

— 2
G = {9,3,3 ,mo ,m60 ,mlzo }.

The object on the right side of the figure identifies with itself after rotations by 0°, 120°
and 240°, and this set of symmetry operations - without colour change - with the labels
e, 3,32, forms a subgroup with index 2 of the group G. However, after reflections, the
object only reaches the congruent position after the black and white colours have been
interchanged. Therefore, the reflection must be combined with the colour inversion,
represented by an asterisk. The black-white point group M then has the following
elements:

— 2
M = {e,3,3%, m§, mg,, mi, .

The symmetry of the left object in this view represents the symmetry of a monochrome
wallpaper, the symmetry of the right object, a two-colour one.

Based on such considerations, we show how point, translation, and even plane
black- white symmetry groups of planar periodic structures are formed.

Black—white point groups

There are 10 types of point groups in planar two-dimensionally periodic
singlechrome structures, which are listed in both Tables TA2 and TA3 and illustrated in
the figure. These are the groups that have been denoted in the previous text by the
symbols

1,2, m,2mm, 3,3m, 4, 4mm, 6, 6mm .
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The following table lists the elements of these groups.

Table C9.1

Symbols Elements of groups
1 1 {e}
2 2 {e 2}
3 m {e, m}
4 2mm {e, 2, m,,m,}
5 3 {e3,3%
6 3m {e,3, 3%, mg, Mg, My }
7 4 { e, 4,42 4%}
8 4mm {e4,4%,4°, m,,my,,my, ,m,,}
9 6 {e, 6, 62,63,6% 6%}
10 6mm {e, 6, 62,63,6% 6% my, M3y, Mgg, Moy, M120, M1s0}

We will create black-white groups by finding subgroups with index 2 in
each of the given point groups. The other elements of the group, forming a coset
of the group, will be associated with a colour change, so we will add the
appropriate asterisk to them.

The point group denoted by the symbol 1 has only one element, the identity, so
it has no subgroup.

Point group 2 has two elements, with the identity - the element marked e being
its only subgroup with index 2. So the corresponding black-white group has the
following composition: {e,2*}.

The point group m also has only two elements, identity and reflection, so the
corresponding black-white group consists of the elements {e, m*}.

There are two subgroups of index 2, {e, 2} and {e,m,}, (respectively {e, my}) in
the 2mm point group, so that two black-white groups can be formed:
{e,2,m;,m}} and {e, m,, 2" ,m}}. The group {e,m,,2*,m;} is equivalent to the
latter; itis just a change of coordinate axis labels, so it does not represent a new
type of symmetry.
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Point group 3 has an odd number of elements, so it cannot contain a subgroup
with index 2.

In the point group 3m there is only one suitable subgroup, the cyclic group of
rotations {e, 3, 32}, so the corresponding black-white group consists of elements:
{eﬁ 3» 32; ma ) mZOP m;ZO}

Point group 4 has a single subgroup with index 2, namely {e, 42}, so the
corresponding black-white group has the composition: {e, 42,4*,43*}.

Three subgroups with index 2 are present in the 4mm point group, and thus the
same number of black-white groups: { e,4,4% 4%, m;, m},,my,, m;,}, {e 4%
my ,my, 4%, 4%, my,,m;.}, {e 4%, my, ,my,,4,4%,m;,m;}

The point group 6 has a single subgroup with index 2, the group {e, 62, 6*}, so
there is a single black-white group associated with it: {e, 62, 6%, 6%, 63*, 6>}.

There are three suitable subgroups in the 6mm group, so there are also three
black-white groups:

2 3 4 5 * * * * * *
{e, 6, 6%,6°,6% 6°,mg, M30, Mgy, Mgy, M0, Mise},

2 4 * 3% 5% * * *

{e, 6%,6% my, Mgy, My, 6%,6°%, 6%, M30, Mgy, My50},
2 4 * £ 3% 5% * * *

{e, 6%, 6% M3, Mgy, My50, 6,6°", 6", My, Mg, M50}

On the next page is a table of black-white groups, followed by a graphical
representation of them.
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Table C9.2

Group Group

symbol  number Black-white point groups

1 No subgroup
2 1 {e, 2"}
m 2 {e,m"}
3 {e, 2, my ,m;‘,} ,
2mm 4 {e,my, 27 ,m3}
y My, 27 ,my,
3 No subgroup with index 2
3m 5 {e,3,3%, mg,mg, mis}
4 6 {e, 4%, 4,4}
7 { e,4,4%,4°, m;, mj,my,, my,
4mm 8 {e 4%, m,,m,, 4, 4, m;,,m,}
9 {e,4%, my, ,my,, 4%, 4%, m;,m;}
6 10 {e 6% 6% 6%, 6%, 65)
11 {e,6, 6%,6% 6% 6° mg, m3g, Mgy, Mg, Miz0, Mise}
6mm 12 {e, 6%,6% mg, mgg, M1y, 6%, 6,6, m3g, Mgy, Mis50}
13 {e, 62,6% M3y, Mgy, Mysg, 6%,63%, 65, M, Miy, M0}
1
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Translational black—white groups

They are constructed in a similar way to the black—white point groups. That s,
a subgroup with index 2 is selected from the translation group T whose elements will
not be associated with a colour change, all other translations - i.e. not belonging to this
subgroup - are given a colour change operator. Due to the infinite number of elements
of the translation group, this selection is not unambiguous, but it must preserve the
two-dimensional periodicity of the structure; the black—white motifs must alternate
regularly in both fundamental directions. On the left side of Figure C9.3 is a single-
colour structure with a oblique lattice and a simple structural motif, a black ring at the
beginning of the unit cell. One unit cell is highlighted in grey. On the right side of the
image is a black—white structure in which the colours of the structural motif alternate.
It is obtained so that after translation in the direction of the basis vector by one of its
length, the colour of the structure motif changes. It can be seen from the figure that
the unit cell, coloured grey, representing the smallest regularly repeating object, is
then larger. While the original single-colour cell had one structural motif, the black and
white unit cell has two black and two white motifs.

The regular alternation of colour imposes conditions on the coordinates L; of
the lattice vectors A; = L,a; + L,a, determining the position of the black—white
structural motifs, respectively. Such a lattice vector simultaneously represents a
translation t from the origin of the coordinate system to the corresponding lattice
point. According to the right part of Figure C9.3, the sum of the coordinates
corresponding to the black motifs is an even number, for the white ones an odd
number. This distinguishes t translations from t*. translations. Similarly, the asterisk
distinguishes the translation group T of a single-colour structure from the translation
group T*, containing half of the translations combined with the colour change. For
example, the elements of group T are translations 0, a,, 2a,, 3a,,a,,a, + a,, ... and
the elements of group T are translations aj , a;, 3aj, .....

ey

Fig. C9.3
The situation is the same in the rectangular, square and hexagonal lattices,

where only primitive unit cells are considered. However, the situation looks different
in an orthogonal lattice with a centred unit cell, where two structural motifs — one in
the corner and the other in the centre of the unit cell — are attributed to this cell. In
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the construction of black-white lattices, two possibilities come into play there. The first
option is to proceed similarly to the primitive cells, i.e., the colour of both motifs will
change after translation by the length of the basis vector; the second option is to
change the colour after translation by (1/2)(a, + a,), so that the motif in the corner
of the cell will be black, for example, and the motif in the centre of the cell will be
white. These two options are shown in the following figure, along with the original
single-colour structure.

o 0 0 0 0lolo1o0 oIo oIo

o 0 00 0lo]lo0]oO ole o e

o o 0|0 ololo o ° oIo 0
Fig. C9.4

Thus, in planar periodic structures, there are not many possibilities to construct black-
white translation groups. The two types exist only in the orthogonal centred lattice, so
there is not even a need to summarize them in the resulting table. We do not consider
colour alternation in units larger than the unit cell.

Plane black-white groups

Elements of the plane symmetry groups include translations, forming the
translation group, as well as point group operations, i.e. elements of the point group.
In doing so, the set of translations forms an invariant subgroup T of the plane group.
Two types of black-white planar groups are distinguished. The groups of the first kind
are those whose translation subgroup T does not contain colour-changing translations.
The colour change is associated only with operations belonging to the point group. The
unit cell of such groups is of the same size as that of the corresponding single-colour
group. In plane groups of the second kind, the translation group T* contains half of the
translations combined with colour change; the unit cell is then larger than the
corresponding single-colour cell. In these groups there may be cases where the colour
change involves only translations, or both translations and point operations.

We will not go into the construction of all black-white plane groups, we will just
give some simpler examples to give an indication of how this is done.
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Figure C9.5 shows the distribution of the structural motifs (triangles) in the
plane group p1 (left part of the figure) and the black-white group derived from it. The
group pl does not contain point symmetry operations, therefore the colour change is
only related to translations. After each translation by the basis vector, the colour of
the structural motif changes. The grey colour indicates the unit cell of both single-
colour and black-white structures. It can be clearly seen that in the black-white
structure, the identity period in both directions of the lattice is twice as large as in the
single-colour one.
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The plane group p2 serves as another example. Its point group {e,2} contains
only two elements, the identity and the 180° rotation, and so does the corresponding
black-white point group, the two elements {e, 2*}. Therefore, there is only one black-

white plane group of the first kind. In Figure C9.6, the group p2 and its black-white
point group of the first kind are shown side by side. The sizes of their unit cells are the

114



same. Two black-white groups of the second kind are shown in Figure C9.7. Since these
are groups in which the colour change is also associated with translations, their unit
cells are larger. In the left part, the colour change is only associated with translation,
in the right part, both translation and rotation.

The situation is similar for the plane group pm, whose point group contains only
two elements {e,m}, so there is only one pointwise black-white group {e, m*}.

