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PREFACE

We have a certain idea about the content of the
concept of symmetry, but from the point of view of the
theory of symmetry, its definition is needed. Arthur
Schoenflies, one of the creators of the theory of crystal
symmetry, wrote in 1889: "There are objects whose
peculiarity is that they can be identified with themselves in
various ways - by rotation or mirroring." Such objects are
said to be symmetric".

In theoretical physics, other types of symmetries
are also considered - time, space or charge symmetry of
physical processes, but this text deals only with that type
of symmetry, which we can call shape symmetry. The
essence of shape symmetry is a certain regularity in the
spatial arrangement of parts of the observed object, or in
the sameness of its appearance when viewed from different
sides. It is obvious that the shape symmetry of the sphere
does not coincide with the shape symmetry of the cube, so
we realize that there are objects with different types or
degrees of shape symmetry. Various geometric shapes
(cube, cone,...) are characterized by shape symmetry, but
the symmetry of the external shapes of crystals has
attracted special attention for a long time. According to
current knowledge, external shapes are influenced by the
arrangement of atoms, i.e. crystal structure, which can be
characterized by one of 230 types of symmetry.

Considerations about symmetry can be supported by
exact mathematics. From a mathematical point of view,



symmetry of an object (not only shape) means the
preservation of certain of its properties during certain
changes (transformations) of the parameters that
characterize its state. As for the symmetry of the shape, it
is about rotations, mirroring, or displacements of the
object, while these transformations are expressed with
respect to the chosen frame of reference, in which each
point of the object has its three spatial coordinates. If,
during the transformation, the object reaches a position
that we consider to be identical (equivalent) to the original
position, then it is a so-called symmetry operation. For
example, by rotating a square by 90° around an axis passing
through its center and perpendicular to its plane, the
vertices of the square get to new positions, but if we do not
distinguish the vertices from each other - and this is how
we will understand it in the next text - then the square gets
to a position that is equal to original position. If it is a
crystal, then its geometric and physical properties - with
respect to the external reference frame - are preserved in
all its points through the operation of symmetry. The
symmetry of the crystal then means the set of all such
operations.

Much effort has been devoted in the past to the
description of the symmetry of crystals, ie., to the
description of the relevant set of symmetry operations and
methods for their deftermination. This has led to the
development of the theory of crystal symmetry. This text
was written with the intention of conveying the development
of this theory - from the first scientific experiments
already in the XVII. century until its completion in the
middle of the XX. century. But the symmetry of objects



attracted attention already in ancient times - Egypt,
Babylon, Greece. Not only ornaments are known from this
period, on which we can observe certain elements of
symmeftry, but also texts related to symmetry. Plato already
in the year 360 BC in the dialogues Timaeus described
5 ideal bodies with walls formed by equilateral polygons. The
octahedral shape of diamond crystals was described by
Plinius (16-79 AD) in the encyclopedia Naturalis historia, and
Georgius Agricola described the geometric shapes of
crystals in De natura fossilium published in 1564.

From the beginning of the XVII. century, Johann
Kepler's work on the hexagonal shape of snowflakes (1611)
Strena Seu De Niue Sexangula [1] is known, and his work
from 1619 De figurarum regularium [2] also deals with the
symmetry of bodies. Kepler did not yet have the knowledge
to discover the reason for the hexagonal shape of
snowflakes, but his reflections on possible causes are
remarkable. In the first of the listed writings,
considerations about the tightest placement of spheres ina
plane and in space, but also about the possibilities of
perfectly filling a plane or space with identical symmetrical
objects, are also interesting. It is these considerations that
make his work interesting even for contemporary
crystallographers, who still use to quote it in their works.
The tightest arrangement of spheres was also a
mathematical problem for a long time, while its exact
reasoning was mastered only at the end of the 20th century
[30]. In 2014, Charles University honored Kepler's work [1],
which is not large in scope, by publishing it with the original
Latin text and a parallel Czech translation [3].



Some terms used in the theory of crystal symmetry
are explained in the glossary at the end of this book, while
the english terminology is in accordance with the publication
International tables for Crystallography [34]. It was
sometimes interestng to go back to the past and find out the
genesis of crystallographic terms. In this context, it was
primarily the thoughts of Fyodorov and Schoenflies, but
they also followed on from important predecessors. That's
why it was interesting to look deeper into the past, when and
where considerations about the laws of crystal symmetry
arose. We owe the possibility of looking into older original
texts to their digitization and the Internet, through which
one can literally flip through old books. Out of respect for
older sources, many original names have been preserved in
this text, including the names of books and magazines.

Special thanks go to the reviewers of original slovak
text, who were willing to read it and point out its
shortcomings. My wife Mileva also read the text before
publication, and I am indebted to her for the succinct
comments of the first reader.

Author



OUTLINE OF THE DEVELOPMENT OF THE
THEORY OF CRYSTAL SYMMETRY

The timid beginning of the scientific perception of
the symmetry of crystals can be placed in the XVII. century,
when Nicolas Steno published his dissertation [4] in 1669, in
which he described how rocks are formed and how crystals
grow. In connection with crystals, he stated that during
their growth, when new matter is deposited on their outer
surfaces, the angles between the surfaces do not change:
this fact was named the law of constancy of angles.

More than a century later, in 1784, René-Just Haiy
published the results of measuring the angles between the
walls of calcite, garnet and gypsum crystals [5]. He found
that when the crystals were broken into smaller and smaller
pieces, their shape in the main features was preserved. On
this basis he concluded that the crystal was composed of a
large number of repeating parts; it was essentially a
hypothesis of the periodicity of the crystal structure. In
1801, in the Traité de Mineralogie [6], he formulated the law
of rationality of indices, which expresses the fact that the
ratio of the size of the sections on the crystal axes, which
are cut on them by the outer surfaces of the crystal, can
always be expressed as a ratio of whole numbers.

The study of the symmetry of crystals continued in
the XIX. century and resulted in the determination of 32
types of external symmetry of crystals (so-called crystal
clases), 14 types of space lattices and 230 types of
symmetry of the arrangement of atoms in crystals. From a
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mathematical point of view, they are currently represented
by 32 point groups, 14 translation groups and 230 space
groups. The elements of point groups are rotations about
the axes of symmetry and reflections in the planes of
symmetry, in which the position of at least one point of the
crystal does not change, hence their name. The types of
point symmetry were already derived in 1830 by J.F. Ch.
Hessel [7], but his work remained unnoticed. They were
independently derived by the Finnish scientist A. Gadolin
only in 1867 [9] and for a long time the primacy was
attributed to him. Meanwhile, A. Bravais tried to derive
them, but he failed to derive all of them. Types of space
lattices represent possible ways of three-dimensional
periodic arrangement of sets of points, which A. Bravais [8]
derived in 1848. They are represented by translation
groups, the elements of which are translations expressed as
integral linear combinations of three basic vectors; with
their help, the lattice gets into equivalent positions. The
first works on space groups, where combinations of
translations with rotations and reflections are considered,
are associated with the names of C. Jordan [10] (1868) and
L. Sohncke [11] (1879). Sohncke derived 65 space groups
that contained only proper rotations, reflections were
missing. A complete set of space groups, including
reflections, was published in 1891 by E. S. Fyodorov [12] and
A. Schoenflies [13], after a more extensive mutual
correspondence; however, they have previously published
articles containing an incomplete number of spacce groups.
This completed the effort to derive all possible types of
symmetry of the arrangement of atoms in crystals.
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Although Schoenflies, unlike Fyodorov, already used
the mathematical theory of groups, he did not use all its
possibilities. Moreover, the representation of symmetry
operations by matrices was absent in both authors.

Mathematicians also entered the construction of the
theory of crystal symmetry, especially A. Speiser with his
book on finite groups [14] and to some extent also G. Pélya,
with his article in the Zeitschrift fiir Kristallographie [15].
Speiser did not derive symmetry groups, but pointed out the
principles and possibilities of using mathematical group
theory in this process, including the so-called factor group.
Polya showed how group theory can be used in the
classification of symmetry groups of planar periodic
structures (ornamentations, wallpapers, etc.).

Group theory was not consistently used until F. Seitz
in a series of articles published in the Zeitschrift fiir
Kristallographie in 1934-1936 and in his doctoral thesis [16]
published in 1934. In 1945, W. H. Zachariasen published a
book [17] in which, instead of the matrix algebra used by
Seitz, he used the algebra of tensors, while also changing
the procedure for constructing symmetry groups, which he
demonstrated only with a few examples.

In the 1950s, Shubnikov [18] expanded the number
of parameters characterizing an atom in a unit cell from
three position coordinates to include a parameter that can
take on two values. These were mainly two possible
orientations of the magnetic moment, and the corresponding
groups are known as magnetic groups, black-white groups,
and Shubnikov groups. The number of possible types of
symmetry thus increased to 1651. Shortly thereafter, Belov
and Tarchova [19] considered the situation when the
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additional parameter can take on more values (different
“colours"); the corresponding groups, the number of which
has again increased significantly, are known as colour groups.
Shubnikov and Belov summarized the results achieved in the
book [20] published in 1964.

In the 1950s, the theory of so-called OD structures
(Order-Disorder) came to the center of attention of
crystallographers, dealing with structures that are not
perfectly periodic in all three dimensions. The Slovak
crystallographer Slavomil Durovi¢ played a significant role
in the development of this theory. His contribution to the
theory of so-called polytypes is part of the International
Crystallographic Tables [24].

In 1992, the  International Union  of
Crystallographers defined the term aperiodic crystal, which
means a crystal that appears crystalline from the point of
view of X-ray diffraction, but in which the three-
dimensional periodicity of the arrangement of atoms can be
considered absent. Such types include quasicrystals, the
discovery of which was published by D. Schechtman and his
collaborators in 1984 [25], further so-called
incommensurate  modulated  structures and also
incommensurate composite crystals, which were pointed out
in 1992 by the Slovak crystallographer Emil Makovicky [26].

The following parts of the text describe in more
detail the results achieved by the aforementioned authors,
their references to other authors, as well as brief
biographies illustrating their position and possibilities in the
society of that time.
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Johannes Kepler (1571 - 1630)

Kepler is considered
by some authors to be the
figure at the beginning of a
series of important
crystallographers, because
already in the first half of
the 17th  century he
considered the perfect
filling of space with equal
regular bodies and
described the most
compact arrangement of
spheres in a plane and in
space. Kepler is generally
known as an astronomer, as
the author of the three laws of planetary motion in the solar
system, but his interests were much broader. Biographies
state that he was a German mathematician, astronomer,
physicist and astrologer. However, he was also interested in
“earthly” matters and in 1611 he dedicated a thin treatise
with reflections on the shape of snowflakes to his friend and
patron Johann Matthdus Wacker [1]. The search for the
causes of their hexagonal shape also led him to solve the
problem of what bodies could perfectly fill space and how
spheres could be arranged as compactly as possible in a plane
and in space. The Russian crystallographer Shafranovsky
wrote about this work of Kepler [29]:
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Kepler's "Hexagonal Snowflake" of 1611 is the first
work on the structure of crystals. Despite its small size, it
is remarkably rich in ideas. One of his greatest discoveries
is the geometry of the packing of spheres (as is well known,
the principle of the closest packing is the basis of modern
crystallography). He described the cubic closest packing and
also described two less close-packed ones - hexagonal and
simple cubic, but he did not realize that there was also a
hexagonal closest packing. Based on considerations about
the packing of spheres, Kepler came to conclusions about
convex bodies that can fill space without gaps. In this
regard, he anticipated the conclusions of R. J. Haliy (1784)
and E. S. Fyodorov (1885). Kepler's work also indirectly
points to the law of constancy of angles in a hexagonal snow
crystal. Therefore, Kepler can be considered a predecessor
of the discoverers of this law (N. Steno, 1669, M. V.
Lomonosov, 1749, Romé de I'Isle, 1783). We are aware of
Kepler's ideas about the dependence of all natural forms on
the forming force of the Earth; in this respect, we consider
him one of the first predecessors of Pierre Curie and his
universal principle of symmetry (1894).

Johannes Kepler was born on December 27, 1571, in
the town of Weil der Stadt near Stuttgart. He completed
his studies at the University of Tiibingen in 1593. From 1594
to 1600, he taught at the high school in Graz, where he
published the book Mysterium Cosmographicum in 1596. In
this book, he admirably connected Plato's five ideal solids
with Copernican heliocentric system.
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In 1600, he came to Prague at the invitation of Tycho
Brahe, where he worked as his assistant. After Brahe's
death in 1601, he became the imperial mathematician and
astrologer to Rudolf II. During his stay in Prague, based on
Brahe's precise measurements, he began to recalculate the
orbit of Mars. After lengthy calculations, in which he also
used logarithms, he discovered the first two of his laws. He
published the results in 1609 in the work Astronomia Nova.
In 1612 he went to Linz and then to Ulm in 1626. In his work
Harmonices Mundi (1619) he also addressed the problem of
convex and stellated polyhedra and published his third law.
He died on 15 November 1630 in Regensburg.
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In his treatise on the shape of snowflakes, Kepler
asks himself at the very beginning of his reflections why
there are only six-pointed ones, and not five- or seven-
pointed ones. He realized that this was not a coincidence,
that it must have some cause - either internal or external.
He concluded that it was the result of some external
influence, some kind of force. He further wondered what
this force was, whether it was limited by the internal need
of the substance, by the pattern of beauty hidden in the
hexagon, or by the knowledge of the purpose to which it was
directed? Kepler decided to solve this problem using
geometry and first turned his attention to the hexagonal
shape of the cells of honeycombs.

He stated that at first glance it is clear that the
honeycombs are built on the basis of hexagons, but the
bottoms of the cells are formed by three rhombic (diamond)
faces. The cells are arranged in two layers with their
bottoms touching each other. Each cell is thus surrounded
on the sides by six others, with each of them sharing a
common wall, but its bottom faces also touch three cells of
the opposite layer. It was precisely the contact of the
bottom walls that led him to consider whether it was
possible to construct a body using only rhombic shapes.
Kepler literally wrote:

*T have discovered two such solids, one related to the
cube and octahedron, the other to the dodecahedron and
trisocahedron. The first of these solids can be constructed
from twelve rhombuses, the second from thirty." [3]
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The following image is Kepler's original drawing of
these solids, included in the second of five books published
under the title Harmonices Mundi [4], in which his wide
interest in natural phenomena is documented. The image is
taken from the original available on the Internet at
archive.org.

fais Biatibus illor s eminertias, e 0 De bae o
Siceriginta Rbombi p!mi % f?ﬂ}aﬁx’mﬁ Dis{gaﬁorm alterites , faciant yamfupd

; Rbom&z{ml{afiﬁm Triacontaédre- ol 29-in
cunits, Qupnienim e quinifhons,

I, sngidis acut & conjuniti, ad ef-
Jigiandos des [ilidos e oppofitss 5. gy
Jesgrs fiantes, i hient apud obtn figuramas
fo1 conjunctosigrinorim &5 quirno- 1

rrm Rhomborwm obtufis alijs , i

plent hint s : dentgueinurvinsque
elutitefie medio , Zona excdecens
Rbombicss compofita civcamit, conjangéns utramg, teflam,

Other sentences in Kepler's text already concern the
perfect filling of space with equal regular solids; they also
require spatial imagination from the reader:

"Just as eight cubes touching at one common corner
completely fill the space so that no empty space remains
between them, so the first of the rhombic solids with its
four obtuse triangular corners and six square corners
achieves the same. Space can therefore be completely filled
with rhombic solids by always connecting either their four
triangular corners or their six square corners at one point."

As an example of the number of solids touching each
other when filling space perfectly, Kepler first gave cubes.
Then he evaluated the number of touching rhombic solids:
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"However, if we fill the space with identical rhombic
solids, each of them will touch six square corners and twelve
other four corners - a total of eighteen solids. This is the
geometric shape of a solid that can perfectly fill the space,
just as a hexagon, a square, and a triangle can fill a plane.
This is also the shape used by bees in building honeycombs,
except that the honeycombs lack a roof resembling a
bottom."

In the next part of the fext, he dealt with the
arrangement of pomegranate seeds, whose originally
spherical shape filled with juice changes to a rhombic shape
when squeezed into a limited space. He tried to understand
why they acquire such a shape and gave several speculative
reasons. The original spherical shape of the seeds led him to
consider ways of closely arranging the spheres in a plane and
in space. And this is another moment that has something in
common with crystallography, even with the theory of OD
structures. He wrote about the possible shapes of the
arrangement of spheres in a plane:

"For if you place balls of the same size in the same
plane as closely as possible side by side, so that they touch
each other, they will form either a triangle or a square. In
the former case one sphere touches six, in the latter case
four, adjacent spheres. In both cases it is the same for all
the bullets, apart from those on the edge. The pentagonal
shape does not correspond to the tightest arrangement;
the hexagonal shape can be put together from triangles:
and so, as has been said, only two arrangements are
possible."
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The following image is from Kepler's original text on
the snowflake.
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He further considered the closest arrangement of
balls in space:

"If you want to achieve a structure with the closest
possible arrangement of balls in space by layering one row of
balls on top of another (as before in the plane), then the
structure will be quadrangular (A) or triangular (B). In the
quadrangular one, the individual balls of the upper layer will
stand exactly above the balls of the lower layer, or they will
be located between the four balls of the lower layer. In the
first case, one ball touches four neighboring balls in its
layer, and one each in the layer above and below, a total of
six balls. This corresponds to a cubic structure; if they are
pressed together, a cube is formed. But this is not the
closest arrangement. In the next case, the ball touches, in
addition to the four balls in its layer, four in the lower and
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four in the upper layer, a total of twelve balls. If we press
them together, the balls will form rhombic bodies. This
structure is more like an octahedron and a pyramid. This is
the most compact arrangement: in no other arrangement can
more balls be packed into the same container.

However, if the balls are arranged in such a way that
the layers are in the shape of a triangle, then in the spatial
arrangement the individual balls of the upper layer will
either stand on the balls of the lower layer as in the case of
the looser arrangement mentioned above, or the ball of the
upper layer will be located between three balls of the lower
layer. In the first case, the ball touches six neighboring
balls in its layer and one each from the layer above and
below, i.e. a total of eight balls. This structure resembles
a prism and when compressed, the balls will form columns
with six sides in the shape of a square and two hexagonal
bases. In the second way, we achieve the same result as in
the second variant of the square structure”.

He concludes these considerations with the sentence:

"In the case of the closest possible arrangement in
space, the triangular cannot exist without the quadrangular,
nor vice versa."

Kepler's work on the shape of a snowflake is usually
mentioned by some authors (e.g. A. Speiser in his book [14]),
but it was not cited by the real creators of the theory of
crystal symmetry, Fyodorov or Schoenflies, it is not included
in the extensive list of literature contained in the book by
the authors Bradley - Cracknell, and it is not mentioned in
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the first volume of the International Crystallographic
Tables. Nevertheless, we believe that its originality
deserves attention. It received recognition in 2014 with the
publication of the original with a translation into Czech [3].

Some of Kepler's works:

1. Mysterium Cosmographicum, 1596

2. Astronomia nova (1609)

3. Strena Seu De niue sexangula (1611)

4. Harmonices Mundi, Lincii Austriae, Anno M. DC. XIX.

Sources:

1. https://archive.org/details/bub_gb_Nb8kgmIxUuUC

2. https://archive.org/stream/ioanniskepplerinOOkepl#
page/n9/mode/2up

3. Google books: The Harmony of the World by Johann
Kepler

4. Quoted Kepler texts translated from Latin by Drahomira
Dobrovodskd, 2017
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Nicolas Steno (1638 - 1686)

The Danish scientist NG HISNENIFINBINIT
(Niels Stensen) is known in
crystallography as  the
author of the law of
constancy of angles. He was
a pioneer in the field of
anatomy and geology, and
began to question the
previous  claims  about
geological development. For
his research into fossils,
rock formation, and the
conclusions he drew from it,
he is considered the
founder of modern stratigraphy and modern geology. He
made the first careful observations of crystal types and
published them in his dissertation "De solido intra solidum
naturaliter contento" in 1669. In his work, he stated that
during the growth of crystals, when material is deposited on
their outer surfaces, the angles between the surfaces do
not change during this process. This finding is known as
Steno's law, or Steno's law of constancy of angles, or the
First Law of Crystallography. It was the first step on the
path fo modern crystallography, with the next step being
taken more than 100 years later by R. J. Haily with the
formulation of the law of rationality of indices. Steno's
dissertation - (Dissertationis Prodromus) - is often
considered the beginning of crystal science.
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Steno was born in Copenhagen to a poor Protestant
family. When he was three years old, he fell seriously ill, and
so he lived in isolation for a long time during his childhood.
At the age of 19, he began to study medicine at the
University of Copenhagen. After completing his studies, he
traveled extensively, visiting the Netherlands, Germany,
France and Italy, where he settled permanently in 1666. He
first worked as a professor of anatomy at the University of
Padua, then in Florence as a house physician to the Medici
family. He became a member of the Academie di Cimento.
Meetings with leading physicians and scientists in various
countries significantly influenced his further work, led to
the use of his own judgment and ultimately to significant
scientific discoveries that offen contradicted previous
views. After converting to the Catholic faith in 1667, his
interest in natural sciences decreased significantly, and he
became interested in theology. He was ordained a priest in
1675 and was soon appointed Vicar Apostolic and Titular
Bishop by Pope Innocent XI. He was prominently involved in
the Counter-Reformation in northern Germany and was
venerated as a saint after his death. The canonization
process began in 1938 and was completed in 1988 by Pope
John Paul IT.

A significant part of the dissertation is devoted to
geological issues and fossils. Steno dealt with the
explanation of the layered nature of rocks, the origin of
mountain ranges and the origin of various stones. He came
to the opinion that the layered structure of rocks is the
result of sedimentation in the seas.
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Title pages of the original dissertation from 1669
and the English translation from 1671

He also devoted part of his dissertation to crystals,
specifically considering the method of their formation. He
argued that crystals in rocks are formed in the same way as
those that arise from aqueous solutions - by the gradual
deposition of matter on the surface, and not like plants - by
receiving "nutrition" from the soil. By crystal he meant
mainly quartz, describing its hexagonal symmetry, the
termination of a hexagonal prism with a hexagonal pyramid.
He also notes its imperfections, for example, the disruption
of the smoothness of the surfaces, or the inequality of the
triangles of the top pyramid. He concluded that during the
growth of a crystal, a new substance is not added to all
surfaces at once, nor in the same amount. He discovered
that the axis of the pyramidal part of a crystal is not always
parallel to the axis of its prismatic part, that the pyramidal
faces are not always friangular in shape, and the prismatic
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parts are not always tetragonal in shape. The most
significant result of Steno's study of crystals, however, is
the law of constancy of angles.

The beginning of the text about crystals is marked
with a note in the margin of the text:

Quod cryitalli productionem attinet , QUOMO- De Cry~
do prima ipfins delineatio peragatur, non aufim, £+
determinare 5 id {faltem extra controuerfiani eft 4
qua apud alios ea de re legere mihi contigit, lo-
cum ibi nullum ha!)ere : nec enim irradiationes

Free translation: As for the formation of crystals, I
do not dare to express an opinion as to how their initial shape
is formed, however, it is indisputable that much of what I
have read from other authors on this problem was beside
the point.

