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PREFACE 
 
 

We have a certain idea about the content of the 
concept of symmetry, but from the point of view of the 
theory of symmetry, its definition is needed. Arthur 
Schoenflies, one of the creators of the theory of crystal 
symmetry, wrote in 1889: "There are objects whose 
peculiarity is that they can be identified with themselves in 
various ways - by rotation or mirroring." Such objects are 
said to be symmetric". 

In theoretical physics, other types of symmetries 
are also considered - time, space or charge symmetry of 
physical processes, but this text deals only with that type 
of symmetry, which we can call shape symmetry. The 
essence of shape symmetry is a certain regularity in the 
spatial arrangement of parts of the observed object, or in 
the sameness of its appearance when viewed from different 
sides. It is obvious that the shape symmetry of the sphere 
does not coincide with the shape symmetry of the cube, so 
we realize that there are objects with different types or 
degrees of shape symmetry. Various geometric shapes 
(cube, cone,...) are characterized by shape symmetry, but 
the symmetry of the external shapes of crystals has 
attracted special attention for a long time. According to 
current knowledge, external shapes are influenced by the 
arrangement of atoms, i.e. crystal structure, which can be 
characterized by one of 230 types of symmetry. 

Considerations about symmetry can be supported by 
exact mathematics. From a mathematical point of view, 
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symmetry of an object (not only shape) means the 
preservation of certain of its properties during certain 
changes (transformations) of the parameters that 
characterize its state. As for the symmetry of the shape, it 
is about rotations, mirroring, or displacements of the 
object, while these transformations are expressed with 
respect to the chosen frame of reference, in which each 
point of the object has its three spatial coordinates. If, 
during the transformation, the object reaches a position 
that we consider to be identical (equivalent) to the original 
position, then it is a so-called symmetry operation. For 
example, by rotating a square by 90  around an axis passing 
through its center and perpendicular to its plane, the 
vertices of the square get to new positions, but if we do not 
distinguish the vertices from each other - and this is how 
we will understand it in the next text - then the square gets 
to a position that is equal to original position. If it is a 
crystal, then its geometric and physical properties - with 
respect to the external reference frame - are preserved in 
all its points through the operation of symmetry. The 
symmetry of the crystal then means the set of all such 
operations. 

Much effort has been devoted in the past to the 
description of the symmetry of crystals, i.e., to the 
description of the relevant set of symmetry operations and 
methods for their determination. This has led to the 
development of the theory of crystal symmetry. This text 
was written with the intention of conveying the development 
of this theory - from the first scientific experiments 
already in the XVII. century until its completion in the 
middle of the XX. century. But the symmetry of objects 
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attracted attention already in ancient times - Egypt, 
Babylon, Greece. Not only ornaments are known from this 
period, on which we can observe certain elements of 
symmetry, but also texts related to symmetry. Plato already 
in the year 360 BC in the dialogues Timaeus described  
5 ideal bodies with walls formed by equilateral polygons. The 
octahedral shape of diamond crystals was described by 
Plinius (16-79 AD) in the encyclopedia Naturalis historia, and 
Georgius Agricola described the geometric shapes of 
crystals in De natura fossilium published in 1564. 

From the beginning of the XVII. century, Johann 
Kepler's work on the hexagonal shape of snowflakes (1611) 
Strena Seu De Niue Sexangula [1] is known, and his work 
from 1619 De figurarum regularium [2] also deals with the 
symmetry of bodies. Kepler did not yet have the knowledge 
to discover the reason for the hexagonal shape of 
snowflakes, but his reflections on possible causes are 
remarkable. In the first of the listed writings, 
considerations about the tightest placement of spheres in a 
plane and in space, but also about the possibilities of 
perfectly filling a plane or space with identical symmetrical 
objects, are also interesting. It is these considerations that 
make his work interesting even for contemporary 
crystallographers, who still use to quote it in their works. 
The tightest arrangement of spheres was also a 
mathematical problem for a long time, while its exact 
reasoning was mastered only at the end of the 20th century 
[30]. In 2014, Charles University honored Kepler's work [1], 
which is not large in scope, by publishing it with the original 
Latin text and a parallel Czech translation [3]. 
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Some terms used in the theory of crystal symmetry 
are explained in the glossary at the end of this book, while 
the english terminology is in accordance with the publication 
International tables for Crystallography [34]. It was 
sometimes interestng to go back to the past and find out the 
genesis of crystallographic terms. In this context, it was 
primarily the thoughts of Fyodorov and Schoenflies, but 
they also followed on from important predecessors. That's 
why it was interesting to look deeper into the past, when and 
where considerations about the laws of crystal symmetry 
arose. We owe the possibility of looking into older original 
texts to their digitization and the Internet, through which 
one can literally flip through old books. Out of respect for 
older sources, many original names have been preserved in 
this text, including the names of books and magazines. 

Special thanks go to the reviewers of original slovak 
text, who were willing to read it and point out its 
shortcomings. My wife Mileva also read the text before 
publication, and I am indebted to her for the succinct 
comments of the first reader. 

 
Author 
 



10 
 

OUTLINE OF THE DEVELOPMENT OF THE 
THEORY OF CRYSTAL SYMMETRY  
 

 
The timid beginning of the scientific perception of 

the symmetry of crystals can be placed in the XVII. century, 
when Nicolas Steno published his dissertation 4 in 1669, in 
which he described how rocks are formed and how crystals 
grow. In connection with crystals, he stated that during 
their growth, when new matter is deposited on their outer 
surfaces, the angles between the surfaces do not change; 
this fact was named the law of constancy of angles. 

More than a century later, in 1784, René-Just Haüy 
published the results of measuring the angles between the 
walls of calcite, garnet and gypsum crystals [5. He found 
that when the crystals were broken into smaller and smaller 
pieces, their shape in the main features was preserved. On 
this basis he concluded that the crystal was composed of a 
large number of repeating parts; it was essentially a 
hypothesis of the periodicity of the crystal structure. In 
1801, in the Traité de Mineralogie [6, he formulated the law 
of rationality of indices, which expresses the fact that the 
ratio of the size of the sections on the crystal axes, which 
are cut on them by the outer surfaces of the crystal, can 
always be expressed as a ratio of whole numbers. 

The study of the symmetry of crystals continued in 
the XIX. century and resulted in the determination of 32 
types of external symmetry of crystals (so-called crystal 
clases), 14 types of space lattices and 230 types of 
symmetry of the arrangement of atoms in crystals. From a 
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mathematical point of view, they are currently represented 
by 32 point groups, 14 translation groups and 230 space 
groups. The elements of point groups are rotations about 
the axes of symmetry and reflections in the planes of 
symmetry, in which the position of at least one point of the 
crystal does not change, hence their name. The types of 
point symmetry were already derived in 1830 by J.F. Ch. 
Hessel [7], but his work remained unnoticed. They were 
independently derived by the Finnish scientist A. Gadolin 
only in 1867 [9] and for a long time the primacy was 
attributed to him.  Meanwhile, A. Bravais tried to derive 
them, but he failed to derive all of them. Types of space 
lattices represent possible ways of three-dimensional 
periodic arrangement of sets of points, which A. Bravais [8] 
derived in 1848. They are represented by translation 
groups, the elements of which are translations expressed as 
integral linear combinations of three basic vectors; with 
their help, the lattice gets into equivalent positions. The 
first works on space groups, where combinations of 
translations with rotations and reflections are considered, 
are associated with the names of C. Jordan [10] (1868) and 
L. Sohncke [11] (1879). Sohncke derived 65 space groups 
that contained only proper rotations, reflections were 
missing. A complete set of space groups, including 
reflections, was published in 1891 by E. S. Fyodorov [12] and 
A. Schoenflies [13], after a more extensive mutual 
correspondence; however, they have previously published 
articles containing an incomplete number of spacce groups. 
This completed the effort to derive all possible types of 
symmetry of the arrangement of atoms in crystals. 
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Although Schoenflies, unlike Fyodorov, already used 
the mathematical theory of groups, he did not use all its 
possibilities. Moreover, the representation of symmetry 
operations by matrices was absent in both authors. 

Mathematicians also entered the construction of the 
theory of crystal symmetry, especially A. Speiser with his 
book on finite groups [14 and to some extent also G. Pólya, 
with his article in the Zeitschrift für Kristallographie [15. 
Speiser did not derive symmetry groups, but pointed out the 
principles and possibilities of using mathematical group 
theory in this process, including the so-called factor group. 
Pólya showed how group theory can be used in the 
classification of symmetry groups of planar periodic 
structures (ornamentations, wallpapers, etc.). 

Group theory was not consistently used until F. Seitz 
in a series of articles published in the Zeitschrift für 
Kristallographie in 1934–1936 and in his doctoral thesis [16 
published in 1934. In 1945, W. H. Zachariasen published a 
book [17 in which, instead of the matrix algebra used by 
Seitz, he used the algebra of tensors, while also changing 
the procedure for constructing symmetry groups, which he 
demonstrated only with a few examples. 

In the 1950s, Shubnikov [18 expanded the number 
of parameters characterizing an atom in a unit cell from 
three position coordinates to include a parameter that can 
take on two values. These were mainly two possible 
orientations of the magnetic moment, and the corresponding 
groups are known as magnetic groups, black-white groups, 
and Shubnikov groups. The number of possible types of 
symmetry thus increased to 1651. Shortly thereafter, Belov 
and Tarchova [19 considered the situation when the 



13 
 

additional parameter can take on more values (different 
“colours”); the corresponding groups, the number of which 
has again increased significantly, are known as colour groups. 
Shubnikov and Belov summarized the results achieved in the 
book [20 published in 1964. 

In the 1950s, the theory of so-called OD structures 
(Order-Disorder) came to the center of attention of 
crystallographers, dealing with structures that are not 
perfectly periodic in all three dimensions. The Slovak 
crystallographer Slavomil Ďurovič played a significant role 
in the development of this theory. His contribution to the 
theory of so-called polytypes is part of the International 
Crystallographic Tables [24]. 

In 1992, the International Union of 
Crystallographers defined the term aperiodic crystal, which 
means a crystal that appears crystalline from the point of 
view of X-ray diffraction, but in which the three-
dimensional periodicity of the arrangement of atoms can be 
considered absent. Such types include quasicrystals, the 
discovery of which was published by D. Schechtman and his 
collaborators in 1984 [25, further so-called  
incommensurate modulated structures and also  
incommensurate composite crystals, which were pointed out 
in 1992 by the Slovak crystallographer Emil Makovicky [26. 

The following parts of the text describe in more 
detail the results achieved by the aforementioned authors, 
their references to other authors, as well as brief 
biographies illustrating their position and possibilities in the 
society of that time. 
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Johannes Kepler (1571 – 1630) 
 

Kepler is considered 
by some authors to be the 
figure at the beginning of a 
series of important 
crystallographers, because 
already in the first half of 
the 17th century he 
considered the perfect 
filling of space with equal 
regular bodies and 
described the most 
compact arrangement of 
spheres in a plane and in 
space. Kepler is generally 
known as an astronomer, as 
the author of the three laws of planetary motion in the solar 
system, but his interests were much broader. Biographies 
state that he was a German mathematician, astronomer, 
physicist and astrologer. However, he was also interested in 
“earthly” matters and in 1611 he dedicated a thin treatise 
with reflections on the shape of snowflakes to his friend and 
patron Johann Matthäus Wacker 1. The search for the 
causes of their hexagonal shape also led him to solve the 
problem of what bodies could perfectly fill space and how 
spheres could be arranged as compactly as possible in a plane 
and in space. The Russian crystallographer Shafranovsky 
wrote about this work of Kepler [29]:  
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Kepler's "Hexagonal Snowflake" of 1611 is the first 
work on the structure of crystals. Despite its small size, it 
is remarkably rich in ideas. One of his greatest discoveries 
is the geometry of the packing of spheres (as is well known, 
the principle of the closest packing is the basis of modern 
crystallography). He described the cubic closest packing and 
also described two less close-packed ones - hexagonal and 
simple cubic, but he did not realize that there was also a 
hexagonal closest packing. Based on considerations about 
the packing of spheres, Kepler came to conclusions about 
convex bodies that can fill space without gaps. In this 
regard, he anticipated the conclusions of R. J. Haüy (1784) 
and E. S. Fyodorov (1885). Kepler's work also indirectly 
points to the law of constancy of angles in a hexagonal snow 
crystal. Therefore, Kepler can be considered a predecessor 
of the discoverers of this law (N. Steno, 1669, M. V. 
Lomonosov, 1749, Romé de l’Isle, 1783). We are aware of 
Kepler’s ideas about the dependence of all natural forms on 
the forming force of the Earth; in this respect, we consider 
him one of the first predecessors of Pierre Curie and his 
universal principle of symmetry (1894). 

Johannes Kepler was born on December 27, 1571, in 
the town of Weil der Stadt  near Stuttgart. He completed 
his studies at the University of Tübingen in 1593. From 1594 
to 1600, he taught at the high school in Graz, where he 
published the book Mysterium Cosmographicum in 1596. In 
this book, he admirably connected Plato's five ideal solids 
with Copernican heliocentric system. 
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Title pages of Kepler's books - on the snowflake and on the 

regular solids 
 
In 1600, he came to Prague at the invitation of Tycho 

Brahe, where he worked as his assistant. After Brahe's 
death in 1601, he became the imperial mathematician and 
astrologer to Rudolf II. During his stay in Prague, based on 
Brahe's precise measurements, he began to recalculate the 
orbit of Mars. After lengthy calculations, in which he also 
used logarithms, he discovered the first two of his laws. He 
published the results in 1609 in the work Astronomia Nova. 
In 1612 he went to Linz and then to Ulm in 1626. In his work 
Harmonices Mundi (1619) he also addressed the problem of 
convex and stellated polyhedra and published his third law. 
He died on 15 November 1630 in Regensburg. 
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In his treatise on the shape of snowflakes, Kepler 
asks himself at the very beginning of his reflections why 
there are only six-pointed ones, and not five- or seven-
pointed ones. He realized that this was not a coincidence, 
that it must have some cause – either internal or external. 
He concluded that it was the result of some external 
influence, some kind of force. He further wondered what 
this force was, whether it was limited by the internal need 
of the substance, by the pattern of beauty hidden in the 
hexagon, or by the knowledge of the purpose to which it was 
directed? Kepler decided to solve this problem using 
geometry and first turned his attention to the hexagonal 
shape of the cells of honeycombs. 

He stated that at first glance it is clear that the 
honeycombs are built on the basis of hexagons, but the 
bottoms of the cells are formed by three rhombic (diamond) 
faces. The cells are arranged in two layers with their 
bottoms touching each other. Each cell is thus surrounded 
on the sides by six others, with each of them sharing a 
common wall, but its bottom faces also touch three cells of 
the opposite layer. It was precisely the contact of the 
bottom walls that led him to consider whether it was 
possible to construct a body using only rhombic shapes. 
Kepler literally wrote: 

“I have discovered two such solids, one related to the 
cube and octahedron, the other to the dodecahedron and 
trisocahedron. The first of these solids can be constructed 
from twelve rhombuses, the second from thirty.” 3 
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The following image is Kepler’s original drawing of 
these solids, included in the second of five books published 
under the title Harmonices Mundi 4, in which his wide 
interest in natural phenomena is documented. The image is 
taken from the original available on the Internet at 
archive.org.  

 

 
 
Other sentences in Kepler's text already concern the 

perfect filling of space with equal regular solids; they also 
require spatial imagination from the reader: 

"Just  as eight cubes touching at one common corner 
completely fill the space so that no empty space remains 
between them, so the first of the rhombic solids with its 
four obtuse triangular corners and six square corners 
achieves the same. Space can therefore be completely filled 
with rhombic solids by always connecting either their four 
triangular corners or their six square corners at one point." 

As an example of the number of solids touching each 
other when filling space perfectly, Kepler first gave cubes. 
Then he evaluated the number of touching rhombic solids: 
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"However, if we fill the space with identical rhombic 
solids, each of them will touch six square corners and twelve 
other four corners - a total of eighteen solids. This is the 
geometric shape of a solid that can perfectly fill the space, 
just as a hexagon, a square, and a triangle can fill a plane. 
This is also the shape used by bees in building honeycombs, 
except that the honeycombs lack a roof resembling a 
bottom." 

In the next part of the text, he dealt with the 
arrangement of pomegranate seeds, whose originally 
spherical shape filled with juice changes to a rhombic shape 
when squeezed into a limited space. He tried to understand 
why they acquire such a shape and gave several speculative 
reasons. The original spherical shape of the seeds led him to 
consider ways of closely arranging the spheres in a plane and 
in space. And this is another moment that has something in 
common with crystallography, even with the theory of OD 
structures. He wrote about the possible shapes of the 
arrangement of spheres in a plane: 

"For if you place balls of the same size in the same 
plane as closely as possible side by side, so that they touch 
each other, they will form either a triangle or a square. In 
the former case one sphere touches six, in the latter case 
four, adjacent spheres. In both cases it is the same for all 
the bullets, apart from those on the edge. The pentagonal 
shape does not correspond to the tightest arrangement; 
the hexagonal shape can be put together from triangles: 
and so, as has been said, only two arrangements are 
possible."  
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The following image is from Kepler's original text on 
the snowflake. 

 

 
 
He further considered the closest arrangement of 

balls in space: 
“If you want to achieve a structure with the closest 

possible arrangement of balls in space by layering one row of 
balls on top of another (as before in the plane), then the 
structure will be quadrangular (A) or triangular (B). In the 
quadrangular one, the individual balls of the upper layer will 
stand exactly above the balls of the lower layer, or they will 
be located between the four balls of the lower layer. In the 
first case, one ball touches four neighboring balls in its 
layer, and one each in the layer above and below, a total of 
six balls. This corresponds to a cubic structure; if they are 
pressed together, a cube is formed. But this is not the 
closest arrangement. In the next case, the ball touches, in 
addition to the four balls in its layer, four in the lower and 
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four in the upper layer, a total of twelve balls. If we press 
them together, the balls will form rhombic bodies. This 
structure is more like an octahedron and a pyramid. This is 
the most compact arrangement: in no other arrangement can 
more balls be packed into the same container.  