For the planar group pg, a glide line is typical. A glide reflection is an element of
symmetry that belongs neither to the point group nor to the translation group, but
only to the plane group, because it is a combination of point and translation
operations. Having stated this, it will be obvious that the symbol {e, g} that we will use
does not represent a point group. It is a representation of a coset in the plane group
pg with respect to the invariant subgroup of translations. The structural motif in the
following figures represents two triangles, the first one being identified with the
second one after being reflected in the line of the basis vector (vertical in the figure)
and shifted by half its length. After this introduction, we can draw four more pictures:
a picture of a single-coloured group, one group of the first kind (Fig. C9.8), and two
groups of the second kind with a larger unit cell (Fig. C9.9).
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The cm-group, unlike the previous cases, has a centred lattice, which means
that a glide line occurs in it regardless of the symmetry of the structural motif. The
corresponding point group also has only two elements {e,m} in this case, but the
translation group T, also contains translations with half-length basis vectors. As
already mentioned in the section on translation black-white groups, when the colour
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changes after the translation (1/2)(a, + a,), the size of the unit cell does not change
when the symmetry is extended to black-white. (Fig. 9.10).
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But there is another type of black-white symmetry in plane structures with a
centred lattice. when the colour changes after translation by the full length of the basis
vector, so that when it is a translation group T*. As can be seen from Figure C9.11, the
unit cell is four times the size. It can be noticed in the figures that the position of the
glide lines, which are a natural part of the centred lattices, is preserved, while in some
cases thereisachange g - g".
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The construction of two-colour, i.e., black-white groups (point, translation, and
space), is based on the decomposition of the single-colour group into a subgroup with
index 2 and the corresponding coset; the anti-symmetry parameter s then takes two
values. All elements of the coset are combined with the anti-symmetry operation, i.e.
with the second value of the parameter s . In the construction of multicolour groups,
when the parameter s can take n values (n - "colours"), the decomposition of the
single-colour group into an invariant subgroup with index n and the corresponding n -
1 cosets is used. The elements of the cosets are then successively combined with the
operators representing the individual values of the parameter s and thus other types
of symmetry are generated. However, in the case of plane point groups, the set of
invariant subgroups with index greater than 2 is not large.
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Appendices

D1 Multiple operator application

Ak S; - S; = [E’l'tlj'[i’z;tz]: [(7’1' (T’z; t - 52 + t, /, tak
=2
- /®

]l

+t

~

-

S-S = [@t] [®t]=[P-P, t-
=2

Lttt = B3,
6@ 4t D+ t] =

—[<T>3,t-{f+<7>+<7>

D2 Product of operators S-T, - S~!

This product of operators is expressed by (C2.3):

S;°S, = [<T>1,t1 ]- [(T)Zrtz] = [51' $2, ty - (?)2 + t;]

Ak S, =S =[®,t] a S, =T, =[I,A4,], then

=l

ST, = [®t][LA4] = [
The inverse operation is expressed by writing (C2.6):

St=[®L—t- @7

and its product with expression (b) based on (a) gives the result

S'T,-S'= [@,t+A4,] [®@ -t - d )=
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so that the result is an operator representing the translation by the rotated lattice
vector.

Applying this combined operator S - T; - S™! to the position vectors r; and 1,
yields the vectors 7, = 1, + A, ® ', r, = r, + A, ®L. Their difference
is equal to the difference of the original vectors, i.e.

r,— Ty =T, — T, (d)

which is a confirmation of the fact that the operation S T, - S™! represents a
translation. Unlike translation, this result does not hold for rotation, as can be seen
in the following figure.

K- A - -
?‘\ I ‘ .'..”“ —— 1‘1', r2|

/ LI SR —> ri-n

; ! /
D" . P —> e
translation rotation

D3 Transformation tensor

If the transformation tensor has the form @ = a'd, + a*d, , then the relations
apply

a, ® =a, - (a‘d, + a’d,) = (a, - aV)d, + (a, - a¥)d, (a)
By definition for reciprocal vectors
a-a = 6; ,resp. a-a; = &,
i.e.if i=j,thend;; =1, butif i #j, thend;; = 0.

Thus
a,'a> = 1, but a;-a*= 0,

which, when substituted into relation (a), gives the result:
a," ® = (a,-al)d, + (a,-a®)d, = d,,

which confirms that the tensor transforms the vector a; into the vector d; .
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D4 Properties of transformation tensor

If the tensor @ satisfies the conditions (C2.7),i.e.

@, = &1 resp. ® = P!,

and we know that the definition of the conjugate tensor implies the equality

S

ro. =@ r,

then we can the equation 7 - ® = r from relation (C4.4) multiply by the conjugate
tensor and make the adjustment

r;e'n
U
ﬁ
I
=l
ﬁ

c > rl=r-o® = r=r-

S
Sl
S

T- C:r.

SO

which means that the tensor, which leaves some points of the space in place during
the transformation, is symmetric.

D5 Transformation of vector components in reflection
If the tensor mediating the symmetry operation has the form ® = I — 2uu, then
the scalar product of the vector u with this tensor gives the result

u-® =u-(f—2uu) = ul-2uw-wu=u-2u=-u.

If we multiply the tensor P by a scalar unit vector w, which is perpendicular to the
vector u, the product with the identity tensor does not change it, and the scalar

product w-u = 0. Therefore, w - O=w.
That is, the vector 7 = pu + gw is transformed as follows:

r=r-®=(pu + qw) - (1-2uu) = (pu — 2pu) + qw = —pu + qw

so that the component perpendicular to the vector u does not change, the
component parallel to it changes to the opposite.
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D6 Calculation of scalar coefficients in transformation equations

Taking the scalar product of the first of
the equations (C4.9) with the vector a?,
we get b>
b, - a' = (pa; +qa,) - a' =
=p(a;-a') +qa,-a')=p. \\

Similarly, we obtain the other scalar .

coefficients, so that:

1

p=by-a', q=b,-a

y T=b2'a1,
S = bza .

In further modifications of these formulas, we use the relations between the
magnitudes of the vectors: b; = a,, b, = a,, because the vectors b are just the
rotated vectors of a . From the definition of reciprocal vectors, the relations between
the magnitudes of the direct and reciprocal vectors hold (see also the figure):

T
(a,-a') = a,a’ cos (E_ oc) =1, = al'=1/(a;sina)

T
(a, - a?) = a,a’ cos (E_ oc) =1, = a?=1/(a,sina)

For the scalar p, after adding the results, we get
i 1 sin (o — @)
=b-a1=ba1cos(—+ —a)=a—sin a—@) = — .
P 1 1 2 ¢ 1 a, sin « ( 2 sin o
Similarly, we obtain relations for the other coefficients:

a, sin @ a, sin @ sin (o + @)
— r = Ss=—,

Ca,sina’ ~ aysina’ sin
D7 Vector coordinates of the tensor

We multiply the equality (4! — a') a, + (4% — a?) a, = —2uu scalarly from the
right-hand side by the vector a':

(A —aY)(a, a') + (4% —a*)(a, -a') = —2u(u- a?)
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By the definition of reciprocal vectors (a; -a') =1 and (a, - a') = 0, leaving only
the difference of the vectors (A — al) on the left-hand side. On the right side, the
result of the scalar product in parentheses is the scalar, so on the right side is the scalar
multiple of the vector u . This means that the vectors u and (4! — a?') are parallel.
By analogy, it can be shown that the vectors (4% — a?), (4, — a,), (A, — a,), are
parallel to the unit vector u.

D8 Reciprocal vectors of orthogonal basis

For a pair of basis vectors b;, b, and their reciprocal pair b1, b? the next relations
are valid:

bl'b1=1 (a) bl'b2=0 (b)
bz'b1=0 (C) bz'b2=1 (d)

If, by coincidence, the vectors b; and b* are parallel, one of them can be expressed as
a scalar multiple of the other, e.g., b* = s b, and substituted into relation (c):
b2 ) Sbl =0 )

which implies that the vectors b; and b, are perpendicular to each other and form an
orthogonal basis. Then the reciprocal lattice is also orthogonal, i.e. the vectors b and
b? are perpendicular to each other.

D9 Property of the characteristic tensor

Applying the characteristic tensor t -{T + @ + P2+ .+ <T>m‘1} to any transla-
tion t prescribes summation of the vectors t=1¢ -T, t,=t- <T>, t,=1t-" $2,
etc. The first is the vector t itself, the second is rotated by the first application of the
tensor <T>, the third by two applications, etc. The following figure shows two cases -

when we substitute tensors 3 and 4 in place of D .

tr=t-&
1
tr=t"-3 t=t-3 & ti=t-4
\
| ¢
t+t; +t2 =0 t+t1+tr+t3=0
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If we substitute the tensor 2 = —1I (—tab. TB2), for which the number m =2, in
place the tensor a the sum of the terms that make up the characteristic tensor gives
theresult: { + 2}={I —1}=0.

D10 Determinants of tensors — proper and improper operation

Determinant of tensor 4 (- tab.TC2)

cos a a, 1 a, 1 cos a

is calculated using its coordinates:

| cosa a; 1

sina. a,sinal  cos’a N 1 1-cos’a 1
a, 1 cos sinfa  sina sinZa '

a, sina  sina

The determinant of the tensor of reflection M = I — 2uu can be expressed only
after its modification. Reflection occurs only in orthogonal lattices (- article B4.1.2)
in which the basis vectors a, and a, are perpendicular to each other. According to
Appendix D14, the tensor of reflection in a line identical to the vector a, then takes
the form:

M, =1 — 2a%a, = a,a' — a,a?
Therefore, the determinant of the tensor M is equal to

0

M| = |(1) ~1

|=—1.