To illustrate Sten's considerations, we will present
his idea of the shape of a crystal (by which he means a
quartz crystal) and the introductory definitions of the
terms he used in the following text:

Cryftallus componitur ex duabus pyramidibus
hexagonis , & colomna intermedia itidem hexa-
gona , vhi engalos felides extremor illos appello, qui
wertices pyramidum conftituunt 5 angwlor verd foli-
dos intermedior, illos , qui in pyramidum cum co-
lumna vnione conftituuntur ;, codem modo plana.

pyramidum

The crystal consists of two hexagonal pyramids and a
prism between them, which is also hexagonal. The angles
formed by the vertices of the pyramids I call terminal solid
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angles, but those formed by the connection of the pyramids
with the prism I call intermediate solid angles.

Steno's essential contribution from the point of view
of crystallography - on the constancy of angles during
crystal growth - is in the following text and figure:

ret , duodecim lateribus continetar. 1 3. figura |
indicat quomodo , dum planis pyramidum im-
ponitur noua materia cryflallina, in plano baﬁs|
lacerum longitudo interdum ', & numerus vari¢
mutantur non mutatis angulis. t

The text about the constancy of angles is found at
the end of the dissertation, on the last two pages, in the
comments to the figures, specifically to figures number 5, 6
and especially to figure 13, where he formulated it
particularly clearly:

Figure 13 shows that as new crystal mass is deposited
on the surfaces forming the pyramid, in the plane of the
base the length and number of sides change in various ways,
but without changing the angles.

In Steno's native country, on the website
http://denmark.dk/en/meet-the-danes/great-
danes/scientists/niels-stensen
his contribution to crystallography is evaluated in the
following words:

"Crystalography gained its scientific foundation with
Steno's discovery that as crystals grow, material is
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deposited on their outer surfaces, the angles between the
surfaces remaining unchanged during this process."

After its first edition in 1669, the dissertation was
published as a copy of the original in 1679, 1763, 1904 and
1910, and in several translations - 1671 and 1916 in English,
1757 and 1832 in French and 1902 in Steno's native language
- Danish. Other editions of the original work can also be
found on the Internet.

The law of constancy of angles was generalized and
established by  Jean-Baptiste Romé de [I'Isle
(Cristallographie, Paris, 1783), who measured the angles
between the walls of many types of crystals.

Steno's most important scientific publications point to his
initial interest in anatomy:

Observationes anatomicae (1662)

De musculis et glandis (1664)

Discourse on the anatomy of the brain (1665)

Canis carchariae dissectum caput (1667)

Elementorum Myologiae Specimen, seu musculi descriptio
geometrica (1667)

De solido intra solidum naturaliter contento dissertationis
prodromus (1669)

Sources:
https://archive.org/details/ita-bnc-mag-00001426-001
https://archive.org/stream/prodromusnicolaOOwintgoog#p
age/n0/mode/2up
http://www.e-rara.ch/zuz/content/pageview/11339638
https://en.wikipedia.org/wiki/Nicolas_Steno
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René - Just Hady (1743 - 1822)

French  scientist s
known for proposing that
crystals are composed of a
number of small, regularly
arranged elementary
particles (1784) [5] and for
formulating the law of
rationality of indices (1801)
[6]. Often called Abbé
Haly, or the "Father of
Modern Crystallography".

He was born in the
town of Saint-Just-en-
Chaussée, in the Oise region of northern France. He came
from a poor family, and was able to study only thanks to the
kindness of his parents’ friends. After studying at the
College de Navarre and the College de Lemoine, he was
ordained a Catholic priest. He began as a fteacher at the
College de Lemoine, where he worked for 21 years. He was
interested in botany, but an accident, when a calcite crystal
fell out of his hand and broke, led him to study minerals. The
pieces of the broken crystal had the same shape as the
original one, which prompted him to experiment with
crystals of other minerals (gypsum, topaz, garnet). He
conducted a number of experiments, from which he
concluded that crystals of the same composition always have
a nucleus of the same shape, regardless of their external
shape. He expressed the opinion that the basic building
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blocks of crystals are regularly arranged, which essentially
meant their periodic arrangement. He published the first
findings of his research in 1781 in the Journal de physique
and then in 1784 in the book Essai d'une théorie sur la
structure des crystaux. During his experiments, he also
measured angles on crystals and confirmed the law of
constancy of angles formulated by N. Steno over a century
earlier, when he wrote (free translation):

The angles and axes of crystals are constant, no
matter the country the crystal comes from.

The second important finding, the law of rationality
of indices - was published in the five-volume work Traité de
mineralogie in 1801 (each volume had over 500 pages). The
illustrations for the entire work are concentrated in the
fifth volume and document the author's precision. He also
wrote about crystals and minerals in the following years, the
last such publication being published in the year of his death
in 1822.

Haiiy also had to create the necessary fterminology.
In his ideas about the structure of a crystal, he called the
elementary building blocks “molécules cristallines" and
“molécules intégrantes”, while in special cases he specified
them, e.g. “molécules rhomboidales”. When splitting a
crystal, he proceeded until he arrived at its "core”. He
recoghized primitive and secondary shapes of the cores. He
identified primitive shapes with integrating molecules and
distinguished three of their types (“types of the simplest
regular bounded bodies"), which have an impact on the
external shape of the crystal:
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triangular pyramid, triangular prism and tetrahedral prism.

ESSAI
D'UNE THEORIE
. SUR LA STRUCTURE
DES CRYSTAUX, M & ot &t < .
4PPLIQ VEE . % pemiis pam 1% coNspL DRy MINES
JEVWE:I:TT:LB:‘?TM B g s e g 1 b
1
P 1 BTY, e Ui R dn TOME PREMIER
Semr, Prolfrer ¢ Bemansri date [werrfl
B | &
m. ot B UAEFRIEEREE B BELAVEE
A PARIS,
A PARTS, L e onh, RATRABE, NEE G SATOTE, ¥
Gins Goad & Nis 33 1 ” o
Qual des Amgalles, ek o Pos
———————
M DCC LEXXIV. : L
HEPF LY PRIFILIGN BE CatARfEis -

Title pages of two of Haliy's most important mineralogical
publications

He also used the regularity of shape to define a
crystal (1784):

2. Tout minéral qui fe préfente fous une
forme réguliere, & dont les faces peuvent
étre repréfentées par des figures géométriques,
porte le nom de cryffal. Il y a deux chofes a

"A mineral characterized by a regular shape and walls that
have the shape of geometric figures is called a crystal."
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SPATH CALCAIAL A DOUZE FACES TRIAN-
GULAIAES SCALENES , conou fous le nom de
Dene de Cochon, ( PLIII, fig. 23 ). Id. Davea
Tableau minér,

Développement. Douze triangles fcalines
{fis 23) égaux & femblibles earr'eux. L'aa-

gle kg = 101" 33 13" egh = 54" 27/ 30" ..

geh==24"0 17"

T Image and text from the book Essai d”une theorie sur la
structure des crystaux (1784). In the image (fig. 22) the
vertices of one of the crystal walls are marked, in the text the
angles between the edges are given.

Dans le rhomboide primitif de la chaux car-
bonatée, on a g=1/3. p="V2 (1). Substituant
ces valears & la place de g et de p, dansles rap-
ports précédens, on trouve : :

1. af: fm (fig 95z 0, ce qui donne
Sam=11% 32' 13", donc baf= 1014 32" 13".
s, am:im:.4:1,ce «qui donne pour langle

SRR i -
ami, 754 31' 20".

Fig. 0.
i

T Text and image from the book Traité de mineralogie (1801). They
concern the law of rationality of indices. The text indicates the
ratios of the lengths of the sides, which are equal to the ratio of

whole numbers.

It is remarkable how precisely Haiy
expressed the angles between the
edges of crystals, since he could not
have had a goniometer of current
quality at his disposal. A goniometer
suitable for measuring the angles of
crystals was constructed by Romé de
I'Isle in 1780, and the reflective
goniometer by Wollaston only in 1809.
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The image on the side documents Haiiy's idea of the
structure of a crystal consisting of "molecules".

Haliy was also interested in physics, and wrote a
textbook on electricity and magnetism, in which he also
wrote about pyroelectricity. In 1795 he became a physics
teacher at the Ecole Normale. He was a member of the
commission appointed to determine the metric units of
weights and measures (1793). In 1802 Napoleon appointed
him professor of mineralogy at the Musée d'historie
Naturelle in Paris, and from 1809 he held a similar position
at the Faculté des sciences of the Sorbonne University. In
1814 he was dismissed from his position by the Bourbons and
was left practically without funds. Despite this, he worked
intensively and in 1821 he was accepted as a member of the
Swedish Academy of Sciences. His name is listed among the
names of the most important figures of France on the Eiffel
Tower.

Haily cited the works of both predecessors and
contemporaries.

In the first book Essai d'une théorie (1784), the authors
were:

M. Bergmann, M. Daubent (Tableau Mineralogique), I.
Newton (Optics, birefringence), M. Sage (Eléments de
Minéralogie).

In the introduction to Traité de minéralogie (1801), he
mentioned the authors:

Wullerius: Systema mineralogica (1778), De ['Lisle:
Cristallographie (1785),

Emmerling: Lehrbuch der Mineralogie (1793),
Karsten: Mineralogische

Tabellen, 1800, Daubenton: Tableau méthodique des
mineraux,

Borchant: Traité élementaires de mineralogie, Paris
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He mentions M. Bergman in connection with the processes of
crystallization, M. Daubent - his teacher - as the author of
mineralogical tables and I. Newton in connection with optics,
especially birefringence.

Haliy published a lot, wrote several books and

articles.

Book publications related to crystals:

1

2.

5.

6.

Essai d'une théorie sur la structure des crystaux (1784)
Exposition abrégé de la théorie de la structure des
cristaux (1793)

3. Traité de minéralogie (5 volumes, 1801)
4.

Tableau comparatif des résultats de la cristallographie,
et de |'analyse

chimique relativement a la classification des minéraux
(1809)

Traité de cristallographie (2 volumes, 1822)

He published articles mainly in the journals

Journal de physique and Annales du Museum d'Histoire
Naturelle, of which 100 are registered in the Royal
Society's catalogue.

Sources:

1.

2.

3.

http://gallica.bnf.fr/ark:/12148/bpt6k976207952rk=10
7296:4
http://gallica.bnf.fr/ark:/12148/bpt6k1060890?rk=128
756.0

https://archive.org/details/ TraiteDeMineralogie TomeQ
uatrieme
https://en.wikipedia.org/wiki/Ren%C37%A9_Just_Ha%C
3%BCy
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Johann Friedrich Christian Hessel
(1796 - 1872)

A German scientist who
took the lead in the effort to
develop a mathematically based
systematics of the types of
symmetry of crystals, as well as
other bounded regular
geometric objects. He derived !
the types of their symmetry, it
including 32 types of external
symmetry of crystals (crystall
classes). He published his more &
than 300-page work in 1830 in
the fifth volume of the &
encyclopedia Gehlers Physikalische Worterbuch as the entry
Krystall [7], but the work did not reach the attention of
crystallographers and remained unnoticed. L. Sohncke, who
was the first (1876) to begin constructing crystallographic
space groups, did not cite it either. But Sohncke atoned for
his inattention when in 1891 published a 12-page article
praising Hessel and his work in the journal Zeitschrift fiir
Krystallographie und Mineralogie. The thirty-two types of
symmetry were not derived again until 37 years later by
Axel Gadolin. Hessel's work was published in book form
under the title Krystallometrie oder Krystallonomie und
Krystallographie only after his death in 1897, divided into
two volumes. A year before his death, in 1871, he published
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another book on geometry: Uebersicht der gleicheckigen
Polyeder, but he did not deal with the symmetry of crystals
init.

Hessel was born in Nuremberg to a merchant family.
In 1813 he began studying medicine in Erlangen, continued in
Wiirzburg, while simultaneously studying mathematics and
natural sciences. He completed this study in 1817, went to
Munich for further studies and soon became an assistant at
the University of Heidelberg. There he continued his
studies, devoting himself to crystallography, mathematics,
physics and chemistry. In 1821 he received his doctorate in
philosophy and at the same time the opportunity to work as
a private lecturer at the university. In the same year he was
invited as an extraordinary professor of mineralogy and
applied sciences to Marburg, where after four years he
became a full professor. He remained there for 50 years
until his death. In 1830/31 he worked at the Philips-
Universitat Marburg as rector.

In the introduction to his work, Hessel stated the
goal he pursued in writing it:

I have attempted to place on a purely mathematical
basis the consideration of the equivalence of spatial forms
and to distinguish the various types of these equivalences
more strictly than has been done hitherto. To take into
account not only the shapes of crystals, but the shapes of
all conceivable forms, although - partly tacitly, sometimes
explicitly - to give preference precisely to the shapes of
crystals of all so-called crystall systems.

This is the only mention of crystall systems in the
entire work. He built his theory by first determining the
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possible types of symmetry axes and then their possible
combinations. He divided the axes of symmetry primarily
into non-polar (gleichendig) and polar (ungleichendig), and
then in more detail into up to 7 types. He classified the
types of symmetry mainly according to the presence of a
main axis, its multiplicity and the number of secondary axes.
He created the necessary terminology and symbols. When
classifying the types of symmetry, he used the term "axis
system" (Axensystem) in addition to the term "ray system"
(Strahlensystem), by which he meant a set of line segments,
originating from a single point, representing significant
directions in the described type of symmetry (for example,
a set of line segments that arise by successive rotations
around an n-fold axis of symmetry). For bodies (objects)
that can be identified by rotation, he used the term
ebenbildlich gleich and for objects that can be identified by
reflection, the term gegenbildlich gleich. For p-multiplicity
of symmetry axes, he used the term p-gliedrich. He also
introduced Latin equivalents of already common terms, e.g.
figura ternoradiata and the like.

In the introduction to his work, Hessel defined a crystal,
which he understood as a natural solid homogeneous body
that is completely or partially bounded by plane surfaces.
His procedure for defermining types of symmetry is
documented in the chapter headings of the book
Krystallometrie:

* On surfaces and ray systems in a plane

* On types of axes (symmetry)

* On the center (symmetry) and different types of axes of
a body
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Title pages of Hessel's books
* Ray systems and axis systems of objects with a principal
axis
* Ray systems and axis systems of objects without a
principal axis
* Description of simple objects with a principal axis and their
surfaces

+ Description of simple objects without a principal axis and
their surfaces

* Calculation of important relations in figures with a principal
axis

* Calculation of important relations in figures without a
principal axis
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Uber das Gerengesetz, und iber gerengesetzliche
Strahlenveraine...

loosely translated: On the law of the formation of
parallelograms from rays
* The shape and structure of crystals
« Essential data from the history of crystallography

The main result of his work - the possible shapes of

symmetrical objects, including crystals (Krystallgestalten),
was clearly presented in four tables. Fig. 1 shows the first
of the tables, which lists the shapes (types of symmetry) of
crystals characterized by four threefold axes, i.e. crystals
belonging to the cubic crystallographic system. Their
number corresponds to the number of point groups of this
system. (Following the Hessel's publications, the figures are
included at the end of the text.)
36 types of symmetry are described in the four tables
compiled by Hessel. The table with 32 types of point
symmetry of crystals was compiled by the publisher of
Hessel's book after his death and included in the appendix
to the book (Fig. 2). Hessel also described the symmetries
of objects in which "non-crystallographic" axes of symmetry
occur (dodecahedron, icosahedron), as the text in Fig. 3
shows.

In addition to the derivation of 32 crystall classes, it is
also necessary to mention Hessel's construction of a plane
lattice and space lattice. This part of his publication has the
difficult-to-translate title Ueber das Gerengesetz.. The
essence of the idea was to create a set of parallelograms based
on two line segments (rays - Strahlen) emanating from one
point, as can be seen from a copy of Hessel's text (Fig. 4)
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and the corresponding images (Fig. 5). The fwo rays
(segments) B and D, which according to current terminology
form the basis of the unit cell, allow the creation of a third
ray, which is the diagonal S’ of the cell (it is actually a sum
of vectors). This ray and ray B again form a cell with diagonal
S'', etc. Similarly, the ray S’ can be combined with the ray
D, thereby creating a plane network - a plane lattice. For the
pair of fundamental rays (vectors) of a plane lattice he used
the symbols [B, OD], or [0B, D], for the rays formed by their
combination the symbol [mB, nD], where m and n are
integers, according to Hessel Maasszdhler. In the three-
dimensional case he used the notation [IA, mB, nD], while
from today's point of view these are clearly lattice vectors.
Although he did not yet use the term lattice, it is clear that
his considerations were directed towards it. And this is a
significant step, although probably not yet conscious, from
the description of the external symmetry of crystals to the
symmetry of their internal arrangement. Therefore, Hessel
can be considered to some extent a predecessor of Bravais,
although he did not yet distinguish between types of
lattices.

In the chapter on the method of creating a space
lattice, he also described a possibility of expressing the
orientation of a plane in such a lattice. For this purpose, he
used the coordinates of the normal of such a plane. He
showed that if a plane cuts off segments x, y, z, (rational
numbers) on the basic rays, then the coordinates of the
normal are their inverse values. Figure 6 shows the
conclusion of Hessel's original text (normal = Trdger)
concerning this problem. The results of his considerations
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are documented in a table (Fig. 7), the first column lists the
symbols of specific planes and the last column lists the
coordinates (Maasszdhler) of the normal of the relevant
surface, essentially their Miller indices. The comma above
the number has the meaning of a negative sign before the
number. Therefore, Hessel can also be mentioned as an
unquoted predecessor of Miller.

In the text in Fig. 4, it can be seen that he writes
about rational numbers, which the author of the assessment
of Hessel's significance, published in the appendix to the
book edition of his work, relates to the law of rationality of
indices. Hessel cited Haiiy's work from 1801, so it is likely
that he was considering this connection.

Hessel thus entered the history of crystallography
not only by determining 32 crystall classes, but also by his
other considerations. He sensed the path of further
development of the description of crystal symmetry, but his
ideas only became known to crystallographers after his
death, when they were already known as the results of the
works of other authors.

Like Haliy, he cited authors whose works he referred
to or wanted to draw attention to. The (incomplete) list of
authors he cited in his work Krystallometrie is interesting,
testifying to the development of crystallography in his time:
Haiy: Traité de minéralogie, Hoffmann: Handbuch der
Mineralogie, Weiss: Dynamische Ansicht der Krystallisation,
Neumann: Beitrdge zur Krystallonomie, Naumann: Grundriss
der Krystallographie, Mohs: Grundriss der Mineralogie,
Grassmann:  Zur  physischen  Krystallonomie, Marx:
Geschichte der Krystallkunde.
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Figures

A. 3gliedrig 4axig

Weiss'sche Benennung Moks'sche Benennung Beispiel
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Fig. 1

Hiernach lassen sich die 32 Krystallclassen, entsprechend
den Anordnungen A., B., C., D, auf 8. 95—98 kurz auf fol-
gende Weise charakterisiren:

A. 3gliedrig 4azig.

(Reguliires Krystallsystem.)
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Fig.2
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C. 1- und 2maassi
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2) Die 3gliedrig 10axigen Gestalten.

A. Die 20strahligen Gestalten, Icosiarcta.

1) Der Zwoslfflickner (Dodecaedrum, regelmiissiges it
Pentagondodekaeder). Ibn begrenzen 12 {= 2fach 5gliedrige
5seitige Flichen d, d. h. regelmissige Fﬂnfecke, er hat 30 |
2fach 2ghednge Kanten r; 20 '~l 3kantlge 2fach 3ghednge
Ecken i. Grosse der Kanten 116°33'54".

2) Der Zwanzigfiichner (Icosaedrum) hat 20 |=| 2fach Jf-
3gliedrige 3seitige Flichen ¢; 30 .=<(2fach 2gliedrige Kanten

Fig.3

Es ldsst sich in der Ebene zweier nach Linge und Lage
gegebener Strahlen B und D, die nicht in einer und derselben
geraden Linie liegen, stets ein neuer 3ter Strahl S’ denken,
welcher der Gerenstrahl von B und D und daher nach Linge
und Lage bestimmt ist. Zwischen S’ und B ist daher aber-
mals ein neuer Strahl §” mdglich, welcher Gerenstrahl von
S’ und B ist; ebenso entsteht auch ein Gerenstrahl " von

Dass man die beiden gegebenen Strahlen B und D auch
darstellen kdnne durch [B, 0D] den ersten und (0B, D] den
zweiten, ist gleichfalls einleuchtend. Es ist daher Jeder bisher
aus den beiden gegebenen Strahlen B und D gerengesetzlich
abgeleitete Strahl in der Ebene B7) unter dem allgemeinen
Zeichen [m B, nD) begriffen, so dass jeder der Buchstaben
B und D die ursprilnglich gegebene L#nge des seiner Rich-
tung nach bekannten Strahles B oder I bedeutet, welche
gleichsam als Maass dient fir die in der Richtung von B
oder /) liegende Linie, withrend jeder der Buchstaben m oder
n eine rationale Zahl ist, welche angiebt, wie vielmal dieses
Maass zu nehmen sei, und die man daher den Maasszihler
fir B oder D nenmnen kann.

Fig. 4
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Fig. 5

Jede Fliche (za, yb, zd) fordert daher ihren Triger
[—;— @, —1—{3, % 0| und umgekehrt. Dass nun ebenso wieder
jeder kantenthtimliche Strahl ([ze, yb, zd] eine Fliche
(1; a, i—-ﬁ, —;—6) eines von «, [, O abhiingigen neuen
gerengesetzlichen Flichenvereins fordere, fir die er Triger ist,

Fig. 6

Krystallometrie. 65
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Hessel's works on symmetries and polyhedra

1. Krystall - entry in the encyclopedia Gehlers
Physikalische Worterbuch 1830

2. Uebersicht der gleicheckigen Polyeder, Marburg 1871

3. Krystallometrie oder Krystallonomie und
Krystallographie, Leipzig 1897

Sources:

1. https://archive.org/stream/krystallometrieOOhessgoog
#page/n3/mode/2up

2. https://archive.org/stream/krystallometrieOlhessgoog
#page/n3/mode/2up

3. https://de.wikipedia.org/wiki/Johann_Friedrich_Christi
an_Hessel
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Auguste Bravais (1811 - 1863)

A French scientist who made
his mark in the history of
crystallography by deriving fourteen
types of space lattices, which was the
first step from describing the
external symmetry of crystals to
describing the symmetry of their
internal arrangement. In December
1848, at a meeting of the French
Academy of Sciences, he delivered a
lecture, Mémoire sur les systémes
formés par des points distribués régulierement sur un plan
au dans l'espace [8], in which he described possible types of
symmetry of periodically arranged points in a plane and in
space. A year later, he published the work Sur les polyédres
symétriques, where he described polyhedra and their
classification according to the elements of symmetry (axes,
planes) they are characterized by, i.e. essentially the point
symmetry of crystals. In the work Etudes
crystallographiques, published in 1851, he also dealt with the
symmetry of the internal arrangement of crystals. Bravais's
collection of works on crystallography was published
posthumously in 1866 as Etudes crystallographiques,
together with a review by a commission of the French
Academy of Sciences headed by the mathematician Cauchy.
His works had a significant influence on both the
morphological and structural study of crystals.
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Bravais was born in Annonay and graduated from the
Collége Stanislas in Paris. In 1829, he won first prize in a
mathematics competition and was accepted at the Ecole
Polytechnique, where he was a classmate of the eminent
mathematician Evariste Galois. Shortly before graduating,
he became a naval officer, participated in hydrographic
surveys along the Algerian coast, and also took part in
research expeditions to Spitsbergen and Lapland. In 1840,
he began lecturing a course in applied mathematics for
astronomy students at the Faculty of Sciences in Lyon,
where he headed the Department of Physics at the Ecole
Polytechnique from 1845 to 1856. He became a member of
the Académie Royale des Sciences, the Belles Lettres et
Arts de Lyons, and the Académie de Sciences.