However, if the balls are arranged in such a way that 
the layers are in the shape of a triangle, then in the spatial 
arrangement the individual balls of the upper layer will 
either stand on the balls of the lower layer as in the case of 
the looser arrangement mentioned above, or the ball of the 
upper layer will be located between three balls of the lower 
layer. In the first case, the ball touches six neighboring 
balls in its layer and one each from the layer above and 
below, i.e. a total of eight balls. This structure resembles  
a prism and when compressed, the balls will form columns 
with six sides in the shape of a square and two hexagonal 
bases. In the second way, we achieve the same result as in 
the second variant of the square structure“. 

He concludes these considerations with the sentence: 
“In the case of the closest possible arrangement in 

space, the triangular cannot exist without the quadrangular, 
nor vice versa.” 

Kepler’s work on the shape of a snowflake is usually 
mentioned by some authors (e.g. A. Speiser in his book 14), 
but it was not cited by the real creators of the theory of 
crystal symmetry, Fyodorov or Schoenflies, it is not included 
in the extensive list of literature contained in the book by 
the authors Bradley – Cracknell, and it is not mentioned in 
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the first volume of the International Crystallographic 
Tables. Nevertheless, we believe that its originality 
deserves attention. It received recognition in 2014 with the 
publication of the original with a translation into Czech 3. 

 
Some of Kepler's works: 
1. Mysterium Cosmographicum, 1596 
2. Astronomia nova (1609) 
3. Strena Seu De niue sexangula (1611) 
4. Harmonices Mundi, Lincii Austriae, Anno M. DC. XIX. 
 
Sources: 
1.  https://archive.org/details/bub_gb_Nb8kgmlxUuUC 
2. https://archive.org/stream/ioanniskepplerih00kepl# 
  page/n9/mode/2up 
3. Google books: The Harmony of the World by Johann  

Kepler 
4.  Quoted Kepler texts translated from Latin by Drahomíra  

Dobrovodská, 2017 
  



23 
 

Nicolas Steno (1638 – 1686) 
 

The Danish scientist 
(Niels Stensen) is known in 
crystallography as the 
author of the law of 
constancy of angles. He was 
a pioneer in the field of 
anatomy and geology, and 
began to question the 
previous claims about 
geological development. For 
his research into fossils, 
rock formation, and the 
conclusions he drew from it, 
he is considered the 
founder of modern stratigraphy and modern geology. He 
made the first careful observations of crystal types and 
published them in his dissertation "De solido intra solidum 
naturaliter contento" in 1669. In his work, he stated that 
during the growth of crystals, when material is deposited on 
their outer surfaces, the angles between the surfaces do 
not change during this process. This finding is known as 
Steno's law, or Steno's law of constancy of angles, or the 
First Law of Crystallography. It was the first step on the 
path to modern crystallography, with the next step being 
taken more than 100 years later by R. J. Haüy with the 
formulation of the law of rationality of indices. Steno's 
dissertation – (Dissertationis Prodromus) – is often 
considered the beginning of crystal science. 
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Steno was born in Copenhagen to a poor Protestant 
family. When he was three years old, he fell seriously ill, and 
so he lived in isolation for a long time during his childhood. 
At the age of 19, he began to study medicine at the 
University of Copenhagen. After completing his studies, he 
traveled extensively, visiting the Netherlands, Germany, 
France and Italy, where he settled permanently in 1666. He 
first worked as a professor of anatomy at the University of 
Padua, then in Florence as a house physician to the Medici 
family. He became a member of the Academie di Cimento. 
Meetings with leading physicians and scientists in various 
countries significantly influenced his further work, led to 
the use of his own judgment and ultimately to significant 
scientific discoveries that often contradicted previous 
views. After converting to the Catholic faith in 1667, his 
interest in natural sciences decreased significantly, and he 
became interested in theology. He was ordained a priest in 
1675 and was soon appointed Vicar Apostolic and Titular 
Bishop by Pope Innocent XI. He was prominently involved in 
the Counter-Reformation in northern Germany and was 
venerated as a saint after his death. The canonization 
process began in 1938 and was completed in 1988 by Pope 
John Paul II. 

A significant part of the dissertation is devoted to 
geological issues and fossils. Steno dealt with the 
explanation of the layered nature of rocks, the origin of 
mountain ranges and the origin of various stones. He came 
to the opinion that the layered structure of rocks is the 
result of sedimentation in the seas. 
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Title pages of the original dissertation from 1669 

and the English translation from 1671 
 

He also devoted part of his dissertation to crystals, 
specifically considering the method of their formation. He 
argued that crystals in rocks are formed in the same way as 
those that arise from aqueous solutions - by the gradual 
deposition of matter on the surface, and not like plants - by 
receiving "nutrition" from the soil. By crystal he meant 
mainly quartz, describing its hexagonal symmetry, the 
termination of a hexagonal prism with a hexagonal pyramid. 
He also notes its imperfections, for example, the disruption 
of the smoothness of the surfaces, or the inequality of the 
triangles of the top pyramid. He concluded that during the 
growth of a crystal, a new substance is not added to all 
surfaces at once, nor in the same amount. He discovered 
that the axis of the pyramidal part of a crystal is not always 
parallel to the axis of its prismatic part, that the pyramidal 
faces are not always triangular in shape, and the prismatic 
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parts are not always tetragonal in shape. The most 
significant result of Steno's study of crystals, however, is 
the law of constancy of angles. 

The beginning of the text about crystals is marked 
with a note in the margin of the text: 

 

 
 
Free translation: As for the formation of crystals, I 

do not dare to express an opinion as to how their initial shape 
is formed; however, it is indisputable that much of what I 
have read from other authors on this problem was beside 
the point. 

To illustrate Sten's considerations, we will present 
his idea of the shape of a crystal (by which he means a 
quartz crystal) and the introductory definitions of the 
terms he used in the following text: 

 

 
The crystal consists of two hexagonal pyramids and a 

prism between them, which is also hexagonal. The angles 
formed by the vertices of the pyramids I call terminal solid 
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angles, but those formed by the connection of the pyramids 
with the prism I call intermediate solid angles.  

Steno's essential contribution from the point of view 
of crystallography – on the constancy of angles during 
crystal growth – is in the following text and figure: 

 

 
 

The text about the constancy of angles is found at 
the end of the dissertation, on the last two pages, in the 
comments to the figures, specifically to figures number 5, 6 
and especially to figure 13, where he formulated it 
particularly clearly: 

Figure 13 shows that as new crystal mass is deposited 
on the surfaces forming the pyramid, in the plane of the 
base the length and number of sides change in various ways, 
but without changing the angles. 

 
In Steno's native country, on the website 
http://denmark.dk/en/meet-the-danes/great-

danes/scientists/niels-stensen 
his contribution to crystallography is evaluated in the 
following words: 

 
"Crystalography gained its scientific foundation with 

Steno's discovery that as crystals grow, material is 
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deposited on their outer surfaces, the angles between the 
surfaces remaining unchanged during this process." 

After its first edition in 1669, the dissertation was 
published as a copy of the original in 1679, 1763, 1904 and 
1910, and in several translations – 1671 and 1916 in English, 
1757 and 1832 in French and 1902 in Steno's native language 
– Danish. Other editions of the original work can also be 
found on the Internet. 

The law of constancy of angles was generalized and 
established by Jean-Baptiste Romé de l'Isle 
(Cristallographie, Paris, 1783), who measured the angles 
between the walls of many types of crystals. 

 
Steno's most important scientific publications point to his 
initial interest in anatomy: 
Observationes anatomicae (1662) 
De musculis et glandis (1664) 
Discourse on the anatomy of the brain (1665) 
Canis carchariae dissectum caput (1667) 
Elementorum Myologiae Specimen, seu musculi descriptio 
geometrica (1667) 
De solido intra solidum naturaliter contento dissertationis 
prodromus (1669) 
 
Sources: 
https://archive.org/details/ita-bnc-mag-00001426-001 
https://archive.org/stream/prodromusnicola00wintgoog#p
age/n0/mode/2up 
http://www.e-rara.ch/zuz/content/pageview/11339638 
https://en.wikipedia.org/wiki/Nicolas_Steno 
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René – Just Haüy (1743 – 1822) 
 

French scientist 
known for proposing that 
crystals are composed of a 
number of small, regularly 
arranged elementary 
particles (1784) [5 and for 
formulating the law of 
rationality of indices (1801) 
[6. Often called Abbé 
Haüy, or the "Father of 
Modern Crystallography". 

He was born in the 
town of Saint-Just-en-
Chaussée, in the Oise region of northern France. He came 
from a poor family, and was able to study only thanks to the 
kindness of his parents' friends. After studying at the 
College de Navarre and the College de Lemoine, he was 
ordained a Catholic priest. He began as a teacher at the 
College de Lemoine, where he worked for 21 years. He was 
interested in botany, but an accident, when a calcite crystal 
fell out of his hand and broke, led him to study minerals. The 
pieces of the broken crystal had the same shape as the 
original one, which prompted him to experiment with 
crystals of other minerals (gypsum, topaz, garnet). He 
conducted a number of experiments, from which he 
concluded that crystals of the same composition always have 
a nucleus of the same shape, regardless of their external 
shape. He expressed the opinion that the basic building 
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blocks of crystals are regularly arranged, which essentially 
meant their periodic arrangement. He published the first 
findings of his research in 1781 in the Journal de physique 
and then in 1784 in the book Essai d'une théorie sur la 
structure des crystaux. During his experiments, he also 
measured angles on crystals and confirmed the law of 
constancy of angles formulated by N. Steno over a century 
earlier, when he wrote (free translation): 

 
The angles and axes of crystals are constant, no 

matter the country the crystal comes from. 
 
The second important finding, the law of rationality 

of indices – was published in the five-volume work Traité de 
mineralogie in 1801 (each volume had over 500 pages). The 
illustrations for the entire work are concentrated in the 
fifth volume and document the author's precision. He also 
wrote about crystals and minerals in the following years, the 
last such publication being published in the year of his death 
in 1822. 

Haüy also had to create the necessary terminology. 
In his ideas about the structure of a crystal, he called the 
elementary building blocks “molécules cristallines” and 
“molécules intégrantes”, while in special cases he specified 
them, e.g. “molécules rhomboidales”. When splitting a 
crystal, he proceeded until he arrived at its “core”. He 
recognized primitive and secondary shapes of the cores. He 
identified primitive shapes with integrating molecules and 
distinguished three of their types (“types of the simplest 
regular bounded bodies”), which have an impact on the 
external shape of the crystal: 
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triangular pyramid, triangular prism and tetrahedral prism. 
 

 
Title pages of two of Haüy's most important mineralogical 

publications 
 

He also used the regularity of shape to define a 
crystal (1784): 

 

  
 

"A mineral characterized by a regular shape and walls that 
have the shape of geometric figures is called a crystal." 
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 Image and text from the book Essai d´une theorie sur la 
structure des crystaux (1784). In the image (fig. 22) the 

vertices of one of the crystal walls are marked, in the text the 
angles between the edges are given. 

 

 
 Text and image from the book Traité de mineralogie (1801). They 
concern the law of rationality of indices. The text indicates the 
ratios of the lengths of the sides, which are equal to the ratio of 
whole numbers.  
 
It is remarkable how precisely Haüy 
expressed the angles between the 
edges of crystals, since he could not 
have had a goniometer of current 
quality at his disposal. A goniometer 
suitable for measuring the angles of 
crystals was constructed by Romé de 
l'Isle in 1780, and the reflective 
goniometer by Wollaston only in 1809. 
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The image on the side documents Haüy's idea of the 
structure of a crystal consisting of "molecules". 

Haüy was also interested in physics, and wrote a 
textbook on electricity and magnetism, in which he also 
wrote about pyroelectricity. In 1795 he became a physics 
teacher at the Ecole Normale. He was a member of the 
commission appointed to determine the metric units of 
weights and measures (1793). In 1802 Napoleon appointed 
him professor of mineralogy at the Musée d'historie 
Naturelle in Paris, and from 1809 he held a similar position 
at the Faculté des sciences of the Sorbonne University. In 
1814 he was dismissed from his position by the Bourbons and 
was left practically without funds. Despite this, he worked 
intensively and in 1821 he was accepted as a member of the 
Swedish Academy of Sciences. His name is listed among the 
names of the most important figures of France on the Eiffel 
Tower. 

Haüy cited the works of both predecessors and 
contemporaries. 
In the first book Essai d'une théorie (1784), the authors 
were: 

M. Bergmann, M. Daubent (Tableau Mineralogique), I. 
Newton (Optics, birefringence), M. Sage (Eléments de 
Minéralogie). 
In the introduction to Traité de minéralogie (1801), he 
mentioned the authors: 

Wullerius: Systema mineralogica (1778), De l’Lisle: 
Cristallographie (1785), 

Emmerling: Lehrbuch der Mineralogie (1793), 
Karsten: Mineralogische  

Tabellen, 1800, Daubenton: Tableau méthodique des 
mineraux, 

Borchant: Traité élementaires de mineralogie, Paris 
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He mentions M. Bergman in connection with the processes of 
crystallization, M. Daubent – his teacher – as the author of 
mineralogical tables and I. Newton in connection with optics, 
especially birefringence. 

Haüy published a lot, wrote several books and 
articles. 

 
Book publications related to crystals: 
1. Essai d'une théorie sur la structure des crystaux (1784) 
2. Exposition abrégé de la théorie de la structure des 

cristaux (1793) 
3. Traité de minéralogie (5 volumes, 1801) 
4. Tableau comparatif des résultats de la cristallographie, 

et de l'analyse  
5. chimique relativement à la classification des minéraux 

(1809) 
6. Traité de cristallographie (2 volumes, 1822) 
 
 
He published articles mainly in the journals 
Journal de physique and Annales du Museum d'Histoire 
Naturelle, of which 100 are registered in the Royal 
Society's catalogue. 
 
Sources: 
1. http://gallica.bnf.fr/ark:/12148/bpt6k97620795?rk=10

7296;4 
2. http://gallica.bnf.fr/ark:/12148/bpt6k1060890?rk=128

756;0 
3. https://archive.org/details/TraiteDeMineralogieTomeQ

uatrieme 
4. https://en.wikipedia.org/wiki/Ren%C3%A9_Just_Ha%C

3%BCy 
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Johann Friedrich Christian Hessel  
(1796 – 1872) 
 

A German scientist who 
took the lead in the effort to 
develop a mathematically based 
systematics of the types of 
symmetry of crystals, as well as 
other bounded regular 
geometric objects. He derived 
the types of their symmetry, 
including 32 types of external 
symmetry of crystals (crystall 
classes). He published his more 
than 300-page work in 1830 in 
the fifth volume of the 
encyclopedia Gehlers Physikalische Wörterbuch as the entry 
Krystall [7], but the work did not reach the attention of 
crystallographers and remained unnoticed. L. Sohncke, who 
was the first (1876) to begin constructing crystallographic 
space groups, did not cite it either. But Sohncke atoned for 
his inattention when in 1891 published a 12-page article 
praising Hessel and his work in the journal Zeitschrift für 
Krystallographie und Mineralogie. The thirty-two types of 
symmetry were not derived again until 37 years later by 
Axel Gadolin. Hessel's work was published in book form 
under the title Krystallometrie oder Krystallonomie und 
Krystallographie only after his death in 1897, divided into 
two volumes. A year before his death, in 1871, he published 



36 
 

another book on geometry: Uebersicht der gleicheckigen 
Polyeder, but he did not deal with the symmetry of crystals 
in it. 

Hessel was born in Nuremberg to a merchant family. 
In 1813 he began studying medicine in Erlangen, continued in 
Würzburg, while simultaneously studying mathematics and 
natural sciences. He completed this study in 1817, went to 
Munich for further studies and soon became an assistant at 
the University of Heidelberg. There he continued his 
studies, devoting himself to crystallography, mathematics, 
physics and chemistry. In 1821 he received his doctorate in 
philosophy and at the same time the opportunity to work as 
a private lecturer at the university. In the same year he was 
invited as an extraordinary professor of mineralogy and 
applied sciences to Marburg, where after four years he 
became a full professor. He remained there for 50 years 
until his death. In 1830/31 he worked at the Philips-
Universität Marburg as rector. 

In the introduction to his work, Hessel stated the 
goal he pursued in writing it: 

I have attempted to place on a purely mathematical 
basis the consideration of the equivalence of spatial forms 
and to distinguish the various types of these equivalences 
more strictly than has been done hitherto. To take into 
account not only the shapes of crystals, but the shapes of 
all conceivable forms, although – partly tacitly, sometimes 
explicitly – to give preference precisely to the shapes of 
crystals of all so-called crystall systems. 