D11 Use of generating elements of the group

For groups with one generating element, all its elements can be expressed as
"powers" of this element. Such groups are cyclic groups, e.g. group 4 , which has four
elements: 4 = {e, 4, 42, 43}, between which the relations hold:

4-4=42 4-4-4=43, 4-4-4-4=¢,

so that all elements can be expressed as powers of element 4. The elements of the
group can be represented by tensor operators between which the same relations hold.

123



As the simplest example of a group with two generating elements, consider the
group 2mm, which has four elements: 2mm = {e, Z,mx,my}, which will be
represented by tensor operators. The group belongs to an rectangular system in which
we choose the basis vectors such that the vector a, is parallel to the x-axis and the
vector a, is parallel to the y-axis . Between the basis vectors a; , a, and the reciprocal
vectors al, a? the relations

2

a' a,=0, a’-a; =0, a:

The tensors representing the elements of the 2mm group have the shape (-
Table TC2b, — Appendix D14):

identical operation I =a'a, + a%a,,
rotation 2=—-1=-(a'a, + a%a,),
reflection in line x M, =M, = a'a, — a?a,,
reflection in line y l\7ly =M, = a’a, — ala, .

The generating elements can be either 2 and m, , or 2 and m,,. We choose the first

option and compute products between tensors representing these elements:
2:2 = (D=1

resulting in an identity tensor representing the neutral element of the group.
M, -M, = (ala, — a’a,) - (a*a, — a*a,) =

= a'(a;-a')a, — a'(a;- a®>)a, — a*(a,- a') a, + a*(a,- a®) a, =

a‘a, + a’a, = 1.
The result is again the neutral element of the group.
M, -2 = (a'a, — a’a,) - [-(ala, + a%a,)] =
= —[a'(a;-a")a;, + a'(a; - a*)a, — a*(a,- a') a; — a’(a,- a*) a;] =

= —(a'a, —a*a,) = —a'a; +a*a, = M, .

The product I\7IX -2 results in the operator l\=’ly representing the reflection in the line

y . The product in reverse order will give the same result: 2 - l\=’lX = l\=’ly .
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This exhausted all products between the generating elements of the group, and

thus obtained all elements of the group, represented by the operators T,f,l\=/lx and

l\=’ly. The result is consistent with the multiplication table (— TC5). l\=’ly can also be used

as the generating element, where. M, - 2 = M, ; also in this case, swapping the

order of the operators will give the same result.

D12 Graphical representation of the application of two symmetry operations

By reflecting point A in the x-axis, we get point A’. Rotating around the point O

by 180°, point A’ is transformed into point A”. This was a combination of two
operations. We get the same result by applying a single operation - reflection in the y-

axis .

A %3 ¢
‘ o . ‘ © A" |, O A'® | o
1 + =
* |
‘ | oA 0o my
Mx + 2 = my

Also from the figure it can be seen that reflection and 180° rotation commute.

D13 Effect of reference frame displacement on the symmetry operator

Let the rotation of the lattice
point A about the point P to the point
C be represented by the tensor @ (-
figure). In general, point C need not be
a lattice point, so an additional
translation, which we denote by t¢g , is
required to transform it to lattice point
B . The additional translation ensures
that the entire transformation is a
symmetry operation. Starting from the

labels in the figure, the next relationships apply
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Pc=pr- P PB:PA'$+tCB- (a)

In general, the size of the translation t-g need not exceed the dimensions of the unit
cell, but the entire transformation remains a symmetry operation if an arbitrary lattice
vector A;is added to it. Therefore, we write the translation of t-g as the sum of the
lattice translation of A; and the non-lattice translation of t :

tCB == AL + t.
The second of the relations (a) then takes the form
Pp=pa®+ A+ L. (b)

We express this operation with respect to the reference point O, using transformation
relations (according to the figure)

Pa=Tp T, (c)
Pg =Tg—Ty, (d)

in which ris the position vector of point P with respect to the new reference point O.
Substituting transformations (c) and (d) into relation (b), we get

rg—T,=(0y—7,) ® + A, + 1
and after modification

rg=7,+t7ry" $—ro- $+AL+t,
or
TB=1'A'[(T), To(i—(T))-l-AL-l-t]

The result shows that by changing the reference point, the shape of the operator

changes. With respect to the point P, the operator has the form [<T>, t], but with respect
to the point O for the same operation, it has the form

So=[®,71,- (T-®) +4, +1]. (f)

From relations (e) and (f), it follows that by changing the position of the origin of the
reference frame, it is possible to make the translational part of the operator S zero,
either the whole or just its non-lattice translation t. The whole translational part will
be zero if the vector 1, is chosen so that the condition

ro-(I-®)+ 4, +t=0. (8)
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If we want only the non-lattice part t of the translation to be zero, we need to shift
the origin of the reference frame by the vector r, , which must satisfy the condition

TO(T—$)= AL'

Note: The +A; and — A, vectors are equivalent in this respect because the integer
coordinates of the A, vector can be both positive and negative numbers.

That is, if we want the symmetry operator expressed in terms of the new position to
have the form S = [<T>,AL], then the position vector r, must satisfy the modified
condition (g) and we can express the operator in the form:

S= 3,1, (1-3)]. (h)

D14 Tensor of reflection

A) The form of tensor

According to relation (C4.8), the tensor representing reflection in a straight line has
the form

M=T—2uu,

where u is the unit vector perpendicular to the reflection line. In an rectangular
system, where the basis vectors a; and a, are perpendicular to each other, the
magnitudes of the basis and reciprocal vectors are reciprocal (inverted). If the vector
a, lies in the reflection line, the vectors a, and a? are perpendicular to it, they can
be expressed as scalar multiples of the vector u : a, = a,u, a*> = (1/a,)u, so the
dyad uu can also be written in the form a%a, because:

a’a, = (1/a,)ua,u = uu.

Therefore, the tensor M in this case can be expressed in the form

M1 = T_ Zazaz,

where the index 1 denotes the fact that the reflection line has the direction of the
vector a, . If the reflection is in a line parallel to the vector a,, the tensor has the form

lvlz =T_ 2a1a1 .

The tensors of reflection in the hexagonal system have a different shape because the
basis vectors a; and a, are not perpendicular to each other; they are given in
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Appendix D25. However, in this system it is also possible to choose an orthogonal unit
cell that is centred, with the basis vectors b; and b, perpendicular to each other (-
Section C6.2), so that the tensors then have the shape (—» Appendix D26):

lvll ZT_szbz, lvlz :i_Zblbl .
B) Effect of reference frame origin displacement on the tensor shape

According to C7.4, the operator of reflection in a line parallel to the vector a, and
shifted in the direction of the vector a, to a position with coordinate r, = 1/2, has
the form (relation C7.7):

[1-2a%a,, a,].
This tensor transforms, e.g., a lattice point with position vector r = a, + a, into a

lattice point with position vector a,, which can be verified by the following calculation:
(a, + ay) - [1-2a’a,, a,] = (a, +a,) - 1- (a, + a,) - 2a%a; +a, =

=a, +a, - 2a, a*a, —2a,-a*a, +a,=a,+a,—0-2a,+a,=a,.

Thus, it can be verified that this operator transforms a lattice point with position vector
r = 0 into a lattice point with position vector a, and a point with position vector a,
into a lattice point with position vector r=0.

D15 Product of operators [2,0] - [M,t] - [2,0]

For the product of operators, the general relation (C2.3) holds:
S1°S; = [(T)p t]- [(T)Z'tz] = [51 ) CT)2 y byt CT)2 +t,].

In this particular case, it is the product of the three operators [2,0] - [M, t] - [2,0] ,
which is to be equal to the operator

[M,t+A,]. (a)

In a structure with 2mm point symmetry, there are two orthogonal sets of reflection
lines, so there are two operators of reflection l\=/lX and l\=/ly . We will successively

compute the product [Z,0] - [M,, t] - [2, 0], using the multiplication table TC5 of the
2mm group:

N
=
=

x»t] = [z'ﬁx't] = [l\=/ly't]

[M,,¢]-[2,0] = [M

=l

2,t-2 + 0] =[M,,—t], (b)
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because the operator 2 rotates each vector in the plane by 180°, so that the vector t
transforms to the vector —t . According to relation (a), this result should be equal to:

M, ,—t] = [M,, t+A4,]
Thatis,itmusthold —t=t +A4, = 2t=—A, = A, resp.
2t1a1 + 2t2a2 = Llal + Lzaz .

Based on this result, the coordinates t; and t, can only take discrete values t; = 0,
1/2,1, 3/2,.., t, =0, 1/2, 1, 3/2,... ,of which only the first two are actual
within the unit cell.

In the case when t = 0, relations (b) imply:

[2,0]- [M,,0]-[Z,0] = [M,, 0] (c)

D16 Product of operators [4,0] - [M, ] - [4,0]

The translational part of the operator has to fulfil the condition
[i,O] - [lv[ ) t1a1 + tzaz] - [i,O] = [lv[ ) t1a1 + tzaz + AL]' (a)
where 4; = Lia, + L,a, ,and L; are integers.