He also studied magnetism, aurora borealis,
meteorology, geobotany, astronomy, and hydrography. His
work on the theory of measurement errors is known from
1846, and in 1847 he published his first reflections on
crystallography.

In his most famous work - on systems of points
regularly distributed in the plane and in space - he first
defined the necessary concepts and created his own
terminology. He distinguished between a rectilinear lattice
(rangée), a planar lattice (réseau) and a space lattice
(assemblage). The work has the following chapters:

On plane lattices in general, On symmetrical plane
lattices, On space lattices in general, On symmetrical space
lattices, On polar space lattices.
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Bravais first described how a space lattice - a system
of periodically spaced points - can be created by
successively placing points on a line, in a plane and finally in
space. He expressed the procedure as follows:

If we want to create a regular system of points in
space, we take two arbitrary points, connect them with a
line, which we extend to infinity on both sides. We place an
infinite series of other points on this line, equidistant from
each other. ... The basic distance between two adjacent
points will be called the parameter of the line lattice
(paramétre de la Rangée).

From such lines, parallel to each other with a constant
distance between them, he created a planar lattice and from
mutually parallel lattice planes aspace lattice. In this
construction, it was necessary fo choose first the distance
between the points, then the distance between the lines and
finally the distance between the planes. In the following
text, he set himself the opposite task - how to find these
parameters of a three-dimensional lattice that already
exists. He gradually sets out tasks in the text and solves
them. For the first task (Problem I.), he set himself the task
of finding lattice lines, lattice planes and a space lattice for
a given system of points. In the original text:

Prosuise L. — Un Assemblage étant donné, retrouver les Rangées,
plans et Réseaur qui peuvent le produire.

Problem number XIII was to find the so-called principal
triangle in a plane lattice.
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Prosrisk XTI, — Zrouver le triaugle principal d un Liéseau.
Choisissez arbitraivement wn Sommet O ( fig. 4), et cherchez parmi tois
les antres Sommets le plus rapproché de ().

He solved the problem as follows:

In a plane lattice, we choose an arbitrary lattice point O and
among the other lattice points we search for the one that is
closest to it. Let A be that point, then OA is the smallest
lattice parameter. Through points O and A we draw lines Op
and Am perpendicular to line OA, and in the bounded space
pOAm we search for the next closest lattice point B.

The three points OAB form the main (principal) triangle of
the lattice, by completing it with a parallelogram we obtain
— the main (principal) parallelogram, i.e. according to
current terminology a unit cell.

To determine the position of lattice points, he used
integer coordinates, so that the basic length units in two
basic directions in the plane were the parameters of the
corresponding lattice lines. On their basis, he expressed the
equations of the lattice lines and their (directional) indices.

Bravais first considered lattices regardless of their
symmetry, in the following chapter he devoted himself to
symmetric lattices (according to him, these are those that
contain a line dividing the lattice into two equal parts, i.e.
lattices with a plane of symmetry). In planar lattices, the
"Bravais" axes of symmetry lie in the plane of the lattice,
are lattice lines, and there is an axis perpendicular to each
axis of symmetry. Already in the plane, he introduces a
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centered lattice, i.e. a lattice with a main parallelogram in
the middle of which there is a lattice point.

According to the multiplicity of the axis of symmetry
in the plane, he distinguished four “classes" of lattices (a
class without an axis of symmetry, with a two-fold, four-fold
and six-fold axis). In each of them there is a primitive main
parallelogram, and in the case of a two-fold axis of
symmetry also a centered parallelogram, which together
represents five types of plane lattices. In the original
French text, two "modes" - two types of lattices are
distinguished for the third class:

Classification des Résenux symétrigues.

\u point de vne de lenr symétrie, on pent distingnier quatre classes
distinctes ge Réseanx :

Premicre classe. — Réseanx a six axes de symétrie, trois d'une espéce ot
trois d'une autre esjiéce. Cette classe n'offre gu'un seul mode; le Résean a
maille triéquiangle ayant pour parallélogramme génératenr un rhombe i
angles de 6o et 120 degrés (1vres théoréme XIX).

Dewriéme classe. — Réseaux a gnatre axes de symétrie, denx d'uue
espece et denx d'une autre espeéce. Uette classe n'offre qu’un sent! mode; le
Résean & maille carrée (voyez théoreme NVIID).

7'roisiéme classe. — Réseaux & deux axes de symétrie. Cette classe ofliv

Ideux modes distinets £ le Résean a maille rhambe, ou rectangle centrée: Ie
Tesean a maille rectangulzire, ou rhombe centrée (théorémes XV et AV ).

Les deux axes sont rectangulaires entre eux et d'espéces différentes.
Quatrieme classe. — Réseaux asyniétrigues; la muille est un parallélo-
gramme i cotés inégaux, et dont les angles difftrent de go degrés.

He also used integer coordinates of lattice points in
describing spacelattices, gave equations of lattice planes,
used Miller indices, and defined the elementary
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tetrahedron. (W. H. Miller introduced indices in 1839 in his
work Traetice on Crystallography.) For symmetric space
lattices, he proved that only two-fold, three-fold, four-fold,
and six-fold axes of symmetry are possible, and that the
planes of symmetry are the lattice planes or planes parallel
to them. He classified fourteen types of space lattices into
seven crystallographic systems (Classe), and in each he
stated the number of lattices:

cubic (terquaternaires) 3, hexagonal (senaires) 1,
tetragonal (quaternaires) 2, trigonal (ternaires) 1, rhombic
(terbinaires) 4, monoclinic (binaires) 2, triclinic
(asymetrique) 1, a total of 14 types.

In the French original, the part of the text
describing the three types of lattices of the cubic system
has the following form:

Trois modes d’arrangement distinets :

1°. Le cube;

2", Le cnbe centré, que l'on peat remplacer par le rhombowdre de
590 degrés;

3%, Le cube i faces centrées, que 'on peut remplacer par le rhomboidie
de 7031447, ou par le prisme centeé, i base carvie, dont la hautewr égale
le coré de la base multipli¢ par (/2. Le tétraédre régulier et 1'octacdre
végulier peuvent aussi servir i la dérivation de ce troisieme mode.
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In english translation:

Three different types of arrangement:

1. Cube;

2. A centered cube, which can be replaced by a
rhombohedron with an angle of 120 degrees;

3. A cube with centered faces, which can be replaced by a
rhombohedron with an angle of 70° 31' 44", or a centered
prism with a square base, whose height is V2 times the
length of the base. The regular fetrahedron and the
regular octahedron can also serve for this third type.

Bravais also attempted to describe the types of
symmetry of polyhedra, i.e. bounded figures, in today's
terminology point groups. In his article on polyhedra - Sur
les polyédres symétriques, published in 1849, he
distinguished 23 types of symmetry based on his criteria.
He distinguished

asymmetric polyhedra,

polyhedra without axes of symmetry (with only a center
of symmetry, or a plane of symmetry),

polyhedra with a principal axis of symmetry and
spherohedral polyhedra (they have more than one
equivalent axis of symmetry).

In doing so, he defined the elements of symmetry (center,
axis, plane) and also considered 5-fold axes. He proved that
in every bounded polyhedron there can be at most one
center of symmetry, that the axes and planes of symmetry
must intersect at one point. However, he did not derive all
types of symmetry of polyhedra, he overlooked those in
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which a four-fold rotoinverse axis occurs, which Hessel had
already included under the name "Gerenstelligkeit" before
him and Gadolin after him under the name "sphenoidische
Symmetrie".

Eintheilung der Polyeder nach der Art ihrer Symmetrie

[61] mit AngabederMinimalzahlihrer Ecken.
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Bravais' table of types of symmetry of polyhedra in German
translation

In his work Etudes cristalllographiques, published in

1851, Bravais also dealt with the symmetry of the internal
arrangement of crystals. He considered points distributed
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regularly in space fo be the geometric centers of the
molecules of which the crystals are composed. Based on the
reticular density of these points, he was able to explain the
cleavability and also the external symmetry of crystals. He
devoted a separate chapter to considerations of crystals
consisting of molecules:

Dxexrdua Paariz, ~ Du eristel considéné comme un assemeblage de moléeales polyatomigues.

§ 1. = Delasymétric des molécules des corps criotalliséss. ovevnvvvrsinnsenise vone 10§
§ 1. — Du systéme cristellin suivant lequel doivent se grooper des molécules de symétrie

CONDUC v snno. svnorvanonoarissnsmepenstoarvansnstansentssscrscess 20

This work includes a picture (on next side), showing
that he used stereographic projection to indicate the
positions of symmetry elements. It was later consistently
used by Axel Gadolin (1867).

Fig. 10, Fig.l1.
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Title pages of Bravais' crystallographic publications
in French (1866) and German (1897)

Bravais's important works related to crystallography:

1. Mémoire sur les systémes formés par des points
distribués régulierement sur un plan au dans I'espace,
Paris 1848, 1850, Leipzig 1897, New York 1969, 2005

2. Sur les polyedres symétriques, Paris 1849, Leipzig 1890

. Etudes cristalllographiques, Paris 1851

4. Collected edition of these works under the title Etudes
cristalllographiques Paris 1866

w
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Bravais cited authors:
Poisson, Cauchy, Frankenheim, Gauss, Weiss, Haliy, Miller
He did not cite Hessel

Sources used

1. http://gallica.bnf.fr/ark:/12148/bpt6k96124.r=August
e7%20Bravais%207%C3%89tudes
%20cristallographiques?rk=21459;2

2. https://archive.org/details/abhandlungberdiOObravgoog

3. https://en.wikipedia.org/wiki/Auguste_Bravais
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Axel Gadolin (1828 - 1892)

A Finn by origin, who
made a significant
contribution to the modern
view of the systematics of
crystals in ferms of their
external symmetry types. He
published the results of his
considerations in an article
entitled Derivation of all
crystallographic systems and
their separations on the basis
of a single principle, which he
published in 1869 in the
journal Zapiski imperatorskogo russkogo mineralogiceskogo
obsestva [9]. It was published in French two years later in
the journal Acta Societatis Scientiarum Fennicae. However,
the title page of the German edition (1896) states that the
work was “read” as early as March 1867. Since Hessel's work
on the derivation of the 32 point groups was not yet in the
consciousness of crystallographers at that time, practically
until the end of the 19th century Gadolin's primacy was
acknowledged. For this work, he was awarded the M. V.
Lomonosov Prize, received a doctorate in mineralogy, and
became a member of several domestic and foreign scientific
sociefties.
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Gadolin was born in the city of Somero, in what is now
Finland, which at that time was part of Tsarist Russia. He
served his entire life as an officer in the Tsarist army,
where he achieved the rank of general towards the end of
his life (1890). He prepared for a military career at the
cadet school and after graduating in 1847 became captain of
the Guards Artillery. As early as 1849, he began working as
a teacher at the Artillery School and in 1856 became its
director. He dealt with artillery technology, mechanical
metalworking, mineralogy and crystallography. He became a
member of the St. Petersburg Academy of Sciences and the
Imperial Academy of Sciences. He died in St. Petersburg.

It should be noted that several crystallographers had
tried to derive the point groups of crystals before him, for
example Bravais, but - with the exception of the forgotten
Hessel - they had not derived all of them. In the
introduction to his work, Gadolin cites this fact as the
reason why he undertook this task.

He was already aware that the external shapes of
crystals are conditioned by the action of molecular forces,
as evidenced by a part of the text from the introduction to
the work:

im gewdhnlichen Sinne dieses Wortes, zu griinden. Bertick-
sichtigt man aber, dass die iussere Form der Krystalle selbst |
[2] nur eine Folge der Wirkungsweise der Molekularkrifte ist, '
so ist man berechtigt, die Gesetze, welche diese Formen be-
herrschen, als physikalische Qualititen zu betrachten. Diese

"However, it should be remembered that the
external shape of crystals is only a consequence of the
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action of molecular forces, which entitles us to consider the
laws that determine these shapes as physical qualities."

Gadolin, unlike [ Z7
Hessel, was concerned only Aliansts Soiues
: . Abhandlung’ e
with crystallographic - o
. .. Gl
symmetries, and he divided die Berteitang ater s

the types of symmetry into | KRISTALLOGRAPHISCHER SYSTEME '™
six crystall systems. In the i
introduction to this work he
wrote: AXEL GADOLIN.

In addition to the
general  laws  governing

aus oinem einzigen Prinzipe

vea

Oulesen don 19 Mirs 19047

Dentseh heransgeageden

crystals (the planar shape of oy

the surfaces, the constancy | T

of the angles, and the ‘ —
rationality of the ratios of LEIPZIG

the surface parameters on l VERLAG YOX WILEL EGEMANY

certain axes), several special
laws can be discovered that apply only to certain groups of
crystals. These are the groups known as crystall systems,
with their further division into holohedral, hemihedral,
tetartohedral, and hemimorphic.

An important part of his work was the use of
stereographic projection fo depict the positions of
symmetry elements. This is probably related to his artillery
profession, which required him to deal with cartography.
Some authors give him precedence in this respect, but
indications of the use of stereographic projection in
crystallography can be found already in Bravais.
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The sequence of Gadolin's considerations can be seen
through the headings of the individual chapters: On the
equivalence of directions (Gleichheit der Richtungen), On
the axes of symmetry (Deckaxen), On the laws of symmetry,
General overview of crystall groups, Arrangement and
multiplicity (Dimension) of characteristic crystall axes and
the last chapter List of simple shapes of some crystall
groups.

It should be noted that by the term group he did not
mean its mathematical content, but a set, or rather a group,
whose members (elements) meet certain criteria:

in der Weise, dass wir in die gleiche Gruppe diejenigen Kry-
stalle stellen, in denen die Zahl und die Anordnung der gleichen
Richtungen dieselbe ist, und dass wir als verschiedenartig nur

"... we group together those crystals in which the
number and arrangement of equivalent directions are the
same..."

He proceeded consistently in his reasoning, after
stating a statement, he always followed it with proof. Some
of his statements:

§ 4. It can be easily proved that the smallest cover
angles cannot have other values than 60°,90°, 120° and 180°.

§ 10. It is now not difficult to find all possible
combinations of sixfold, fourfold, or twofold axes.

§ 12. Apart from the six cases of combinations of
axes of symmetry given in § 10. and § 11., the four cases
where there is a single axis of 60° (Fig. 50), 90° (Fig. 35),
120° (Fig. 53), or 180° (Fig. 41), and the last case without an
axis of symmetry, there is no other case.
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§ 15. A twofold, fourfold, or sixfold axis of rotation,
in combination with the laws of parallelism, conditions the
existence of a plane of symmetry perpendicular to it.

§ 19. In Chapters II and III, 32 crystallographic
groups were introduced, which can be divided into six
classes. These classes are nothing other than the generally
accepted crystall systems.

He did not present the summary of the derived point
groups in a table, but in condensed text, as shown by the
detail of the page on which he listed the 5 point groups of
the cubic system; next to the text is a stereographic
projection of one of them:

A. Die Gruppen des reguldren Systems.

1) und 2) |Fig. 28 und 27. In diesen beiden Gruppen,
welche der Holo#idrie und der Hemiédrie mit abwechselnden
Flichen entsprechen, giebt es drei auf einander senkrechte
Axen von 90° Dieselben sind nothwendig mgliche krystallo-
graphische Axen von gleichem Werthe (8§ 27, Nr. 1 und 4).

Fig. 31. In dieser, der tetratdrischen Hemifidrie ent-
spreviienden Gruppe halbiren die Normalen der Symmetrie-
ebenen die Winkel zwischen den Axen von 180° Aus der
Anmerknong des § 13 ist bekannt, dass in Bezng aof die
absoluten Werthe der Parameter diese Normalen diesslbe Rolle
spielen, wié Deckaxen von 180° woraus sich die Gleich-
werthigkeit der in dieser Gruppe vorhandenen Axen von 180°
walehe ebenfalls mogliche krystallographische Axen sind, er-
giebt, weil dieselben durch Drehungen von 180° um die Nor-
mT:_:_lina.ﬂy metrieebenen vertanscht werden (§ 27, Nr. 2).

4) und 5:lji'ig. 30 und 29. In diesen Gruppen, welche
derdoGckatdniechen Hemitdrie und der Tetartoédrie ent-
sprechen, sind die drei Axen von 180° zugleich orthogonale
krystallographische Axen, gleichwerthig aber nur dann, wenn
dis Axen von 120° ebenfalls mdgliche krystallographische Axen
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He included not only the geometric —
shape of the crystal but also its "&AND N
physical properties in the properties | /', ‘w.* »° .%
of symmetry. He wrote: s Q o ° +
Two directions that are equivalent | » 4 "oy~ '
with respect to the external shape of | X o % '
the crystal also exhibit identical . 4
physical behavior. Fig. 27

And a little further on:

We consider those groups to be different which differ in
the number and arrangement of equivalent directions, and
when it is true that directions which are in the same relation
to the shape of the crystal also show the same physical
properties. This principle is so generally accepted that it is
not uncommon for the definitive belonging of a group of
crystals to one or another crystallographic group to be
determined on the basis of physical properties.

In one of the appendices he also dealt with the law of
rationality of indices, as follows from the following heading:

[63] Anhang A.

Das Gesetz der Rationalitit der Parameterverhilt-
nisse der Krystallfiichen.

Gadolin's work Derivation of all crystall systems and
their separations on the basis of a single principle, which he
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developed as early as 1867, was successively published in
Russian, French and German:

BeiBoA BCex KpUCTANMorpagpuueckmx cUcTem U ux
noapasaenieHuin us oblero Havana, 3anucku Mimn.
pycckoro muHepan. obu., IV, 1869.

Mémoire sur la déduction d'un seul principe de tous
les  systémes cristallographiques avec leurs
subdivisions, Acta Societatis Scientiarum Fennicae,
IX, 1871

Abhandlung tiber die Herleitung aller
Kristallographischer Systeme mit ihren
Unterabtheilungen aus einem einzigen Prinzipe,
Leipzig 1896.

Gadolin cited the authors: von Naumann, Haidinger,
Kokscharov, Pasteur, Sacchi, Miller, Weiss, but did not cite
Bravais or Hessel.

Sources:

1.

https://archive.org/stream/abhandlungberdiO2grotgoog
#page/n6/mode/2up

. http://www.runivers.ru/bookreader/book9611/#page/16
0/mode/1up

. https://de.wikipedia.org/wiki/Axel_Wilhelmowitsch_Ga
dolin
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Leonhard Sohncke (1842 - 1897)

German mathematician,
physicist  and crystallo-
grapher, whose name s
associated with the beginning
of the work on the derivation
of space groups, i.e. groups in
which combinations of point
and translational symmetry are
already considered. He
published the work on the
derivation of 65 types of
symmetry groups in 1879 [11].
He did not derive all space
groups, he only used point ;
operations of the first kind related to rotational and screw
axes; he did not consider reflections. He used the name
systems of regularly spaced points for the derived groups,
but they are also known under the names chiral space groups
or Sohncke groups. He did not know Hessel's or Gadolin's
work on point groups, and for translational symmetries
(space lattices) he relied on Bravais's work. He also followed
up on the work of C. Jordan from 1868 [10], who derived 174
space groups, but more than 100 of them were not applicable
to crystallography, especially those that contained rotations
by an arbitrarily small angle. When deriving individual
groups, he proceeded according o the type of the principal
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axis of symmetry (similar to Hessel). He created his own
terminology, already in considerable agreement with the
current one - screw axis, fourfold axis, etc. He accepted 7
crystallographic systems.

He was born into a family of mathematicians in Halle,
where he studied mathematics and natural sciences at the
university from 1859. From 1865 he worked as a teacher at
the gymnasium in Kénigsberg, while continuing his studies at
the university there, which he completed in 1866 with a
graduation in Halle. The title of Dr. phil. he received for his
work on differential equations "De aequatione differentiali
seriei hypergeometricae". In 1869 he received a docentship
for his work "Kohdsion des Steinsalzes". Two years later, on
the recommendation of 6. R. Kirchhoff, he was appointed
professor of experimental physics at the Polytechnic in
Karlsruhe and at the same time head of the meteorological
observatory. In 1883 he became a full professor of physics
at the University of Jena and at the same fime the first
head of the Physical Institute there. Three years later, he
moved to Munich to the Department of Experimental
Physics, where he headed the Physics Institute of the
Technical University until his death (1897).

In connection with the goal of deriving space groups,
he expressed his opinion as follows:

Beitrag zu liefern bestimmt ist. Man findet hier die ganze
Mannichfaltigkeit der iiberhaupt moglichen Krystallstruktur-
formen aus einem einzigen Princip, namlich aus dem selbst-
verstindlichen Grundsatze von der regelmassigen Anordnung,
auf streng mathematischem Wege abgeleitet. Die geome-
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The entire variety of all possible crystal shapes can
be derived from a single principle in a strictly mathematical
way, using the obvious assumption of reqular arrangement.

He based his work on Jordan's work [10], which he
also critically evaluated:

Despite the
principled agreement with
Jordan's work, which must
have occurred during my
research, there are also
significant  differences,
which lie primarily in the
fact that I always placed
the main emphasis on the
geometric meaning of the
results, because finding
the shapes of the
structures was my main
goal.

He formulated his
idea of crystals as follows:

A crystal is a homogeneous solid body whose
geometric and physical properties are generally different in
different directions and which, in undisturbed development,
is bounded by plane surfaces. ... Since a crystal grows by
depositing particles of matter on its outer surfaces, it is
inconceivable that it would not be built up from these
particles. Therefore, the structure of a crystal should be
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understood as the arrangement of the particles of which it
is composed.

He further writes:

For the following geometric considerations, the
crystal will be replaced by a system of discrete material
points, between which there is a certain minimum distance.

He considers such a point to be the center of a group
of particles - atoms, or the center of a molecule.