This is the only mention of crystall systems in the 
entire work. He built his theory by first determining the 
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possible types of symmetry axes and then their possible 
combinations. He divided the axes of symmetry primarily 
into non-polar (gleichendig) and polar (ungleichendig), and 
then in more detail into up to 7 types. He classified the 
types of symmetry mainly according to the presence of a 
main axis, its multiplicity and the number of secondary axes. 
He created the necessary terminology and symbols. When 
classifying the types of symmetry, he used the term "axis 
system" (Axensystem) in addition to the term "ray system" 
(Strahlensystem), by which he meant a set of line segments, 
originating from a single point, representing significant 
directions in the described type of symmetry (for example, 
a set of line segments that arise by successive rotations 
around an n-fold axis of symmetry). For bodies (objects) 
that can be identified by rotation, he used the term 
ebenbildlich gleich and for objects that can be identified by 
reflection, the term gegenbildlich gleich. For p-multiplicity 
of symmetry axes, he used the term p-gliedrich. He also 
introduced Latin equivalents of already common terms, e.g.  
figura ternoradiata and the like. 
In the introduction to his work, Hessel defined a crystal, 
which he understood as a natural solid homogeneous body 
that is completely or partially bounded by plane surfaces. 
His procedure for determining types of symmetry is 
documented in the chapter headings of the book 
Krystallometrie: 
• On surfaces and ray systems in a plane 
• On types of axes (symmetry) 
• On the center (symmetry) and different types of axes of 
a body 
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Title pages of Hessel's books 

• Ray systems and axis systems of objects with a principal 
axis 
• Ray systems and axis systems of objects without a 
principal axis 
• Description of simple objects with a principal axis and their 
surfaces 
• Description of simple objects without a principal axis and 
their surfaces 
• Calculation of important relations in figures with a principal 
axis 
• Calculation of important relations in figures without a 
principal axis 
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• Über das Gerengesetz, und über gerengesetzliche 
Strahlenveraine... 
    loosely translated: On the law of the formation of 
parallelograms from rays 
• The shape and structure of crystals 
• Essential data from the history of crystallography 

The main result of his work – the possible shapes of 
symmetrical objects, including crystals (Krystallgestalten), 
was clearly presented in four tables. Fig. 1 shows the first 
of the tables, which lists the shapes (types of symmetry) of 
crystals characterized by four threefold axes, i.e. crystals 
belonging to the cubic crystallographic system. Their 
number corresponds to the number of point groups of this 
system. (Following the Hessel's publications, the figures are 
included at the end of the text.) 
36 types of symmetry are described in the four tables 
compiled by Hessel. The table with 32 types of point 
symmetry of crystals was compiled by the publisher of 
Hessel's book after his death and included in the appendix 
to the book (Fig. 2). Hessel also described the symmetries 
of objects in which "non-crystallographic" axes of symmetry 
occur (dodecahedron, icosahedron), as the text in Fig. 3 
shows. 
 In addition to the derivation of 32 crystall classes, it is 
also necessary to mention Hessel's construction of a plane 
lattice and space lattice. This part of his publication has the 
difficult-to-translate title Ueber das Gerengesetz... The 
essence of the idea was to create a set of parallelograms based 
on two line segments (rays – Strahlen) emanating from one 
point, as can be seen from a copy of Hessel's text (Fig. 4)  
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and the corresponding images (Fig. 5). The two rays 
(segments) B and D, which according to current terminology 
form the basis of the unit cell, allow the creation of a third 
ray, which is the diagonal S' of the cell (it is actually a sum 
of vectors). This ray and ray B again form a cell with diagonal 
S'', etc. Similarly, the ray S' can be combined with the ray 
D, thereby creating a plane network – a plane lattice. For the 
pair of fundamental rays (vectors) of a plane lattice he used 
the symbols [B, 0D], or [0B, D], for the rays formed by their 
combination the symbol [mB, nD], where m and n are 
integers, according to Hessel Maasszähler. In the three-
dimensional case he used the notation [lA, mB, nD], while 
from today's point of view these are clearly lattice vectors. 
Although he did not yet use the term lattice, it is clear that 
his considerations were directed towards it. And this is a 
significant step, although probably not yet conscious, from 
the description of the external symmetry of crystals to the 
symmetry of their internal arrangement. Therefore, Hessel 
can be considered to some extent a predecessor of Bravais, 
although he did not yet distinguish between types of 
lattices. 
 In the chapter on the method of creating a space 
lattice, he also described a possibility of expressing the 
orientation of a plane in such a lattice. For this purpose, he 
used the coordinates of the normal of such a plane. He 
showed that if a plane cuts off segments x, y, z, (rational 
numbers) on the basic rays, then the coordinates of the 
normal are their inverse values. Figure 6 shows the 
conclusion of Hessel's original text (normal = Träger) 
concerning this problem. The results of his considerations 
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are documented in a table (Fig. 7), the first column lists the 
symbols of specific planes and the last column lists the 
coordinates (Maasszähler) of the normal of the relevant 
surface, essentially their Miller indices. The comma above 
the number has the meaning of a negative sign before the 
number. Therefore, Hessel can also be mentioned as an 
unquoted predecessor of Miller. 
 In the text in Fig. 4, it can be seen that he writes 
about rational numbers, which the author of the assessment 
of Hessel's significance, published in the appendix to the 
book edition of his work, relates to the law of rationality of 
indices. Hessel cited Haüy's work from 1801, so it is likely 
that he was considering this connection. 

Hessel thus entered the history of crystallography 
not only by determining 32 crystall classes, but also by his 
other considerations. He sensed the path of further 
development of the description of crystal symmetry, but his 
ideas only became known to crystallographers after his 
death, when they were already known as the results of the 
works of other authors. 
 Like Haüy, he cited authors whose works he referred 
to or wanted to draw attention to. The (incomplete) list of 
authors he cited in his work Krystallometrie is interesting, 
testifying to the development of crystallography in his time: 
Haüy: Traité de minéralogie, Hoffmann: Handbuch der 
Mineralogie, Weiss: Dynamische Ansicht der Krystallisation, 
Neumann: Beiträge zur Krystallonomie, Naumann: Grundriss 
der Krystallographie, Mohs: Grundriss der Mineralogie, 
Grassmann: Zur physischen Krystallonomie, Marx: 
Geschichte der Krystallkunde. 
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Figures 
 

 
Fig. 1 

 

 
Fig.2 
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Fig.3 

 

 

 
Fig. 4 
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Fig. 5 

 

 
Fig. 6 

 

 
Fig. 7 
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Hessel's works on symmetries and polyhedra 
1. Krystall – entry in the encyclopedia Gehlers 

Physikalische Wörterbuch 1830 
2. Uebersicht der gleicheckigen Polyeder, Marburg 1871 
3. Krystallometrie oder Krystallonomie und 

Krystallographie, Leipzig 1897 
 

Sources: 
 

1. https://archive.org/stream/krystallometrie00hessgoog
#page/n3/mode/2up 

2. https://archive.org/stream/krystallometrie01hessgoog
#page/n3/mode/2up 

3. https://de.wikipedia.org/wiki/Johann_Friedrich_Christi
an_Hessel 
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Auguste Bravais (1811 – 1863) 
 

A French scientist who made 
his mark in the history of 
crystallography by deriving fourteen 
types of space lattices, which was the 
first step from describing the 
external symmetry of crystals to 
describing the symmetry of their 
internal arrangement. In December 
1848, at a meeting of the French 
Academy of Sciences, he delivered a 
lecture, Mémoire sur les systémes 
formés par des points distribués régulierement sur un plan 
au dans l’espace [8], in which he described possible types of 
symmetry of periodically arranged points in a plane and in 
space. A year later, he published the work Sur les polyèdres 
symétriques, where he described polyhedra and their 
classification according to the elements of symmetry (axes, 
planes) they are characterized by, i.e. essentially the point 
symmetry of crystals. In the work Études 
crystallographiques, published in 1851, he also dealt with the 
symmetry of the internal arrangement of crystals. Bravais's 
collection of works on crystallography was published 
posthumously in 1866 as Études crystallographiques, 
together with a review by a commission of the French 
Academy of Sciences headed by the mathematician Cauchy. 
His works had a significant influence on both the 
morphological and structural study of crystals. 
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Bravais was born in Annonay and graduated from the 
Collège Stanislas in Paris. In 1829, he won first prize in a 
mathematics competition and was accepted at the École 
Polytechnique, where he was a classmate of the eminent 
mathematician Évariste Galois. Shortly before graduating, 
he became a naval officer, participated in hydrographic 
surveys along the Algerian coast, and also took part in 
research expeditions to Spitsbergen and Lapland. In 1840, 
he began lecturing a course in applied mathematics for 
astronomy students at the Faculty of Sciences in Lyon, 
where he headed the Department of Physics at the École 
Polytechnique from 1845 to 1856. He became a member of 
the Académie Royale des Sciences, the Belles Lettres et 
Arts de Lyons, and the Académie de Sciences.  

He also studied magnetism, aurora borealis, 
meteorology, geobotany, astronomy, and hydrography. His 
work on the theory of measurement errors is known from 
1846, and in 1847 he published his first reflections on 
crystallography. 

In his most famous work – on systems of points 
regularly distributed in the plane and in space – he first 
defined the necessary concepts and created his own 
terminology. He distinguished between a rectilinear lattice 
(rangée), a planar lattice (réseau) and a space lattice 
(assemblage). The work has the following chapters: 

On plane lattices in general, On symmetrical plane 
lattices, On space lattices in general, On symmetrical space 
lattices, On polar space lattices. 
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Bravais first described how a space lattice – a system 
of periodically spaced points – can be created by 
successively placing points on a line, in a plane and finally in 
space. He expressed the procedure as follows: 

If we want to create a regular system of points in 
space, we take two arbitrary points, connect them with a 
line, which we extend to infinity on both sides. We place an 
infinite series of other points on this line, equidistant from 
each other. ... The basic distance between two adjacent 
points will be called the parameter of the line lattice 
(paramétre de la Rangée). 

From such lines, parallel to each other with a constant 
distance between them, he created a planar lattice and from 
mutually parallel lattice planes a space lattice. In this 
construction, it was necessary to choose first the distance 
between the points, then the distance between the lines and 
finally the distance between the planes. In the following 
text, he set himself the opposite task – how to find these 
parameters of a three-dimensional lattice that already 
exists. He gradually sets out tasks in the text and solves 
them. For the first task (Problem I.), he set himself the task 
of finding lattice lines, lattice planes and a space lattice for 
a given system of points. In the original text: 

 

 
 

Problem number XIII was to find the so-called principal 
triangle in a plane lattice. 
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He solved the problem as follows: 
In a plane lattice, we choose an arbitrary lattice point O and 
among the other lattice points we search for the one that is 
closest to it. Let A be that point, then OA is the smallest 
lattice parameter. Through points O and A we draw lines Op 
and Am perpendicular to line OA, and in the bounded space 
pOAm we search for the next closest lattice point B. 
The three points OAB form the main (principal) triangle of 
the lattice, by completing it with a parallelogram we obtain 
 the main (principal) parallelogram, i.e. according to 
current terminology a unit cell.  

To determine the position of lattice points, he used 
integer coordinates, so that the basic length units in two 
basic directions in the plane were the parameters of the 
corresponding lattice lines. On their basis, he expressed the 
equations of the lattice lines and their (directional) indices. 

Bravais first considered lattices regardless of their 
symmetry, in the following chapter he devoted himself to 
symmetric lattices (according to him, these are those that 
contain a line dividing the lattice into two equal parts, i.e. 
lattices with a plane of symmetry). In planar lattices, the 
"Bravais" axes of symmetry lie in the plane of the lattice, 
are lattice lines, and there is an axis perpendicular to each 
axis of symmetry. Already in the plane, he introduces a 
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centered lattice, i.e. a lattice with a main parallelogram in 
the middle of which there is a lattice point. 

According to the multiplicity of the axis of symmetry 
in the plane, he distinguished four "classes" of lattices (a 
class without an axis of symmetry, with a two-fold, four-fold 
and six-fold axis). In each of them there is a primitive main 
parallelogram, and in the case of a two-fold axis of 
symmetry also a centered parallelogram, which together 
represents five types of plane lattices. In the original 
French text, two "modes" - two types of lattices are 
distinguished for the third class: 

 

 
 
He also used integer coordinates of lattice points in 

describing spacelattices, gave equations of lattice planes, 
used Miller indices, and defined the elementary 
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tetrahedron. (W. H. Miller introduced indices in 1839 in his 
work Traetice on Crystallography.) For symmetric space 
lattices, he proved that only two-fold, three-fold, four-fold, 
and six-fold axes of symmetry are possible, and that the 
planes of symmetry are the lattice planes or planes parallel 
to them. He classified fourteen types of space lattices into 
seven crystallographic systems (Classe), and in each he 
stated the number of lattices: 

 
cubic (terquaternaires) 3, hexagonal (senaires) 1, 

tetragonal (quaternaires) 2, trigonal (ternaires) 1, rhombic 
(terbinaires) 4, monoclinic (binaires) 2, triclinic 
(asymetrique) 1, a total of 14 types. 

 
In the French original, the part of the text 

describing the three types of lattices of the cubic system 
has the following form: 
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In english translation: 
Three different types of arrangement: 
1. Cube; 
2. A centered cube, which can be replaced by a 

rhombohedron with an angle of 120 degrees; 
3. A cube with centered faces, which can be replaced by a 

rhombohedron with an angle of 70 31’ 44’’,  or a centered 
prism with a square base, whose height is √2 times the 
length of the base. The regular tetrahedron and the 
regular octahedron can also serve for this third type. 

 
Bravais also attempted to describe the types of 

symmetry of polyhedra, i.e. bounded figures, in today's 
terminology point groups. In his article on polyhedra – Sur 
les polyèdres symétriques, published in 1849, he 
distinguished 23 types of symmetry based on his criteria. 
He distinguished 

 
• asymmetric polyhedra, 
• polyhedra without axes of symmetry (with only a center 

of symmetry, or a plane of symmetry), 
• polyhedra with a principal axis of symmetry and 
• spherohedral polyhedra (they have more than one 

equivalent axis of symmetry). 
 

In doing so, he defined the elements of symmetry (center, 
axis, plane) and also considered 5-fold axes. He proved that 
in every bounded polyhedron there can be at most one 
center of symmetry, that the axes and planes of symmetry 
must intersect at one point. However, he did not derive all 
types of symmetry of polyhedra, he overlooked those in 
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which a four-fold rotoinverse axis occurs, which Hessel had 
already included under the name "Gerenstelligkeit" before 
him and Gadolin after him under the name "sphenoidische 
Symmetrie". 

 

 
Bravais' table of types of symmetry of polyhedra in German 

translation 
 

In his work Études cristalllographiques, published in 
1851, Bravais also dealt with the symmetry of the internal 
arrangement of crystals. He considered points distributed 
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regularly in space to be the geometric centers of the 
molecules of which the crystals are composed. Based on the 
reticular density of these points, he was able to explain the 
cleavability and also the external symmetry of crystals. He 
devoted a separate chapter to considerations of crystals 
consisting of molecules: 

 

 
 
This work includes a picture  (on next side), showing 

that he used stereographic projection to indicate the 
positions of symmetry elements. It was later consistently 
used by Axel Gadolin (1867). 
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Title pages of Bravais' crystallographic publications 

in French (1866) and German (1897) 
 
Bravais's important works related to crystallography: 
1. Mémoire sur les systémes formés par des points 

distribués régulierement sur un plan au dans l’espace, 
Paris 1848, 1850, Leipzig 1897, New York 1969, 2005 

2. Sur les polyèdres symétriques, Paris 1849, Leipzig 1890 
3. Études cristalllographiques, Paris 1851 
4. Collected edition of these works under the title Études 

cristalllographiques Paris 1866 
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Bravais cited authors:  
Poisson, Cauchy, Frankenheim, Gauss, Weiss, Haüy, Miller  
He did not cite Hessel 

 
Sources used 
1. http://gallica.bnf.fr/ark:/12148/bpt6k96124j.r=August

e%20Bravais%20%C3%89tudes 
%20cristallographiques?rk=21459;2 

2. https://archive.org/details/abhandlungberdi00bravgoog 
3. https://en.wikipedia.org/wiki/Auguste_Bravais 
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Axel Gadolin (1828 – 1892) 
 

A Finn by origin, who 
made a significant 
contribution to the modern 
view of the systematics of 
crystals in terms of their 
external symmetry types. He 
published the results of his 
considerations in an article 
entitled Derivation of all 
crystallographic systems and 
their separations on the basis 
of a single principle, which he 
published in 1869 in the 
journal Zapiski imperatorskogo russkogo mineralogičeskogo 
obšestva [9. It was published in French two years later in 
the journal Acta Societatis Scientiarum Fennicae. However, 
the title page of the German edition (1896) states that the 
work was “read” as early as March 1867. Since Hessel's work 
on the derivation of the 32 point groups was not yet in the 
consciousness of crystallographers at that time, practically 
until the end of the 19th century Gadolin's primacy was 
acknowledged. For this work, he was awarded the M. V. 
Lomonosov Prize, received a doctorate in mineralogy, and 
became a member of several domestic and foreign scientific 
societies. 
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Gadolin was born in the city of Somero, in what is now 
Finland, which at that time was part of Tsarist Russia. He 
served his entire life as an officer in the Tsarist army, 
where he achieved the rank of general towards the end of 
his life (1890). He prepared for a military career at the 
cadet school and after graduating in 1847 became captain of 
the Guards Artillery. As early as 1849, he began working as 
a teacher at the Artillery School and in 1856 became its 
director. He dealt with artillery technology, mechanical 
metalworking, mineralogy and crystallography. He became a 
member of the St. Petersburg Academy of Sciences and the 
Imperial Academy of Sciences. He died in St. Petersburg. 

It should be noted that several crystallographers had 
tried to derive the point groups of crystals before him, for 
example Bravais, but – with the exception of the forgotten 
Hessel – they had not derived all of them. In the 
introduction to his work, Gadolin cites this fact as the 
reason why he undertook this task. 

He was already aware that the external shapes of 
crystals are conditioned by the action of molecular forces, 
as evidenced by a part of the text from the introduction to 
the work: 

 

 
 
"However, it should be remembered that the 

external shape of crystals is only a consequence of the 
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action of molecular forces, which entitles us to consider the 
laws that determine these shapes as physical qualities." 