We carry out the products of the operators successively, starting from the formula for
the product of the operators

S;:S, = [(T)ptﬂ'[(T)Zrtz] = [51'52; L (T)z + tz]-

[4,0]-[M, , tia, + t,a,] = [4- My, t,a, + tya,] = [Myy, tiay + tra,], (b)

because the combination of a 90° rotation with reflection in the x-axis is identical to
reflection in the yx "diagonal" ( —» multiplication table in the spreadsheet section). The
next 90° rotation that follows moves the transformed point to the position as if it had

been transformed by the l\=’lX operation alone:

[ﬁyx Jta; + tha,] - [E,O]_ = [1\=’lyx ‘4, (ta, + t,a,) - 4] =
=M, ,— t,a, + tya,] (c)
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Rotating the vector t;a; + t,a, by 90° will cause the magnitude of the coordinates
to change and the sign of one of them to change. The result of (c) is to be equal to the
right hand side of relation (a), so equality is to be satisfied:

_t2a1+t1a2 == t1a1+t2a2+ AL = _(t1+ tz) :Ll' (tl_ tz) :Lz

Due to the translational symmetry, it is sufficient to restrict to L; = 0,1 and not to
consider negative values. Then the following alternatives arise:

L1 L, t1 t
0 0 0 0
0 1 1/2 1/2
1 0 1/2 1/2
1 1 1 0

The last alternative is not interesting because it represents a lattice translation.
In the case when t = 0 equality follows from relations (b) and (c):

[4,0]- [M,0]-[4,0] =[M,o0] (d)

D17 Product of operators [6,0]-[M,,t]-[6,0]
We will modify the expression incrementally, using the 6mm group
multiplication table (- spreadsheet):
[6,0]-[M,,t] = [6-M,,t] = [Mys,1], (a)

[My50,t]-[6,0] = [My50°6,t-6 + 0] = [M,£:6] (b)

We still need to compute the transformation of the vector t by the operator 6, and it
is convenient to write it in the componentformt = t;a; + t,a,:

t-6 =(t; a; + t,a,) - (ata, + ata, — a*a,) =
B t1a1 + t1a2 - t2a1 .
Based on condition (C8.6), this result should equal the sum (L, and L, are integers)

tya, + t,a, +Lia; + Lya,
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i.e. has to pay:
t,a, + Ha, — t,a, = t1a, + t,a, +Lija, + Lya,,

and after modification
_tzal + (tl - tz)az = L1a1 + Lzaz —1 tz = Ll' tl - tz = LZ .

By choosing different combinations of L; and L, values, we get the possible values of
t;.When Li=L,=0, t; =1t,=0 results. If L; =1, L, =0,t; =t, =1, i.e.
already outside the interval 0 < t; < 1, and similarly for other choices of L; . This
means that only the vector £ = 0 is relevant within the unit cell, and integer linear
combinations of basis vectors are relevant outside it.

In the case that t is equal to zero, the equality follows from relations (a) and (b)

[6,0]-[M,0]-[6,0] =[M,0]. (c)

D18 Glide reflection in primitive lattice

In the case of the primitive translation group {Tp} , the glide reflection shown
in Table TC3 may also occur, which in this case is not due to lattice centration, but is
related to the shape of the structural motif (- Fig. A7). If the glide reflection is in a
line identical to the basis vector a,, the corresponding operator has the form

[1\7[1, a1/2] = [T — 2a*a,, a,/2 ] (- relation C4.22). The double application of glide
reflection is then expressed by the operator:

My, a,/2]-[My,a,/2] = [Ta,],
triple application:
[i ] [ﬁv a,/2] = [My, a; + a,/2],
quadruple application:

[l\=/11,a1 + a1/2] . [l\=/[1,a1/2] = [T,Zal] .

It follows from relation (C4.21) that in the glide reflection operator, the translation
part a,/2 can also have a negative sign. Multiple applications of the operator
[1\7[1, — a1/2] then lead to another set of operators that differ from the previous ones
only by the signs of the translational part. An infinite number of repetitions of such
glide reflections yields a set of operations that form a group. In doing so, the neutral

element of the group is represented by the operator [T, 0], which is obtained by the
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product of a pair of arbitrary-free two operators differing only by the sign of the
translational part, e.g.:

[My,a,/2]-[M;,— a,/2] =[1,0].

This means that there is a neutral element in the set of elements, there is an inverse
element to each element, the set is closed in terms of the group operation, and since
it is a multiplication of tensors and addition of vectors, the associative law holds in the
group operation. Thus, all the conditions for a set to form a group are satisfied.

This group, we denote it by G, , can be decomposed into two subsets. Elements
of type [T, nal] , i.e., elements without reflection, where n is an integer (positive,
negative, or zero), are elements of the translation group T, , the other elements of the
set forming a coset of the group G, with respect to its subgroup T,. The representative
of a coset may be an element to which, for example, the operator [1\7[1, a1/2]
corresponds. Based on this, we can express the group G, in the form:

Gy, = Ty +[My,a./2] T,.

However, the group T, is only a subgroup of the full translation group T, of the

orthogonal lattice, so the group G, does not represent all elements of the plane group.

D19 Operators [i, t]

There are four double rotation axes per orthogonal unit cell, which according
to C7.1 are localized at positions with fractional coordinates: (0,0), (1/2,
0),(0,1/2) and (1/2, 1/2) . The rotation about the axis located at the origin of the
reference frame, i.e., at position (0, 0), is represented by the operator [7, O] with zero
translational part, but the operators representing rotations about the other axes have
a non-zero translational part.
Starting from the relation S = [<T>, Ty (T - <T>)] (— relation (h) in Appendix D13) and
the equality ®=2=-1 , the translational part of the operator representing the
rotation about the axis shifted to the position (1/2, 0),i.e., whenr, = a,/2, is equal
to the product:

—a,-21=a,.
ke 1
At position (0,1/2), the translational part of the operator is equal to the vector a,

and in the third case to the vector a; + a, . Based on this, the operators representing
the rotations about the twofold axes, incident to the unit cell, have the form:

[i, 0], [f, al], [f, az] and [f, a, + az],
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or
[—i 0], [—i al], [—T, az] and [—i a, + az].

All operators have the same tensor part, while their translational parts differ from
each other only by lattice vectors. Therefore, all symmetry operations represented
by these four operators belong to the same coset of the plane group.

The operators of rotation about the twofold axes have the same form in the
other crystal systems.

D20 Operators [4,t]

There are two fourfold rotation axes per unit cell of the square lattice, which,
according to C7.2, are localized at positions with fractional coordinates: (0, 0), and
(1/2,1/2). The rotation about the axis located at the origin of the reference frame,
i.e., at position (0,0), is represented by the operator [E, O] with zero translational
part, but the operator representing the rotation about the other axis has a nonzero
translational part. Starting from the relation S = [CTJ, - (T - CTJ)] (- Appendix D13,
relation (h) ) and the equality ® = 4 = ala, — a?a, (- tab TC2b), the translational
part of the operator representing rotation about the axis shifted to the position
(1/2,1/2),i.e.,, when r, = a,/2 + a,/2, is equal to the product:

1 1 1

(lal +1a2) -(a‘a, + a*a, — a'a, + a*a,) = 1a1 --a;+-a,+-a, =a,.
2 2 2 2 2 2

This means that the operators representing the rotation about the fourfold axes
localized at the origin or at the centre of the unit cell have the form
[4,0] = [a'a, — a?a,, 0], resp. [4,a,] = [a'a, — a’a,, a,].

These two operators have the same tensor part, while their translational parts differ
from each other only by the lattice vector, so the symmetry operations represented
by them belong to one coset of the plane group.

The repeated rotations by 90° about the axis localized at the centre of the unit
cell are assigned to the operators

[iz,al], and [?3,a1] ,

where the elements represented by the operators [iz, O], [EZ, al] belong to the

same coset, as do the elements with the operators [TB’, 0] , [13, al] )
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D21 Reflections in plane group p4mm

A natural part of the symmetry of the square lattice are the glide lines, which
are parallel to, but not identical with, the diagonals of the unit cell (- figure in this
appendix). According to C8.3, the plane group pdmm is formed by combining elements
of the point group 4mm with elements of the translation group T,, but the glide
reflection is not part of either of these groups because it is an element of the plane
group only. However, glide reflection in a line parallel to the diagonal of the square is
equivalent to successive applications of reflection in a line parallel to some basis vector
(i.e., the side of the square) and rotation about a fourfold axis passing through the
centre of the unit cell (i.e., the centre of the square; the corresponding axis is indicated
by the symbol 4 in the figure). Such a rotation, expressed with respect to the origin
of the reference frame, is represented by the operator [i, al] (- article C7.2), which
also has a translational part, so that it is an element of the plane group. The product
of this operator with the reflection operator in the line identical to the vector a, :

[4,a,]-[M,,0] = [a'a, — a’a,, a,] -[I-2a'a;,0] =[ala, + a’a,, a,],

we obtain an operator whose tensor part coincides with the tensor part of the
reflection operator [1\7112 , 0], but differs from it in the translational part; we write it in
the abbreviated form [l\=/l12 ,al]. The non-zero translational part may be related to
the glide, to the localization of an element of symmetry, or even to a combination of
these, as in this case. A table of both rotation and reflection operators for this plane
group is given in Appendix D22.
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We prove that the operator [My,,a,| = [ a'a, + a’a,, a,] represents a
reflection with glide (a; + a,)/2 in the line, which is indicated in the figure by the

134



symbol M;,,. For example, a point with position vector a, transforms to a point a; +
a,:

a, [a'a, + a*a;,a;] = (a,- a'a, +a,' a*a;)+a,=a,+0+a,,
point with position vector a, to position 2a, :
a,-[a'a, + a*a;,a,] = (a,- a’a, +a, a’a)) +a, =0+ a, +a, = 2a,,

or point 0 to position a; .

The results of other combinations of rotations with reflections document the
fact that the operators representing reflections in mutually parallel lines (ordinary
reflections and glide reflections) have the same tensor parts and differ only by
translations belonging to the translation group. This fact implies that by changing the
zero translation term in the symmetry operator to a nonzero one — by adding an
element of the translation group (i.e., a lattice vector), we obtain operators of
elements of the plane group belonging to the same coset. Operators with a non-zero
translation term represent rotations about axes not passing through the origin of the
reference frame and, in the case of reflections, in addition to the displacement of the
reflection line, can also represent glide reflections.