In the following text he writes:

Crystals, if we understand them as unbounded,
represent regular infinite systems of points, such that
around each of the points the arrangement of the other
points is the same.

In doing so, he sets himself the goal:

To find all possible regular systems of points that are
infinite in all directions.

Sohncke stated that he was not the first to attempt
to extend Bravais's lattice theory. That before him, the
situation of how the symmetry changes when an atom is
placed inside the unit cell of a Bravais lattice had already
been considered. In this connection, he wrote:

"Every regular system of points, infinite in all
directions, is either a space lattice or consists of several
congruent space lattices nested within each other."

Sohncke increased the number of Bravais types of
regularly arranged points (i.e. lattices) by types in which
screw axes occur. He thus combined rotation with
translation into one symmetry operation, which is an
operation that does not belong fo the point or translation
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group, but to the space group. The following figure from his
work represents a text about a structure with such possible
operations. He marked the symmetry operation representing
a rotation by 90°, i.e. by 2n/4 combined with a translation
by a quarter of the lattice parameter 1 with the symbol

Az,
4’4

other operations have analogous designations.

Fir die der Axe parallele kleinste Deckschiebung 2 gilt nach
Satz 47 die Gleichung

p.A=4.1,
worin p nacheinander die Werthe 1, 2, 3, 4 a.nnehmen kann.

1) Bei p =1 wird ] = & Dis Deckbewegungen As» »

4
27

und 4 chara.ktensxren eine Vier-
P B Lunkischraube (Taf. IL. Fig. 26).
2) Beip — 2 wird 1 = 2.

Die Deckbewegungen 4, ] a und

i
. . A bestimmen 2 memandergewun-
dene kongruente 4-punktschrau-

ben mit der Schraubenhhe 22,

” - ausgehend von 2 diametral gegen-
3 ° iiber liegenden Punkten des
Schraubencylinders. Die Ver-

Fig. 28.

bindungslinie des um -;- hoher

gelegenen Punktpaars kreuzt die Verbindungslinie des Aus-
gangspaars rechtwinklic im Raum (Taf. TIT. Fie. 29).
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The next figure presents a summary of such operations in
the tetragonal system.

Zusammenstellung der Punktsysteme dieser
Abtheilung.

1) und 2) Rechtes und linkes 4-punktschraubensystem.
Asn 1,1 e, (Bin+ z)
w0 t T &=

3) Vierziihliges Gegenschraubensystem.
Asx z,l ag, (Bsn )
1

‘,+

4) Zwelganglges 4 punktschraubensystem.
A-?ﬂ 1; A ) € (BM 1)

43

, 5) Quadratsaulensystem. A3z oMo (Bg,o).
'k [
6) Quadratoktaédersystem. Asx ot ) (Bg,, 1).
4’ T

1’2

In 1876 he published a paper in which he presented 54 types
of space groups, but three years later he published another
in which he distinguished between right-handed and left-
handed screw axes, bringing the total number of groups to
66. In 1891 Schoenflies repeated Sohncke's derivation and
found that the two groups were identical, so the final
number of Sohncke groups is 65. The following figure shows
the end of the table published in the 1879 book
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VII) Systeme mit 4-ziihligen Hauptaxen von mehr
als 2 Richtungen.

59. Kubisches

60. Oktagdrisches l24-punktnersystem.

61. Rhombendodekaédrisches

62. Regulires Gegenschraubensystem erster Art.

63. i W zweiter ,,
64. Regulires zweigiingiges 4-punktschraubensystem.
65. Rechtes

66, Linkes }regulires 4-punktschraubensystem.

He classified the derived types of space groups
according to the type of symmetry axes (by multiplicity and
their number), which ultimately agreed with the
classification into crystall systems. His naming of these
seven systems, which, given in the original, can be seen in the
following figure, is noteworthy.

Krystalle mit sich selbst wieder zur Deckung gelangen. So
erhiilt man folgende Uebersicht:

1. Klinorhomboidisches Krystallsystem. Keine
Drehungsaxe.

2. Klinorhombisches Krystallsystem. 1 zweizihlige
Drehungsaxe. ’

3. Rhombisches Krystallsystem. Zweizdhlige Dre-
hungsaxen nach 3 senkrechten Richtungen.

4, Quadratisches Krystallsystem. 1 vierzihlige
Drehungsaxe.

5. Rhomboédrisches Krystallsystem. 1 dreizihlige
Drehungsaxe.

6. Hexagonales Krystallsystem. 1 sechszihlige Dre-
hungsaxe.

7. Regulires Krystallsystem. 3 zweizihlige oder
3 vierzihlige, und 4 dreizdblige Drehungsaxen, beziiglich
parallel den Kanten und Diagonalen eines Wiirfels.
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From a terminological point of view, it is interesting

that he used the term Krystallsystem, as opposed to
Gadolin's term Krystallografische system.

Sohncke's work on the derivation of 65 space groups

was often cited by both Fyodorov and Schoenflies, who
essentially independently and practically simultaneously
derived all 230 space groups.

Sohncke's work on crystallography:

1

Die unbegrenzten regelmdssigen Punktsysteme als
Grundlage einer Theorie der Krystallstruktur. 83 Seiten.
2 Tafeln, Karlsruhe 1876. Separatabdruck aus dem 7.
Heft der Verhandlungen des naturwissensohaftl. Verein
zu Karlsruhe.

. Universalmodell der Raumgitter. Repertorium fiir

Experimentalphysik. Bd. XII. 1876. 6 Seiten.

. Entwickelung einer Theorie der Krystallstruktur. B.G.

Teubner, Leipzig 1879

. Erweiterte Theorie von der Krystallstruktur, Zeitschrift

fiir Kristallographie 14, 426-446 (1888).

Sources:

1.

https://archive.org/stream/dieunbegrenzten00sohngoo
g##page/n5/mode/lupdo

2. https://de.wikipedia.org/wiki/Leonhard_Sohncke
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Arthur Moritz Schoenflies (1853 - 1928)

German mathematician,
famous in crystallography for
the derivation of 230 space
groups describing types of
symmetry of crystal
structure. Originally, in 1889,
he published in the journal
Mathematische Annalen the
derivation of 227 groups, but
after correspondence with E.
S. Fyodorov (29 letfters
surviving) he published in 1891
a book Krystallsysteme und
Krystallstruktur [13] with the derivation of all 230 groups.
In his search for types of symmetry of crystals, he was the
first fo use the mathematical theory of groups. He
introduced the symbols of the groups, which are still used in
the International Crystallographic Tables (in addition to the
International Symbols) and are actively used in solid state
theory.

Schoenflies was born in Prussia in Landsberg an der
Warthe (how the Polish town of Gorzéw). From 1870 to 1875
he studied mathematics at the Friedrich Wilhelm University
in Berlin (later renamed Humboldt University), where the
eminent mathematician Karl Weierstrass was then a
professor. He was interested in set theory and topology. He
received his doctorate in 1877, and the following year began
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teaching in Berlin, where he habilitated after six years. In
1891 he was appointed to the chair of applied mathematics
in Gottingen, and in 1899 he began to work as a professor at
the University of Konigsberg and in 1911 at the Academy of
Social and Commercial Sciences in Frankfurt. In 1922 he
ended his career as rector of the university there. During
his active career, he became a member of the Leopoldina in
Halle, the Bavarian Academy of Sciences in Munich, an
honorary member of the German Scientific Society, and was
one of the founders of the German Mathematical Society,
which he led as president in 1922.

Of his crystallographic works, the most frequently
cited is the book Krystallsysteme und Krystallstruktur (Fig.
1; the figures are at the end of the article on Schoenflies),
in which he summarized the results of his earlier work. In
the introduction of the book he wrote:

... to move more and more from the empirical to the
deductive method. We owe this step to the discovery that
the systematics of crystals can be deduced from a single
fundamental law and the theory of structure from a single
fundamental hypothesis in a mathematical way.

By mathematical method he probably understood the
theory of groups. In the infroduction of the book he wrote
what he meant by a group in the case of symmetry of
crystals:

By a finite group of operations we mean a finite series
of non-equivalent operations with the property that the
product of any two of this series is always equal-valued with
some operation of this series.
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And further: all the operations of symmetry that
transform a symmetric body into itself form a finite group
of operations.

By the product of operations Schoenflies understood
their successive execution, and he attributed the same
meaning to the powers of operations. He described the
properties of such products and introduced the appropriate
symbolism:

If Aand Bare two rotations whose axes pass through
a point O, and C is their equivalent resultant rotation, we
shall henceforth express this relation by the equation
AB = C,and call € the product of the rotations Aand B.

The first part of Schoenflies’ book is the derivation
of 32 crystall classes (32 Krystallclassen) of finite
formations - symmetric polyhedra. In doing so, he quoted
J. F. Ch. Hessel, who derived them already in 1830,
admittedly without using the theory of groups. He also
mentioned Bravais's incomplete attempt and Gadolin's
derivation. He began by describing the symmetry of
formations characterized by a single axis of symmetry. He
gave the name rotation groups (Drehungsgruppen) to the
groups in question. He proved that in the case of crystals, in
accordance with the law of the rationality of indices, only
four such groups are possible, with axes of symmetry
twofold, threefold, fourfold, or sixfold. He then considered
formations with multiple axes of symmetry, proving that
there are 11 types (classes) of such symmetry (Fig. 2).

In the following he dealt with figures whose
symmetry is described by combinations of rotation with
reflection or inversion, as well as by reflection or inversion
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alone; the corresponding symmetry operations he called
rotations of the second kind. In the case of reflection he
wrote:

Ist © irgend eine Spiegelung, so bilden die Operationen
1 und © eine Gruppe; wir bezeichnen sie einfacher durch

§ = {6)-
" Lehrsats II.  Es giebt eine Krystallclasse, deren Symmetrie
in der Existenz einer einzigen Symmetrieebene besteht.

Translated:

If S is some reflection, then the operations I (identity) and
S form a group. we denote it simplyas S={S}.

Theorem II. There is a class of crystals whose symmetry is
based on the existence of a single plane of symmetry.

He made analogous claims about inversion. In the
conclusion of the chapter on operations of the second kind,
he included a table of such point groups (there are 21 of
them), which, together with the eleven point groups of the
first kind, represent 32 types of symmetry.

After obtaining the 32 point groups, he classified
them into 6 main classes (Fig. 3). He used multiplicity and
the number of axes of symmetry as sorting criteria, thus
essentially mimicking Hessel's procedure. He placed types
with multiple equivalent axes of symmetry in the first class,
and formed the other groups according to the multiplicity of
the major axis of symmetry. In doing so, he considered
purely rotational axes and axes combined with inversion or
reflection to be equivalent. In the group called Digonaler
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typus he included groups in which only twofold axes occur,
which includes the groups we now classify in two crystall
systems, the monoclinic and the rhombic.

He also supported his classification in terms of the
theory of groups. In this context he stated:

In every crystall system, the respective groups of
operations are related in such a way that one of them - the
main group - contains the others as subgroups.

On the basis of this criterion he repeated the
classification of the groups. For example, the monoclinic
system includes three point groups, which Schoenflies
designated by the symbols C,, C; and C;;, the first two being
subgroups of the third.

Groups were also used in the chapter on space
lattices. He wrote:

By a group of translations we mean an infinite series
of translations of such a kind that any two translations made
in succession constitute a translation which is equivalent to
some translation belonging to that group.

Theorem IV. The set of all translations which a
regular series of points, or a planar network of points, or a
space lattice, identify with each other, forms a group of
translations.

The space lattice and the space translation group are
formations which are inseparably connected.

For plane lattices, in addition to the non-symmetric
lattice, he distinguished four types of symmetric lattices,
noting that a plane symmetric lattice can only be orthogonal
or rhombic. He did not explicitly mention the centred
lattice, which is, however, the rhombic lattice (rhombische
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Netz). For space lattices he distinguished 14 types, which
he classified into seven crystall systems and where he had
already used the ferm centred lattice.

In describing space translation groups, he used a
triple of translations 274, 27,, 275, which he called primitive:
If OA =274, OB = 21,, OC = 275 are primitive translations of
a space lattice, then each of them transforms the space
lattice into itself.

Denoting the primitive translations in this way - as
doubles - allows one not to use fractional expressions for
centered lattices, but only 7;, 7, and 73 respectively. The
translations 27y, 27,, 275, are thus simultaneously the edges
of a primitive unit cell (Schoenflies' name: primitive
Palallelepipedon). He wrote:

When characterizing symmetric space lattices, we
preferably use the set of primitive translations, or the
corresponding tetrahedra and parallelograms. For each
symmetric lattice, these can be chosen more or less
arbitrarily.

The space lattices were obtained (constructed) on
the basis of their compatibility with the point groups
describing their symmetry. He proved that in every space
lattice there is a set of symmetry centers; that a space
lattice can be characterized only by twofold, threefold,
fourfold and sixfold axes of symmetry. that there is a
perpendicular lattice plane to every symmetry axis; and that
every symmetry plane must be parallel to some lattice plane.

In deriving the space lattices, he relied on evidence
from the preceding sections of the text. He justified the
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two types of lattices in the monoclinic system by the
following reasoning (loosely modified):

If a point O is the center of symmetry of a space
lattice, and if a twofold axis of symmetry a, passes through
this point, then there is a plane of symmetry perpendicular
to this axis. The corresponding point group has the label C,,.
It is the holohedral group of the monoclinic system. The
lattice of the plane of symmetry perpendicular to the axis
may be orthogonal or rhombic. Thus, there are two types of
monoclinic lattice - primitive (corresponding to an
orthogonal lattice) and centred; Schoenflies denoted them
by the symbols 75 and 7', respectively. He expressed the
result in the theorem:

Theorem XII. There are two different space lattices
of monoclinic type.

At the end of the text on lattices, he included a table
of them - in this ftext it is shown in Fig. 4 in a modified
abbreviated form with the original German text.

Before the chapter on space groups, he described in
a separate chapter Bravais's procedure for deriving space
lattices, but he also mentioned Bravais's work on filling the
lattice with "molecules”. He used the term Molekelgitter for
such a lattice and wrote in terms of its symmetry:

Lehrsatz IV. .Die Symmeirie eines Molekelgitiers ist nie-
mals hoher als die Symmetrie des sugehirigen Raumgitters.

The symmetry of the molecular lattice is never higher than
the symmetry of the corresponding space lattice.
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This statement is consistent with his reasoning about
the subgroups of the holohedral group of the corresponding
crystall system. By filling the lattice with "molecules”, his
thoughts on possible types of symmetry of the crystal
structure begin.

He infroduced the chapter on space groups with a
definition:

By a space group of operations we mean an infinite set of
space operations such that the product of any two of them
is equivalent to an operation which also belongs to this set.

Then he stated how one can construct (create) a
space group:

Lehrsatz XXI. Enthdilt die sur Punkigruppe G isomorphe
Raumgruppe I' die Gruppe G als Untergruppe, so kann si
durch Multiplication der Gruppe G mit der Translationsgruppe I'.
ergeugt werden.

If a space group I” isomorphic to a point group G contains
this group as its subgroup, then it can be created by
multiplying the point group G by the translation group I, .

However, only so-called symmorphic space groups
arise in this simple way; for the others, Schoenflies had to
consider the cases of screw axes and glide planes
conditioned on the shape or symmetry of the "molecules”.

He started the construction (derivation) of space
groups with the triclinic system. When considering the
monoclinic system, he wrote:

There are four different kinds of space groups
characterized by the symmetry of monoclinic hemihedra.
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Two of them contain I,,, the remaining two I, as
translation groups.

And further:

These four groups, in which operations of the second
kind stand out, can be denoted by the following symbols. The
group G contains only the ordinary symmetry plane. The
group G2 contains a plane of symmetry and, in addition,
planes with translational symmetry, and for all these planes
the translational component is equally large. The groups GZ
and G§ do not have pure reflection planes. For the former,
the translational component is the same everywhere, but for
the latter, there are two different kinds of translational
operations with unequal magnitudes.

The text on the derivation (construction) of space
groups is supplemented by a summary table (Fig. 5), followed
by a sentence:

Main theorem. There are a total of 230
crystallographically usable space groups.

Schoenflies did not yet use the reciprocal lattice, the
decomposition of the group into cosets and hence the factor
group, which could have streamlined the procedure for
constructing symmetry groups. But he did take a decisive
step towards the mathematization of crystal symmetry
theory. He correctly cited his predecessors, referring in
the introduction to the book mainly to the work of Hessel,
Bravais, and Sohncke, but mentioning a number of other
crystallographers: Naumann, Groth (definition of a crystal),
Gadolin, Minnigerode, Liouville, Curie, Moebius, Poisson, and
Wulf. However, he paid special attention to the works of E.
S. Fyodorov, with whom he corresponded intensively before
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completing his work on the types of symmetry of crystal
structure.

i Tabelle 1,
KRYSTALLSYSTEME Die Krystallclassen, die nur Symmetrieaxen enthalten.
- ) Die ein- | Die swei-
Zahl der
KRYSTALLSTRUCTUR e D el Gy osiaen Gy
- | metrieaxen | metrieaxen
- 1 |Identitét C, T - | =
el e et 2 |Oyclische Gruppe G,/ 2 | B, | —
3 |Cyclische Gruppe G;' 3 | by | —
TR SRR P 4 | Cyclische Gruppe c“l 4 i By =
e 5|Cyclische Gruppe G;| 6 | A, | —
. & 6 | Vierergruppe V' i 4 I - ‘ 9
Y AT 7  Diedergruppe D, : 6 |3 | hy
Qi | 8 | Diedergruppe D, 8 . = b2 2
S S 9 | Diedergruppe D 12| — |k, 8h,3Y
P 10 | Tetraedergruppe T | 12 | 44, 31,
11 |Octaedergruppe 0 | 24 | — |34, 41y, 61y
Fig. 1 Fig. 2

I. Hegulirer Typus.
Symmetriecharacter: Vier dreizihlige Axen.

II. Hexagonaler Typua.
Symmetriecharacter: Eine sechozihlige Aze
OI Tetragonaler Typua.

Symmeiriecharacter: Eine vierzhhlige Axe

IV. Trigonaler Typus.
Symmotriecharacter: Fine dreizkblige Aze

V. Digonaler Typus.
Bymmetriecharncter: Nur sweizsiihlige Azen.

V1. Monogonaler Typus.
Symmatriecharacter: Keinarlei Symmetrieaxe (Eine

einziblige Axe)

Fig. 3
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Gitter von , .
Symmetriegruppe | Translationsgruppen
Typus
triklinen S> jpl
monoklinen Can Ln o I
rhombischen Vh L.n, ) n
rhomboedrischen D3q Lo
tetragonalen Dyp r,, I,
hexagonalen Den, Iy
reguldren On L, re, 1
Fig. 4
Rogulires System. I, I, I

0%  Holoedrie. 4 4 2

0. Enantiomorphe Hemiedrie. 4 2 2

T4, Hemimorphe Hemiedrie. 2 2 2

T*. Paramorphe Hemiedrie. 8 2 2

T.  Tetartoedrie. 2 1 -2

Wir schliessen mit folgendem
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Schoenflies' papers on crystallography:

1.

Ueber Gruppen von Bewegungen Mathem. Ann., 28,
1887, 319-42; 29 1887, 50-80

. Ueber regulare Gebietstheilungen des Raumes Gotting.

Nachr., 1888, Nr 9;

. Beitrag zur Theorie d. Kristallstructur Gotting. Nachr.,

1888, Nr 9.

. Ueber Gruppen von Transformationen des Raumes in

sich, Math. Ann., Bd. 34, 1889, 172-203. « derivattion
of 227 groups

. Ueber das gegenseitige Verhdltniss der Theorien liber

die Struktur d. Kristalle, Gotting. Nachr., 1890, Nr 6).

. Krystallsysteme und Krystallstruktur, Teubner, Leipzig

1891

. Theorie der Kristallstruktur. Ein Lehrbuch. Gebr.

Borntraeger, 1923.

Sources:

1.

https://archive.org/details/krystallsysteme00schogoog

2. https://en.wikipedia.org/wiki/Arthur_Moritz_Schoenfli

es
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Evgraf Stepanovi¢ Fyodorov (1853 -
1919)

Russian crystallographer,
mineralogist and  mathema-
tician, who is known in
crystallography for deriving 230
types of symmetry of crystal
structure, in today's
understanding 230 space groups.
The work was published in 1891
in the journal of the Russian
mineralogical society Zapisky
mineralogicheskogo obshestva.
Fyodorov is also known as the
inventor of the universal furntable used in light microscopes
in the analysis of geometric and optical properties of
minerals (Fyodorov table).

E. S. Fyodorov was born in Orenburg in the family of
an engineer serving in the tsarist army with the rank of
major general. In 1866 he was admitted to a military
grammar school and already there he showed a greater
interest in mathematics. He did not finish his studies at the
grammar school, because after a very successful audition he
was admitted to the Military Engineering School
in St. Petersburg, although only at the age of 16. After
graduating in 1872, he joined a military unit in the city of
Bielaya Tserkv, Ukraine. Two years later, he left military
service and began studying at the Military Medical Academy
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in St. Petersburg. In 1879 he became more seriously
interested in crystallography and in the same year he
completed the first major work on the shapes and symmetry
of polyhedra, Hayana y4yeHus o ¢ urypax (Beginnings of the
doctrine of figures). However, the reviewers did not
recommend publishing the work, it was commissioned for
printing later - in 1883, but it was not published until 1885;
this caused problems in recognizing Fyodorov's priority,
since a similar work by P. Curie was published in 1884. For
Fyodorov, it became the basis for further reflections and
publications on the symmetry of bodies. In an effort to
improve his skills in crystallography, in 1880 he enrolled in
the third year of the Mining Institute (Gorny Institute in
St. Petersburg). He completed his studies in 1883 so
successfully that his name was engraved on the marble slab
of the school’s excellent students. From 1885 to 1890 he
was the leader of the group that compiled the geological map
of the northern Urals, but in the winter months he devoted
himself to science at home in St. Petersburg.