 
Gadolin, unlike 

Hessel, was concerned only 
with crystallographic 
symmetries,  and he divided 
the types of symmetry into 
six crystall systems. In the 
introduction to this work he 
wrote: 

In addition to the 
general laws governing 
crystals (the planar shape of 
the surfaces, the constancy 
of the angles, and the 
rationality of the ratios of 
the surface parameters on 
certain axes), several special 
laws can be discovered that apply only to certain groups of 
crystals. These are the groups known as crystall systems, 
with their further division into holohedral, hemihedral, 
tetartohedral, and hemimorphic. 

An important part of his work was the use of 
stereographic projection to depict the positions of 
symmetry elements. This is probably related to his artillery 
profession, which required him to deal with cartography. 
Some authors give him precedence in this respect, but 
indications of the use of stereographic projection in 
crystallography can be found already in Bravais. 
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The sequence of Gadolin's considerations can be seen 
through the headings of the individual chapters: On the 
equivalence of directions (Gleichheit der Richtungen), On 
the axes of symmetry (Deckaxen), On the laws of symmetry, 
General overview of crystall groups, Arrangement and 
multiplicity (Dimension) of characteristic crystall axes and 
the last chapter List of simple shapes of some crystall 
groups. 

It should be noted that by the term group he did not 
mean its mathematical content, but a set, or rather a group, 
whose members (elements) meet certain criteria: 

 

 
"... we group together those crystals in which the 

number and arrangement of equivalent directions are the 
same..." 

He proceeded consistently in his reasoning, after 
stating a statement, he always followed it with proof. Some 
of his statements: 

§ 4. It can be easily proved that the smallest cover 
angles cannot have other values than 60°, 90°, 120° and 180°. 

§ 10. It is now not difficult to find all possible 
combinations of sixfold, fourfold, or twofold axes. 

§ 12. Apart  from  the  six  cases  of  combinations of 
axes of symmetry given in  § 10. and § 11., the four cases 
where there is a single axis of 60° (Fig. 50), 90° (Fig. 35), 
120° (Fig. 53), or 180° (Fig. 41), and the last case without an 
axis of symmetry, there is no other case. 
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§ 15. A twofold, fourfold, or sixfold axis of rotation, 
in combination with the laws of parallelism, conditions the 
existence of a plane of symmetry perpendicular to it. 

§ 19. In Chapters II and III, 32 crystallographic 
groups were introduced, which can be divided into six 
classes. These classes are nothing other than the generally 
accepted crystall systems. 

He did not present the summary of the derived point 
groups in a table, but in condensed text, as shown by the 
detail of the page on which he listed the 5 point groups of 
the cubic system; next to the text is a stereographic 
projection of one of them: 
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He included not only the geometric 
shape of the crystal but also its 
physical properties in the properties 
of symmetry. He wrote: 
Two directions that are equivalent 
with respect to the external shape of 
the crystal also exhibit identical 
physical behavior. 

 
And a little further on: 

 
We consider those groups to be different which differ in 
the number and arrangement of equivalent directions, and 
when it is true that directions which are in the same relation 
to the shape of the crystal also show the same physical 
properties. This principle is so generally accepted that it is 
not uncommon for the definitive belonging of a group of 
crystals to one or another crystallographic group to be 
determined on the basis of physical properties. 

In one of the appendices he also dealt with the law of 
rationality of indices, as follows from the following heading: 
 

 
 

Gadolin's work Derivation of all crystall systems and 
their separations on the basis of a single principle, which he 
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developed as early as 1867, was successively published in 
Russian, French and German: 

 
 Вывод всех кристаллографических систем и их 

подразделений из общего начала, Записки Имп. 
русского минерал. общ., IV, 1869.  

 Mémoire sur la déduction d'un seul principe de tous 
les systémes cristallographiques avec leurs 
subdivisions, Acta Societatis Scientiarum Fennicae, 
IX, 1871.  

 Abhandlung über die Herleitung aller 
Kristallographischer Systeme mit ihren 
Unterabtheilungen aus einem einzigen Prinzipe, 
Leipzig 1896.  

 
Gadolin cited the authors: von Naumann, Haidinger, 
Kokscharov, Pasteur, Sacchi, Miller, Weiss, but did not cite 
Bravais or Hessel. 

 
 

Sources: 
1. https://archive.org/stream/abhandlungberdi02grotgoog

#page/n6/mode/2up 
2. http://www.runivers.ru/bookreader/book9611/#page/16

0/mode/1up 
3. https://de.wikipedia.org/wiki/Axel_Wilhelmowitsch_Ga

dolin 
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Leonhard Sohncke (1842 – 1897) 
 
German mathematician, 

physicist and crystallo-
grapher, whose name is 
associated with the beginning 
of the work on the derivation 
of space groups, i.e. groups in 
which combinations of point 
and translational symmetry are 
already considered. He 
published the work on the 
derivation of 65 types of 
symmetry groups in 1879 [11]. 
He did not derive all space 
groups, he only used point 
operations of the first kind related to rotational and screw 
axes; he did not consider reflections. He used the name 
systems of regularly spaced points for the derived groups, 
but they are also known under the names chiral space groups 
or Sohncke groups. He did not know Hessel's or Gadolin's 
work on point groups, and for translational symmetries 
(space lattices) he relied on Bravais's work. He also followed 
up on the work of C. Jordan from 1868 [10], who derived 174 
space groups, but more than 100 of them were not applicable 
to crystallography, especially those that contained rotations 
by an arbitrarily small angle. When deriving individual 
groups, he proceeded according to the type of the principal 
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axis of symmetry (similar to Hessel). He created his own 
terminology, already in considerable agreement with the 
current one – screw axis, fourfold axis, etc. He accepted 7 
crystallographic systems. 

He was born into a family of mathematicians in Halle, 
where he studied mathematics and natural sciences at the 
university from 1859. From 1865 he worked as a teacher at 
the gymnasium in Königsberg, while continuing his studies at 
the university there, which he completed in 1866 with a 
graduation in Halle. The title of Dr. phil. he received for his 
work on differential equations "De aequatione differentiali 
seriei hypergeometricae". In 1869 he received a docentship 
for his work "Kohäsion des Steinsalzes". Two years later, on 
the recommendation of G. R. Kirchhoff, he was appointed 
professor of experimental physics at the Polytechnic in 
Karlsruhe and at the same time head of the meteorological 
observatory. In 1883 he became a full professor of physics 
at the University of Jena and at the same time the first 
head of the Physical Institute there. Three years later, he 
moved to Munich to the Department of Experimental 
Physics, where he headed the Physics Institute of the 
Technical University until his death (1897). 

In connection with the goal of deriving space groups, 
he expressed his opinion as follows: 
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The entire variety of all possible crystal shapes can 
be derived from a single principle in a strictly mathematical 
way, using the obvious assumption of regular arrangement. 

He based his work on Jordan's work [10], which he 
also critically evaluated:  

Despite the 
principled agreement with 
Jordan's work, which must 
have occurred during my 
research, there are also 
significant differences, 
which lie primarily in the 
fact that I always placed 
the main emphasis on the 
geometric meaning of the 
results, because finding 
the shapes of the 
structures was my main 
goal. 

He formulated his 
idea of crystals as follows: 

A crystal is a homogeneous solid body whose 
geometric and physical properties are generally different in 
different directions and which, in undisturbed development, 
is bounded by plane surfaces. ... Since a crystal grows by 
depositing particles of matter on its outer surfaces, it is 
inconceivable that it would not be built up from these 
particles. Therefore, the structure of a crystal should be 
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understood as the arrangement of the particles of which it 
is composed. 

He further writes: 
For the following geometric considerations, the 

crystal will be replaced by a system of discrete material 
points, between which there is a certain minimum distance. 

He considers such a point to be the center of a group 
of particles – atoms, or the center of a molecule. 

In the following text he writes: 
Crystals, if we understand them as unbounded, 

represent regular infinite systems of points, such that 
around each of the points the arrangement of the other 
points is the same. 

In doing so, he sets himself the goal: 
To find all possible regular systems of points that are 

infinite in all directions. 
Sohncke stated that he was not the first to attempt 

to extend Bravais's lattice theory. That before him, the 
situation of how the symmetry changes when an atom is 
placed inside the unit cell of a Bravais lattice had already 
been considered. In this connection, he wrote: 

"Every regular system of points, infinite in all 
directions, is either a space lattice or consists of several 
congruent space lattices nested within each other." 

Sohncke increased the number of Bravais types of 
regularly arranged points (i.e. lattices) by types in which 
screw axes occur. He thus combined rotation with 
translation into one symmetry operation, which is an 
operation that does not belong to the point or translation 
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group, but to the space group. The following figure from his 
work represents a text about a structure with such possible 
operations. He marked the symmetry operation representing 
a rotation by 90, i.e. by 2/4 combined with a translation 
by a quarter of the lattice parameter  with the symbol 

 
𝐴ଶగ

ସ
,
ఒ
ସ

 , 

 
other operations have analogous designations. 
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The next figure presents a summary of such operations in 
the tetragonal system. 

 
In 1876 he published a paper in which he presented 54 types 
of space groups, but three years later he published another 
in which he distinguished between right-handed and left-
handed screw axes, bringing the total number of groups to 
66. In 1891 Schoenflies repeated Sohncke's derivation and 
found that the two groups were identical, so the final 
number of Sohncke groups is 65. The following figure shows 
the end of the table published in the 1879 book 
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He classified the derived types of space groups 

according to the type of symmetry axes (by multiplicity and 
their number), which ultimately agreed with the 
classification into crystall systems. His naming of these 
seven systems, which, given in the original, can be seen in the 
following figure, is noteworthy. 
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From a terminological point of view, it is interesting 
that he used the term Krystallsystem, as opposed to 
Gadolin's term Krystallografische system. 

Sohncke's work on the derivation of 65 space groups 
was often cited by both Fyodorov and Schoenflies, who 
essentially independently and practically simultaneously 
derived all 230 space groups. 

 
Sohncke's work on crystallography: 
1. Die unbegrenzten regelmässigen Punktsysteme als 

Grundlage einer Theorie der Krystallstruktur. 83 Seiten. 
2 Tafeln, Karlsruhe 1876. Separatabdruck aus dem 7. 
Heft der Verhandlungen des naturwissensohaftl. Verein 
zu Karlsruhe. 

2. Universalmodell der Raumgitter. Repertorium für 
Experimentalphysik. Bd. XII. 1876. 6 Seiten. 

3. Entwickelung einer Theorie der Krystallstruktur. B.G. 
Teubner, Leipzig 1879 

4. Erweiterte Theorie von der Krystallstruktur, Zeitschrift 
für Kristallographie 14, 426-446 (1888). 

 
Sources: 
1. https://archive.org/stream/dieunbegrenzten00sohngoo

g#page/n5/mode/1updo   
2. https://de.wikipedia.org/wiki/Leonhard_Sohncke 
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Arthur Moritz Schoenflies (1853 – 1928) 

 
German mathematician, 

famous in crystallography for 
the derivation of 230 space 
groups describing types of 
symmetry of crystal 
structure. Originally, in 1889, 
he published in the journal 
Mathematische Annalen the 
derivation of 227 groups, but 
after correspondence with E. 
S. Fyodorov (29 letters 
surviving) he published in 1891 
a book Krystallsysteme und 
Krystallstruktur 13 with the derivation of all 230 groups. 
In his search for types of symmetry of crystals, he was the 
first to use the mathematical theory of groups. He 
introduced the symbols of the groups, which are still used in 
the International Crystallographic Tables (in addition to the 
International Symbols) and are actively used in solid state 
theory.  

Schoenflies was born in Prussia in Landsberg an der 
Warthe (now the Polish town of Gorzów). From 1870 to 1875 
he studied mathematics at the Friedrich Wilhelm University 
in Berlin (later renamed Humboldt University), where the 
eminent mathematician Karl Weierstrass was then a 
professor. He was interested in set theory and topology. He 
received his doctorate in 1877, and the following year began 
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teaching in Berlin, where he habilitated after six years. In 
1891 he was appointed to the chair of applied mathematics 
in Göttingen, and in 1899 he began to work as a professor at 
the University of Königsberg and in 1911 at the Academy of 
Social and Commercial Sciences in Frankfurt. In 1922 he 
ended his career as rector of the university there. During 
his active career, he became a member of the Leopoldina in 
Halle, the Bavarian Academy of Sciences in Munich, an 
honorary member of the German Scientific Society, and was 
one of the founders of the German Mathematical Society, 
which he led as president in 1922. 

Of his crystallographic works, the most frequently 
cited is the book Krystallsysteme und Krystallstruktur (Fig. 
1; the figures are at the end of the article on Schoenflies), 
in which he summarized the results of his earlier work. In 
the introduction of the book he wrote: 

... to move more and more from the empirical to the 
deductive method. We owe this step to the discovery that 
the systematics of crystals can be deduced from a single 
fundamental law and the theory of structure from a single 
fundamental hypothesis in a mathematical way.  

By mathematical method he probably understood the 
theory of groups. In the introduction of the book he wrote 
what he meant by a group in the case of symmetry of 
crystals: 

By a finite group of operations we mean a finite series 
of non-equivalent operations with the property that the 
product of any two of this series is always equal-valued with 
some operation of this series. 
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And further: all the operations of symmetry that 
transform a symmetric body into itself form a finite group 
of operations.  

By the product of operations Schoenflies understood 
their successive execution, and he attributed the same 
meaning to the powers of operations. He described the 
properties of such products and introduced the appropriate 
symbolism: 

If A and B are two rotations whose axes pass through 
a point O, and C is their equivalent resultant rotation, we 
shall henceforth express this relation by the equation  
AB = C , and call C  the product of the rotations A and B . 

The first part of Schoenflies' book is the derivation 
of 32 crystall classes (32 Krystallclassen) of finite 
formations – symmetric polyhedra. In doing so, he quoted    
J. F. Ch. Hessel, who derived them already in 1830, 
admittedly without using the theory of groups. He also 
mentioned Bravais's incomplete attempt and Gadolin's 
derivation. He began by describing the symmetry of 
formations characterized by a single axis of symmetry. He 
gave the name rotation groups (Drehungsgruppen) to the 
groups in question. He proved that in the case of crystals, in 
accordance with the law of the rationality of indices, only 
four such groups are possible, with axes of symmetry 
twofold, threefold, fourfold, or sixfold. He then considered 
formations with multiple axes of symmetry, proving that 
there are 11 types (classes) of such symmetry (Fig. 2). 

In the following he dealt with figures whose 
symmetry is described by combinations of rotation with 
reflection or inversion, as well as by reflection or inversion 
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alone; the corresponding symmetry operations he called 
rotations of the second kind. In the case of reflection he 
wrote: 

 

 

 
 

Translated: 
If S is some reflection, then the operations I (identity) and 
S form a group; we denote it simply as S = {S } .        
Theorem II. There is a class of crystals whose symmetry is 
based on the existence of a single plane of symmetry. 

He made analogous claims about inversion. In the 
conclusion of the chapter on operations of the second kind, 
he included a table of such point groups (there are 21 of 
them), which, together with the eleven point groups of the 
first kind, represent 32 types of symmetry.  

After obtaining the 32 point groups, he classified 
them into 6 main classes (Fig. 3). He used multiplicity and 
the number of axes of symmetry as sorting criteria, thus 
essentially mimicking Hessel's procedure. He placed types 
with multiple equivalent axes of symmetry in the first class, 
and formed the other groups according to the multiplicity of 
the major axis of symmetry. In doing so, he considered 
purely rotational axes and axes combined with inversion or 
reflection to be equivalent. In the group called Digonaler 
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typus he included groups in which only twofold axes occur, 
which includes the groups we now classify in two crystall 
systems, the monoclinic and the rhombic. 

He also supported his classification in terms of the 
theory of groups. In this context he stated:      

In every crystall system, the respective groups of 
operations are related in such a way that one of them - the 
main group - contains the others as subgroups.   

On the basis of this criterion he repeated the 
classification of the groups. For example, the monoclinic 
system includes three point groups, which Schoenflies 
designated by the symbols 𝐶ଶ, 𝐶௦ and 𝐶ଶ௛, the first two being 
subgroups of the third. 

Groups were also used in the chapter on space 
lattices. He wrote: 

By a group of translations we mean an infinite series 
of translations of such a kind that any two translations made 
in succession constitute a translation which is equivalent to 
some translation belonging to that group.  

  Theorem IV. The set of all translations which a 
regular series of points, or a planar network of points, or a 
space lattice, identify with each other, forms a group of 
translations.  

The space lattice and the space translation group are 
formations which are inseparably connected. 

For plane lattices, in addition to the non-symmetric 
lattice, he distinguished four types of symmetric lattices, 
noting that a plane symmetric lattice can only be orthogonal 
or rhombic. He did not explicitly mention the centred 
lattice, which is, however, the rhombic lattice (rhombische 



77 
 

Netz). For space lattices he distinguished 14 types, which 
he classified into seven crystall systems and where he had 
already used the term centred lattice. 

In describing space translation groups, he used a 
triple of translations 2𝜏ଵ, 2𝜏ଶ,  2𝜏ଷ, which he called primitive: 
If OA = 2𝜏ଵ, OB = 2𝜏ଶ, OC = 2𝜏ଷ are primitive translations of 
a space lattice, then each of them transforms the space 
lattice into itself. 

Denoting the primitive translations in this way - as 
doubles - allows one not to use fractional expressions for 
centered lattices, but only  𝜏ଵ, 𝜏ଶ  and 𝜏ଷ respectively. The 
translations 2𝜏ଵ, 2𝜏ଶ,  2𝜏ଷ, are thus simultaneously the edges 
of a primitive unit cell (Schoenflies' name: primitive 
Palallelepipedon). He wrote: 

When characterizing symmetric space lattices, we 
preferably use the set of primitive translations, or the 
corresponding tetrahedra and parallelograms. For each 
symmetric lattice, these can be chosen more or less 
arbitrarily.  