To illustrate, the following text show some combinations of symmetry
operations in both numerical and graphical form. In the relations, symbols are used in
accordance with the figure, e.g., rotation about the fourfold axis placed at the centre
of the square by the symbol 4™,

4*-M; = [ ata, — a’a,,a,] [ ata, — a’a,, 0] = [-a'a, — a’a,,a,] = M,

"

M, -4* = [a'a, — a’a,,0] [ ata, — a*a,,a,] = [a'a, + a’a,,a;] = Mzs

/
+ ] = /
/7

Vi

/
4*-M, = [a'a, — a*a;,a,] - [-a'a, + a*a,, 0] = [a'a, + a’a,,— a;] = M35
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M, - 4* = [— a'a, + a’a,, 0] [ ala, — a*a,, a,]
= [-a'a, — a*a;, a;] =My

When we note that the operators of reflection in lines parallel to the diagonals
and passing through the origin of the reference frame have form

[lvllz ,O] = [alaz + azal, O] and [lvl21 ,0] = [_ alaz - azal, 0],
so we can write the results of the previous four relations more concisely:

4*-M; = My = [1\7121» a1] )
M; 4" = My, = [1\=’[12 »a1] )
4" M, = My = [1\=’l12 ) _a1] ,
M, 4" = My = [1\=’[21 »a1] ’

from where it can be better seen that the translational parts of the operators are
elements of the translation group.

It can be seen that next relations are also valid
4" M, = [“7[1»“2] , My, 4" = [1\=/[2»Q1] )
which imply reflections in lines parallel to the basis vectors that pass through the
centre of the unit cell, as well as relations
4*-M,, = [M,,0]-[I,—a,], M, -4* = [M, 0] [La],

which imply that it is a combination of ordinary reflection with translation by a lattice
vector.
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D22 Operators in plane group p4mm

Ma1c

42
43

2A
23

N\ MIA . .
\
\
Mz M; B
) \ 4 2A
Maz1 Mais Mz M, Moa

M,,0] = [a'a, — a?a,,0]
l\=’ll,a2]E[a a, — a’a,,a,]
M,,0] = [- ala, + a’a,,0]
M,,a,] =[-a'a, + a’a,,a,]

M,,,0] = [alaz + a2a1,0]

[M,, ,2a, +a2] = [- a'a, — a’a,,2a, +a,]
[i, 0] = [ ata, — da?*a,,0]

[4%2,0] = [2,0] = [-1,0]

[43,0] = [-a'a, + a®a,,0]

[4,a,] =[a'a, — a*a,,a,]

[2,a,] =[-Ta,]

[2,a,] =[-1a,]
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D23 Operators in plane group p4gm

Misa
Maiss
Masa
Mass
Mias
Mi2a
Mi2s
M21a
M21s

Ma1sa

Mp1ss

42
43
24
2B

N

M2 Mazis

'\
Miza Maia

M, ,a,/2+ a,/2] =[ala, — a?a,, a,/2 + a,/2]

[M, ,a, /2 + 3a, /2] =[a'a, — a%a,, a, /2 + 3a, /2]
[M,,a, /2 +a, /2] = [-ala, + a?a,, a, /2 + a, /2]
[M,,3a, /2 +a, /2] = [-a'a, + a?a,,3a, /2 + a, /2]
[My,, a,/2 + a,/2] = [a'a, + a’a,, a,/2 + a,/2]
[My,, a,/2—a,/2]=[a'a, + a’a,, a,/2 — a,/2]
[My,,—a,/2 +a,/2] =[a‘a, + a’a,,—a,/2 + a,/2]
[M,,, a,/2 + a,/2] = [- a'a, — a’a,,a,/2 + a,/2]
[M,,, 3a,/2 + 3a, /2] = [- a'a, — a%a,, 3a,/2 + 3a,/2]
[l\=’[21 , a1/2 —a,/2] = [-a'a, — a’a,, a,/2 — a,/2]
M,,, 3a, /2 +a, /2] = [- a'a, — a’a;,3a,/2 + a;/2]
4,0l =[a'a, — a%a,,0],

2,0l =[2,0] = [-1,0]

3,0] = [-a'a, + a%a,, 0]

,a,]| =[a'a, — a%a;, a,]

11 I T
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D24 Reflections in plane group p4gm

In the p4gm group, only elements representing glide reflections are
representative of cosets. However, ordinary reflections are also part of this plane
group, and, as in the case of the pAmm group, these reflections are equivalent to the
successive application of two operations belonging to this plane group.

A4

Mz

N\
Mi2a  Majia

This statement will be verified in several cases, using the table of operators of
this group given in Appendix D23.

The reflection in the line marked by the symbol M2ia is equivalent to the
successive application of a rotation of 180° about an axis passing through the origin of
the reference frame, represented by the operator

[4%2,0] = [2,0] = [-1,0],
and glide reflection in the line denoted by the symbol M1s , represented by the

operator
[l\=/[12 ,a,/2 + a,/2] = [ ata, + a*a,,a,/2 + a,/2]:

[-1,0]-[a'a, + a’a,, a,/2 + a,/2] = [- a'a, — a’a,, a,/2 + a,/2].

In abbreviated form: [f, 0] * M55 = My;4, Or by using the symbolic figure:
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4
/ \

/ N

The reflection in the line denoted by the symbol M1,4 is equivalent to the successive
application of a rotation by 180° about the axis passing through the origin of the
reference frame represented by the operator [7, 0] = [—i 0] and glide reflection in
the line denoted by the symbol Ma1sa , with the operator

[—a'a, — a?a,, a,/2 —a,/2]:

[-1,0]: [~ ala, — a?a,, a,/2 — a,/2] = [a'a, + a’a,, a,/2 — a,/2].

In the abbreviated notation [i, 0] *M,154 = My, and using the symbolic figure:

+ =
N /
N\

~ 7

The reflection in the line denoted by the symbol M12s is equivalent to the successive
application of a rotation by 90° about an axis passing through the centre of the unit
cell represented by the operator [i, al] and a glide reflection in the line denoted by
the symbol Masa , represented by the operator [— aa; + a?a,,a,/2 + a,/2]:

1 1
[ala, — a’a,, al]-[— ala, + a’a,, 7 +Ea2] =
) 5 1 1
= [a az + a al,_ial +§a2:|.

In shorthand notation [E, al] * M,gp = My, and using a symbolic figure:

ya

/

|
+
I

AN

Note The operators 4 and M do not commute; changing the order of rotation and
reflection will give different results.
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D25 Operators of reflection and rotation in hexagonal system

In orthogonal cells whose basis vectors a,, a, are perpendicular to each other,
the reflection tensors have a relatively simple shape. When reflection in a line identical
to the vector a; they have the form 1\7[1 =1— 2a’a, , when
reflection in a line identical to the vector a, the form l\=/l2 =1-
2ala; . In a hexagonal lattice, one can choose both a primitive
unit cell and an orthogonal centred cell. In the primitive cell,
the basis vectors have the same size |a,| = |a,| but they are

not perpendicular to each other, so the tensor needs to be
adjusted.
The reflection tensor has the general form ( - relationC4.8):

M=T—2uu,

where u is the unit vector perpendicular to the reflection line. We modify the tensor
by assuming that it is a reflection in the line identical to the vector a; while the goal is
to replace the unit vectors u by the basis and reciprocal vectors.

The vector u (— image) is parallel to both the reciprocal vector a? and the
vector a; + 2a,, so we can express it using these vectors, taking their magnitudes
into account. According to the definition of reciprocal vectors, the relation

V3
1=a?-a, =|a?||a;| cos30° = |a?|- Iaz|7,
2 2
la?| = = :
|a2|\/§ |a1|\/§

The size of vector a; + 2a,:
V3
|a, +2a,| = 2|a,| cos30° = 2la;| —- = |a,| V3.

We will use the results to modify the 2uu dyad:

|a1|\/§

(a; + 2a,)

2uu = 2a* = a’a, + 2a%a,.

1
|a1|\/§
The reflection tensor thus takes shape:

M =1-2uu = a'a, + a%a, — a’a, — 2a%a, = a'a, — a’a, — a’a,,

M, = a'a, — a’a, — a’a,.
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In the hexagonal system, this reflection is conventionally denoted by symbol m, . It is
a reflection in a line identical to the basis vector a;, whose operator, in orthogonal
systems, is denoted as l\=’l1 . The operators of the other reflections, i.e., mso, mgo, etc.,
are obtained by multiplying the operator l\=’l0 by operators representing multiples of
the rotation by 60° , where the operator of this rotation is the tensor 6= ala, +
ala, — a’a,.

According to the multiplication table of the 6mm group, the following relations

hold:
90 = l\7[0 6% = l\7[0 ) (_T)'

2
o
=l

60 — Mo~

=
I
=
o
2

l\'=’l120 = l\7[0 £ 6%, l\7[150 = l\'=’lo -6°.
Based on these relationships, we obtain the results:
M, = ala, + a'a, — a’a,,

60 — a1a1 + a2a1 y

=l

My, = —a'a, + a*a, + a’a,,

120 — _a1a1 + a1a2 + azaz )

=l

Mlso == _a1a2 - a2a1 .

Combinations of these reflections with rotations about axes not passing
through the origin of the reference frame give reflections and glide reflections in

differently displaced lines.

For completeness, we will also list the rotation operators already expressed in C4.1.3 :

6 = a'a, + ala, — a*a,,

62 =3 =a'a, — a’a, — d?a,,
6 =7=-1,
6*=32=—a'a, — a'a, + aa,,
6° = —a'a, + a’a, + a’a,.
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D26 Operators of reflections and rotations in orthohexagonal basis

In the hexagonal system, there are relations between the basis vectors a4, a,
of the primitive cell and the basis vectors b4, b, of the orthohexagonal cell:

blEal, bz :a1+2a2
and vice-versa

a,=by, a :%(bz —by).