In 1889, his work Cummetpus KoHeYHbiX ¢ uryp
(Symmetry of finite figures) was published in the journal of
the Mineralogical Society, where he expanded his
reflections on the symmetry of polyhedra. Already in
December of the same year, he completed a substantial part
of his most important and most cited work, Cummerpus
npasusbHbI X cuctem ¢ uryp (Symmetry of regular systems
of figures) [12] with the derivation of space groups, but it
was not published until 1891 (at the end of the introduction
in the manuscript is the date "December 1889"). In 1890, in
the journal of the Mineralogical Society, Fyodorov published
three papers on the achievements of theoretical
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crystallography, in which he also presented part of the
results of his work on space groups. The German
mathematician A. Schoenflies was also working on their
derivation at that time, who in 1889 published a work with
the derivation of 227 groups. Fyodorov also managed to
derive only 229 groups at first, they agreed on the final
number of 230 only after mutual correspondence. 29 letters
to Fyodorov have been preserved, the first dated December
14, 1889, in which Schoenflies accepted Fyodorov's priority.
But even Fyodorov stated in the introduction to the article
CummeTpua npasusibHbIX cuctem ¢ uryp that Schoenflies
had overtaken him in his efforts to complete the derivation
of space groups initiated by Jordan. The correct number of
groups was stated by Fyodorov only in the appendix to the
article, as follows from the minutes of the meeting of the
Mineralogical Society of October 1890. There it is written
that Fyodorov omitted one of the groups because it
coincided with another, but added two more. Fyodorov and
Schoenflies agreed on the total number of groups, despite
the fact that they used a completely different methodology
for their construction. Schoenflies already used the
mathematical theory of groups, Fyodorov was able to derive
them without it, without using the term group. Their works
were published in 1891, that is, almost at the same time. It
can be said - in a sense, given the extensive correspondence
with each other - that the derivation of space groups is their
joint work. As late as 1891, Fyodorov wrote an article for
the German journal Zeitschrift fiir Krystallographie und
Mineralogie, in which he described the similarities and
differences between his views and those of Schoenfies.
Between 1894 and 1902, three more articles on the
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structure of crystals were published in this magazine, where
he repeated the derivation of 32 point and 230 space
groups, basically in his original procedure and symbolism, but
in German. In 1891, Fyodorov also published a work on 17
types of symmetry of planar periodic structures, even in the
same issue of the journal of the Mineralogical Society in
which the work on space groups was published.

The invention of the Fyodorov table is associated
with 1892, and a year later he published another original
work - a monograph on the use of theodolite in mineralogy
and petrography to measure the angles between the outer
faces of crystals. In 1894, he went with his family to the
Urals (Bogoslovskij gornyj okrug), where he worked as a
head of exploration geological work and compiled a geological
map of the area. In 1895 he became a professor of geology
at the Moscow Agricultural Institute (later the Timiriazev
Academy), while also going to St. Petersburg to lecture. A
year later, he was accepted as a member of the Bavarian
Academy. In 1905, he was elected director of the Mining
Institute (Gorny Institute) for a three-year term, where he
served as the head of the department until his death. In
February 1919, four months before his death, he was
elected a full member of the Russian Academy of Sciences.

Before deriving space groups, Fyodorov dealt with
the types of symmetry of finite formations - polyhedra, not
just crystals. He published the results in the article
CummeTpusa KoHeuHbl X ¢ uryp (Symmetry of finite figures),
in which, along with the symmetries of polyhedra, he also
derived 32 types of point symmetry of crystals. He followed
the work of his predecessors Hessel, Bravais, Gadolin, but
used his own method of derivation and original symbolism.
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First, he proved what the multiplications of axes of
symmetry can be, he also included fivefold axes in his
considerations. He described the types of symmetry of
objects with a single axis of symmetry, as well as objects
with multiple axes of symmetry, where he distinguished the
main axis, minor axes, axes with even and odd multiplicity,
generating axes and other axes. He continued with objects
with planes of symmetry, parallel to and perpendicular to the
axes of symmetfry. This was followed by a section on
composite symmetry (rotoreflection). For the symmetry
characterized by the presence of the axis of symmetry, he
used the quite obvious name simmetria sovmescenija
(symmetry of identification), but in the case of reflection,
he used the special term direct simmetry. He called the
number of elements of the symmetry group the veli¢ina
simmetrii (magnitude of symmetry). It is noteworthy that
he did not consider the center of symmetfry as a separate
element, but as the intersection of axes and planes of
symmetry.

When reading Fyodorov's works, it is first necessary
to understand the peculiar symbolism used to express the
positions of points that arise from one point by
transformations corresponding to the respective type of
symmetry. In the case of the axis of symmetry, he
proceeded from the following reasoning: a p-fold axis from
one line will form p equivalent lines, each of which can be
chosen as a coordinate axis; He marked them with the
symbols y,, 1, ¥2, ... ¥p-1 and the coordinates of a specific
point on these axes with the symbols by, by, by, ... b, ;. Three
coordinate axes are sufficient to determine the position of
a point in space, of the possible p lines, he marked the
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selected three with the symbols y,,y;,y,. The coordinates
of the point on these axes, taking into account the presence
of a p-fold axis of symmetry, were expressed by

— D o e b e D
YO_ hi ) y1 _h[+1; yZ _hi-}-g

where the subscript i=0, 1, 2, ..., p- 1, represents the i-th
position of the point and the superscript p the multiplicity
of the axis of symmetry. When the corresponding axis of
symmetry is chosen as one coordinate axis, both the
subscript and the superscript are omitted for such an axis,
for the other coordinate axes p is retained and the
subscripts are reduced by one:

p p
y =b" Yo = b,; L= b'i-H
He expressed the relationship between the coordinate y; on
another of the possible axes and the three chosen

coordinates by the relationship:

YiSn (VYoy1) = YSn Vi YoV1) + Yo Sn (Y yi y1) +
Y151 (VYo Yi),

where the symbol Sn represents the sine of the "spatial"

angle between three non-co-linear lines 1, 2, 3 passing
through one point, expressed using the determinant:
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cs(l1x,) cs(1xy)ces(1x,) |
Sn (123)=| cs(2x,) cs(2x,) cs (2x,)
cs (3x,) ¢s(3x,) cs (3x,)

where, for example, the symbol cs(1x,) represents the
cosine of the angle between the first line and the x,
coordinate axis of the orthogonal coordinate system. In
essence, this is not far from the matrix representation of
symmetry operations.

Example of symbols of two groups with fivefold axes
of symmetry:

J01eka3APOHKLOCAIAPHICCRAE HOTeMa
S S
1) Fomosnpus (6) y == n¥b; yo = n*b;; yy = nfby,. (35)

s s
2) Femnsnpus (6) v — nb; yo == n¥b;; yy = nFbyqk (20)

Using the symbol n*, where n=(-1) and k = 0 or 1, Fyodorov
expressed mirroring; If k=1, then (-1)¥ =-1, so the
corresponding coordinate changes the sign. Thus, the values
of O and 1 represent two mirror-symmetrical positions of a
point on a specific axis of symmetry to which the plane of
symmetry is perpendicular. The n* symbol also serves in the
case of twofold axes of symmetry; Its placement in front of
the coordinates of the points on the co-coordinate axes
perpendicular to the axis of symmetry expresses two
positions related to the rotation of 180°. The symbol is also
suitable for describing the inversion that occurs when the
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sign of all three coordinates changes at the same time. In
the cubic system, there are more indices (Fyodorov called
them parameters) and also other symbols of the coordinate
axes - instead of the symbols y, the symbols x and instead
of b the symbol a.

Fyodorov wrote:

As an example, let us mention the relation representing the
thetardohedra of the cubic system

3 3 3
Xo=Wa 3 Xy = N'Q 14,5 Xy =1+ka 4,

The parameter i refers to one of the threefold octahedral
axes of symmetry, and the parameters j and k to the two
twofold cubic axes of symmetry. The first parameter has 3
values and both other 2 values; Therefore, their product has
a value of 12, which represents the magnitude of the given
type of symmetry.

In this case, the option of O, 1 applies to the both exponents
J and k.

The example above (groups numbered 20 and 35) is
taken from the final table of point groups, which, as can be
seen, also contains non-crystallographic groups (fivefold
axis of symmetry). The notations of the groups testify to
their relative complexity, but on the other hand, knowing the
meaning of the symbols, it is possible to read from them
what symmetry operations the respective point group
contains.

The next stage of Fyodorov's work was the
derivation of 230 space groups, which he published in the
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article Cummetpus npasusnbHbl X cuctem ¢ uryp (Symmetry
of Regular Systems of Figures). In it, he mainly quoted A.
Bravais, A. Gadolin, P. Curie, but the name of L. Sohncke
occurs most often. At the beginning of the article, he
accepted Schoenflies' partial primacy in the effort to
complete the derivation of space groups, begun by Jordan:

B nepsom ornHomenuu s orvactd npeaynpexgen Lendancom
(Schonflies), koTophiit aBHACS NpsMBIM NpojoLKaTenem XKopaa-
Ha.

... I was partially overtaken by Schoenflies, who was the
direct successor of Jordan.

Let us state what Fyodorov means by the name
Regular System of Figures (free translation):

By a regular system of objects, I mean such an
infinite set of objects of finite dimensions in all respects,
that if, in accordance with the laws of symmetry, we identify
two of the objects belonging to the system by
transformation, then the whole system will also be
identified.

He had a clear idea of how such a system (space
group) is determined:

SlcHo, uTO CHCTEMA BMOAHE OMPEjeJeHa, eCAH JaHA OJHA H3
ee Quryp # ABHKEHHA COBMEIICHHS.
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It is clear that a system is fully determined if one of its
objects and the operations of symmetry (identification) are
known.

The object, according fo current terminology, is
apparently a structural motif.

Fyodorov distinguished systems with structural
motifs without reflection, which he called simple, as opposed
to systems with motifs also containing reflection, which he
called double.

When working on space groups, he used the results

published in the previous article Cummerpus KoHeYHbIx
¢ uryp (Symmetry of Finite Figures), because symmetry
operations belonging to a space group are combinations of
point and translational operations. At the same fime, it is
interesting that he did not pay special attention to space
lattices, i.e. translation groups, before deriving space
groups. About operations belonging to the space group, he
wrote (free translation):
All regular system symmetry operations can be composed of
existing S rotations, which convert any given direction to all
other equivalent directions (which correspond to rotations
of a given type of symmetry), and of translations.

At the beginning of the article on space groups,
Fyodorov introduced the necessary terms and divided space
groups into three main groups:

symmorphic systems - their structural motifs have
the same symmetry as the whole system, they have a center
of symmetry, they can be identified with each other by
translations,

hemisymorphic systems - can be understood as two
connected symorphic systems, whose structural motifs are
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mirror-symmetrical to each other; the motif itself has a
center of symmetry, but it does not have planes of
symmetry,

asymorphic systems - all other groups.

He proceeded according to this scheme when deriving
space groups in individual crystall systems. In each system,
he derived first symorphic groups, then hemisymorphic and
finally asymmorphic, progressing in these groups from point
groups with the fewest operations to holohedral groups.

When deriving space groups, he used seven theorems,
which he proved in the first part of the article. The
theorems concerned the multiplicity of the axes of
symmetry, the positions and directions of the axes of
symmetry in the lattice, the orientation and positions of the
planes of symmetry in the lattice, the relationship of the
planes and their normals to the lattice lines. This was
followed by the derivation of space groups.

For space groups, he used symbolism based on the
symbolism of point groups, extended by elements of
translational symmetry. For example, in the hemihedra of
the triclinic system, he symbolized a group without an axis
and a plane of symmetry by writing:

y=0b+4B\; z=c+Ch; v=d-} D\,

where y,z,v represent the coordinates of a point on the
three selected coordinate axes, the symbols b,c,d
represent their initial values, 1,1,, and 1; the identity
periods along these axes, and B,C,D represent integers
from the range from minus to plus infinity. This expresses
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the coordinates of all points representing equivalent
positions in a given structure (regular system of points).
Fyodorov stated that he would deliberately omit integers in
the symbolism of space groups, so he ended up writing the
previous expression in the form:

y=b+zx z=c+r;v=d+ )

For a space group in a friclinic system with a
holohedral point group (containing an inversion), he used the
symbol:

y=nb—+\ z=nfc4+ Ay v=n*d + )\,

where n* - has the same meaning as for point groups.

As an example of Fyodorov's considerations, we will

present a part of the derivation of two space groups in the
monoclinic system (free translation):
In the case of hemimorphia, there is a twofold axis that,
according to theorem 3, has the direction of a lattice line;
we determine it for the y - axis. In a plane that is
perpendicular to the axis, and based on theorem 4 is a lattice
plane, we choose the coordinate axes z and v perpendicular
to the lattice lines of this plane. We place the beginning of
the coordinate system on the y - axis. The identity periods
in the direction of these axes are marked with the symbols
Ao and A, .

When an axis passes through a lattice point,
Fyodorov characterized the space group by notation
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y=b-4 A, z=nkc+ A\y; v =nkd + A (3s)

With k =1, the coordinates ¢ and d of the starting point
change the sign, so it is obviously a 180° rotation around the
y - axis. It is a space group that has the designation P2 in
international tables and the Schoenflies desighation C3. The
case when it comes to a structure with a base-centered cell,
where screw axes are also applied, Fyodorov commented as
follows:

In this case, based on theorem 2, there is an equally acting
twofold axis of symmetry in the middle between every two

equivalent axes of the system. Based on theorem 7, we get

the system that is easiest to write in the form

y=b+f\/2; z=mnkc+ fr,]2; v=n"'d-+ L (45)

It is a space group C2, according to Schoenflies C3. In the
symbolism of this space group, the parameter f can take the
values of O or 1, respectively, while in the latter case it is an
operation related fo the screw axis.

The table of derived space groups in the article
Symmetry of Regular System of Figures no longer contains
their analytical expressions, only numbers in six crystall
systems. In the columns, the numbers belonging to the
groups symorphic, hemisymorphic, asymorphic are listed in
turn, and in the last column there is their total number. In
crystall systems, the numbers are divided according to their
affiliation into 32 point groups with their names (holohedral,
hemihedral, tetartohedral...). The following images show the
beginning and end of the space group table:
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Tabauya npasuasnmz cucmem uyp

fipasmasume cocremu
onryp
CHCTEMM XPUCTARIOrPAPNTECKWE & i3 { § -
= -
A IR
s34 | 2| 3| S
A. Tpuxannosapuueckan cucrema
l.ToMupRE . ¢ ¢ o ¢ ¢ . o0 a0 | — —_ ]
2.l0ON0MPES ¢ : - .« ¢t s s 1 — - 1
Hroro 2 i - | - 2
i

F. Ky6ooxTasgpuueckan cucrema
28. Teraproompua . . . . . . . . ... ... 3 — 2 b)
29. JloNeKasnpHYCCKAN TeMHINPHA . . . . . . 3 2 2 7
30. Terpasspuyeckas reMHsfips . . . . . . . 3 2 | 6
31. I'nposapuueckas reMHsgpua . . . . . . . 3 - 5 8
32. Toaosmpua . . . . . .. .. - 3 2 5 10
Hroro 15 6 15 36
Beero cucrem . . . . . | 73 34 | 103 | 230

The table ends with a row expressing the sum of the groups:

Total Systems . ... 230.
In this table, Fyodorov's names of six crystall

systems are noteworthy:

triklinoedriceskaja, (triclinohedral)
monoklinoedriceskaja, (monoclinohedral)
rombiceskaja, (rhobic)
tetragonal'naja, (tetragonal)
gexagonal'naja, (hexagonal)
kubooktaedriceskaja. (cubooktahedral)
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Both Fyodorov and Schoenflies used the term
rhombic system, for which the term orthorhombic is used in
International tables for crystallography. Fyodorov used the
term Kristalograficheskaya systema, Schoenflies Krystall
system.

In an article on the theory of crystal symmetry from
1894, Fyodorov wrote a sentence from which it follows that
he realized the importance of generating operations, that
is, generating elements of a group of symmetry. In
connection with the point groups, he wrote:

We can see that ultimately the whole group can be
constructed using two independent symmetry elements. All
other symmetry elements arise as a combination of rotations
about the initial ones, and we will call them generating
symmetry elements.

In an article published in Zeitschrift fiir
Krystallographie ~und  Mineralogie (1891), Fyodorov
commented on the correspondences and differences
between his and Schoenflies' views. He noted that they
agreed on the definition of the term symmetry, but
disagreed on terminology and the classification of groups
into crystall systems. Schoenflies referred to seven crystall
systems for space groups, Fiodorov to six. Fyodorov did not
accept the centre of symmetry as a separate element of
symmetry, but as the intersection of all the elements of
symmetry of a finite figure. Schoenflies limited the
derivation of point groups to groups corresponding to crystal
shapes, Fyodorov also considered other symmetric
polyhedra. For point groups, Fyodorov used the term digonal
system, in which he included those in which at most twofold
axes occur (monoclinic, rhombic). Rejecting Schoenflies’
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content of the term regular system restricted to the cubic
system, Fyodorov also included some non-crystallographic
systems.

Schoenflies used the theory of groups, adapted the
relevant terms, introduced the product of operations, and
their powers. There is also a significant difference in the
symbolism; while Schoenflies used a brief notation for
groups, Fyodorov used (by his own account) analytic relations
to denote groups.

There are over 400 entries in the list of Fyodorov's
publications; only a minor part is on symmetry, most of it is
on geology.

Fyodorov's most important works on symmetries:

1. Hauana yyeHus o qpurypax. 3an. MuH. obu., 2-a cepus,
1885, 1. XXTI, 1-289.

2. CUMMeTpUS KOHeYHbIX puryp. 3an. MuH. obw., 2-2
cepus, 1889, 1. XXV, 1-52.

3. CuMMmeTpuUa NPABUNbHLIX cucTem puryp. 3an. MuH. obu,,
2-a cepus, 1891, 1. XXVIII, 1-146

4. CummeTpus Ha nnockoctu. 3an. MuH. obu., 2-a cepus,
1891, 1. XXVIII, 345 Zusammenstellung der
kristallographischen Resultaten des Herrn Schoenflies
und der meinigen. Zeitschr. f. Krist. u. Min., 1891, Bd.
XX, 25-75.

5. Theorie der Kristallstructur. Einleitung. Regelmdssige
Punktsysteme. Zeitschr. f. Krist. u. Min., 1894, Bd.
XXIV, 210-252.

6. Theorie der Kristallstructur. I. Mogliche Structurarten.
(Mit graphischer Darstellung der Symmorphen
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Structurarten). Zeitschr. f. Krist. u. Min., 1895, Bd.
XXV, 113-224.

7. Theorie der Kristallstructur. IT. Reticulare Dichtigkeit
und erfahrungsgemasse Bestimmung der
Kristallstructur. Zeitschr. f. Krist. u. Min., 1902, Bd.
XXXVI, SS. 209-233.

Sources:

1. https://en.wikipedia.org/wiki/Evgraf_Fedorov

2. http://books.e-heritage.ru/book/10080293 - in this book
is a collection of Fyodorov's papers on crystal symmetry
+ an article Bokij, Safranovskij: History of derivation of
230 space groups
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Frederick Seitz (1911 - 2008)

American physicist,
pioneer in the field of solid
state physics, known in
crystallography  for  using
matrix algebra and group
theory fo derive 230 space
groups of crystal structure
symetries.  Matrices and
groups, together with the
lattice postulate, ie. the
postulate of the three-
dimensional periodicity of the
crystal  structure, were =
sufficient for him to cope with |
this vast task. He published
the results between 1934 and 1936 in four articles in the
journal Zeitschrift fiir Kristallographie. He introduced
concise and succinct symbols for operators representing
rotations, reflections and translations. In the introduced
symbol {®,t} - mark ® represented the matrix of rotation
or reflection, and t - the vector of translation. In 1934, his
dissertation entitled "A matrix-algebraic development of
the crystallographic groups" was published in book form [16].
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A Matrix-algebraic Development of the
Crystallographic Groups?'). L
By

F. Seitz in Princeton, New Jersey (U.S.A)

The title of the first of a series of four articles

Together with E. Wigner, he developed one of the
first quantum theories of crystals, e.g. the Wigner-Seitz
cell is known. He also addressed the problem of global
warming, he was a co-author of a book on this issue, in which
he expressed his skepticism about the question of
humanity's guilt.

Born in San Francisco, he began his undergraduate
studies at Stanford University, where he graduated with a
bachelor's degree in mathematics in 1932. His next path led
to Princeton University, where he studied physics and
received his PhD in 1934. He began writing articles on the
use of matrices to derive space groups as a doctoral student
under the guidance of E. Wigner. From 1935 to 1937 he
worked at the Faculty of Physics of the University of
Rochester. From there he went to General Electric, where
he worked as a researcher (1937 - 1939), then worked at
the University of Pennsylvania (1939 - 1942) and in the
period 1942 - 1949 at the Carnegie Institute of Technology.
From 1946 to 1947, he also worked at Oak Ridge National
Laboratory as part of the atomic energy research program.
In 1949, he was appointed professor of physics at the
University of Illinois, where he became head of the
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department in 1957 and dean in 1964. In 1940, his most
important book, The Modern Theory of Solids, was
published.

He achieved a prominent position in the scientific
community, was president of Rockefeller University (1968-
1978) and president of the National Academy of Sciences of
the United States from 1962 to 1969. He has been awarded
the National Medal of Science, NASA's Distinguished Public
Service Award, Franklin Medal, and honorable mentions from
31 universities in the U.S. and abroad. He founded the
Frederick Seitz Materials Research Laboratory at the
University of Illinois, as well as several other laboratories
for materials research in the United States. Seitz was also
the director of the well-known Texas Instruments company
(1971-1982). He retired from Rockefeller University in 1979
as Professor Emeritus.

Seitz's contribution to the derivation of space
groups lay in a more consistent use of mathematics. His
predecessors, including Schoenflies and Fyodorov, relied to
some extent on spatial imagination - for example, to assess
the resulting position in which a crystal would reach after
rotations around two different axes in succession. Euler's
theorem about the possibility of converting a crystal fo its
final position by a single rotation around the next axis, which
several of Seitz's predecessors cited, but did not use the
relevant mathematical relationships, applies here. Fyodorov,
in his article Symmetry of Finite Figures (1889), approached
the matrix representation when he gave relations for
calculating the coordinates of a point in positions after
rotation around the axis of symmetry. In them, he used a
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specially introduced sine of the "spatial" angle between
three non-complanar directions expressed by a determinant,
but he had not yet arrived at the matrix notation of the
rotation operator. The advantage of writing rotations and
reflections using matrices lies in the fact that the product
of two matrices (according to the specified rules),
representing two different rotations, provides a matrix of
the resulting rotation, from which the direction of the third
axis and the angle of rotation of the object (crystal) can be
read. This simplifies and also clarifies the construction of
point groups, which are part of space groups of symmetry.
It should be added, however, that when applying the theory
of groups, Seitz did not use the possibilities of the so-called
factor group, which were pointed out as early as 1923 by the
Swiss mathematician Andreas Speiser in his book Die
Theorie der Gruppen von Endlicher Ordnung, mit
Anwendungen auf Algebraische Zahlen und Gleichungen
sowie auf die Kristallographie, but also by his supervisor E.
Wigner in his book Gruppentheorie published in 1931.

In the infroduction fo the first of four articles,
Seitz wrote that he would use exclusively algebraic
methods, so that the derivation of space groups would be
based on a purely analytical-group basis.

Each of the four articles represented a coherent
part and characterized the individual articles as follows:

I. Macroscopic groups (32 point groups represented
by matrices).

IT. Microscopic symmetry, part one (elements of
microscopic theory, derivation of 14 Bravais lattices and
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their representation in a shape suitable for the construction
of space groups).

ITI. Microscopic symmetry, part two (elements of
the theory of operators representing spatial
transformations from the point of view of matrix algebra, a
set of theorems and conditions that must be met by groups
of these operators from a crystallographic viewpoint; the
beginning of the construction of space groups).