The space lattices were obtained (constructed) on 
the basis of their compatibility with the point groups 
describing their symmetry. He proved that in every space 
lattice there is a set of symmetry centers; that a space 
lattice can be characterized only by twofold, threefold, 
fourfold and sixfold axes of symmetry; that there is a 
perpendicular lattice plane to every symmetry axis; and that 
every symmetry plane must be parallel to some lattice plane. 

In deriving the space lattices, he relied on evidence 
from the preceding sections of the text. He justified the 
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two types of lattices in the monoclinic system by the 
following reasoning (loosely modified):  

If a point O is the center of symmetry of a space 
lattice, and if a twofold axis of symmetry 𝒂, passes through 
this point, then there is a plane of symmetry perpendicular 
to this axis. The corresponding point group has the label 𝐶ଶ௛. 
It is the holohedral group of the monoclinic system. The 
lattice of the plane of symmetry perpendicular to the axis 
may be orthogonal or rhombic. Thus, there are two types of 
monoclinic lattice – primitive (corresponding to an 
orthogonal lattice) and centred; Schoenflies denoted them 
by the symbols , and  ′, respectively. He expressed the 
result in the theorem:    

Theorem XII. There are two different space lattices 
of monoclinic type.  

At the end of the text on lattices, he included a table 
of them - in this text it is shown in Fig. 4 in a modified 
abbreviated form with the original German text.  

Before the chapter on space groups, he described in 
a separate chapter Bravais's procedure for deriving space 
lattices, but he also mentioned Bravais's work on filling the 
lattice with "molecules". He used the term Molekelgitter for 
such a lattice and wrote in terms of its symmetry: 

 

 
 

The symmetry of the molecular lattice is never higher than 
the symmetry of the corresponding space lattice. 



79 
 

This statement is consistent with his reasoning about 
the subgroups of the holohedral group of the corresponding 
crystall system. By filling the lattice with "molecules", his 
thoughts on possible types of symmetry of the crystal 
structure begin. 

He introduced the chapter on space groups with a 
definition:  
By a space group of operations we mean an infinite set of 
space operations such that the product of any two of them 
is equivalent to an operation which also belongs to this set. 

Then he stated how one can construct (create) a 
space group: 

 

 
 

If a space group  isomorphic to a point group 𝐺 contains 
this group as its subgroup, then it can be created by 
multiplying the point group 𝐺 by the translation group   . 

However, only so-called symmorphic space groups 
arise in this simple way; for the others, Schoenflies had to 
consider the cases of screw axes and glide planes 
conditioned on the shape or symmetry of the "molecules".  

He started the construction (derivation) of space 
groups with the triclinic system. When considering the 
monoclinic system, he wrote: 

There are four different kinds of space groups 
characterized by the symmetry of monoclinic hemihedra. 
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Two of them contain ௠, the remaining two ௠
 ᇱ ‚ as 

translation groups.  
And further:         
These four groups, in which operations of the second 

kind stand out, can be denoted by the following symbols. The 
group 𝐺௦

ଵ contains only the ordinary symmetry plane. The 
group 𝐺௦

ଷ contains a plane of symmetry and, in addition, 
planes with translational symmetry, and for all these planes 
the translational component is equally large. The groups 𝐺௦

ଶ 
and 𝐺௦

ସ do not have pure reflection planes. For the former, 
the translational component is the same everywhere, but for 
the latter, there are two different kinds of translational 
operations with unequal magnitudes.   

The text on the derivation (construction) of space 
groups is supplemented by a summary table (Fig. 5), followed 
by a sentence:  

Main theorem. There are a total of 230 
crystallographically usable space groups. 

Schoenflies did not yet use the reciprocal lattice, the 
decomposition of the group into cosets and hence the factor 
group, which could have streamlined the procedure for 
constructing symmetry groups. But he did take a decisive 
step towards the mathematization of crystal symmetry 
theory. He correctly cited his predecessors, referring in 
the introduction to the book mainly to the work of Hessel, 
Bravais, and Sohncke, but mentioning a number of other 
crystallographers: Naumann, Groth (definition of a crystal), 
Gadolin, Minnigerode, Liouville, Curie, Moebius, Poisson, and 
Wulf. However, he paid special attention to the works of E. 
S. Fyodorov, with whom he corresponded intensively before 
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completing his work on the types of symmetry of crystal 
structure. 

 

 
                   Fig. 1                       Fig. 2 

 

  
Fig. 3 
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Gitter von 
Typus  

Symmetriegruppe  Translationsgruppen  

triklinen  𝑆ଶ 𝛤ఛ  

monoklinen  𝐶ଶ௛ 𝛤௠ , ௠
 ᇱ  

rhombischen  𝑉௛ 𝛤௩ , ௩
 ᇱ , ௩

 ᇱᇱ, ௩
 ᇱᇱᇱ 

rhomboedrischen  𝐷ଷௗ 𝛤௥௛  

tetragonalen   𝐷ସ௛  𝛤௤ , ௤
 ᇱ 

hexagonalen  𝐷଺௛ 𝛤௛  

regulären  𝑂௛ 𝛤௖ , ௖
 ᇱ , ௖

 ᇱᇱ 

Fig. 4 
 

  
Fig. 5 
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Schoenflies' papers on crystallography: 
1. Ueber Gruppen von Bewegungen   Mathem. Ann., 28, 

1887, 319-42; 29 1887, 50-80  
2. Ueber regulare Gebietstheilungen des Raumes Götting. 

Nachr., 1888, Nr 9;  
3. Beitrag zur Theorie d. Kristallstructur Götting. Nachr., 

1888, Nr 9.  
4. Ueber Gruppen von Transformationen des Raumes in 

sich, Math. Ann., Bd. 34, 1889, 172-203.  derivattion 
of 227 groups 

5. Ueber das gegenseitige Verhältniss der Theorien über 
die Struktur d. Kristalle, Götting. Nachr., 1890, Nr 6).  

6. Krystallsysteme und Krystallstruktur, Teubner, Leipzig 
1891  

7. Theorie der Kristallstruktur. Ein Lehrbuch. Gebr. 
Borntraeger, 1923. 

 

Sources: 
1. https://archive.org/details/krystallsysteme00schogoog     
2. https://en.wikipedia.org/wiki/Arthur_Moritz_Schoenfli

es 
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Evgraf Stepanovič Fyodorov (1853 – 
1919) 

 
Russian crystallographer, 

mineralogist and mathema-
tician, who is known in 
crystallography for deriving 230 
types of symmetry of crystal 
structure, in today's 
understanding 230 space groups. 
The work was published in 1891 
in the journal of the Russian 
mineralogical society Zapisky 
mineralogicheskogo obshestva. 
Fyodorov is also known as the 
inventor of the universal turntable used in light microscopes 
in the analysis of geometric and optical properties of 
minerals (Fyodorov table). 

E. S. Fyodorov was born in Orenburg in the family of 
an engineer serving in the tsarist army with the rank of 
major general. In 1866 he was admitted to a military 
grammar school and already there he showed a greater 
interest in mathematics. He did not finish his studies at the 
grammar school, because after a very successful audition he 
was admitted to the Military Engineering School  
in St. Petersburg, although only at the age of 16. After 
graduating in 1872, he joined a military unit in the city of 
Bielaya Tserkv, Ukraine. Two years later, he left military 
service and began studying at the Military Medical Academy 
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in St. Petersburg. In 1879 he became more seriously 
interested in crystallography and in the same year he 
completed the first major work on the shapes and symmetry 
of polyhedra, Начала учения о фигурах (Beginnings of the 
doctrine of figures). However, the reviewers did not 
recommend publishing the work, it was commissioned for 
printing later – in 1883, but it was not published until 1885; 
this caused problems in recognizing Fyodorov's priority, 
since a similar work by P. Curie was published in 1884. For 
Fyodorov, it became the basis for further reflections and 
publications on the symmetry of bodies. In an effort to 
improve his skills in crystallography, in 1880 he enrolled in 
the third year of the Mining Institute (Gorny Institute in 
St. Petersburg). He completed his studies in 1883 so 
successfully that his name was engraved on the marble slab 
of the school's excellent students. From 1885 to 1890 he 
was the leader of the group that compiled the geological map 
of the northern Urals, but in the winter months he devoted 
himself to science at home in St. Petersburg. 

In 1889, his work Симметрия конечных фигур 
(Symmetry of finite figures) was published in the journal of 
the Mineralogical Society, where he expanded his 
reflections on the symmetry of polyhedra. Already in 
December of the same year, he completed a substantial part 
of his most important and most cited work, Симметрия 
правильных систем фигур (Symmetry of regular systems 
of figures) [12 with the derivation of space groups, but it 
was not published until 1891 (at the end of the introduction 
in the manuscript is the date "December 1889"). In 1890, in 
the journal of the Mineralogical Society, Fyodorov published 
three papers on the achievements of theoretical 
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crystallography, in which he also presented part of the 
results of his work on space groups. The German 
mathematician A. Schoenflies was also working on their 
derivation at that time, who in 1889 published a work with 
the derivation of 227 groups. Fyodorov also managed to 
derive only 229 groups at first, they agreed on the final 
number of 230 only after mutual correspondence. 29 letters 
to Fyodorov have been preserved, the first dated December 
14, 1889, in which Schoenflies accepted Fyodorov's priority. 
But even Fyodorov stated in the introduction to the article 
Симметрия правильных систем фигур that Schoenflies 
had overtaken him in his efforts to complete the derivation 
of space groups initiated by Jordan. The correct number of 
groups was stated by Fyodorov only in the appendix to the 
article, as follows from the minutes of the meeting of the 
Mineralogical Society of October 1890. There it is written 
that Fyodorov omitted one of the groups because it 
coincided with another, but added two more. Fyodorov and 
Schoenflies agreed on the total number of groups, despite 
the fact that they used a completely different methodology 
for their construction. Schoenflies already used the 
mathematical theory of groups, Fyodorov was able to derive 
them without it, without using the term group. Their works 
were published in 1891, that is, almost at the same time. It 
can be said – in a sense, given the extensive correspondence 
with each other – that the derivation of space groups is their 
joint work. As late as 1891, Fyodorov wrote an article for 
the German journal Zeitschrift für Krystallographie und 
Mineralogie, in which he described the similarities and 
differences between his views and those of Schoenfies. 
Between 1894 and 1902, three more articles on the 
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structure of crystals were published in this magazine, where 
he repeated the derivation of 32 point and 230 space 
groups, basically in his original procedure and symbolism, but 
in German. In 1891, Fyodorov also published a work on 17 
types of symmetry of planar periodic structures, even in the 
same issue of the journal of the Mineralogical Society in 
which the work on space groups was published. 

The invention of the Fyodorov table is associated 
with 1892, and a year later he published another original 
work – a monograph on the use of theodolite in mineralogy 
and petrography to measure the angles between the outer 
faces of crystals. In 1894, he went with his family to the 
Urals (Bogoslovskij gornyj okrug), where he worked as a 
head of exploration geological work and compiled a geological 
map of the area. In 1895 he became a professor of geology 
at the Moscow Agricultural Institute (later the Timiriazev 
Academy), while also going to St. Petersburg to lecture. A 
year later, he was accepted as a member of the Bavarian 
Academy. In 1905, he was elected director of the Mining 
Institute (Gorny Institute) for a three-year term, where he 
served as the head of the department until his death. In 
February 1919, four months before his death, he was 
elected a full member of the Russian Academy of Sciences.   

Before deriving space groups, Fyodorov dealt with 
the types of symmetry of finite formations – polyhedra, not 
just crystals. He published the results in the article 
Симметрия конечных фигур (Symmetry of finite figures), 
in which, along with the symmetries of polyhedra, he also 
derived 32 types of point symmetry of crystals. He followed 
the work of his predecessors Hessel, Bravais, Gadolin, but 
used his own method of derivation and original symbolism. 
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First, he proved what the multiplications of axes of 
symmetry can be, he also included fivefold axes in his 
considerations. He described the types of symmetry of 
objects with a single axis of symmetry, as well as objects 
with multiple axes of symmetry, where he distinguished the 
main axis, minor axes, axes with even and odd multiplicity, 
generating axes and other axes. He continued with objects 
with planes of symmetry, parallel to and perpendicular to the 
axes of symmetry. This was followed by a section on 
composite symmetry (rotoreflection). For the symmetry 
characterized by the presence of the axis of symmetry, he 
used the quite obvious name simmetria sovmeščenija 
(symmetry of identification), but in the case of reflection, 
he used the special term direct simmetry. He called the 
number of elements of the symmetry group the veličina 
simmetrii (magnitude of symmetry). It is noteworthy that 
he did not consider the center of symmetry as a separate 
element, but as the intersection of axes and planes of 
symmetry. 

When reading Fyodorov's works, it is first necessary 
to understand the peculiar symbolism used to express the 
positions of points that arise from one point by 
transformations corresponding to the respective type of 
symmetry. In the case of the axis of symmetry, he 
proceeded from the following reasoning: a p-fold axis from 
one line will form p equivalent lines, each of which can be 
chosen as a coordinate axis; He marked them with the 
symbols 𝑦୭, 𝑦ଵ, 𝑦ଶ, ... 𝑦௣ –ଵ and the coordinates of a specific 
point on these axes with the symbols 𝑏୭, 𝑏ଵ, 𝑏ଶ, ... 𝑏௣ –ଵ. Three 
coordinate axes are sufficient to determine the position of 
a point in space, of the possible p lines, he marked the 
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selected three with the symbols 𝑦୭, 𝑦ଵ, 𝑦ଶ.  The coordinates 
of the point on these axes, taking into account the presence 
of a p-fold axis of symmetry, were expressed by 

 

 
 

where the subscript i = 0, 1, 2, ..., p – 1, represents the i-th 
position of the point and the superscript p the multiplicity 
of the axis of symmetry. When the corresponding axis of 
symmetry is chosen as one coordinate axis, both the 
subscript and the superscript are omitted for such an axis, 
for the other coordinate axes p is retained and the 
subscripts are reduced by one: 
 

 
He expressed the relationship between the coordinate 𝑦௜ on 
another of the possible axes and the three chosen 
coordinates by the relationship: 
 

𝑦௜  𝑆𝑛 (𝑦𝑦௢𝑦ଵ)  =  𝑦 𝑆𝑛 (𝑦௜  𝑦௢𝑦ଵ)  + 𝑦௢ 𝑆𝑛 (𝑦 𝑦௜ 𝑦ଵ)  +

 𝑦ଵ 𝑆𝑛 (𝑦𝑦௢ 𝑦௜), 
 

where the symbol 𝑆𝑛 represents the sine of the "spatial" 
angle between three non-co-linear lines 1, 2, 3 passing 
through one point, expressed using the determinant:  
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where, for example, the symbol cs(1𝑥୭) represents the 
cosine of the angle between the first line and the 𝑥୭ 
coordinate axis of the orthogonal coordinate system. In 
essence, this is not far from the matrix representation of 
symmetry operations. 

Example of symbols of two groups with fivefold axes 
of symmetry: 
 

 
 
Using the symbol 𝑛௞, where 𝑛  (– 1) and 𝑘 = 0 or 1, Fyodorov 
expressed mirroring; If 𝑘 = 1, then (– 1)௞  = – 1, so the 
corresponding coordinate changes the sign. Thus, the values 
of 0 and 1 represent two mirror-symmetrical positions of a 
point on a specific axis of symmetry to which the plane of 
symmetry is perpendicular. The 𝑛௞ symbol also serves in the 
case of twofold axes of symmetry; Its placement in front of 
the coordinates of the points on the co-coordinate axes 
perpendicular to the axis of symmetry expresses two 
positions related to the rotation of 180. The symbol is also 
suitable for describing the inversion that occurs when the 
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sign of all three coordinates changes at the same time. In 
the cubic system, there are more indices (Fyodorov called 
them parameters) and also other symbols of the coordinate 
axes – instead of the symbols y, the symbols x and instead 
of b the symbol a.  
Fyodorov wrote: 
As an example, let us mention the relation representing the 
thetardohedra of the cubic system 
 

 
 
The parameter  i  refers to one of the threefold octahedral 
axes of symmetry, and the parameters  j  and  k  to the two 
twofold cubic axes of symmetry. The first parameter has 3 
values and both other 2 values; Therefore, their product has 
a value of 12, which represents the magnitude of the given 
type of symmetry. 
In this case, the option of 0, 1 applies to the both exponents  
j  and k.  

The example above (groups  numbered 20 and 35) is 
taken from the final table of point groups, which, as can be 
seen, also contains non-crystallographic groups (fivefold 
axis of symmetry). The notations of the groups testify to 
their relative complexity, but on the other hand, knowing the 
meaning of the symbols, it is possible to read from them 
what symmetry operations the respective point group 
contains. 

The next stage of Fyodorov's work was the 
derivation of 230 space groups, which he published in the 
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article Симметрия правильных систем фигур (Symmetry 
of Regular Systems of Figures). In it, he mainly quoted A. 
Bravais, A. Gadolin, P. Curie, but  the name of L. Sohncke 
occurs most often. At  the beginning of the article, he 
accepted Schoenflies' partial primacy in the effort to 
complete the derivation of space groups, begun by Jordan:  

 

 
 

... I was partially overtaken by Schoenflies, who was the 
direct successor of Jordan. 

Let us state what Fyodorov means by the name 
Regular System of Figures (free translation): 

By a regular system of objects, I mean such an 
infinite set of objects of finite dimensions in all respects, 
that if, in accordance with the laws of symmetry, we identify 
two of the objects belonging to the system by 
transformation, then the whole system will also be 
identified.  