The following relations hold between

the reciprocal vectors of the two bases:
al = b' +b%?, a?=2b?,
and vice-versa

ar=b; a

1 1
b1=al—5a2 ) bzzzaz.

For completeness we also give the magnitudes of these vectors, they are only
necessary to derive the relationships between the reciprocal vectors:

laz| = layl =ay, |byl=ay, |b2|=a1\/§.
2 1 1
lat| = |a?| =——=, |b=—, |b?| = .
al\/§ a al\/§

We use the relations between the vectors of the direct space and the vectors
of the reciprocal space to transform the tensors from the primitive to the
orthohexagonal basis.

In the orthohexagonal basis, the tensor of reflection in the line identical to the
vector by has the form
M, =1—- 2b%b, = b'b; — b%b,,

so there is no need to transform it. In particular, the tensor representing the rotation
by 60° needs to be transformed. In the primitive basis it has the form:

6 =a'a, + a'a, — a*a,,

which after transformation takes a more complicated form
1
2

1
2

3
2

1

6 =
2

b'b, +=b'b, —=b2b, + = b?b,,

and which is the starting point to obtain tensors representing multiple rotations:
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= 1 1 3 1 =
64 = _Eblbl —Eblbz +Eb2b1 _Ebzbz = —6,

_ 1 1 3 1
6° = 2b'by — 5 b'b; +5bby +5b%b,,

6=1.

ol

The reflection operators mso, meo, etc. can already be obtained by the products that
result from the multiplication table of the 6mm group:

=l

_ 1 1 3 1
20 =M, 6= (I-2b%b,)- (Eblbl +5b'b; — > b%b; +§b2b2) -~

1 1 1 1 3 2 1 2
= 5b'by +5b'by +5b%by — 5 b°by,

— — = 1 1 3 1
M60 = MO ' 62 = _Eblbl +Eb1b2 +§b2b1 +§b2b2 )

M120—M0 6 —_Eb bl_Eb bz_Eb b1+§b bz,
— = = 1 1 3
M150 = MO 6 =Eb bl_zb bz_zb bl_zb b2

D27 Reflections in plane group p31m
In this group, ordinary reflections
Mg, Mgy and my,, are applied in lines =~ "*120 /1208 160
passing through the origin of the reference
frame, and glide reflections myg, Mgpsa »
Mgosp,» Mizos iN lines parallel to the
reflection lines. Operators representing
ordinary reflections were derived in

Appendix D25, we list them again for

mo

completeness:
[1\7[0,0] = [a'a, — a’a, — a?a,,0], [1\7[60,0] = [a'a, + a*a,,0],

[ﬁlzo, 0] == [_a1a1 + a1a2 + azaz ) 0].
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Operators representing reflections in mutually parallel lines are distinguished from
each other only by the translation term. The operator of ordinary reflection in a line
passing through the origin of the reference frame has zero translation term, the
translation term of the operator of glide reflection is a lattice vector, so that the
corresponding operations belong to one coset. The operators of glide reflection have
the following form:

[1\=/[o» a, + az] » IMe0osA ' [l\=’[60, a1], Meoss - [l\=/160, az],
maoos : [l\=/1120, a; + az].

The correctness of these relationships is easily verified by simple examples. We will
check how the mos reflection transforms the points at the ends of the basis vectors a,
and a;:

a,-[My,a, + a;] = a, - [ata, — a’a, — a’a,, a, + a;] = 2a, + a,,
. 1 _ 2 _ 2 — _ —
a,-|la‘a, — a*a, —a‘a,a, +a,]=—a,—a,+a,+a,=0.

In both cases it is a reflection with glide a; /2 in a line parallel to the vector a, , passing
through the centre of the vector a,, i.e. the point with coordinates (0, %2), which we
document with the following figures:
a, = 2a; +a, a,=20.
A \ \ \ \ \
: ai/2
'L\K \\ \m \ \\"X’"

a1/2 a1

D28 Reflections in plane group p3m1l

The next figure shows the positions of the threefold axes (triangles), the reflection
lines (solid lines), and the glide lines (dashed lines) of the plane group p3ml. We
express the operators of some of the reflections that are assigned symbols in the
figure. The operator representing the reflection in the line marked in the figure by the
symbol Mgoa , has the form:
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[l\=/[90, 0] = [-ata, + a’a, + a*a,,0],

has a zero translation term because the reflection line
passes through the origin of the reference frame. The

operators of the other reflection lines have translation
terms that are elements of the translation group; they
are integer linear combinations of the basis vectors a;,
a,. Foraline

Mgog = [Mog, @] = [—a'a, + a’a, + a’a,,a,],

Mooa Moo

it is an ordinary reflection (no glide), in other cases it is
a glide reflection of% (a, + 2a,), which is half the identity period along the glide line,

or half the lattice parameter of the orthohexagonal cell. It is these reflection with glide:
M90$1 = [ﬁgo, az] == [_a1a1 + a2a1 + azaz ) az],
Moggs, = [1\7190» a; + az] = [-a'a, + a*a, + a*a,,a; + a,],
M9053 = [ﬁgo, 2a1 + az] == [_a1a1 + a2a1 + azaz ) 2a1 + az],
To verify the correctness of the expressions, we perform a transformation of

several points in the glide line Mgys, . We compute how the position vectors a; and
a, are transformed and show the transformation graphically:

a, - [Mgg, a; + a;]| = a, - [-a'a, + a’a, + a’a, ,a, +a,] = —a; +a, + a, = a,

a, - [l\=/190, a, + az] =a,-[—-ata, + a’a, + a*a,,a, + a,] =

:a1+a2+a1+a2:2a1+2a2.

a —a, a, - 2a, + 2a,

1
E (a; + 2a,)

r
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D29 Basic information on groups

Definition

Let G be a set containing elements g; , g, , ... ,, on which a binary operation is defined,
i.e., an operation that assigns another element to two elements g;, g; with a given
order. A set G with respect to a given operation forms a group if

a) the set G is closed with respect to a given operation, i.e. g;, g; € G, then also
gi-gj =gke€G (the dot between the elements of the group denotes the
corresponding binary operation)

b) for a given operation, the associative law holds

c) there exists a neutral element e in the set G for whiche-g =g-e =g for every
geG

d) for each element g of the set G, there exists an inverse element in G — denoted g1
—forwhichg-g™ 1 =e.

For a binary operation, the commutative law need not hold.

A group is, for example
a) the set of all integers with respect to addition,
b) the set of all vectors in n-dimensional space with respect to addition

c) the set of complex numbers exp(2mni-0/4),exp(2ni-1/4),exp(2ni-2/4),
exp(2ni- 3/4), with respect to multiplication, if the numbers exp(2ni - k/4) and
exp(2ni - (k + 4N)/4) are considered equal (N is an integer)

d) the set of rotations of the square about the centre by 90°,180° and 270°, together
with the identical transformation, which has the meaning of a neutral element; a
binary operation is the execution of two operations in succession.

e) the set of all tensors (of the same order) with non-zero determinant, with respect
to multiplication

f) the two-element set {1, —1 } with respect to multiplication.

The number of elements forming a group is called the order of the group. When a
binary operation is applied on element itself, we use the notationg-g = g2, g2 -
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g = g3, etc,, referring to powers of the element, regardless of the nature of the binary
operation.

A cyclic group consists of all powers of some element of itself: a,a?, a3, ..... The
element whose powers yield the whole group is the generating element of the group.

When expressing the elements of a group G explicitly, we write these in parentheses:

G={e gy, g,...84}, where nisthe order of the group.

Isomorphism and homomorphism

Two groups G and H are isomorphic if there exists a simple (mutually unambiguous)
mapping of their elements g <> h such thatifg; & h; and g, < hy,theng; - g, <
h; - h;, as well. For example, the groups given as examples c) and d) are isomorphic .

Two groups G and H are homomorphic if these groups do not have the same number
of elements, so that several elements of the more numerous group are associated with
one element of the less numerous group, but subject to the condition: if g; < h; and
gr © hy, then so toois g; - g, < h;-h,. The following diagram shows these two
possibilities:

g, g,8,... g1, 8,8,.. 8, g6
hi, ho,hs, ... hi, ho,
isomorphism homomorphism

Subgroup

A subgroup H of a group G is any subset of G that satisfies the group postulates. For
example, the group of rotations of 0°,180° is a subgroup of the group of rotations of
0°,90°,180° and 270°. The quotient of the order of the group and the order of the
subgroup is called the subgroup index. Group G is a supergroup of group H.

Cosets

Suppose that H = {e,h; ,h,,...}is a subgroup of group G. By the symbols x- H and
H - x we mean the sets of elements

x-H ={x-e, x-h;, x-h,,...},
H-x = {e-x, h;-x, hy-x,...}
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If an element x belongs to a subgroup H, then the above sets are identical to the
subgroup H, which follows from the first group postulate. If x does not belong to H,
the above sets are called the right and left cosets, respectively, of the group G with
respect to the subgroup H. The coset x - H has the same number of elements as the
subgroup H, and these two sets do not have a single element in common. This means
that if there is an element y in G that is neither in H nor in x- H, there must be
another coset of y- H.

This is how group G can be decomposed into cosets
G=H+xH +y-H+ . = [exYy..|'H

G=H+H-v+ Hz+ .. = H-|[evz..]

The elements in square brackets are the representatives of cosets ; a coset can be
represented by any of its elements.

Conjugated elements and conjugated subgroups

Let us select two elements a, b from the group G. If for each element x of the group

1 then the elements a,b are called

G, xra=>b-x, thatis, b= x-a-x~
conjugated. Each group consists of several classes of conjugated elements. For
example, for groups of symmetry operations, one class includes all rotations of the
same angle.