IV. Microscopic symmetry, conclusion (completion of
the derivation of space groups).

In the first of a series of four papers, he derived
matrices representing 32-point group symmetry operations
describing the macroscopic symmetry of crystals - rotations
"1, 2, 3, 4, 6" and mirroring. In doing so, he used a matric
form in which (in the Cartesian system) the axis of rotation
is identical to the X axis, which simplified the writing of
matrices. The following figure shows a part of Seitz's text
in which the left matrix represents its proper rotation, the
right rotation with mirroring, i.e. improper rotation.

Inall of our work it is cssential that we restrict ourselves to such transformations
and @ may be reduced only to either of the forms

1 0 0 -1 0 0
(1) cos ¢ ——sinq) and ( 0 cosg --sinq) (11a, b)

0 sing cosg 0 sing cosg

For example, the symmetry operation of a point
group, which has the symbol D;in Schoenflies' designation
(symbol 32 in the international tables), is represented by 6
matrices (a copy from Seitz's article):
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/4 0 0 OO
( 0 -1/2 -} 3,2) ( 0 —1/2 |3/2)
. 0 V3/2 -1/2 0132 12/

3.

~1 0 O -1 0 0 S O OB
( 0 1 0) ( 0 —1/2 _|,3/2) ( 0 —1/2 V3/2
L0 0 -1, 0 -13/2 12 L0 V32 4/2

The fact that only the so-called "allowed" rotations
"1, 2, 3, 4, 6" can be applied in crystals was proved only in
the second article and on their basis he created the
corresponding cyclic point groups.

In determining the permissible rotations, like his
predecessors (e.g. Schoenflies), he relied on the fact that
the existence of a three-dimensional periodic lattice with
lattice vectors nit; + n,t, + nst;, where n,;, n,, n; are
integers, places constraints on the matrices representing
the rotations (on the angles ¢ appearing in them). His
procedure on the case of the plane lattice was original, but
cumbersome. He wrote the shortest lattice vector t = (t;,0)
in the form of a column matrix, and the rotation with a
square matrix, which applied to this vector:

cos@  sing\ (t;\ _ (t1COSQ Y\ _
(—singo cos go) (0) - (—t1 sin (p) -u
Difference of vectors u-t

tlcosqo—tl) —w

w—t = (160
—t; sing

is the vector w, which cannot be shorter than the original
vector t, because according tfo the assumption this is the
shortest. Therefore, inequality must be met
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ticos? @ +t7 —2ticos@ +tisin? = t7 = 2t5(1 — cos @)
>t? =

= 4sin? (g) >1

This condition is met by angles from the interval:

<o<58
<@<57

wl| A

He made a similar consideration for the sum of u+t
and for the inversion of the vector t . Thus, he obtained the
permissible angles of rotation. From these, he created
several combinations that, from a mathematical point of
view, form groups; these are five cyclic groups, as can be
seen in the copy from Seitz's second article (groups marked
with the letters aq, b, ¢, d, e):

only the values

0, /3, ®/2, 2a/3, =, 473, 3=x/2, d=n{3.
These may not all be taken simultancously, and it is readily seen that if
« forms the basis of a cyelic subgroup of rotations the permissible com-

binations are

a) 0 (n=1)
b) 0, 2 (n 2)
)0, 223, 4a2/3 (n = 3)
d) 0, /2, =, 3n/2 (n=4)

e) 0, /3, 2n/3, ~n, 473, Bx)8 (n 6).

Cyclic groups
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In the second paper, Seitz also included the
derivation (construction) of Bravais lattices, i.e. translation
groups. The derivation relies on the compatibility of a
particular point group with the corresponding lattice
represented by a triple of basic vectors. Essentially, the
process is as follows:

The set of symmetry operations of a point group from
one vector produces the set of other vectors. Their
endpoints form the basis of the space lattice. The entire
space lattice is expressed as an integral linear combination
of a triplet of basis vectors t,, t,, t;, which must be chosen
appropriately in the lattice. The point group is therefore
tightly coupled to the triplet of basic vectors.

As an example, the fourfold axis of symmetry
requires a lattice characterized by a pair of perpendicular,
equal-length basis vectors. Or another example - if the
lattice is brought into congruent position by rotating it by
60°, then two of the basis vectors must take the same angle.

In constructing the Bravais lattices, Seitz used only
11 of the 32 point groups, the so-called Laue groups, which
contain an inversion as a symmetry operation. He justified
this by claiming that inversion as a symmetry operation is
typical of all types of three-dimensionally periodic lattices.
Moreover, it suffices to consider the effect of the
generating elements of these groups. A copy of fwo lines
from Seitz's second paper introduces these groups,
containing inversion:

There are eleven groups which contain this element, namely S,, C4, V",
Ch Di, S, Ch DY, DI T" O". In each of these there exists a number
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The first of these, the group S,, belongs to the
triclinic system and contains only two elements - identity and
inversion. Since the inversion is typical of all possible three-
dimensional periodic lattices, this group imposes no
restrictions on the triplet of basis vectors - neither on their
sizes nor on their relative angles. For the other Laue groups,
the constraints must already be taken into account.

The second in order - the point group C} (the
holohedral group of the monoclinic system, by the
designation in the International Tables C,,) contains four
elements - identity, inversion, rotation by 180° and
reflection in a plane perpendicular to the rotation axis.
Rotation and inversion can be chosen as the generating
elements of the group. Their matrix representation looks
like the following:

1 0 0 1 0 O
<0 - ) 0> 0 —1 0) )
0 01 0 01,

The symmetry operations of this point group allow
the existence of two types of lattice - a lattice denoted by
the symbol I, with a primitive unit cell and a lattice 77, with
a base-centred cell (he used the notation after Schoenflies).
The type of lattice depends on whether the shortest lattice
vector is parallel to the rotation axis. Seitz identifies the
rotation axis with the X axis of the Cartesian system; the
other two principal directions in the lattice are
perpendicular fo it and, by convention, make an angle with
each other greater than 90°. If the shortest lattice vector
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is parallel to the rotation axis, then it and the second
shortest vector, perpendicular to the first, form a primitive
orthogonal plane cell in its plane. In the second case, when
the shortest lattice vector is not parallel to the rotation
axis, Seitz chose this vector so that one component of it
(with coordinate a,) is identical to the X -axis (the rotation
axis) and that the other component is perpendicular to it
(with coordinate a,, in the direction of the Y-axis). The
shortest vector as a column matrix then has the form

a;
= (=)
0
noting that neither a, nor a, are then the
shortest distances between lattice b
points, which is the square root of the
sum of their squares. Rotating the vector

a about the X -axis by 180° produces the as
vector b, whose second coordinate is

changed to - a;:
a,
b == <_a2>
0

In matrix notation, the transformation takes the form:

1 0 0 a; a
(0 -1 0 > <a2> = <_a2>
0o 0 -1 0 0

ai a
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The endpoints of the vectors resulting X
from an integral linear combination of

the vectors n;a + n,b, form a 7,
lattice, whose base cell is centered
(shaded part in the figure).

Vector c=a+ b:

al a1 Zal b a
a+b=<a2>+<—az>=< 0 )
0 0 0

has the first coordinate 2a,, the other

two are zero. The distance 2a; is the smallest distance
between lattice points on the X -axis , which is related to
the nature of the lattice. The notation of the triplet of basis
vectors for I, and 77, lattices then looks like this:

Fe 0 0

t,={ 0], i, =\t | - ta =\t ), In
0 4] faz
Eoi 0 0

t, = tﬂ) ' t; = | 2ty |, ty=|faz]. In
0 1]

tEE

Y

Seitz used a similar procedure for the other Laue point
groups, and in other cases centred cells were also produced.
The symbols of the derived 14 Bravais lattices are given in
the first row of the following table, the second row being
the corresponding Laue point groups in Schoenflies'
notation:
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Table IV.
Ft Fm Ivo;l F'u Fz; I’Tu ]11;// Fq ]1(1’ F'rh F/L Fc Fc, Fc’/
e g, R e ke e DI Dl g OR O,

The symbol 77 in the table represents the Bravais lattice
(translation group), the apostrophe above the symbol
represent the centred lattices (basal, face, body) and the
subscripts the crystall system: t - triclinic, m - monoclinic, v
- Vierergruppe (= rhombic system), ¢ - quadratic, rh -
rhomboedric, h - hexagonal, ¢ - cubic.

As can be seen from the table, only 7 of the 11 Laue groups
were sufficient to derive the 14 translation groups. These
are holohedral point groups characterizing the symmetry of
the lattices of the corresponding crystall system.

In the third and fourth articles, Seitz included the
derivation of space groups. He also rationalized the
procedure formally by introducing the notation {®|a} for the
symmetry operators in which he represented rotation and
reflection by the matrix @ and translation by the vector a.
With this notation he expressed a general symmetry
operation consisting of rotation and tfranslation. He
expressed the action of such a symmetry operator on the
position vector x of a point in space by the relation:

{®la} x = ®-x + a.

That is, first a rotation is applied to the vector x
(expressed by the scalar product of the square matrix @
and the column matrix of the vector x), which moves the
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point marked in space by the position vector x to a new
position, and then this point is further shifted by the vector
a . Seitz expressed the successive application of two
symmetry operations as a product of the corresponding
operators, and gave a rule for obtaining the operator of the
resulting symmetry operation:

(®|a} -{¥|b} = (@ - ¥|® b + al.

That is, the resulting rotation is represented by the product
of the matrices ®-¥ and the resulting translation by the
sum of the two translations ®-b + a, where @ -b
represents the vector b rotated by the rotation
represented by the matrix @.

Each of the space groups was represented by Seitz
using several (at most four) generating elements, expressed
by operators, e.g.:

{@|v(@)} {(¥IvW)}, {ell},

which he also used for mutual differentiation (marking) of
groupes. In such a notation of generating elements (i.e.
symmetry operations), the symbol & represents an identical
operation (rotation by 0°) and 7" a translation belonging to
one of Bravais's 14 translation groups. Thus the symbol
{e|I'} as a whole represents only translations without
rotation or reflection. The symbols v(®) and v(¥) represent
the so-called non-lattice translations inseparably associated
with the corresponding rotations and reflections,
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respectively. They are translations whose magnitudes are
fractions of the lengths of the basis vectors, so they do not
belong to the translation group, which includes only integral
linear combinations of the basis vectors. Non-lattice
translations occur for so-called screw axes (the combination
of a rotation with a non-lattice translation in the direction
of the rotation axis) and for glide planes (the combination
of a reflection with a non-lattice translation parallel to the
reflection plane).

In the construction of space groups, Seitz followed
the multiplicity of the principal axis of symmetry, starting
with the groups C;, Cyj, continuing with the cyclic groups C,
and S,. The point group C; contains a single element - the
identity - and the only space group associated with it is
represented by a single generating element {¢|I;}, where ¢ is
the identity represented by the unit matrix and I is the
translation group of the triclinic lattice (no restriction
conditions are imposed on the triple of its basis vectors).

The point group C;, contains only the identity
represented by the unit matrix and the reflection
represented by the matrix py:

-1 0 O
ph=<0 1 0)
0 0 1

Combining the C(;; group with the monoclinic
translation groups 73, and 77, results in four space groups,
each represented by two generating elements:
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{pnl0}.{ell}  {pn|tp/2}.{elln}  {pnl0}. {el i}
{pn|tp/2},{eln}

The symbol {p,|0} represents reflection, {py|t,/2}
represents glide reflection, which in this case is due to the
configuration of the atoms in the unit cell of the crystal.
Both cases are combined with both translation groups, the
primitive 7, and the centred 7p,.

Seitz  successively generated all  possible
combinations of cyclic groups with the corresponding
Bravais translation groups, for which only fwo generating
operators were ever sufficient, as in the case of the Cy;
group - one from the point group, the other from the
translation group. Having exhausted the cyclic groups, he
combined the cyclic groups expressing rotations about
different axes with each other to form non-cyclic groups,
and combined these with the translation groups; here
additional generating operators were needed.

The three space groups of the rhombic system
belonging to the point group C,, are already represented by
three generating elements (p, represents reflection in the
plane parallel to the rotation axis, &, rotation about the
twofold axis, and t, /2 non-lattice translation):

f ) g, 1o b s11
(@10}, {d:|0}. {&]| I} G,
§ 91 f 0! f 4 13
{e. | /2] {d2 10}, {e]|T1,} €.,
f ! 4 23 & s12
{0-]10}, {d:]|t/2} fo] £} -
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The four space groups of the hexagonal system
belonging to the point group Dg;, are represented by four
generating elements:

{dé|0}, {¢]0}, {ds]0}, {e| I} Den
{d; | t,/2}, {¢ |0}, {de |0}, {e]| 1%} e
(0003, (10}, {0, | 02}, o] 1% i,
{d; | t/2}, {¢]0}, {ds | £./2}, {& |1} Den

Although Seitz did not provide a summary table of
space groups in the four articles, he pointed fo his own
article in which he described representations of all 230
space groups. His derivation (construction) of space groups
did not introduce a new type of crystal symmetry, but was a
demonstration of the connection of crystal symmetry with
mathematics.

Seitz's major works on crystallography and crystalline

substances:

1. Zeitschrift fiir Kristallographie: 88 (1934) p. 433, 90
(1935) p. 289, 91 (1935) p. 336, 94 (1936) p. 100.

2. A matrix-algebraic development of the crystallographic
groups, Princeton University, 1934.

3. The modern theory of solids, McGraw-Hill, 1940.

Sources:

1. Original articles by Seitz in Zeitschrift fiir
Kristallographie

2. https://en.wikipedia.org/wiki/Frederick_Seitz
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William Houlder Zachariasen (1906 - 1979)

Originally a Norwegian, s
he focused his entire
scientific activity on the study
of the structure of mainly
inorganic substances by X-ray
diffraction methods. In his
1945 book Theory of X-ray
Diffraction in Crystals [17] he
devoted one chapter to the
theory of symmetfry of
crystals, in  which  he
presented his original method
of derivation of 230 space
groups based on the theory of
groups and tensor algebra. He used these two mathematical
tools more rigorously than his predecessors, not excluding
F. Seitz. He became well known in the crystallographic
community after the publication of his work on the structure
of glass (1932).

He has worked in the USA most of his life, but was
born in the south of Norway in the tfown of Langesund, about
100 km southwest of the capital Oslo. He also began his
university studies at the Mineralogical Institute in the
capital in 1923. He published his first paper at the age of 19
and over the course of 55 years of active work he published
over 200 papers, most of them as a single author. He
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received his PhD from the Universitetet i Oslo at the age of
22, and was mentored by the well-known geochemist V. M.
Goldschmidt. Immediately after completion of doctoral
studies, from 1928 to 1929, he worked at Manchester
University in the laboratory of L. Bragg, where he began to
study the structure of silicates. He returned briefly to his
home university, but after only a year of work accepted the
offer of A. Compton and went to the USA. Thus, in 1930, he
became a member of the Physics Faculty at the University
of Chicago and in 1941 an American citizen.

Although he was primarily an experimentalist, he
contributed o the theory of diffraction whenever he found
it inconsistent with experiment. He published results on the
determination of the structure of minerals, inorganic
crystals, radii of atoms and ions, wrote on the amorphous
(glassy) state, the structure of liquids, the chemical and
crystallographic properties of actinides, phases at high
pressures, the structure of superconductors, and the
dependence of the binding strength on the binding distance.
His contributions to the theory concern thermal diffuse
scattering of X-rays, the phase problem of structure
factors, as well as extinction, including the so-called
Borrmann phenomenon. The correctness of each of these
theoretical contributions has been carefully verified
experimentally by Zachariasen.

In 1932, he published a paper The Atomic
Arrangement in Glass, which significantly influenced
material structure scientists at the time. The paper was a
breakthrough on the structure of glass and its relationship
to chemical composition. Between 1943 and 1945, as part of
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the Manhattan Project, he determined the structures of the
crystalline phases of the transuranic elements. In 1945 he
published a major monograph, Theory of X-ray Diffraction
in Crystals, and continued fo publish extensively (e.g., up to
19 papers between 1948 and 1949). From 1945-1950 and
again from 1955-1959 he was head of the Department of
Physics at the University of Chicago. Zachariasen's major
scientific contribution was the experimental and theoretical
assessment of relations expressing the intensity of
diffracted radiation concerning corrections for secondary
extinction. In 1967 and 1968 he published papers on the
theory of X-ray diffraction on mosaic crystals.

The aim of this text is to describe Zachariasen's
contribution to the theory of crystal symmetry, namely to
the method of deriving 230 space groups. The means he used
for this purpose can be summarised as follows:

e He used tensors to represent symmetry operations
and in this context he also used the reciprocal lattice
of crystals.

e In the construction of space groups he took
advantage of the factor group, which other authors
before him had not used (Schoenflies, Fyodorov or
Seitz - with the exception of A. Speiser, who,
however, only pointed out this possibility).

e He used the lattice postulate to obtain allowed
symmetry operations.

e He used Seitz's notation for symmetry operators:
[@,t], where the symbol ® represented tensors
(rotations, reflections) and the symbol t represented
vectors (translations).
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Zachariasen's approach to the derivation
(construction) of space groups is captured by the
headings of the individual chapters:

« Concept of symmetry - equivalent points, trivial
symmetry operations, group of symmetry operations
* Possible symmetry operations of crystal lattices -
lattice postulate
* Classification of possible symmetry operations and
elements of symmetry - centre of symmetry, axis of
symmetry (proper, improper), screw axis, plane of
symmetry, glide plane
* Point groups - general properties of space groups,
factor group, cyclic group, number of cyclic groups
(formula), possible angles between symmetry axes
(formula)
* Translation groups - procedure for their construction
according to crystall systems
* Space groups - symmorphic groups and other groups,
table of space groups
The first mathematically formulated problem
Zachariasen set himself was to obtain possible (allowed)
symmetry operations in three-dimensional periodic crystal
structures. Since he represented the operations by
operators in the symbolic notation [®,t] it was actually a
matter of exploiting the conditions imposed by the lattice
postulate on both the tensor part ® of the operators (i.e.,
on rotations and reflections) and on their translational part t.
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He wrote the tensors in the form

D= ijk ajak

where @, are the scalar coordinates of the tensor, the
symbol a; represents the triplet of basis vectors of the
direct lattice of the crystal, and @’ represents the triplet
of basis vectors of the reciprocal lattice. The tensor
coordinates can be written in rows and columns, i.e., in
matrix form, making Zachariasen tensors essentially
identical to Seitz matrices:

q)11 ¢12 q)13
q)21 q)22 ¢23

(p31 (p32 (D33

The difference in the notation of symmetry operations using
tensors or matrices thus appears to be only formal.
However, the notation using fensors is particularly
advantageous in that it allows the illustrative use of the so-
called natural coordinate system. The basis of this system
is a triplet of non-complanar vectors a,, a,, a; , which is
characteristic of each crystal because the directions of the
vectors and their lengths are related to the arrangement of
the atoms and the distances between them. The directions
of the triplet of basis vectors a,, a,, a; determine the
directions of the coordinate axes, while the "unit" lengths
on these axes are determined by the magnitudes of the
corresponding vectors. That is, the units of length in
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different directions in crystal space need not be the same,
and are chosen to coincide with the repetition interval of
the structural motif in the corresponding direction.

When the matrix and tensor of rotation about the Z
axis (the "third" axis), are written in the Cartesian system
X, Y, Z with unit vectors i, j, k in the corresponding
directions, they have the form:

cosgp sing 0 cosg ii + singij + 0
(— sing cos@ 0) —singji + cosg jj+ 0
0 0 1 0 0 + kk
(A)

The rotation by 60° about the Z axis is then
represented by a matrix resp. tensor

(1/2) V3/2 0
—V/3/2 (1/2) 0
0 0 1
(1/2)ii + V3/2ij + 0
—V3/2ji  (1/2)jj+ 0
0 0 + kk

In a natural system of basis vectors a,, a,, a; in
which the first two vectors make an angle 120° and the third
is perpendicular to their plane, this matrix and tensor have
the form

1 1 0 ala, +ala, +0
(—1 0 O) —a’a; +0 +0
0 0 1 +0 +0  +ala;
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or tensor written in one-line form:
ata, + ala, — a’a, + aa; .

As you can see, there are only integers in the matrix, and
the same is true for the tensor coordinates. Their integer
values are important for further considerations.

The unit matrix representing the identity (i.e., the
rotation by 0°), whose diagonal terms are all 1 and the others
0, corresponds to the identity tensor, which has the
following form in the Cartesian resp. in natural system:

ii+jj+kk, a‘a,+a’a,+ a’a;.

An important role in Zachariasen's procedure is
played by the first scalar of the tensor, which coincides with
the trace of the matrix, i.e. with the sum of its diagonal
terms (— relation A). As long as we do not consider a
particular rotation angle, both the trace of the matrix and
the scalar of the tensor are expressed by the relation:

1+ 2coso.

The value of this relation depends only on the
rotation angle and, as can be shown, does not depend on the
choice of the reference frame.

Zachariasen's reasoning concerning the rotation part
of the operator [®, t], i.e., the determination of the possible
values of the rotation angle, is based on the fact that the
lattice vectors t; of the direct lattice of a crystal are
integral linear combinations of a triple of basis vectors:
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ti=nja; +nya, + nzaz, where n; are integers. The
symmetry operation transforms an arbitrary lattice vector
t; intfo another lattice vector t; , whose coordinates n; are
also integers, which are a linear combination of the three
coordinates of the original vector. The transformation is
expressed in the symbolic notation t;, = ®-t;, where the
transformation for the first coordinate of the vector t;

provides an expression:
k — J J J
ny = ®n; + P10, + Pygng.

Similar expressions hold for the remaining fwo coordinates
of the t; vector. If all coordinates of any pairs of vectors t;
and t, are to be integers, then the coordinates @;; of the
tensor (in the natural coordinate system) must also be
integers. Then the scalar of the tensor must also be an
integer N, which leads to the condition:

14+ 2cosp =N = cosp = (N-1)/2.
This condition is satisfied only by the rotation angles ¢ :
60°, 90°, 120° a 180°.
As stated by Zachariasen, the tensor representing a

rotation of ¢ about an axis whose direction is determined by
the unit vector u, can be written in the form

®=tuu+t (I- uu)cos ¢ + (I xu)sin @,
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where I is the identity tensor (corresponding to the unit
matrix). The expression (Ixu) represents the vector
product of the identity tensor with the unit vector u , which
results in a tensor with the property that it projects any
vector into a plane perpendicular to the vector u. When the
sign "+" is applied, these are tensors representing proper
rotations, the sign "-" representing non-proper rotations.
Substituting the allowed values of the angles ¢ yields the
corresponding tensors, which Zachariasen has listed in a

summary table:

The com-
plete list of possible dyadics n is
1=1
2=2uu -1
3 = jaa — 31 + V3 1xa (2:24]
d=au+1x4

6= 3am + 31+ §V3Ixa

He further showed that the vector u cannot have an
arbitrary direction, that it must be parallel to the lattice
vector of a direct and at the same time reciprocal lattice -
which is only possible in lattices of a certain type.