He had a clear idea of how such a system (space 
group) is determined: 
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It is clear that a system is fully determined if one of its 
objects and the operations of symmetry (identification) are 
known. 
  The object, according to current terminology, is 
apparently a structural motif.  

Fyodorov distinguished systems with structural 
motifs without reflection, which he called simple, as opposed 
to systems with motifs also containing reflection, which he 
called double. 

When working on space groups, he used the results 
published in the previous article Симметрия конечных 
фигур (Symmetry of Finite Figures), because symmetry 
operations belonging to a space group are combinations of 
point and translational operations. At the same time, it is 
interesting that he did not pay special attention to space 
lattices, i.e. translation groups, before deriving space 
groups. About operations belonging to the space group, he 
wrote (free translation): 
All regular system symmetry operations can be composed of 
existing S rotations, which convert any given direction to all 
other equivalent directions (which correspond to rotations 
of a given type of symmetry), and of translations.  

At the beginning of the article on space groups, 
Fyodorov introduced the necessary terms and divided space 
groups into three main groups:  

symmorphic  systems – their structural motifs have 
the same symmetry as the whole system, they have a center 
of symmetry, they can be identified with each other by 
translations, 

hemisymorphic systems – can be understood as two 
connected symorphic systems, whose structural motifs are 
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mirror-symmetrical to each other; the motif itself has a 
center of symmetry, but it does not have planes of 
symmetry, 

asymorphic systems – all other groups. 
He proceeded according to this scheme when deriving 

space groups in individual crystall systems. In each system, 
he derived first symorphic groups, then hemisymorphic and 
finally asymmorphic, progressing in these groups from point 
groups with the fewest operations to holohedral groups.  

When deriving space groups, he used seven theorems, 
which he proved in the first part of the article. The 
theorems concerned the multiplicity of the axes of 
symmetry, the positions and directions of the axes of 
symmetry in the lattice, the orientation and positions of the 
planes of symmetry in the lattice, the relationship of the 
planes and their normals to the lattice lines. This was 
followed by the derivation of space groups.  

For space groups, he used symbolism based on the 
symbolism of point groups, extended by elements of 
translational symmetry. For example, in the hemihedra of 
the triclinic system, he symbolized a group without an axis 
and a plane of symmetry by writing:  

 

 
 
where 𝑦, 𝑧, 𝑣 represent the coordinates of a point on the 
three selected coordinate axes, the symbols 𝑏, 𝑐, 𝑑 
represent their initial values,  , ௢, and ଵ the identity 
periods along these axes, and 𝐵, 𝐶, 𝐷 represent integers 
from the range from minus to plus infinity. This expresses 
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the coordinates of all points representing equivalent 
positions in a given structure (regular system of points). 
Fyodorov stated that he would deliberately omit integers in 
the symbolism of space groups, so he ended up writing the 
previous expression in the form:  
 

 

For a space group in a triclinic system with a 
holohedral point group (containing an inversion), he used the 
symbol: 

 

where  𝑛௞ – has the same meaning as for point groups.  
 As an example of Fyodorov's considerations, we will 
present a part of the derivation of two space groups in the 
monoclinic system (free translation): 
 In the case of hemimorphia, there is a twofold axis that, 
according to theorem 3, has the direction of a lattice line; 
we determine it for the 𝑦 - axis. In a plane that is 
perpendicular to the axis, and based on theorem 4 is a lattice 
plane, we choose the coordinate axes 𝑧 and 𝑣 perpendicular 
to the lattice lines of this plane. We place the beginning of 
the coordinate system on the 𝑦 - axis. The identity periods 
in the direction of these axes are marked with the symbols 
୭ and ଵ .  

When an axis passes through a lattice point, 
Fyodorov characterized the space group by notation 
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With  𝑘 = 1, the coordinates 𝑐 and 𝑑 of the starting point 
change the sign, so it is obviously a 180 rotation around the 
𝑦 - axis. It is a space group that has the designation 𝑃2 in 
international tables and the Schoenflies designation 𝐶ଶ

ଵ. The 
case when it comes to a structure with a base-centered cell, 
where screw axes are also applied, Fyodorov commented as 
follows:   
In this case, based on theorem 2, there is an equally acting 
twofold axis of symmetry in the middle between every two 
equivalent axes of the system. Based on theorem 7, we get 
the system that is easiest to write in the form   
 

 

It is a space group 𝐶2, according to Schoenflies 𝐶ଶ
ଷ. In the 

symbolism of this space group, the parameter 𝑓 can take the 
values of 0 or 1, respectively, while in the latter case it is an 
operation related to the screw axis.  

The table of derived space groups in the article 
Symmetry of Regular System of Figures no longer contains 
their analytical expressions, only numbers in six crystall 
systems. In the columns, the numbers belonging to the 
groups symorphic, hemisymorphic, asymorphic are listed in 
turn, and in the last column there is their total number.   In 
crystall systems, the numbers are divided according to their 
affiliation into 32 point groups with their names (holohedral, 
hemihedral, tetartohedral...). The following images show the 
beginning and end of the space group table: 
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The table ends with a row expressing the sum of the groups: 
Total Systems . . . . 230. 

In this table, Fyodorov's names of six crystall 
systems are noteworthy:   

triklinoedričeskaja,    (triclinohedral) 
monoklinoedričeskaja,  (monoclinohedral) 
rombičeskaja,   (rhobic) 
tetragonaľnaja,   (tetragonal) 
gexagonaľnaja,   (hexagonal) 
kubooktaedričeskaja. (cubooktahedral) 
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Both Fyodorov and Schoenflies used the term 
rhombic system, for which the term orthorhombic is used in 
International tables for crystallography. Fyodorov used the 
term Kristalograficheskaya systema, Schoenflies Krystall 
system.  

In an article on the theory of crystal symmetry from 
1894, Fyodorov wrote a sentence from which it follows that 
he realized the importance of generating operations, that  
is, generating elements of a group of symmetry. In 
connection with the point groups, he wrote:  

We can see that ultimately the whole group can be 
constructed using two independent  symmetry elements. All 
other symmetry elements arise as a combination of rotations 
about the initial ones, and we will call them generating 
symmetry elements. 

In an article published in Zeitschrift für 
Krystallographie und Mineralogie (1891), Fyodorov 
commented on the correspondences and differences 
between his and Schoenflies' views. He noted that they 
agreed on the definition of the term symmetry, but 
disagreed on terminology and the classification of groups 
into crystall systems. Schoenflies referred to seven crystall 
systems for space groups, Fiodorov to six. Fyodorov did not 
accept the centre of symmetry as a separate element of 
symmetry, but as the intersection of all the elements of 
symmetry of a finite figure. Schoenflies limited the 
derivation of point groups to groups corresponding to crystal 
shapes, Fyodorov also considered other symmetric 
polyhedra. For point groups, Fyodorov used the term digonal 
system, in which he included those in which at most twofold 
axes occur (monoclinic, rhombic). Rejecting Schoenflies' 
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content of the term regular system restricted to the cubic 
system, Fyodorov also included some non-crystallographic 
systems.  

Schoenflies used the theory of groups, adapted the 
relevant  terms, introduced the product of operations, and 
their powers. There is also a significant difference in the 
symbolism; while Schoenflies used a brief notation for 
groups, Fyodorov used (by his own account) analytic relations 
to denote groups. 

There are over 400 entries in the list of Fyodorov's 
publications; only a minor part is on symmetry, most of it is 
on geology. 

 
Fyodorov's most important works on symmetries: 
1. Начала учения о фигурах.  Зап. Мин. общ., 2-я серия, 

1885, т. XXI, 1-289. 
2. Симметрия конечных фигур. Зап. Мин. общ., 2-я 

серия, 1889, т. XXV, 1-52. 
3. Симметрия правильных систем фигур. Зап. Мин. общ., 

2-я серия, 1891, т. XXVIII, 1-146  
4. Симметрия на плоскости. Зап. Мин. общ., 2-я серия, 

1891, т. XXVIII, 345  Zusammenstellung der 
kristallographischen Resultaten des Herrn Schoenflies 
und der meinigen.  Zeitschr. f. Krist. u. Min., 1891, Bd. 
XX, 25-75. 

5. Theorie der Kristallstructur. Einleitung. Regelmässige 
Punktsysteme. Zeitschr. f. Krist. u. Min., 1894, Bd. 
XXIV, 210-252.  

6. Theorie der Kristallstructur. I. Mögliche Structurarten.  
(Mit graphischer Darstellung der Symmorphen 
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Structurarten). Zeitschr. f. Krist. u. Min., 1895, Bd. 
XXV, 113-224.  

7. Theorie der Kristallstructur. II. Reticulare Dichtigkeit 
und erfahrungsgemasse Bestimmung der 
Kristallstructur.  Zeitschr. f. Krist. u. Min., 1902, Bd. 
XXXVI, SS. 209-233.  

 
Sources:  
1. https://en.wikipedia.org/wiki/Evgraf_Fedorov  
2. http://books.e-heritage.ru/book/10080293 – in this book 

is a collection of Fyodorov's papers on crystal symmetry 
+ an article Bokij, Šafranovskij: History of  derivation of 
230 space groups 
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Frederick Seitz (1911 – 2008) 
 

American physicist, 
pioneer in the field of solid 
state physics, known in 
crystallography for using 
matrix algebra and group 
theory to derive 230 space 
groups of crystal structure 
symetries. Matrices and 
groups, together with the 
lattice postulate, i.e. the 
postulate of the three-
dimensional periodicity of the 
crystal structure, were 
sufficient for him to cope with 
this vast task. He published 
the results between 1934 and 1936 in four articles in the 
journal Zeitschrift für Kristallographie. He introduced 
concise and succinct symbols for operators representing 
rotations, reflections and translations. In the introduced 
symbol {, 𝒕} – mark   represented the matrix of rotation 
or reflection, and  𝒕 – the vector of translation. In 1934, his 
dissertation entitled "A matrix-algebraic development of 
the crystallographic groups" was published in book form [16. 
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The title of the first of a series of four articles 

 
Together with E. Wigner, he developed one of the 

first quantum theories of crystals, e.g. the Wigner-Seitz 
cell is known. He also addressed the problem of global 
warming, he was a co-author of a book on this issue, in which 
he expressed his skepticism about the question of 
humanity's guilt. 

Born in San Francisco, he began his undergraduate 
studies at Stanford University, where he graduated with a 
bachelor's degree in mathematics in 1932. His next path led 
to Princeton University, where he studied physics and 
received his PhD in 1934. He began writing articles on the 
use of matrices to derive space groups as a doctoral student 
under the guidance of E. Wigner. From 1935 to 1937 he 
worked at the Faculty of Physics of the University of 
Rochester. From there he went to General Electric, where 
he worked as a researcher (1937 – 1939), then worked at 
the University of Pennsylvania (1939 – 1942) and in the 
period 1942 – 1949 at the Carnegie Institute of Technology. 
From 1946 to 1947, he also worked at Oak Ridge National 
Laboratory as part of the atomic energy research program.     
In 1949, he was appointed professor of physics at the 
University of Illinois, where he became head of the 



103 
 

department in 1957 and dean in 1964. In 1940, his most 
important book, The Modern Theory of Solids, was 
published. 

He achieved a prominent position in the scientific 
community, was president of Rockefeller University (1968–
1978) and president of the National Academy of Sciences of 
the United States from 1962 to 1969. He has been awarded 
the National Medal of Science, NASA's Distinguished Public 
Service Award, Franklin Medal, and honorable mentions from 
31 universities in the U.S. and abroad. He founded the 
Frederick Seitz Materials Research Laboratory at the 
University of Illinois, as well as several other laboratories 
for materials research in the United States. Seitz was also 
the director of the well-known Texas Instruments company 
(1971–1982). He retired from Rockefeller University in 1979 
as Professor Emeritus. 

Seitz's contribution to the derivation of space 
groups lay in a more consistent use of mathematics. His 
predecessors, including Schoenflies and Fyodorov, relied to 
some extent on spatial imagination – for example, to assess 
the resulting position in which a crystal would reach after 
rotations around two different axes in succession. Euler's 
theorem about the possibility of converting a crystal to its 
final position by a single rotation around the next axis, which 
several of Seitz‘s predecessors cited, but did not use the 
relevant mathematical relationships, applies here. Fyodorov, 
in his article Symmetry of Finite Figures (1889), approached 
the matrix representation when he gave relations for 
calculating the coordinates of a point in positions after 
rotation around the axis of symmetry. In them, he used a 
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specially introduced sine of the "spatial" angle between 
three non-complanar directions expressed by a determinant, 
but he had not yet arrived at the matrix notation of the 
rotation operator. The advantage of writing rotations and 
reflections using matrices lies in the fact that the product 
of two matrices (according to the specified rules), 
representing two different rotations, provides a matrix of 
the resulting rotation, from which the direction of the third 
axis and the angle of rotation of the object (crystal) can be 
read. This simplifies and also clarifies the construction of 
point groups, which are part of space groups of symmetry. 
It should be added, however, that when applying the theory 
of groups, Seitz did not use the possibilities of the so-called 
factor group, which were pointed out as early as 1923 by the 
Swiss mathematician Andreas Speiser in his book Die 
Theorie der Gruppen von Endlicher Ordnung, mit 
Anwendungen auf Algebraische Zahlen und Gleichungen 
sowie auf die Kristallographie, but also by his supervisor E. 
Wigner in his book Gruppentheorie published in 1931. 

In the introduction to the first of four articles, 
Seitz wrote that he would use exclusively algebraic 
methods, so that the derivation of space groups would be 
based on a purely analytical-group basis.  

Each of the four articles represented a coherent 
part and characterized the individual articles as follows:  

I. Macroscopic groups (32 point groups represented 
by matrices).   

II. Microscopic symmetry, part one (elements of 
microscopic theory, derivation of 14 Bravais lattices and 
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their representation in a shape suitable for the construction 
of space groups). 

III. Microscopic symmetry, part two (elements of 
the theory of operators representing spatial 
transformations from the point of view of matrix algebra, a 
set of theorems and conditions that must be met by groups 
of these operators from a crystallographic viewpoint; the 
beginning of the construction of space groups).  

IV. Microscopic symmetry, conclusion (completion of 
the derivation of space groups).  

In the first of a series of four papers, he derived 
matrices representing 32-point group symmetry operations 
describing the macroscopic symmetry of crystals – rotations 
"1, 2, 3, 4, 6" and mirroring. In doing so, he used a matric 
form in which (in the Cartesian system) the axis of rotation 
is identical to the 𝑋 axis, which simplified the writing of 
matrices. The following figure shows a part of Seitz's text 
in which the left matrix represents its proper rotation, the 
right rotation with mirroring, i.e. improper rotation.  

 

 

For example, the symmetry operation of a point 
group, which has the symbol 𝐷ଷin Schoenflies' designation 
(symbol 32 in the international tables), is represented by 6 
matrices (a copy from Seitz's article): 
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The fact that only the so-called "allowed" rotations 
"1, 2, 3, 4, 6" can be applied in crystals was proved only in 
the second article and on their basis he created the 
corresponding cyclic point groups.  

In determining the permissible rotations, like his 
predecessors (e.g. Schoenflies), he relied on the fact that 
the existence of a three-dimensional periodic lattice with 
lattice vectors 𝑛ଵ𝒕ଵ  + 𝑛ଶ𝒕ଶ  + 𝑛ଷ𝒕ଷ , where 𝑛ଵ, 𝑛ଶ, 𝑛ଷ are 
integers, places constraints on the matrices representing 
the rotations (on the angles  appearing in them). His 
procedure on the case of the plane lattice was original, but 
cumbersome. He wrote the shortest lattice vector 𝒕  (𝑡ଵ, 0) 
in the form of a column matrix, and the rotation with a 
square matrix, which applied to this vector: 

 
൬

cos 𝜑 sin 𝜑
−sin 𝜑 cos 𝜑

൰ ∙ ቀ
𝑡ଵ

0
ቁ = ቀ

𝑡ଵ cos 𝜑
−𝑡ଵ sin 𝜑

ቁ = 𝒖 . 

Difference of vectors 𝒖 –  𝒕 

𝒖 − 𝒕 = ቀ
𝑡ଵ cos 𝜑 − 𝑡ଵ

−𝑡ଵ sin 𝜑
ቁ = 𝒘 

is the vector  𝒘, which cannot be shorter than the original 
vector 𝒕 , because according to the assumption this is the 
shortest. Therefore, inequality must be met 
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tଵ
ଶ cosଶ φ + tଵ

ଶ − 2tଵ
ଶ cos φ + tଵ

ଶ sinଶ φ  ≥  tଵ
ଶ   ⇒  2tଵ

ଶ(1 − cos φ)  

≥  tଵ
ଶ   ⇒  

⇒ 4 sinଶ ቀ
φ

2
ቁ ≥ 1 

This condition is met by angles from the interval: 

π

3
≤ φ ≤ 5

π

3
 

He made a similar consideration for the sum of  𝒖 + 𝒕 
and for the inversion of the vector 𝒕 . Thus, he obtained the 
permissible angles of rotation. From these, he created 
several combinations that, from a mathematical point of 
view, form groups;  these are five cyclic groups, as can be 
seen in the copy from Seitz's second article (groups marked 
with the letters  a, b, c, d, e): 

 

 

Cyclic groups 
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In the second paper, Seitz also included the 
derivation (construction) of Bravais lattices, i.e. translation 
groups. The derivation relies on the compatibility of a 
particular point group with the corresponding lattice 
represented by a triple of basic vectors. Essentially, the 
process is as follows: 

The set of symmetry operations of a point group from 
one vector produces the set of other vectors. Their 
endpoints form the basis of the space lattice. The entire 
space lattice is expressed as an integral linear combination 
of a triplet of basis vectors 𝒕ଵ,  𝒕ଶ, 𝒕ଷ, which must be chosen 
appropriately in the lattice. The point group is therefore 
tightly coupled to the triplet of basic vectors. 