1

If H is a subgroup of G, then the set of elements K = x-H-x"~ also forms a

subgroup, which is called the conjugated subgroup with the subgroup of H. A

1 = H, is an invariant

subgroup of H that is conjugated with itself, i.e., x - H - x~
subgroup of G, or also a normal divisor. An invariant subgroup has right and left cosets

equal. Therefore, a subgroup with index 2 is always invariant.

Factor group

The invariant subgroup together with its cosets forms a special group whose elements
are the cosets as wholes, with the role of the neutral element being played by the
invariant subgroup itself. We call such a special group a factor group. The group
operation between two cosets is the product of each element of one coset with each
element of the other coset. The "product” of the cosets is then another coset, which
can be expressed by the relation

x*H-y-H=x'y-H-H = z'H,
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whereby we have exploited the validity of the relationsx:y = z, H-H = H.

This procedure can be used to verify that the invariant subgroup, together with
its cosets, satisfies all four group postulates. The factor group at the group G,
constructed according to the subgroup H, is denoted by the symbol (G/H) .

The invariant subgroup of the space group of a crystal is the translation group.
Elements of the point group of a crystal can be chosen as representatives of cosets
(but not for all space groups), so that a factor group with a finite number of elements
can represent a space group of a crystal that has an infinite number of elements.

The direct product of groups

If there is the same group operationin the groups Hand K, if foreachh € Handk € K,
h-k = k-h,andifthe only common element of these groups is the neutral element
e, then the set of all elements g;; = h; - k; forms a group G, with the groups H and
K being invariant subgroups of it. The order of the group G is equal to the product of
the orders of the groups H and K, which means that no two elements of g;; are equal.
Accordingly, a group G with an invariant subgroup H can be expressed as the direct
product of a subgroup H and a factor group (G/H):

G=H-(G/H)=(G/H)-H.

D30 Basic information on tensors

* The set of ordered pairs of vectors A;B; , A,B,,.... called dyads, can mediate
a linear transformation of the space if we introduce the following operation:

r=r-(A4B,, A,B,, ...)= (r-4,)B; +(r -A,)B, + ..,

(D30.1)
wherer and r* are the original and transformed vectors, and the dot between
the vectors represents the scalar product between the vectors. The set of dyads
in parentheses is called the tensor and is denoted by the symbol T (bold,
standing type, with two lines), so we can write the relation (D30.1) in a more

concise form
rr=r-T (D30.2)

150



With respect to the definitional relation (D30.1), we write the tensor T in the
form

T=(A,B,+ A;B, +)=Y%,AB; , (D30.3)

where the + sign has only a symbolic meaning, because tensor algebra does
not introduce a sum of dyads.

We call the operationr - T the left scalar product of a vector and a tensor. The
right scalar product is introduced by the relation

r*=T-r = A/(B, 1) + A,(B,"r) + ..  (D30.4)

so that the left and right scalar products of a vector with the same tensor need
not be the same.
If we swap the order of the vectors in all the dyads of the tensor
T = Y.iA;B;, aconjugated tensor i is formed
T. = ¥, B,A; (D30.5)

From relations (D30.1) and (D30.4) it follows that
r-T="T.-r (D30.6)

Two tensors are said to be equal if their left (or right) scalar products with any
vector are equal to each other.

The scalar product of tensors T - U is introduced by two transformations in
succession:

If we write the tensors in the form
T, = ZAiBi , U= chpj
then for the product of terl1$ors introduced in this way holds
T.-U=Y%,%,4,(B; C;)D; (D30.7)
The unit tensor ? , called the identity tensor, is introduced by the relation
r -1 = r valid for all vectors.
The reciprocal (inverse) tensor T~1 tothe tensor T is introduced so that

T1.T=1=T-T1. (D30.8)
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It exists if and only if the determinant of the tensor T does not equal zero.

=l

Atensor T is symmetric if for each vectorr: r - T=T-r.

The scalar Tg of the tensor T is a number which we obtain using the relation
TS = Zi(Ai ' Bi)' (D309)

that is, by performing a scalar product between the vectors in all dyads. and
then summing the scalars.

The dyad vectors can be expressed in a coordinate system of three non-
complanar basis vectors a, , a, , as, as their linear combination:

T= Z(AiBi) = Z ZAij a; |B; = Zaj (ZAU Bi) = Zajci
i j i

i J J
T = a1C1 + azcz + a3C3 .
A tensor consisting of any number of dyads can be reduced to three dyads in
three-dimensional space (two dyads in the plane). The vectors C; are the right
vector coordinates of the tensor.

Similarly, the vectors B;, can be decomposed and the same tensor can be
written using the left vector coordinates.

? = Dlal + Dzaz + D3a3 . (D3010)

The determinant of a tensor is defined as the product of the mixed products
of the basis vectors and the vector coordinates of the tensor:
| T|=[(a; X az) - a3] [(Cy X C€3)- €3] = [(Dy X D;) D3] [(a; X a) - as]
(D30.11)
If the determinant of the tensor equals zero, it is an incomplete tensor . That is,
zero equals the mixed product of vector coordinates, i.e. the vectors C;,
respectively D; lie in the same plane (then it is a planar tensor), or they are all
parallel (a linear tensor). A planar tensor can be expressed by a pair of dyads, a
linear one by a single dyad.

The tensor notation can be further modified so that the vector coordinates are
also expressed as linear combinations of the basis vectors. This produces a nine-
membered
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tla,a, + tPaja, + tPaa; +
T =+ta,a, + t*2a,a,+ t3a,a;+ = z tY a;a;
+ t3aza, + t*?aza,+ t*3aja, ij

(D30.12)
Where tY are the so-called scalar coordinates of the tensor (inappropriately,
the components of the tensor). It is often more convenient to express the left
vector coordinates D; as a linear combination of a triple of reciprocal vectors
a',a?, a3, thus changing the notation of the tensor and expressing it as a
symbolic sum of dyads, with mixed coordinates:

The coordinates t¥ and tij are not the same. In this text only mixed coordinates
are used, but for simplicity they are written with subscripts. A tensor using
scalar coordinates will be written in the form

When tensor notation of the form (D30.14) is used, some tensors take on a
more specific shape.

Conjugate tensor

Identity tensor

Ll

=a'a, + a’a, + a’a;
For a symmetric tensor

tij = ti,

and for the determinant of tensor

t11 ti2 U3
tz1 l22 U23f.
t3; l32 133

IT|=

The scalar of tensor is expressed by the relation
TS B t11 + t22 + t33 .
The tensor coordinates are obtained by the double scalar product

ti; = a- T (D30.15)
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T-0-V-..)' = .-V1.0'-T1,
and for the determinant of the product of two tensors
IT-0U| = |T||U| (D30.16)

The tensors of symmetry operations must preserve all distances and angles in
the linear transformation, i.e. the scalar product of any two vectors

r{-r*2‘=(r1-'T)-(r2-?)=(r1-?)-(i-r2)= ryr; ,

which implies that the equality T- T. = I should hold. That is, the conjugate

tensor T, must be simultaneously an inverse tensor:

T.= T7'.

For the product of determinants by (D30.16), | T | | i | = | I | = 1, and since
the determinants of the tensor and its conjugate tensor are the same, | T |2 =
1. This means that the determinant of the tensor, which preserves all lengths
and angles in the transformation, is equal to

IT|=+1. (D30.17)

In in-plane transformations, the full tensor consists of two dyads and can be
written using vector coordinates

'T = D1a1 + Dzaz )
or by scalar coordinates

T == t11a1a1 + tlzalaz + t21a2a1 + tzzazaz .

With such a tensor notation, the left scalar product with, e.g., the vector a, ,

based on relation A1.2, i.e., a; - @’ = §;;, gives the result:

jr

a1 - ’T = a1 - (tllalal + t12a1a2 + t21a2a1 + tzzazaz) = tllal + t12a2
(D30.18)
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Tables

TAl
Lattice Crystal systems
a) oblique
b) rectangular
c), d) ¢
e) square
f) hexagonal

TA2
Crystal systems

oblique
rectangular

square
hexagonal

TA3
Group

Crystal system
number y y

oblique

3
4
5
6 rectangular
7
8
9

11 square

15 hexagonal

Cell
type
p

p
c
p
p

belonging to system

Basis vectors

Plane lattices, crystal systems and point symmetry

Point symmetry

a #* 90° 2

a = 90° 2mm
a = 90° dmm
a = 120° emm

Point groups in crystal systems
Point group of lattice
(holohedral group)

Point groups

1,2
m,2mm
4, Amm

3,3m,6,6mm

Plane symmetry groups

Type of Point
unit cell group
1
P 2
P m
c
p 2mm
c
4
P 4mm
3
3m
p
6
6mm
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full
pl
p211
piml
plgl
clml
p2mm
p2mg
p2gg
c2mm
pa
padmm
pdgm
p3
p3ml
p31m
p6
pbmm

2
2mm
dmm
6mm

Symbol
short
pl
p2
pm
pg
cm
pmm
pmg
pgg
cmm
p4a
pdm
pag
p3
p3ml
p31lm
p6
pébm



TA4

Crystal system
Triclinic
Monoclinic

Orthorhombic

Tetragonal

Trigonal

Hexagonal

Cubic

TAS5
Structures

planar
spatial

TC1

Group symbol

DA WN P

Crystal systems

Lattices and point groups of three-dimensional structures

Lattice parameters Lattice type Point groups

a,, a, as p 1.1
a,, Ay, Qg !
al,az, a3 P 2
2 —
a, = az; =90° a, (C1,Cs,1) c M
a, az, az P, I, F 222
222 2, ———
a1=a2=a3=900 (Cl,CZ,C3) » MM2, mmm
a; = daz, as 4,4_1,%,422
a =a, = az = 90° _
1 2 3 P, | Amm, 42m, %%%
a1: a2:a3
a1=0(2=a3¢90° R
or: _ _ 2
_ 3,3,32,3m,3—
a, = a,, as m
a; = a, =90°, p
az = 120°
a; = az, as 6,6,%,622
a; = a, =90°, P - 6 2 2
as = 120° Gmm, 62m, ;;;
e 4 23, 23, 432
1= G = as - 42
a; = a, =az =90° Pl F 43m, —3—