For the translational part t of the operator [®, t] in
the case of combination with rotations Zachariasen derived
the condition

(t- wu = (j/mA,,
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where u is a unit vector parallel to the rotation axis, 4, -
the shortest lattice vector parallel to the rotation axis, n -
nultiplicity of the rotation axis, where the number j can take
values 0, 1, ... , n - 1. He derived a similar condition for the
cases of combination of translation with reflection. The
result of these considerations was a table of the allowed
symmetry operations that are parts of the point groups and
space groups.

Before he started constructing point and translation
groups (all his predecessors started with this), Zachariasen
outlined a method for how he wanted to construct space
groups. Space groups contain various combinations of
rotations, reflections and translations, i.e., they represent
certain combinations of point and translation groups. He
stated that a translation group (/7)) as a part of a space
group (G), is always an invariant subgroup of it. This means,
in other words, that a space group containing an infinite
number of elements (due to the translation group) can be
decomposed into a finite number of parts, the so-called
cosets with respect to the translation group (7°):

G)=U)+¥Y, - D)+, (D)+..

In this relation, ;- (/") are the cosets of the group (G),
with ¥;=[®,, t;] themselves being the representatives of
the cosets. In doing so, @; represents rotation or reflection
(= elements of the point group) and t; represents translation,
which is a fraction of lattice translation, so it does not
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belong to the translation group. These, the so-called non-
lattice translations, occur for screw axes and glide planes.
The set of cosets of the space group, fogether with
the translation group, again forms a group, the so-called
factor group. The elements (members) of the factor group
are individual cosets (i.e., sets of elements, not individual
elements), and the meaning of the unit (neutral) element in
this group is the entire translation group. The space group
can then be expressed as the so-called direct product of the
translation group (/7) with the factor group (G/I):

spacegroup (G)=U)+Y¥Y, () +Y, -()+..
factor group (G/IN) ={(I), ¥, (1), ¥, -(I)+...}
= spacegroup (G)= (") -(G/I)

Zachariasen also considered a factor group to be a
group (IG) of coset representatives, which is isomorphic to
the factor group and in which the translation group is
represented by an identical operation I (unit tensor or
matrix):

IG) = {1, ¥,, ¥,,... }
(BG) = {I: (I)l, (1)2,... }

In the third row is the point group (BG), which is formed
from the factor group when the translation parts t; are
omitted in all elements ¥; = [®;, t;]. This point group is
isomorphic to the factor group, what was used by
Zachariasen in the construction of the space groups.
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When screw axes or glide planes are present in the
crystal structure, the representative of some coset is the
[@, t] operator, i.e., a combination of rotation or reflection
with a non-lattice translation. If the representatives of all
cosets are only elements of the point group (i.e., elements
of type [®, 0], then these are so-called symmorphic space
groups, of which there are 73, and for which Zachariasen
used the name point space groups. He has included a table
of them in the ftext, giving three symbols for each group: his
own, the international (Hermann-Mauguin) and symbol by
Schoenflies.

What is significant about the consideration of the
factor group is that it is isomorphic to the point group, which
is important to realize when the representatives of the
cosets are not purely elements of the point group. This
means that in the construction of space groups one needs to
know all point groups, all translation groups, but also the
allowed non-lattice translations that are part of some of the
coset representatives. Therefore, the natural next step was
to derive the possible point groups and franslation groups,
but also to determine what combinations of elements with
non-lattice translations can form a group.

Zachariasen began the construction of point groups
by creating so-called cyclic groups, which describe the
symmetry of crystals with a single rotational axis. Such
groups can be created (generated) by successive application
of a single symmetry operation (the smallest allowed
rotation), which after nsteps brings the object to the initial
position (e.g., four rotations of 90° about the fourfold axis).
In ferms of group terminology, this is the case of a group
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with a single generating element. Zachariasen divided these
cyclic groups into two parts, proper and improper groups.
Both proper and improper symmetry operations (e.g.,
combinations of rotation with inversion) occur in the
improper groups, and he pointed out that proper operations
make up half of the entire group and constitute its cyclic
subgroup. Therefore, the improper cyclic group can be
decomposed into the sum of the proper cyclic group and its
only coset whose representative is an improper operation.
This reasoning implies that it is sufficient to find all proper
cyclic groups and to know the improper operations, which
Zachariasen has already listed in the table of allowed
symmetry operations.

If the crystal contains more than one rotational axis
of symmetry, the point group is no longer cyclic, but contains
cyclic groups as its subgroups. Zachariasen derived a
relation expressing the connection between the number of
cyclic subgroups

SZ=3+S4+356’

where s, is the number of cyclic subgroups related to the
n-fold axis of symmetry.

He further gave a relation expressing the total
number k of elements (symmetry operations) in a non-cyclic
point group (already given by Bravais):

k=1+52+253+354+556.
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Zachariasen also derived a relation expressing the
possible angles between the axes of symmetry, which
allowed him to consistently construct all possible point
symmetry groups of crystals. The result was a clear table of
point groups, broken down into proper and improper point
groups, with, moreover, an indication of the shape of the
tensors representing the generating elements of the groups.

The next step was the construction of 14 types of
Bravais lattices - translation groups, rigorously
mathematically grounded. As far as the formulation of the
problem using operators was concerned, Zachariasen's
procedure was not different from Seitz's, except that he
used tensors instead of matrices. The basis of the
procedure was the condition that the translation group must
be invariant with respect fo the operations of the
corresponding point group. In other words - each of the
point group symmetry operations transforms all lattice
vectors into other, also lattice vectors. This eventually leads
to the requirement that the triple of vectors ay, a,, a3
determining an acceptable translation group, for a given
point group represented by tensors @, satisfies the relation

D =a;- ® - a¥ = integer number

(B)

In this relation, @, are the coordinates of the
tensor ® and the expression a; - ® - a* represents the so-
called scalar products of the tensor with vectors from both
the left and right sides, while from the left the basis vector
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of the direct lattice, from the right the basis vector of the
reciprocal lattice. In the computations, it is sufficient to
consider the constraints imposed only by the generating
elements of the groups. In contrast to Seitz, who used Laue
groups in the construction of translation groups (all of which
are improper, because they contain an inversion),
Zachariasen stated that it is sufficient to consider the
influence of proper point groups, because if relation (B)
holds for the +® tensor of an proper rotation, it also holds
for the —® fensor of the corresponding improper protation.

Prior to the construction of translation groups,
Zachariasen pointed out that in a primitive lattice, the
lattice vectors A, are integral linear combinations of a triple
of basis vectors: A, = L,a, + L,a, + Lya;. That is, the
lattice translations then correspond to the operators
I =[1, A;] and the translation group can be expressed by
the group symbol (/7). However, in centered lattices, the
position vectors of some lattice points also contain halves of
the basis vectors, so that a translation group, in a body
centered lattice, can be assigned the symbol:
(I =) (E, T1j21/21/2)- The term (E,I7/31/21/2) in this
expression represents the identity E and the displacement
by (1/2)(a;+ a, +a;), so that the corresponding
translation group consists of the so-called integer
translations A, = L,a, + L,a, + L;a; and the translations
that are the sum of the integer and half-integer ones:
A+ (1/2)(ay + a; +a3).

The point groups he used in the construction of the
translation groups were classified by Zachariasen into the
traditional 7 crystall systems, where he then placed the
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corresponding ftranslation groups obtained. In doing so, he
also used the relations valid in the crystall systems for the
directions of the basis vectors and for the angles between
them, which simplified his further considerations.

As specific examples, we will mention the triclinic and
monoclinic crystall systems.

In the triclinic system, there are point groups 1 and
1, where the generating elements are identity or inversion,
represented by tensors ® = t 1. the relation (B) is then
fulfilled for any triple of fundamental vectors, regardless
of the sign before the identity tensor. After all, any three-
dimensional periodic lattice, regardless of the type of
symmetry, is characterized by inversion.

In a monoclinic system, the proper point group is the
group denoted by the symbol 2, where the generating
element is represented by the tensor

=-ala, + a’a, - aa; .

This allows the existence of both a primitive and a base-
centered cell (the calculation is quite long). If lattice
vectors are expressed in the form

A, + Zfpay,

thus, from the corresponding analysis, he emerged two
options for fi : O or 1/2, which represents a primitive or
centered cell.
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After obtaining all of the permitted operations, point
groups and franslation groups, Zachariasen proceeded to
construct space groups. As mentioned above, the space
group is expressed as the direct product of the translation
group and the factor group, where the factor group is
isomorphic to the point group. If the point group is cyclic, it
has a single generating element [®, 0] and the whole group
as a set of elements is denoted by the symbol (®, 0), or only
by the symbol (®). In doing so, the representatives of some
cosets of space group may also have non zero translation
terms t: [®, t], but these must be such that the set of
elements (®, t) forms a group. If the point group is not
cyclic, then it has a maximum of three generating
elements: [®;, 0], [®,, 0], [®3, 0], and the group is then the
direct product of three cyclic groups: (®,) - (®,) - (®3). The
generating elements of point group are, generally expressed
in the form [®,, t;], [®,, t,], [®3, t3]. The corresponding
space group (G) is then the product of the factor group
(@, ty) - (P, t,) - (D3, t3) with translation group (7):

@)= UG/ =) (P1,t) (P2, L) - (P3,13).

In order for the product of (@4, t;) - (P,, t;) - (P, t3) to be
a group, it is not enough for the groups to be independent
terms (®), t;), but the non-lattice translations t,, t,, t;
must meet the additional conditions specified by
Zachariasen in a separate paragraph of the text.

As mentioned above, space groups that are formed by
the direct product of the translation group and the point
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group are the so-called symorphic groups. He divided the
other space groups (non-symmorphic) into three sefts,
according to the shape of the translational member of the
first of the two or three generating elements of the factor
group.

In the first set of non-symmorphic groups, which he
denoted with the letter A, he included space groups in which
the first of the three generating elements of the factor
group has the form [7@, t], where the fensor n = 1, 3, 4,
or 6, e.g. inversion (1) and rotoinversions (3, 4, 6). This set
includes space groups constructed on the basis of the
following point groups:

Cil CZhl DZhl 541 C4hl DZdl D4hl C3il D3d/ C3hl C6hr D3hl D6h/ Thl
0.

In the second set, marked with the letter B, he
included non-symmorphic space groups, in which the first of
the three generating elements of the factor group has the
form [n, t], where the tensorn =2, 3, 4, or 6. So these are
proper rotations. This set includes space groups constructed
on the basis of the following point groups:

C2, D3, Cay, C4, Dy, Cay, C3, D3, C3, C6, Dg, Doy, T, 0, Tg.
The third set, marked with the letter C, includes
space groups related to the point group C; . The generating

element of the factor group is [2, t] so it is a reflection,
which can also be understood as a combination of rotation by
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180° with inversion, i.e. as an operation according to the
twofold rotoinverse axis.

A different view of the three types of space groups,
or the generating elements of the factor group, is also
possible. In the case of type A, the translational part of the
operator can be zeroed by suitable choosing the position of
the origin of the coordinate system. In type B, the
translational part of the operator must be parallel to the
rotational axis of symmetry, so it has the form t - uu, where
u is the unit vector parallel to the axis of rotation. So these
are screw axes. In type C, the franslational part of the
operator must be parallel to the mirror plane, so it has the
form t — t - uu, where u is the unit vector perpendicular to
this plane. Given these circumstances, the three types of
non-symmorphic space groups can be expressed by
relationships:

A (G)=U) (@1, 0) (@ t) (@3, L3),
screw axes B (G) = (1) - (@4, t-uu) - (®,, t;) - (D5, t3),

glide planes C (G) = (I") - (@4, t —t-uu) - (®,, t;) (P3, t3).

In a similar way, two other members of the factor
group can be analyzed, but Zachariasen did not do this in
detail. He did not use this method to derive all 230 space
groups, arguing that they were derived more than half a
century ago. He gave only a few typical examples of the
construction of non-symmorphic space groups.
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In type A, he used his method to show that 4 non-
symmorphic groups are related to the point group C, in
addition to the two symorphic ones.

For type B, he gave the example of groups related to
the point group D; and derived 4 non-symmorphic groups.

In type C, starting from the point group Cs derived
two non-symmorphic groups, one with a primitive lattice, the
other with a base-centered lattice.

At the end of the chapter on crystal symmetries, he
listed all 230 space groups, with three symbols:

his own, infernational (Hermann-Mauguin) and
Schoenflies.

Zachariasen, like Seitz, could no longer discover new
types of space groups, all of which had already been derived
by Fyodorov and Schoenfkies, but he took their derivation -
construction - to a higher mathematical level.

Authors quoted by Zachariasen:

Bravais, Sohncke, Fyodorov, Schoenflies, Seitz, he did not
quote the authors of the point groups - Hessel and Gadolin.
He also cited the International Tables for Cystallography.

Some of Zachariasen's works:

1. The atomic arrangement in glass. Am. Chem. Soc. 54
(1932).

2. On the theory of temperature diffuse scattering. Phys.
Rev. 60 (1941).

3. Theory of X-ray Diffraction in Crystals. New York: John
Wiley and Sons. (1945) Direct determination of stacking
disorder in layer structures. Phys.Rev. 71 (1947)
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4. Chemical identity and crystal structure. In The
Transuranium Elements. National Nuclear Energy
Series, vol. 14B, pp. 1462- 72. New York: McGraw-Hill.
(1949)

5. General theory of X-ray diffraction in real crystals.
Phys. Rev. Let.18 (1967):195-96.

6. Theory of X-ray diffraction in crystals with stacking
faults. Acta Crystallogr.23 (1967).

7. Experimental tests of the general formula for the
integrated intensity of a real crystal. Acta
Crystallogr. A24 (1968).

8. Theoretical corrections for extinction. Acta Crystallogr.
A25 (1969):102.

9. On californium metal. J. Inorg. Nucl. Chem. 37
(1975):1441-42.

Sources used:

1. Theory of X-ray Diffraction in Crystals. New York: John
Wiley and Sons. (1945)

2. A Biographical Memoir: W . H. Zachariasen, by M.
Ingraham, National Academy of Sciences, Washington
D.C. 1992
https://en.wikipedia.org/wiki/William_Houlder_Zacharia
sen
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BLACK-WHITE AND COLOUR GROUPS

The systematics of space groups representing types
of symmetry of crystal structure was developed at the end
of the XIX century and is associated with the names of
Fyodorov and Schoenflies. The work of Seitz and
Zachariasen in the first half of the twentieth century was a
contribution only in terms of the methodology of derivation
of space groups, a more complete and elegant use of the
possibilities of mathematics. However, the development did
not stop there, and the extension of symmetry types began
to be considered. In addition to the three spatial
coordinates of the atom expressing its position in the unit
cell of the crystal, another parameter began to be
considered which could characterize the atom and take on
two or even more values. A parameter with two values was
already in 1929 the subject of consideration of the German
mathematician Heinrich Heesch [21], who in his doctoral
thesis gave the name black-white to the respective
symmetry groups. Allegedly already in that period Russian
crystallographer A. V. Shubnikov corresponded with Heesh.
Later, in 1951 Shubnikov published a rigorous derivation of
58 black-white point groups. In his work, Shubnikov began
to use the term antisymmetry, which seems to have
originated in the oppositeness of the states corresponding
to the two possible values of this antisymmetry parameter.
For example, in antiferromagnetics there are possible two
opposite orientations of the magnetic moments of the
atoms, which contributed to the use of the threefold naming
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of these groups - the black-white, magnetic, and Shubnikov
groups. Shubnikov at that time collaborated with N. V. Belov,
who in 1956, together with R. F. Tarchova, considered the
case of several possible values of this additional parameter.
Under the influence of the name black-white groups, the
name coloured groups [19] was coined. The number of
possible types of symmetry thus grew considerably, and this
involved an increase in the number of point, translation and
space groups. On groups of this type, Shubnikov and Belov
published a book in 1964, Colored symmetry [20].

It is convenient to illustrate the construction of
black-white groups by the example of a crystal in which the
magnetic moment of a particular atom can have only one of
two orientations opposite to each other. Consider the case
in which an atom is moved from a particular location in the
unit cell of the crystal by an operation of symmetry to
another position (equivalent from the point of view of space
symmetry), but in which it should have an oppositely oriented
magnetic moment. Thus, complete identification is achieved
only when the magnetic moment of the displaced atom is
flipped over. From a mathematical point of view, the flipping
can be expressed symbolically by the number -1, which is
understood as the magnetic moment flipping operator (spin
inversion, colour inversion, antisymmetry operator), which is
added to the operator representing the corresponding space
operation (rotation, reflection or translation). However, by
another symmetry operation, the atom can be brought to a
position where the same orientation of the magnetic moment
is required; the conservation of its direction can be
expressed by applying the operator represented by +1. The
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pair of numbers (operators) -1, +1, in terms of the binary
multiplication operation, forms a group, in this case called
the spin inversion group and denoted by the symbol R =
{1, —1} or according to Shubnikov R = {1, 1'}. The comma
(apostrophe) above the symbol represents the combination
of the corresponding spatial operation with the magnetic
moment flip, or more generally with the change of the value
of the antisymmetry parameter. For example, the rotation
by 90° about the fourfold axis of symmetry associated with
the flipping of the magnetic moment is denoted by
Shubnikov with the symbol 4'. In structures in which the
atoms have doubly oriented magnetic moments, only some of
the symmetry operations are combined with magnetic
moment flipping, so they form only part of the relevant set
of symmetry operations.

Shubnikov groups, often called magnetic groups,
include three types of groups. The first kind are the so-
called colourless magnetic groups M, , identical to the space,
point or ftranslation groups G, not containing combinations of
space transformations with magnetic moment flipping, so
that: M, = G ; thus, there are 230 colourless space groups,
32 colourless point groups, and 14 colourless translation
groups.

The same calculus applies to the second kind -
paramagnetic groups P also called grey groups, whose
elements are both the operations of the space group (or
point or translation group), but also all the operations of this
group combined with the magnetic moment flip, which is
expressed by notation: Mp = G + G1'. This essentially means
that the probability of occurrence of one or the other
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orientation of the magnetic moment at a given location of
the unit cell of the crystal is the same.

In the third kind, the non-trivial magnetic group M,
i.e., the black-white group, there are two equally numerous
sets of symmetry operations - space operations combined
with magnetic moment flipping and space operations without
this flipping; these two sets of space operations are
disjunctive - the operations of the second set are not found
in the first set, and vice versa. There are 1191 such space
groups.

The sum of the number of colourless, grey and black-
-white space groups gives the number

230 + 230 + 1191 = 1651,

which is the total number of so-called Shubnikov space
groups.

The formation of black-white M groups from the G
group of space transformations is based on its subgroup H
with an index of 2 (H has half of the elements of the G
group). The elements of subgroup H are space
transformations (rotations, reflections, translations)
without a combination with a flip of the magnetic moment,
while all other elements of the group G, i.e. elements of the
coset G — H, are combined with flipping; they are written in
the symbolic form (G —H)1'. The notation of the black-
white group M thus has the form:

M=H+(G-H1.
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Such a construction of black-white groups is directly
applied o both point and translation groups, but for space
groups, as shown below, there are two types of black- white
groups. For the point groups, there are 32 colourless, 32
gray and 58 black-white, a total of 122 Shubnikov groups.

It should be noted that not all black-white groups are
suitable for describing structures with ordered magnetic
moments  (ferromagnetics, antiferro-magnetics, and
ferrimagnetics), because in some cases there is a mismatch
between a dashed operation and an undashed one. Out of 58
black-white point groups, only 27 are feasible in this sense.

To illustrate the three types of Shubnikov point
groups, the following figure will be used, which shows three
plane objects. Their symmetries are described by a
colourless, gray, and black-white point group.

The colourless point group G of the first object
contains primarily rotations of 0°, 120° a 240° (symbols
e,3,3%) related to the threefold axis of symmetry
perpendicular to the plane of the triangle and passing
through its center, as well as three reflections
Meo, M10 and myg, in three planes perpendicular to the plane
of the triangle, which form angles of 120° to each other. In
each of these transformations, the object identifies with
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itself. Thus, the colourless point group of symmetry G
contains the following elements:

_ 2
G ={e, 3, 3% mgy, Myz0, Mygo}-

The third of the objects in the picture, in addition to
the identical operation, identifies with itself even after
rotations of 120° and 240° around the threefold axis, while
this set of symmetry operations with the designations e,
3, 32 forms a subgroup with an index of 2 of group G. After
reflection, however, the object gets into the same position
only after the mutual swapping of black and white.
Therefore, reflection must be combined with the inversion
of colour, represented by an apostrophe. The black and
white point group M then has the following elements:

_ 2 I I I
M = {e, 3, 3%, m'gg, m'120, M'1g0 }-

For the middle object - from the point of view of
symmetry operations - the same applies as for the first
object, while from the point of view of the arrangement of
the magnetic moments of atoms, it is an image of the
symmetry of the paramagnetic substance. According to what
was mentioned above, the Shubnikov group describing the
symmetry of this object contains all the elements of the
colourless group and, in addition, all these elements
associated with the inversion of colour (magnetic moment):

_ 2
M = {e, 3,3%, mgo, My20, My30,
Y 287 ’ ’ ’
e’,3',(3%), m'gg, m'120, m'1g0}-
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From this point of view, the symmetry of the first of
the three objects would represent the symmetry of a
substance containing atoms without a magnetic moment, and
the symmetry of the third - the symmetry of an
antiferromagnetic substance.

As an example of the construction of black-white
point groups in three-dimensional space, we can mention
groups formed from a point group marked in international
tables with the symbol 4/m, which has eight elements:

- identity marked with the symbol 1, inversion (symbol 1),

- rotations around the fourfold axis by 90°, 180° and 270°
(symbols 4, 42, 43),

- and these rotations combined with inversion (symbols 4, 42, 43).

The equivalences 4% = 2 apply, i.e. a double rotation
of 90° around the fourfold axis is equivalent to one rotation
of 180° around the twofold axis, and 4°=2=m, ie. a
rotation of 180° with the following inversion is equivalent to
the reflection m in a plane perpendicular to the rotation
axis. Writing of the 4/m point group using the symbols of
individual symmetry operations:

G4/m = {1' 4; 42; 43; TI Zl'i ‘_1_2’ 71'3} = {17 4’ 2; 43; TI Zl'i ml 71'3}
This group has 3 subgroups of index 2:

H =4={1,4,2,4%}, H,=4={1,4m, 43} ,H;=2/m =
{1,2,1,m}.
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Based on them, the following three black-white groups can
be constructed:

M; =4/m' ={1,4,2,43,1,4",m', 43"}
M, =4"/m' ={1,4,2,4%,1',m’,4',4%'}
M; =4"/m ={1,2,1,m4',4%,4,2%}

The 4/m point group itself is considered to be a
colourless magnetic group Mywithin the Shubnikov groups:

M, =4/m={1,4,2,4%,1,4,m, 43}

while the paramagnetic group Mp contains, in addition to the
elements of the colourless group, its elements combined
with magnetic moment flipping:

Mp ={1,4,2,4%,1,4,m, 4%1,4',2',4%,1,4,m', 3%}.