As an example, the fourfold axis of symmetry 
requires a lattice characterized by a pair of perpendicular, 
equal-length basis vectors. Or another example - if the 
lattice is brought into congruent position by rotating it by 
60, then two of the basis vectors must take the same angle.  

In constructing the Bravais lattices, Seitz used only 
11 of the 32 point groups, the so-called Laue groups, which 
contain an inversion as a symmetry operation. He justified 
this by claiming that inversion as a symmetry operation is 
typical of all types of three-dimensionally periodic lattices. 
Moreover, it suffices to consider the effect of the 
generating elements of these groups. A copy of two lines 
from Seitz's second paper introduces these groups, 
containing inversion: 
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The first of these, the group 𝑆ଶ, belongs to the 
triclinic system and contains only two elements - identity and 
inversion. Since the inversion is typical of all possible three-
dimensional periodic lattices, this group imposes no 
restrictions on the triplet of basis vectors - neither on their 
sizes nor on their relative angles. For the other Laue groups, 
the constraints must already be taken into account. 

The second in order - the point group 𝐶ଶ
௛ (the 

holohedral group of the monoclinic system, by the 
designation in the International Tables 𝐶ଶ௛) contains four 
elements - identity, inversion, rotation by 180 and 
reflection in a plane perpendicular to the rotation axis. 
Rotation and inversion can be chosen as the generating 
elements of the group. Their matrix representation looks 
like the following: 

 

 

The symmetry operations of this point group allow 
the existence of two types of lattice - a lattice denoted by 
the symbol 𝛤௠ with a primitive unit cell and a lattice ௠

 ᇱ  with 
a base-centred cell (he used the notation after Schoenflies). 
The type of lattice depends on whether the shortest lattice 
vector is parallel to the rotation axis. Seitz identifies the 
rotation axis with the 𝑋 axis of the Cartesian system; the 
other two principal directions in the lattice are 
perpendicular to it and, by convention, make an angle with 
each other greater than 90. If the shortest lattice vector 
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is parallel to the rotation axis, then it and the second 
shortest vector, perpendicular to the first, form a primitive 
orthogonal plane cell in its plane. In the second case, when 
the shortest lattice vector is not parallel to the rotation 
axis, Seitz chose this vector so that one component of it 
(with coordinate 𝑎ଵ) is identical to the 𝑋 -axis (the rotation 
axis) and that the other component is perpendicular to it 
(with coordinate 𝑎ଶ, in the direction of the 𝑌-axis). The 
shortest vector as a column matrix then has the form 

𝒂 = ቆ
𝑎ଵ

𝑎ଶ

0
ቇ 

noting that neither 𝑎ଵ nor 𝑎ଶ are then the 
shortest distances between lattice 
points, which is the square root of the 
sum of their squares. Rotating the vector 
𝒂 about the 𝑋 -axis by 180 produces the 
vector 𝒃, whose second coordinate is 
changed to – 𝑎ଶ: 
 

𝒃 = ቆ
𝑎ଵ

−𝑎ଶ

0
ቇ 

 
In matrix notation, the transformation takes the form:   

൭
1 0 0
0 −1 0
0 0 −1

൱ ∙ ቆ
𝑎ଵ

𝑎ଶ

0
ቇ = ቆ

𝑎ଵ

−𝑎ଶ

0
ቇ 

 
 
 

a1 

a2 

a b 
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The endpoints of the vectors resulting 
from an integral linear combination of 
the vectors 𝑛ଵ𝒂 +  𝑛ଶ𝒃, form a ௠

 ᇱ , 
lattice, whose base cell is centered 
(shaded part in the figure).  
Vector 𝒄 = 𝒂 + 𝒃: 

𝒂 + 𝒃 = ቆ
𝑎ଵ

𝑎ଶ

0
ቇ + ቆ

𝑎ଵ

−𝑎ଶ

0
ቇ = ൭

2𝑎ଵ

0
0

൱ 

 
has the first coordinate 2𝑎ଵ, the other 
two are zero. The distance 2𝑎ଵ is the smallest distance 
between lattice points on the 𝑋 -axis , which is related to 
the nature of the lattice. The notation of the triplet of basis 
vectors for 𝛤௠ and ௠

 ᇱ  lattices then looks like this: 

 
Seitz used a similar procedure for the other Laue point 
groups, and in other cases centred cells were also produced. 
The symbols of the derived 14 Bravais lattices are given in 
the first row of the following table, the second row being 
the corresponding Laue point groups in Schoenflies' 
notation: 
 

a 

Y 

X 

b 
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The symbol   in the table represents the Bravais lattice 
(translation group), the apostrophe above the symbol 
represent the centred lattices (basal, face, body) and the 
subscripts the crystall system: t – triclinic, m – monoclinic, v 
– Vierergruppe (= rhombic system), q – quadratic, rh – 
rhomboedric, h – hexagonal, c – cubic. 
As can be seen from the table, only 7 of the 11 Laue groups 
were sufficient to derive the 14 translation groups. These 
are holohedral point groups characterizing the symmetry of 
the lattices of the corresponding crystall system. 

In the third and fourth articles, Seitz included the 
derivation of space groups. He also rationalized the 
procedure formally by introducing the notation {|𝒂} for the 
symmetry operators in which he represented rotation and 
reflection by the matrix  and translation by the vector 𝒂. 
With this notation he expressed a general symmetry 
operation consisting of rotation and translation. He 
expressed the action of such a symmetry operator on the 
position vector 𝒙 of a point in space by the relation: 

 
{|𝒂} 𝒙 =    𝒙 +  𝒂 . 

 
That is, first a rotation is applied to the vector 𝒙 

(expressed by the scalar product of the square matrix  
and the column matrix of the vector 𝒙), which moves the 
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point marked in space by the position vector 𝒙 to a new 
position, and then this point is further shifted by the vector 
𝒂 . Seitz expressed the successive application of two 
symmetry operations as a product of the corresponding 
operators, and gave a rule for obtaining the operator of the 
resulting symmetry operation: 

 
{|𝒂}  {|𝒃}  =  {   |   𝒃 +  𝒂}. 

 
That is, the resulting rotation is represented by the product 
of the matrices     and the resulting translation by the 
sum of the two translations   𝒃 +  𝒂, where   𝒃  
represents the vector 𝒃 rotated by the rotation 
represented by the matrix  .  

Each of the space groups was represented by Seitz 
using several (at most four) generating elements, expressed 
by operators, e.g.: 

 
{ | 𝒗()},    { | 𝒗()},    { | }, 

 
which he also used for mutual differentiation (marking) of 
groupes. In such a notation of generating elements (i.e. 
symmetry operations), the symbol  represents an identical 
operation (rotation by 0) and  a translation belonging to 
one of Bravais's 14 translation groups. Thus the symbol 
{ | } as a whole represents only translations without 
rotation or reflection. The symbols 𝒗() and 𝒗() represent 
the so-called non-lattice translations inseparably associated 
with the corresponding rotations and reflections, 
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respectively. They are translations whose magnitudes are 
fractions of the lengths of the basis vectors, so they do not 
belong to the translation group, which includes only integral 
linear combinations of the basis vectors. Non-lattice 
translations occur for so-called screw axes (the combination 
of a rotation with a non-lattice translation in the direction 
of the rotation axis) and for glide planes (the combination 
of a reflection with a non-lattice translation parallel to the 
reflection plane).  

In the construction of space groups, Seitz followed 
the multiplicity of the principal axis of symmetry, starting 
with the groups  𝐶ଵ, 𝐶ଵ௛, continuing with the cyclic groups 𝐶ଶ 

and 𝑆ଶ. The point group 𝐶ଵ contains a single element - the 
identity - and the only space group associated with it is 
represented by a single generating element {|𝛤௧}, where  is 
the identity represented by the unit matrix and 𝛤௧ is the 
translation group of the triclinic lattice (no restriction 
conditions are imposed on the triple of its basis vectors).  
 The point group 𝐶ଵ௛ contains only the identity 
represented by the unit matrix and the reflection 
represented by the matrix 𝝆௛: 
 

𝝆௛ = ൭
−1 0 0
0 1 0
0 0 1

൱ . 

 
Combining the 𝐶ଵ௛ group with the monoclinic 

translation groups ௠ and ௠
 ᇱ  results in four space groups, 

each represented by two generating elements: 
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{𝝆௛|𝟎}, {|𝛤௠}     ൛𝝆௛ห𝒕௣/2ൟ, {|𝛤௠}     {𝝆௛|𝟎}, {|௠
 ᇱ }     

൛𝝆௛ห𝒕௣/2ൟ, {|௠
 ᇱ } 

 
The symbol {𝝆௛|𝟎} represents reflection, ൛𝝆௛ห𝒕௣/2ൟ 
represents glide reflection, which in this case is due to the 
configuration of the atoms in the unit cell of the crystal. 
Both cases are combined with both translation groups, the 
primitive ௠ and the centred ௠

 ᇱ . 
Seitz successively generated all possible 

combinations of cyclic groups with the corresponding 
Bravais translation groups, for which only two generating 
operators were ever sufficient, as in the case of the 𝐶ଵ௛ 
group - one from the point group, the other from the 
translation group. Having exhausted the cyclic groups, he 
combined the cyclic groups expressing rotations about 
different axes with each other to form non-cyclic groups, 
and combined these with the translation groups; here 
additional generating operators were needed. 

The three space groups of the rhombic system 
belonging to the point group 𝐶ଶ௩ are already represented by 
three generating elements (

௩
 represents reflection in the 

plane parallel to the rotation axis, 𝜹ଶ rotation about the 
twofold axis, and 𝒕ଵ/2 non-lattice translation): 
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The four space groups of the hexagonal system 
belonging to the point group 𝐷଺௛ are represented by four 
generating elements: 

  

 
 
Although Seitz did not provide a summary table of 

space groups in the four articles, he pointed to his own 
article in which he described representations of all 230 
space groups. His derivation (construction) of space groups 
did not introduce a new type of crystal symmetry, but was a 
demonstration of the connection of crystal symmetry with 
mathematics.  
 
Seitz's major works on crystallography and crystalline 
substances: 
1. Zeitschrift für Kristallographie: 88 (1934) p. 433, 90 

(1935) p. 289, 91 (1935) p. 336, 94 (1936) p. 100. 
2. A matrix-algebraic development of the crystallographic 

groups, Princeton University, 1934. 
3. The modern theory of solids, McGraw-Hill, 1940. 
  
Sources:  
1. Original articles by Seitz in Zeitschrift für 

Kristallographie 
2. https://en.wikipedia.org/wiki/Frederick_Seitz 
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William Houlder Zachariasen (1906 – 1979) 

 

Originally a Norwegian, 
he focused his entire 
scientific activity on the study 
of the structure of mainly 
inorganic substances by X-ray 
diffraction methods. In his 
1945 book Theory of X-ray 
Diffraction in Crystals [17  he 
devoted one chapter to the 
theory of symmetry of 
crystals, in which he 
presented his original method 
of derivation of 230 space 
groups based on the theory of 
groups and tensor algebra. He used these two mathematical 
tools more rigorously than his predecessors, not excluding 
F. Seitz. He became well known in the crystallographic 
community after the publication of his work on the structure 
of glass (1932). 

He has worked in the USA most of his life, but was 
born in the south of Norway in the town of Langesund, about 
100 km southwest of the capital Oslo. He also began his 
university studies at the Mineralogical Institute in the 
capital in 1923. He published his first paper at the age of 19 
and over the course of 55 years of active work he published 
over 200 papers, most of them as a single author. He 
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received his PhD from the Universitetet i Oslo at the age of 
22, and was mentored by the well-known geochemist V. M. 
Goldschmidt. Immediately after completion of doctoral 
studies, from 1928 to 1929, he worked at Manchester 
University in the laboratory of L. Bragg, where he began to 
study the structure of silicates. He returned briefly to his 
home university, but after only a year of work accepted the 
offer of A. Compton and went to the USA. Thus, in 1930, he 
became a member of the Physics Faculty at the University 
of Chicago and in 1941 an American citizen. 

Although he was primarily an experimentalist, he 
contributed to the theory of diffraction whenever he found 
it inconsistent with experiment. He published results on the 
determination of the structure of minerals, inorganic 
crystals, radii of atoms and ions, wrote on the amorphous 
(glassy) state, the structure of liquids, the chemical and 
crystallographic properties of actinides, phases at high 
pressures, the structure of superconductors, and the 
dependence of the binding strength on the binding distance. 
His contributions to the theory concern thermal diffuse 
scattering of X-rays, the phase problem of structure 
factors, as well as extinction, including the so-called 
Borrmann phenomenon. The correctness of each of these 
theoretical contributions has been carefully verified 
experimentally by Zachariasen. 

In 1932, he published a paper The Atomic 
Arrangement in Glass, which significantly influenced 
material structure scientists at the time. The paper was a 
breakthrough on the structure of glass and its relationship 
to chemical composition. Between 1943 and 1945, as part of 
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the Manhattan Project, he determined the structures of the 
crystalline phases of the transuranic elements. In 1945 he 
published a major monograph, Theory of X-ray Diffraction 
in Crystals, and continued to publish extensively (e.g., up to 
19 papers between 1948 and 1949). From 1945-1950 and 
again from 1955-1959 he was head of the Department of 
Physics at the University of Chicago. Zachariasen's major 
scientific contribution was the experimental and theoretical 
assessment of relations expressing the intensity of 
diffracted radiation concerning corrections for secondary 
extinction. In 1967 and 1968 he published papers on the 
theory of X-ray diffraction on mosaic crystals. 

The aim of this text is to describe Zachariasen's 
contribution to the theory of crystal symmetry, namely to 
the method of deriving 230 space groups. The means he used 
for this purpose can be summarised as follows: 

 He used tensors to represent symmetry operations 
and in this context he also used the reciprocal lattice 
of crystals. 

 In the construction of space groups he took 
advantage of the factor group, which other authors 
before him had not used (Schoenflies, Fyodorov or 
Seitz - with the exception of A. Speiser, who, 
however, only pointed out this possibility).  

 He used the lattice postulate to obtain allowed 
symmetry operations. 

 He used Seitz's notation for symmetry operators: 
[, 𝒕], where the symbol   represented tensors 
(rotations, reflections) and the symbol 𝒕 represented 
vectors (translations). 
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Zachariasen's approach to the derivation 
(construction) of space groups is captured by the 
headings of the individual chapters: 

• Concept of symmetry - equivalent points, trivial 
symmetry operations, group of symmetry operations  

• Possible symmetry operations of crystal lattices – 
lattice postulate  

• Classification of possible symmetry operations and 
elements of symmetry - centre of symmetry, axis of 
symmetry (proper, improper), screw axis, plane of 
symmetry, glide plane 

• Point groups - general properties of space groups, 
factor group, cyclic group, number of cyclic groups 
(formula), possible angles between symmetry axes 
(formula) 

• Translation groups - procedure for their construction 
according to crystall systems  

• Space groups - symmorphic groups and other groups, 
table of space groups 

   The first mathematically formulated problem 
Zachariasen set himself was to obtain possible (allowed) 
symmetry operations in three-dimensional periodic crystal 
structures. Since he represented the operations by 
operators in the symbolic notation [, 𝒕] it was actually a 
matter of exploiting the conditions imposed by the lattice 
postulate on both the tensor part  of the  operators (i.e., 
on rotations and reflections) and on their translational part 𝒕.  
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He wrote the tensors in the form 
 

  ௝௞  𝒂௝𝒂௞ 
 
where ௝௞ are the scalar coordinates of the tensor, the 
symbol 𝒂௞ represents the triplet of basis vectors of the 
direct lattice of the crystal, and 𝒂௝  represents the triplet 
of basis vectors of the reciprocal lattice. The tensor 
coordinates can be written in rows and columns, i.e., in 
matrix form, making Zachariasen tensors essentially 
identical to Seitz matrices: 
 

൭

𝛷ଵଵ 𝛷ଵଶ 𝛷ଵଷ

𝛷ଶଵ 𝛷ଶଶ 𝛷ଶଷ

𝛷ଷଵ 𝛷ଷଶ 𝛷ଷଷ

൱ 

 
The difference in the notation of symmetry operations using 
tensors or matrices thus appears to be only formal. 
However, the notation using tensors is particularly 
advantageous in that it allows the illustrative use of the so-
called natural coordinate system. The basis of this system 
is a triplet of non-complanar vectors 𝒂ଵ,  𝒂ଶ, 𝒂ଷ , which is 
characteristic of each crystal because the directions of the 
vectors and their lengths are related to the arrangement of 
the atoms and the distances between them. The directions 
of the triplet of basis vectors 𝒂ଵ,  𝒂ଶ, 𝒂ଷ determine the 
directions of the coordinate axes, while the "unit" lengths 
on these axes are determined by the magnitudes of the 
corresponding vectors. That is, the units of length in 
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different directions in crystal space need not be the same, 
and are chosen to coincide with the repetition interval of 
the structural motif in the corresponding direction. 