Numbers in planar and spatial structures

Plane/Space

Lattice types Point groups

groups
4 5 10 17
7 14 32 230

Allowed rotations and their groups
Elements of groups Generating elements

(rotations in degrees) (tensors)
0 1 (1)
0, 180 2 (2)
0, 120, 240 3(3)
0, 90, 180, 270 4(4)
0, 60, 120, 180, 240, 300 6(6)
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TC2a Tensors of generating elements of cyclic point groups

I I = ala, + a?a,
2 2 = —a'a, — a%a, = -1
— 1 33cosa a; V3 1 a,V3 1
3=aa|-—z——— + a'a,———— a’a; ———
§ 2 2 sina a, 2 sina a, 2 sina
+ a?a 1 4 VY3 cos a
2 2 2 sina
— = cos a a;, 1 a, 1 cos a
4 4 =—ala, + al 2—1.—— z 1—2_ ‘a, —
sin a, sina a, sina sina
= 1 3cosa a; V3 1 a,V3 1
6 = a1a1 +=———— 1 2—1—_—— azal—z—_—
Z 2 2 sina a, 2 sina a, 2 sina
b g2 N 1 4 VY3 cos a
a‘a -+ —
2 2 2 sina
TC2b
I = a'a, + a*a,
2 = —a'a, — a%a, = -1
§= ala, — a’a, — a’a,
%z ala, — a’a,
6 = a'a, + a'a, — a*a,
TC3 Possible symmetry operations
3t Restrictions on Name of Overations
[®, 2] translation operation P
[T, t] t=20 identity closed proper
(2, t] no rotation
[3, 1] no rotation
[4, t] no rotation
[6, t] no rotation
[1\7[, t] t—(t-wu =0 reflection closed improper
[l\=/[, t] t—(t-wu==hb,/2 glide reflection open operations
1, ¢] t=A4,=0 lattice translation
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TC4 Point groups and their elements

Group Generating
symbols Group elements elements
1 e e
2 e, 2 2
3 e,3,3 3
4 e,4,4% ,43 4
6 e,6,6%,63,6%,6° 6
m e,m m
2mm e,Z,mx,my 2, m
3m  e,3,3%4,my,mgy, Moo 3, m
amm e ,4,4% 4% ,my,my,my, , My, 4, m
6mm e ,6,6%,63,6%,6°,my, Mgy, M120 » M30, Moo, M1so 6, m
Table C9.2
S\?r:'lobuoﬁs ni:\:lI;Zr Black-white point groups
1 has no subgroup
2 1 {e, 2%}
m 2 {e,m"}
5 3 {e, 2, my ,m;‘,} ,
4 {e,mx, 2" ,m;‘,}
3 has no subgroup with index 2
3m 5 {e,3,3%, mg,mgy, miz0}
4 6 {e, 42, 4*,4%*}
7 {e,4,4%,4°, m;, mj,my,, myy
4mm 8 {e4%m,,m,, 4, 4, m;,,my,}
9 {e,4%,my, ,m,,, 4%, 4%, m;,m;}
6 10 {e, 62,6% 6% 63,6}
11 {e,6, 6%,6% 6% 6°,mg, m3o, Mgy, M0, Miz0, Mis0}
6mm 12 {e, 6%, 6% my, mgp, M1z, 6%,6%, 6%, M3, My, Mis0}
13 {e, 62,6% M3y, mog, M1z, 6%,63%, 6%, My, Msy, Mis0}.
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TC5 Multiplication tables

Group 2mm
e 2 my my
e e 2 my my
2 2 e my my
my my my e 2
my my my 2 e
Group 3m
3 32 mo Meo Mm120
e e 3 32 Mo Meo mi20
3 3 32 e mi20 mo Meo
32 32 e 3 Meo Mmi20 mo
mo Mo Meo m120 e 3 32
Meo Meo mi20 mo 32 e
mi20 mi20 mo Meo 3 32
Group 4mm
4 4? 43 mx Myy my Myx
e 4 42 43 M Myy my Myx
4 42 43 e Myx my Mxy my
42 42 43 e 4 my Myx mx Myy
43 43 e 4 42 Myy my Myx my
M M Myy my Myx e 4 42 43
T My my Myx mx 43 e 42
my my Myx M My 42 43 4
Myx Myx my Myy my 4 4? 43 e
Group 6mm
6 6° | 6 | 6 | 6> | mo | ms | meo | Mmoo | Mo | mMiso
e e 6 62 63 64 6> | mo | mso | meo | Moo | Mo | maso
6 6 62 63 6* 6° € |Miso| Mo | M3 | Meo | Moo Mi20
62 62 63 64 6° e 6 | Mo | Miso| Mo | M3o | Meo Mgo
63 63 64 6° e 6 6% | Moo | M1z | Miso | Mo | M3o Meo
64 64 6° e 6 62 6 | Meo | Moo | M1z | Miso | Mo mso
6° 6° e 6 62 | 63 6* | mso | meo | Moo | M1z | Miso | Mo
Mo Mo | M3 | Meo | Moo | M120 | M1s0 | € 6 62 63 64 6°
mso | M30 | Meo | Moo | M120 | Miso | Mo 6° e 6 62 63 64
Meo | Meo | Moo | Mi2o | Miso | Mo | m3o | 6° 6° e 6 62 63
Moo | Moo | Moo | Miso | Mo | m3o | meo | 6° 64 6° e 6 62
M120 | M120 | M1so | Mo | mao | Meo | Moo | 62 63 64 6° e 6
Miso | Miso | Mo | M3o | Meo | Moo | Mo | 6 62 63 64 6° e
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Figures

Oznacenie prvkov simernosti

zrkadlova priamka A trojndsobn4 os

_____ sklznd priamka | Stvorndsobna os
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Plane groups - placement of structural motif, positions of symmetry

elements in unit cells and wallpaper pattern schemes

Arrangement of

Scheme of the

Group | Structural motifin | symmetry elements
symbol unit cell in the unit cell wallpaper patterns
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Designations used

scalar quantities, coordinates
vector quantities

basis vectors of primitive cell
basis vectors of centred cell
reciprocal vectors

tensors

symmetry operators

group of operators

plane groups

translation groups

point groups

elements of point groups

set of group elements

artA;

a ,a,,a
b,,b,,b
a',a? b', b?
T, M

[,1]

(@

G, Gy,

T,T,

2mm, m

2, m, 6%, meo

{e, 2, m,, my} ={2mm}

*) In the international tables (7), the symbols for groups are in plain, not bold, type.

However, the same font is also used for the elements of the groups, which may lead

to misunderstandings. Therefore, in this text, group symbols are in bold and their

elements in regular type. For example, if the group is 2mm , its elements are: e, 2, my,

my . The set of all elements forming the group is written in parentheses: {e, 2,m,, my}.
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Register

allowed rotations
anti-symmetry

basis vectors

binary operation
black-white groups
body centred cell
Bravais conditions
Bravais lattices
centred cell

centred lattice
character of
representation
characteristic tensor
closed operation
colour group
conjugated elements
conjugated tensor
coset (definition)
crystal class

crystal lattice

crystal system

crystal system cubic
crystal system
hexagonal

crystal system
monoclinic

crystal system oblique
crystal system
orthorhombic

crystal system
rectangular

crystal system square
crystal system
tetragonal

crystal system triclinic
crystal system trigonal
cyclic group (definition)
determinant of matrix
determinant of tensor
direct product of groups
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38, 147
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9
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12, 20, 69
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149
151
148
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19

148

27
29,153
150
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equivalent points
equivalent position
face centred cell
factor group (definition)
faithful representation
fourfold axis
generating element of
group

glide line

glide reflection

group

hexagonal crystal
system

hexagonal lattice
holohedral group
homomorphism
identity tensor
improper operation
incomplete tensor
invariant subgroup
Inverse element of
group

inverse tensor
inversion

irreducible
representation
isomorphism

lattice line

lattice parameters
lattice point

lattice postulate
lattice translation
lattice vector

linear tensor
magnetic group
matrix

matrix of transformation
matrix representation
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52,73
47, 148
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57
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5
33
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106
21,22
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mirror line— reflection
line

mirroring - reflection
multiplication tables
neutral element
normal divisor
oblique lattice

open operation
operators of
transformation
orthohexagonal basis
orthohexagonal cell
orthogonal basis
orthogonal cell
orthogonal lattice
orthogonal matrix
planar tensor

plane group

plane lattice

point group

point symmetry
point symmetry
operation

primitive cell
product of operators
proper operation
pseudosymmetry
reciprocal lattice
reciprocal (inverse)
tensor

reciprocal vector
rectangular cell
reducible
representation
reflection

reflection line
representation theory
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12
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57
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151
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44
30

representative of coset
rotation

rotational axes
scalar of tensor
scalar product left, right
scalar product of
tensors

set of lattice lines
Shubnikov groups
sixfold axis

space group

space lattice

square lattice
square matrix
structural motif
subgroup
supergroup
symmetric tensor
symmetry
symmetry
symmetry element
symmetry operation
symmorphic group
system metrics
tensor

tensor coordinates
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tensor representation
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trace of matrix
translation group
translation operator
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unit matrix
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