Here it is worth recalling again that not all the black-white
point groups presented here are realizable in magnetically
ordered structures, such as the group Mz = 4'/m.

In a similar way to point black-white groups, the
translation black-white groups are also constructed. That is,
a subgroup with index 2, i.e., half of all possible translations,
is selected from the translation group and the other half of
the translations are combined with a magnetic moment flip
(colour inversion). The translation groups contain an infinite
number of elements (translations), but the corresponding
procedure can be illustrated on a single unit cell. For
example, in a primitive tetragonal lattice, half of the lattice

145



points can be selected with the magnetic moment flipped in
three ways, as indicated in the following figure, in which the
"colourless" lattice is shown first:

/bl

The black rings represent lattice points, which are assigned
magnetic moments of opposite orientation to those in the
white rings. In a body centred tetragonal lattice, there is
only one possible way of selection - when the translation
directed to the center of the cell is coupled with a flip of
the magnetic moment:

In the structures described by the black-white
translation groups, positions with oppositely oriented
magnetic moments alternate, and so the unit cell, if it is to
respect the magnetic ordering as well, must in general
become larger.

A similar procedure to that used for point and
translation groups is also used in the construction of space
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black-white groups, but in this case two types are
distinguished. Among the 1191 space black-white groups,
there are 674 in which the translation subgroup H is the
same as in the group G, i.e., its elements are not combined
with a magnetic moment flip. Therefore, the magnetic unit
cell is the same as the crystallographic one. These black-
white space groups are referred to as the groups of the
first kind. In the remaining 517 black-white space groups
(groups of the second kind), the translation subgroup
contains half of the translations combined with magnetic
moment flipping (according to Shubnikov, these are
antitranslations); the magnetic unit cell is then larger than
the crystallographic one.

The construction of two-colour, i.e., black-white
groups (point, translation, and space), is based on the
decomposition of the colourless group into a subgroup with
index 2 and the corresponding coset; the antisymmetry
parameter s then takes only two values. All elements of the
coset are combined with the antisymmetry operation, i.e.
with the second value of the parameter s. In the
construction of multicolour groups, when the parameter s
can take n values (n - "colours"), the decomposition of the
colourless group into an invariant subgroup with index n and
the corresponding n - 1 cosets is used. The elements of the
cosets are then successively combined with operators
representing the individual values of the parameter s. This
gives rise to a much more numerous set of symmetry types,
which, however, does not have the same practical application
as the set of black-white groups.
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CRYSTALS WITH ANOTHER TYPE OF
SYMMETRY

A crystal is commonly understood to be a solid in
which the distribution of the constituent particles is
characterized by a three-dimensional periodicity’. This
periodicity is the reason for the existence of symmetry in
both the structure of the crystals and their external shape.
In real crystals, whether natural or synthetic, there is no
perfect three-dimensional periodicity of the positions of
the atoms; it is disturbed both by the oscillations of the
atoms and by various types of point, line or plane defects.
This can also break the symmetry of the crystal. If,
nevertheless, the arrangement of the atoms can be
regarded as periodic, or if there is at least a correlation
between the positions of the atoms at a distance, such a
crystal is said to be ordered; otherwise it is a disordered
crystal. Disordered crystals include in particular solid
solutions which are characterised by the non-periodic
occupation of certain atomic positions by two or more atomic
species. Crystals with partially broken or incomplete
symmetry include OD crystals, the second group are
aperiodic crystals, which include so-called incommensurable
modulated structures, incommensurable composite crystals
and quasicrystals.

1 According to the 1992 definition of the International Union of
Crystallographers, a crystal is understood as a solid substance
characterized by a diffraction diagram with sharp diffraction traces.
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OD structures

A special type of crystals with disruption of strictly
three-dimensional periodicity are OD crystals, whose
structure is referred to as OD structure (Order -
Disorder). This type of structure can be understood as
composed of plates (layers) with intrinsic symmetry, while
they are not layered structures in the chemical sense. The
symmetry of the layers applies only within their framework
and is described by two-dimensional symmetry groups. In
terms of the overall crystal structure, these are partial
symmetry operations, valid only in part of the whole crystal
space. The existence of local symmetry, which is not part of
the symmetry of the whole crystal, creates preconditions
for ambiguity in the stacking of the layers. Whether the
resulting structure will be ordered or disordered depends
on the sequential stacking of the layers. The possible
variability in the stacking of the layers leads to the
formation of so-called polytypes; these include, for
example, SiC crystals or micas.

As a macroscopic example of polytypes, we can use
the stacking of identically sized spheres. If they are to be
stacked as tightly as possible, a layer with a hexagonal
arrangement will appear in the plane (in the following figure
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the circles are drawn with a solid bold line). We denote the
positions of these spheres as the "A" positions. When a
second such layer of spheres is placed on top of the first
layer so that the arrangement is as tight as possible (circles
drawn with a solid thin line), the spheres of the second layer
will fit into the wells between the spheres of the first layer,
either in the positions marked ‘B’ or in the positions marked
'C'. Suppose that they occupied the B-type positions as
shown in the figure. The spheres of the third layer (the
circles drawn by the dashed line) sit in the holes in the
second layer, and again they may take positions of two kinds
- those above the spheres of the first layer - 'A-type’
positions, or 'C-type' positions, which are positions above
the other holes of the first layer. If such stacking is
repeated regularly, in the first case (stacking of layers is
referred to as ABABAB...) a hexagonal structure is formed,
in the second case (referred to as ABCABCABC...) a cubic
structure is formed. However, stacking can also take place
in more complicated ways, which is the essence of the
formation of polytypes. If even the more complex stacking
is repeated periodically, an ordered structure is formed. It
should be noted that such structures (polytypes) occur not
only in hexagonal structures. It is noteworthy that the
tightest stacking of spheres in plane and space was already
addressed in the early 17th century by Johann Kepler, the
author of the laws of planetary motion [4].

Disjunct (non-overlapping) parts of the OD structure
characterized by two-dimensional periodicity are called OD
layers. They do not have to match the layers selected on the
basis of chemical identity or cleavage. The goal of selecting
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OD layers is not to explain polytypism, but to describe it on
the basis of symmetry. In OD structures, there are
symmetry operations applied throughout the crystal volume,
but also operations applied only within layers, the so-called
local symmetry operations, the set of which forms a plane
group (two-dimensional group). A set of symmetry
operations valid in the entire volume of a crystal forms its
space group, but the set that is created by adding local
operations usually no longer meets all the criteria for the
existence of a group, a more loosely defined mathematical
structure is created - the so-called grupoid.

In the theory of OD structures, an important role is
played by the proximity condition, which assesses the
geometric equivalence of layers and thus the possibility of
immediate  overlapping. For example, geometrically
equivalent layers, or layers whose translation groups are
identical, or have at least a subgroup in common, satisfy the
neighborhood condition. If the placement of the layer (both
position and orientation) is unambiguous, determined by
adjacent layers, and meets the neighborhood condition, the
resulting structure is ordered. However, if there are
multiple storage options complying with the neighborhood
condition, then the resulting structure belongs to the OD
structure. Therefore, structures that meet neighborhood
conditions are either ordered or are OD structures. All OD
structures belong to polytypes, but this does not have to be
the other way around.

All OD structures, even those of different chemical
compositions, if they are formed on the basis of the same
type of symmetry, belong to the so-called OD family of

151



grupoids. This concept has an analogous meaning to that of
a space group: just as there is a finite number of space
groups to describe an essentially infinite number of
variations of structures, so there is also a finite number of
families OD of groupoids to describe an infinite number of
possible variations of OD structures. If we move from the
abstract to the concrete level, the OD structures of a
concrete substance formed on the basis of the same type of
symmetry - differing only in the way the layers are
deposited - belong to the same family: the members of the
family are concrete real structures.

The theory of OD structures was developed in the
fifties of the last century by the German crystallographer
K. Dornberger-Schiff [22], and from the Slovak
crystallographer, S. Durovi¢ [23], who collaborated with
her, participated in the completion of the theory. His share
was accepted by the International Union of
Crystallographers by commissioning him to write part of the
relevant chapter in the Intfernational Tables for
Crystallography [24].

The terms order-disorder are also used outside of
crystallography, in a similar, yet different meaning. In
physics, it represents the presence or absence of a certain
kind of symmetry or correlation in a system of many
particles. From the point of view of condensed matter
physics, systems of many particles are considered to be
ordered near absolute zero temperature, their heating leads
to a phase transition to a less ordered state. An example of
such a phase transition is the melting of ice - the loss of the
crystalline arrangement, or the demagnetization of iron by
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heating above the Curie temperature - the loss of the
magnetic arrangement. When assessing orderliness, it can
be not only about the positions of atoms or their groups, but
also about the spatial arrangement of other parameters of
atoms, such as their magnetic moments. Orderliness can also
be assessed in terms of correlation between localities at
different distances from each other - in this case, short
range order and long range order are distinguished.

Aperiodic crystals

According to the definition of the International

Union of Crystallographers from 1992, these are crystals
that appear to be crystalline in terms of X-ray diffraction,
because their diffraction image contains sharp diffractions,
but in which there is no three-dimensional periodicity of
atomic arragement. Such crystals include:

. incommensurable modulated structures,

. incommensurable composite crystals, and

. quasicrystals.

Modulated structures are divided into symmetrical
and incommensurable, with their common feature being the
additional periodicity of the positions of the atoms,
superimposed to the basic periodicity determined by the
lattice parameters. The superimposing periodicity —
compared to the distances deftermined by the lattice
parameters d — corresponds fo a many times greater
repetition distance A . This is a similar phenomenon fo radio
waves, in which on the fundamental (carrier) frequency of
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the electromagnetic wave is superimposed a significantly
lower frequency of the transmitted signal, i.e. a much longer
wavelength. If the ratio d/1 cannot be expressed by the
ratio of integers, the structure is referred tfo as
incommensurate and is an aperiodic structure. Otherwise,
the structure is referred fo as commensurate and is not
classified as aperiodic structures. Structures whose
symmetry is judged by the arrangement of the magnetic
moments of atoms can also be incommensurate.

The figure shows a structure in which modulation of
the positions of atoms in the horizontal direction is applied,
in the vertical direction the periodicity determined by the
relevant lattice parameter is maintained. The number of
atoms per unit length in the horizontal direction is not
constant, but changes periodically. Such modulation is
referred to as positional modulation, and the occupation of
positions by various types of atoms can also be modulated -
in this case, it is occupation modulation.

An incommensurate composite crystal consists of
two or more sub-systems with modulated structures whose
basic structures are incommensurate with each other.
Crystals of this kind were first described by E. Makovicky
[26]. Examples of such crystals are various adherent
crystals or adsorbed monolayers.
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Quasicrystals represent a tfype of crystalline
substance whose structure is somewhat ordered, but it is
not periodic, lacking translational symmetry. A copy of a
structure does not identify with its original by any of its
displacements - it is aperiodic. Sharp diffraction records
indicate their crystalline state, but also the presence of
fivefold or tenfold axes of symmetry, not present in
crystals. Quasicrystals were discovered in 1982 by D.
Schechtman [25], for which he received the Nobel Prize in
Chemistry in 2011.

Aperiodic  surface 1 7 ‘
coverage was discovered by -~ LA W A
mathematicians as early as
the 1960s and was used to
describe the structure of _
quasicrystals about 20 1 LA
years later. It can consist S\
of several shape units, while . ‘
the stacked units fill the & 7/ %
space perfectly, without
gaps, without overlaps. An example of such a covering with
the fewest number of shape units is Penrose tiling (Penrose
tiling [32],[33]), It is created by laying tiles of only two
types of diamond shape, with sides of the same length but
different angles (pictured). Penrose paving is characterized
by five-fold axes of symmetry, as well as mirroring.

From a mathematical point of view, an image of a
three-dimensional aperiodic structure can be obtained by
projecting a  periodic  hyperlattice, defined in
multidimensional space, into three-dimensional space.
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GLOSSARY

axis of symmetry - an element of symmetry - a line, by
rotating around which the object can get to the position
identical to the initial position. For crystals, only twofold,
threefold, fourfold, and sixfold axes of symmetry are
involved; other multiplicities are referred to as forbidden in
the context of crystals.

centre of symmetry - an element of symmetry - a point with
respect to which the inversion is performed.

column matrix - vector notation with a matrix that has only
one column and, for vectors in three-dimensional space,
three rows.

coset of a group - the set of elements of a group which is
formed by "multiplying" all the elements of its subgroup by
an element which does not belong to the subgroup. If the
subgroup contains exactly half of the group elements, there
is only one coset, otherwise there are more cosets. Due to
the fact that the operations in the group may not be
commutative - the result of the "product" depends on the
order of operations - therefore left and right cosets of the
group are distinguished, obtained by multiplying the
elements of the subgroup from the left and right sides,
respectively.

crystal class - one of the 32 types of external symmetry of
crystals characterized by a set of rotational or inverse axes
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and mirror planes. In mathematical terms, described by one
of the 32 point groups of symmetry.

crystal lattice, lattice - a set of periodically spaced points
in crystal space. In three-dimensional space, the three basic
directions of the distribution of points, as well as the
distances between adjacent points in these directions, are
represented by a friplet of basis vectors, their directions
and length. The position vector of each lattice point can be
expressed as an integral linear combination of the triplet of
basis vectors. A lattice in real space is called a direct lattice.
In physics, a crystal lattice is usually understood as a lattice
including the filling of atoms.

cyclic group - a group that is formed by successive (multiple)
application ("multiplication") of a single, so-called generating
element - its "powers". After n - applications of the
generating element, the object reaches the initial position,
so that the n-th "power" of the generating element coincides
with the neutral element of the group. For example, a cyclic
group is the set of symmetry operations of a square, formed
by successive rotations by 90° about an axis perpendicular
to its plane passing through the centre of the square. After
four rotations, the square is brought to its initial position,
i.e., to the position as after "multiplication" by the neutral
element, i.e., rotation by 0°.

determinant of the matrix - numerical value assigned to the
matrix, which for matrices with three rows and three
columns is obtained as the sum of six products of triplets of
its elements, selected in the prescribed way. The
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determinants of matrices representing proper operations of
symmetry have the value +1, for improper operations the
value -1.

direct lattice - a lattice in real space (— crystal lattice).

factor group - group F, which is formed from the group & so
that its neutral element is the invariant subgroup H of the
group 6 (the so-called normal divisor of the group &) and the
other elements are the cosets of the group & with respect
to the subgroup H. The elements of a factor group are thus
disjunctive sets of elements of the group & as a whole.

generating elements of a group - several elements of a
group, the repetition and combination of which will produce
all other elements of the group. Three generating elements
are sufficient to create (generate) the largest point group
of crystals (it contains 48 elements). If one generating
element is sufficient to generate the whole group, the group
is cyclic.

glide plane - an element of symmetry - a plane where the
identification of the crystal structure is achieved by
reflection in this plane combined with a non-lattice
translation parallel to this plane.

group (definition) - a group G is a set of elements in which a
binary operation is defined, i.e. an operation between two of
its elements, which generally produces another element of
the group; the operation must be associative, there must be
a neutral element in the set, and there must be an inverse
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element fo each element of the set. The name "element
multiplication" is used for the operation between two
elements of a group. "Multiplication" with a neutral element
does not change the elements of the group. The result of
"multiplying" an element with an inverse element is a neutral
element. An example of a group is the set of integers with
respect to the sum operation; the sum of the numbers is
associative, the neutral element is zero, and each negative
number is the inverse element of a positive number with the
same absolute value.

group of symmetry operations - the set of symmetry
operations satisfying the group existence conditions.
Elements of this group can be rotations, reflections,
inversions, translations and their combinations. A binary
operation in this group is the successive execution of two
symmetry operations, resulting in another symmetry
operation.

grupoid - a set of elements between which a binary operation
(operation between two elements) is defined; with respect
to this operation the set is closed, but no other conditions
are imposed. In the context of crystals, these are elements
representing symmetry operations. A grupoid is a figure
defined more loosely than a group.

holohedral group - point group, which in the respective
crystallographic system describes the symmetry of the
lattice; by filling the lattice with atoms, the point symmetry
can only be reduced, it is then represented by subgroups of
the holohedral group. The point symmetry of the primitive
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and the centred lattice, in so far as they belong to the same
crystall system, is the same - described by the holohedral

group.
improper rotation — improper symmetry operations.

improper symmetry operations - reflection and inversion, as
well as their combinations with rotation; the determinant of
the transformation matrix of such operations is equal fo -
1. These operations cannot be performed on a real object,
but there may be objects that are its mirror or inverse
image.

invariant subgroup - a subgroup whose left cosets coincide
with the right cosets; for an invariant subgroup the name
normal divisor of the group is also used.

inverse group element - a group element whose "product"
with the group element with respect to which it is inverse is
equal to the neutral element. There are pairs of mutually
inverse elements in groups, e.g. rotations about 90° and
270°, because their sequential application coincides with the
rotation about 0°. Some elements of a group are inverse to
themselves, e.g. rotation by 180°.

inversion - a point symmetry operation in which each point
of an object with position vector r is transformed into a
point with position vector —r. This definition is valid when
the centre of symmetry lies at the origin of the coordinate
system. The term reflection at the centre of symmetry is
also used for the inversion.
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isomorphic groups - such groups, between the elements of
which there is a simple, i.e. mutually unambiguous
representation (assignment); therefore they have the same
number of elements. For example, a group of matrices is
isomorphic to a point group of symmetry operations if each
element of the point group is assigned to a particular matrix
representing the corresponding symmetry operation. The
multiplication of the two matrices by each other is then
consistent with the "multiplication" of the elements of the
point group; the product of the two matrices produces a
matrix representing the resulting symmetry operation.

lattice basis vectors - a triplet of vectors not lying in the
same plane, whose integral linear combinations can be used
to construct (describe) an entire space lattice. For a known
lattice, they are chosen to be as short as possible and their
arrangement is consistent with the symmetry of the lattice.

lattice postulate - the assumption of strict three-
dimensional periodicity of the physical properties and
distribution of atoms in crystals.

lattice translation - a translation that shifts the lattice to
a congruent position; these are translations described by a
vector that is an integral linear combination of the lattice
basis vectors.

mirror plane — reflection plane

mirroring — reflection
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neutral element of a group - an element whose combination
("multiplication") with other elements of the group does not
change them. The neutral element in terms of summation is
the number O, in terms of multiplication the number 1, in
terms of rotational symmetry operation the rotation by 0°
respectively by 360°.

non-lattice translation - translation that cannot be
expressed as an integral linear combination of the basis
vectors of the lattice; instead of integers, multiples of one
half, one third, one quarter or one sixth of the length of the
lattice translation are applied, which is related to the
multiplicity of rotational axes of symmetry.

normal divisor — invariant subgroup.
plane of symmetry — rerflection plane.

point group - a set of point operations of symmetry -
rotations, reflections and inversions, which meets the
conditions for the existence of a group, describing the
symmetry of one of the 32 crystal classes.

point symmetry operations - symmetry operations in which
the position of at least one point of the transformed object
does not change. These are inversions, rotations and
reflections.

proper symmetry operation - a symmetry operation
representing only rotation about the axis, which does not
combine with reflection or inversion; the determinant of its
transformation matrix has the value +1.
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reciprocal lattice - a lattice in — reciprocal space that is
the transformed image of the direct lattice into reciprocal
space. The distribution of points in a reciprocal lattice is
also periodic and can be expressed by a linear combination
of the basis vectors of the reciprocal lattice. There are
unambiguous relationships between the basic vectors of the
reciprocal lattice and the basis vectors of the direct lattice.

reciprocal space - virtual space, a mathematical
transformation of direct space in which distances are
measured in inverted units of length. It is used, for example,
in determining the structure of crystals by X-ray
diffraction methods. The position of points in this space is
determined by reciprocal vectors.

reciprocal vectors - vectors in reciprocal space; they are
important when a Cartesian coordinate system is not used,
but a system based on basis vectors representing directions
and distances corresponding to the crystal structure. They
are expressed as a linear combination of the three basis
vectors of the reciprocal lattice.

reflection - a point symmetry operation in which the points
of space are moved to the opposite side of the symmetry
plane along lines perpendicular to this plane, while
maintaining the distance from it; the reflection matrix
determinant has the value -1.

reflection plane, mirror plane - element of symmetry -
plane with respect to which reflection is performed. It is
always parallel o some lattice plane of the crystal.
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rotation - a point symmetry operation by which a shape is
brought to an identical position by rotating it about the axis
of symmetry by a certain angle; for crystals, these are only
the angles 60°, 90° and their integer multiples.

rotation axis - axis of symmetry.

scalar product of a vector with a tensor - a mathematical
operation representing a transformation of the position of
a point marked by the end point of the vector; the shape of
the tensor depends on the type of operation, whether it is
an inversion, rotation or reflection. The result of the
transformation also depends on whether the tfensor is
multiplied by the vector from the right or from the left.

screw axis - an element of symmetry - a line at which the
identification of the crystal structure is achieved by
combining rotation about that line with non-lattice
translation along that line.

space group - a group of symmetry operations whose
elements are combinations of elements of the point group
and the franslation group. The point group and the
translation group are its subgroups, the translation group is
its invariant subgroup.

subgroup - any subset of a group whose elements satisfy the
group's existence conditions.

symmetry (of crystal) - the property of a crystal,
externally, of retaining its shape under rotations or
reflections (corresponding to the point group of the
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crystal), in terms of the arrangement of the atoms in crystal
also with respect to lattice translations, (i.e., operations
belonging to the space group of the crystal) (= symmetry
operation)

symmetry element - a set of points (point, line, or plane)
according tfo which symmetry operations are performed.
Symmetry elements are symmetry centres, rotational axes,
screw axes, reflection planes, glide planes.

symmetry operation - a fransformation of an object after
which the original and transformed objects are
geometrically and physically equivalent. These are rotation,
reflection, inversion, and, for crystal structures, lattice
translation, as well as combinations of these.

transformation matrix - a mathematical tool allowing to
calculate the position coordinates of a point after
transformation (rotation, reflection) when the coordinates
of the initial position are known; in three-dimensional space
it is a table (scheme) of nine members (elements, numbers)
arranged in three rows and three columns related to three
space coordinates. The numerical values of the members and
their arrangement in the matrix can be used fo express
whether a given transformation is an inversion, a reflection
or a rotation; the position of the reflection plane or rotation
axis and, in the case of a rotation axis, the angle of rotation
can be expressed.

transformation tensor - a mathematical tool derived from
the transformation matrix. In contrast to it, for each
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element of the tensor, in addition to the numerical value,
there is also a pair of vectors expressing the belonging to
the coordinate axes in accordance with the rows and columns
of the matrix.

translation group - the set of translation symmetry
operations satisfying the group existence conditions. In
lattices, these are translations that are, in vector form,
integral linear combinations of the triple of basis vectors of
the lattice.

translation, displacement - a transformation in which all
points of an object are displaced equally.
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