When the matrix and tensor of rotation about the 𝑍 
axis (the "third" axis), are written in the Cartesian system 
𝑋, 𝑌, 𝑍 with unit vectors 𝒊, 𝒋, 𝒌  in the corresponding 
directions, they have the form: 

 

൭
cos 𝜑 sin 𝜑 0

− sin 𝜑 cos 𝜑 0
0 0 1

൱         
 cos 𝜑  𝒊𝒊 + sin 𝜑 𝒊𝒋 + 0
− sin 𝜑 𝒋𝒊 +  cos 𝜑  𝒋𝒋 + 0

0 0 + 𝒌𝒌

        

(A) 
The rotation by 60 about the 𝑍 axis is then 

represented by a matrix resp.  tensor 
 

ቌ
(1/2) √3/2 0

−√3/2 (1/2) 0
0 0 1

ቍ                   

(1/2) 𝒊𝒊 + √3/2 𝒊𝒋 + 0

−√3/2𝒋𝒊 (1/2) 𝒋𝒋 + 0
0 0 + 𝒌𝒌

 

 
In a natural system of basis vectors 𝒂ଵ,  𝒂ଶ,  𝒂ଷ in 

which the first two vectors make an angle 120 and the third 
is perpendicular to their plane, this matrix and tensor have 
the form 

 

൭
1 1 0

−1 0 0
0 0 1

൱           
𝒂ଵ𝒂ଵ +𝒂ଵ𝒂ଶ +0

− 𝒂ଶ𝒂ଵ +0 +0 

+0 +0 +𝒂ଷ𝒂ଷ
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or tensor written in one-line form: 

𝒂ଵ𝒂ଵ +  𝒂ଵ𝒂ଶ −  𝒂ଶ𝒂ଵ + 𝒂ଷ𝒂ଷ . 

As you can see, there are only integers in the matrix, and 
the same is true for the tensor coordinates. Their integer 
values are important for further considerations.  

The unit matrix representing the identity (i.e., the 
rotation by 0), whose diagonal terms are all 1 and the others 
0, corresponds to the identity tensor, which has the 
following form in the Cartesian resp. in natural system: 

 
𝒊𝒊 + 𝒋𝒋 + 𝒌𝒌 ,     𝒂ଵ𝒂ଵ + 𝒂ଶ𝒂ଶ +  𝒂ଷ𝒂ଷ . 

An important role in Zachariasen's procedure is 
played by the first scalar of the tensor, which coincides with 
the trace of the matrix, i.e. with the sum of its diagonal 
terms ( relation A). As long as we do not consider a 
particular rotation angle, both the trace of the matrix and 
the scalar of the tensor are expressed by the relation: 

 
 1 +  2 cos 𝜑. 

The value of this relation depends only on the 
rotation angle and, as can be shown, does not depend on the 
choice of the reference frame. 

Zachariasen's reasoning concerning the rotation part 
of the operator [, 𝒕], i.e., the determination of the possible 
values of the rotation angle, is based on the fact that the 
lattice vectors 𝒕௝ of the direct lattice of a crystal are 
integral linear combinations of a triple of basis vectors: 
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𝒕௝  𝑛ଵ𝒂ଵ  + 𝑛ଶ𝒂ଶ  + 𝑛ଷ𝒂ଷ, where 𝑛௝ are integers. The 
symmetry operation transforms an arbitrary lattice vector 
𝒕௝ into another lattice vector 𝒕௞ , whose coordinates 𝑛௞ are 
also integers,  which are a linear combination of the three 
coordinates of the original vector. The transformation is 
expressed in the symbolic notation 𝒕௞ =  ∙ 𝒕௝ , where the 
transformation for the first coordinate of the vector 𝒕௞ 
provides an expression: 

 
𝑛ଵ

௞ =  𝛷ଵଵ𝑛ଵ
௝

+ 𝛷ଵଶ𝑛ଶ
௝

+ 𝛷ଵଷ𝑛ଷ
௝
 . 

Similar expressions hold for the remaining two coordinates 
of the 𝒕௞ vector. If all coordinates of any pairs of vectors 𝒕௝ 
and 𝒕௞  are to be integers, then the coordinates 𝛷௜௝ of the  
tensor (in the natural coordinate system) must also be 
integers. Then the scalar of the tensor must also be an 
integer 𝑁, which leads to the condition: 

 1 +  2 cos 𝜑  = 𝑁     cos  =  (𝑁 –  1)/2 . 
 

This condition is satisfied only by the rotation angles 𝜑 : 
60, 90, 120 a 180. 

As stated by Zachariasen, the tensor representing a 
rotation of 𝜑 about an axis whose direction is determined by 
the unit vector 𝒖,  can be written in the form 

 
 = ± 𝒖𝒖 ± (𝐈 –  𝒖𝒖)cos  ± (𝐈  𝒖)sin  , 
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where  𝐈  is the identity tensor (corresponding to the unit 
matrix). The expression (𝐈  𝒖) represents the vector 
product of the identity tensor with the unit vector 𝒖 , which 
results in a tensor with the property that it projects any 
vector into a plane perpendicular to the vector 𝒖 . When the 
sign "+" is applied, these are tensors representing proper 
rotations, the sign "-" representing non-proper rotations. 
Substituting the allowed values of the angles 𝜑 yields the 
corresponding tensors, which Zachariasen has listed in a 
summary table: 
 

 
 
He further showed that the vector 𝒖 cannot have an 

arbitrary direction, that it must be parallel to the lattice 
vector of a direct and at the same time reciprocal lattice - 
which is only possible in lattices of a certain type.  

For the translational part 𝒕 of the operator [, 𝒕] in 
the case of combination with rotations Zachariasen derived 
the condition 

 
(𝒕 ∙  𝒖)𝒖 =  (𝑗/𝑛)𝑨௅  , 
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where 𝒖 is a unit vector parallel to the rotation axis, 𝑨௅ – 
the shortest lattice vector parallel to the rotation axis, 𝑛 – 
nultiplicity of the rotation axis, where the number 𝑗 can take 
values 0, 1, ... , n - 1. He derived a similar condition for the 
cases of combination of translation with reflection. The 
result of these considerations was a table of the allowed 
symmetry operations that are parts of the point groups and 
space groups. 

Before he started constructing point and translation 
groups (all his predecessors started with this), Zachariasen 
outlined a method for how he wanted to construct space 
groups. Space groups contain various combinations of 
rotations, reflections and translations, i.e., they represent 
certain combinations of point and translation groups. He 
stated that a translation group ( ) as a part of a space 
group (𝐺), is always an invariant subgroup of it. This means, 
in other words, that a space group containing an infinite 
number of elements (due to the translation group) can be 
decomposed into a finite number of parts, the so-called 
cosets with respect to the translation group ( ): 

 
(𝐺) = ( ) + ଵ ∙ ( ) + ଶ ∙ ( )+. .. 

 
In this relation, ௜ ∙ ( ) are the cosets of the group (𝐺), 
with ௜  [௜,  𝒕௜] themselves being the representatives of 
the cosets. In doing so, ௜ represents rotation or reflection 
(= elements of the point group) and 𝒕௜ represents translation, 
which is a fraction of lattice translation, so it does not 
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belong to the translation group. These, the so-called non-
lattice translations, occur for screw axes and glide planes. 

The set of cosets of the space group, together with 
the translation group, again forms a group, the so-called 
factor group. The elements (members) of the factor group 
are individual cosets (i.e., sets of elements, not individual 
elements), and the meaning of the unit (neutral) element in 
this group is the entire translation group. The space group 
can then be expressed as the so-called direct product of the 
translation group ( ) with the factor group (𝐺/ ): 

 
space group   (𝐺) = ( ) + ଵ  ∙ ( ) + ଶ  ∙ ( )+. ..   

  factor group  (𝐺/ ) = {( ), ଵ  ∙ ( ),ଶ  ∙ ( )+. . . }   
            space group   (𝐺) = ( )  (𝐺/ ) 

 
Zachariasen also considered a factor group to be a 

group (𝐼𝐺) of coset representatives, which is isomorphic to 
the factor group and in which the translation group is 
represented by an identical operation I (unit tensor or 
matrix): 

 
                       (𝐺/ ) = {( ), ଵ  ∙ ( ),ଶ  ∙ ( )+. . . }                           
                        (𝐼𝐺)  =  { I ,     ଵ ,        ଶ , . . .    } 

                       (𝐵𝐺)  =  { I ,     ଵ ,        ଶ , . . .    } 
 
In the third row is the point group (𝐵𝐺), which is formed 
from the factor group when the translation parts  𝒕௜ are 
omitted in all elements ௜  [௜,  𝒕௜]. This point group is 
isomorphic to the factor group, what was used by 
Zachariasen in the construction of the space groups.  
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  When screw axes or glide planes are present in the 
crystal structure, the representative of some coset is the 
[, 𝒕] operator, i.e., a combination of rotation or reflection 
with a non-lattice translation. If the representatives of all 
cosets are only elements of the point group (i.e., elements 
of type [, 𝟎], then these are so-called symmorphic space 
groups, of which there are 73, and for which Zachariasen 
used the name point space groups. He has included a table 
of them in the text, giving three symbols for each group: his 
own, the international (Hermann-Mauguin) and symbol by 
Schoenflies.  

What is significant about the consideration of the 
factor group is that it is isomorphic to the point group, which 
is important to realize when the representatives of the 
cosets are not purely elements of the point group. This 
means that in the construction of space groups one needs to 
know all point groups, all translation groups, but also the 
allowed non-lattice translations that are part of some of the 
coset representatives. Therefore, the natural next step was 
to derive the possible point groups and translation groups, 
but also to determine what combinations of elements with 
non-lattice translations can form a group. 

Zachariasen began the construction of point groups 
by creating so-called cyclic groups, which describe the 
symmetry of crystals with a single rotational axis. Such 
groups can be created (generated) by successive application 
of a single symmetry operation (the smallest allowed 
rotation), which after n steps brings the object to the initial 
position (e.g., four rotations of 90 about the fourfold axis). 
In terms of group terminology, this is the case of a group 
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with a single generating element. Zachariasen divided these 
cyclic groups into two parts, proper and improper groups. 
Both proper and improper symmetry operations (e.g., 
combinations of rotation with inversion) occur in the 
improper groups, and he pointed out that proper operations 
make up half of the entire group and constitute its cyclic 
subgroup. Therefore, the improper cyclic group can be 
decomposed into the sum of the proper cyclic group and its 
only coset whose representative is an improper operation. 
This reasoning implies that it is sufficient to find all proper 
cyclic groups and to know the improper operations, which 
Zachariasen has already listed in the table of allowed 
symmetry operations. 

If the crystal contains more than one rotational axis 
of symmetry, the point group is no longer cyclic, but contains 
cyclic groups as its subgroups. Zachariasen derived a 
relation expressing the connection between the number of 
cyclic subgroups 

  
𝑠ଶ  =  3 +  𝑠ସ  +  3𝑠଺, 

 
where 𝑠௡  is the number of cyclic subgroups related to the 
n-fold axis of symmetry.  

He further gave a relation expressing the total 
number 𝑘 of elements (symmetry operations) in a non-cyclic 
point group (already given by Bravais):  

 
𝑘 =  1 +  𝑠ଶ  +  2𝑠ଷ  +  3𝑠ସ  +  5𝑠଺ . 
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Zachariasen also derived a relation expressing the 
possible angles between the axes of symmetry, which 
allowed him to consistently construct all possible point 
symmetry groups of crystals. The result was a clear table of 
point groups, broken down into proper and improper point 
groups, with, moreover, an indication of the shape of the 
tensors representing the generating elements of the groups. 

The next step was the construction of 14 types of 
Bravais lattices - translation groups, rigorously 
mathematically grounded. As far as the formulation of the 
problem using operators was concerned, Zachariasen's 
procedure was not different from Seitz's, except that he 
used tensors instead of matrices. The basis of the 
procedure was the condition that the translation group must 
be invariant with respect to the operations of the 
corresponding point group. In other words – each of the 
point group symmetry operations transforms all lattice 
vectors into other, also lattice vectors. This eventually leads 
to the requirement that the triple of vectors 𝒂ଵ,  𝒂ଶ,  𝒂ଷ  
determining an acceptable translation group, for a given 
point group represented by tensors , satisfies the relation 

 
௝௞ = 𝒂௝ ∙   ∙ 𝒂௞ =  integer number                                       

(B) 
 

In this relation,  ௝௞  are the coordinates of the 
tensor    and the expression  𝒂௝ ∙   ∙ 𝒂௞ represents the so-
called scalar products of the tensor with vectors from both 
the left and right sides, while from the left the basis vector 
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of the direct lattice, from the right the basis vector of the 
reciprocal lattice. In the computations, it is sufficient to 
consider the constraints imposed only by the generating 
elements of the groups. In contrast to Seitz, who used Laue 
groups in the construction of translation groups (all of which 
are improper, because they contain an inversion), 
Zachariasen stated that it is sufficient to consider the 
influence of proper point groups, because if relation (B) 
holds for the + tensor of an proper rotation, it also holds 
for the − tensor of the corresponding improper protation. 

Prior to the construction of translation groups, 
Zachariasen pointed out that in a primitive lattice, the 
lattice vectors 𝑨௅ are integral linear combinations of a triple 
of basis vectors: 𝑨௅ =  𝐿ଵ𝒂ଵ + 𝐿ଶ𝒂ଶ + 𝐿ଷ𝒂ଷ . That is, the 
lattice translations then correspond to the operators 
௅   [𝐈,  𝑨௅] and the translation group can be expressed by 
the group symbol (௅). However, in centered lattices, the 
position vectors of some lattice points also contain halves of 
the basis vectors, so that a translation group, in a body 
centered lattice, can be assigned the symbol: 
( )  (௅) ∙ (𝐸,ଵ/ଶ ଵ/ଶ ଵ/ଶ ). The term (𝐸,ଵ/ଶ ଵ/ଶ ଵ/ଶ) in this 
expression represents the identity 𝐸 and the displacement 
by (1/2)(𝒂ଵ + 𝒂ଶ + 𝒂ଷ), so that the corresponding 
translation group consists of the so-called integer 
translations 𝑨௅ =  𝐿ଵ𝒂ଵ + 𝐿ଶ𝒂ଶ + 𝐿ଷ𝒂ଷ  and the translations 
that are the sum of the integer and half-integer ones:  
 𝑨௅ + (1/2)(𝒂ଵ +  𝒂ଶ + 𝒂ଷ) . 

The point groups he used in the construction of the 
translation groups were classified by Zachariasen into the 
traditional 7 crystall systems, where he then placed the 
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corresponding translation groups obtained. In doing so, he 
also used the relations valid in the crystall systems for the 
directions of the basis vectors and for the angles between 
them, which simplified his further considerations. 

As specific examples, we will mention the triclinic and 
monoclinic crystall systems. 

In the triclinic system, there are point groups 1 and 
1ത, where the generating elements are identity or inversion, 
represented by tensors  =  ± 𝐈; the relation (B) is then 
fulfilled for any triple of fundamental vectors, regardless 
of the sign before the identity tensor. After all, any three-
dimensional periodic lattice, regardless of the type of 
symmetry, is characterized by inversion.   

In a monoclinic system, the proper point group is the 
group denoted by the symbol 𝟐, where the generating 
element is represented by the tensor 

 
𝟐  – 𝒂ଵ𝒂ଵ  + 𝒂ଶ𝒂ଶ – 𝒂ଷ𝒂ଷ . 

 
This allows the existence of both a primitive and a base-
centered cell (the calculation is quite long). If lattice 
vectors are expressed in the form  

 
𝑨௅  +  𝑓௞𝒂௞ , 

 
thus, from the corresponding analysis, he emerged two 
options for 𝑓௞ : 0 or 1/2, which represents a primitive or 
centered cell. 
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After obtaining all of the permitted operations, point 
groups and translation groups, Zachariasen proceeded to 
construct space groups. As mentioned above, the space 
group is expressed as the direct product of the translation 
group and the factor group, where the factor group is 
isomorphic to the point group. If the point group is cyclic, it 
has a single generating element [𝚽, 0] and the whole group 
as a set of elements is denoted by the symbol (𝚽, 0), or only 
by the symbol (𝚽). In doing so, the representatives of some 
cosets of space group may also have non zero translation 
terms 𝒕 ∶  [𝚽, 𝒕], but these must be such that the set of 
elements (𝚽, 𝒕)  forms a group.  If the point  group  is  not  
cyclic,  then  it  has  a  maximum of three generating 
elements: [𝚽ଵ, 0], [𝚽ଶ, 0], [𝚽ଷ, 0], and the group is then the 
direct product of three cyclic groups: (𝚽ଵ) ∙ (𝚽ଶ) ∙ (𝚽ଷ). The 
generating elements of point group are, generally expressed 
in the form [𝚽ଵ,  𝒕ଵ], [𝚽ଶ,  𝒕ଶ], [𝚽ଷ, 𝒕ଷ]. The corresponding 
space group (𝐺) is then the product of the factor group   
(𝚽ଵ,  𝒕ଵ) ∙ (𝚽ଶ,  𝒕ଶ) ∙ (𝚽ଷ,  𝒕ଷ)  with translation group ( ): 

 
(𝐺) =  ( ) ∙ (𝐺/ ) = ( ) ∙ (𝚽ଵ , 𝒕ଵ) ∙ (𝚽ଶ , 𝒕ଶ) ∙ (𝚽ଷ , 𝒕ଷ) . 

 
In order for the product of (𝚽ଵ,  𝒕ଵ) ∙ (𝚽ଶ,  𝒕ଶ) ∙ (𝚽ଷ, 𝒕ଷ) to be 
a group, it is not enough for the groups to be independent 
terms (𝚽௝,  𝒕௝), but the non-lattice translations 𝒕ଵ, 𝒕ଶ,  𝒕ଷ 
must meet the additional conditions specified by 
Zachariasen in a separate paragraph of the text.  

As mentioned above, space groups that are formed by 
the direct product of the translation group and the point 
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group are the so-called symorphic groups. He divided the 
other space groups (non-symmorphic) into three sets, 
according to the shape of the translational member of the 
first of the two or three generating elements of the factor 
group. 

In the first set of non-symmorphic groups, which he 
denoted with the letter 𝐀, he included space groups in which 
the first of the three generating elements of the factor 
group has the form [𝒏ഥ, 𝒕], where the tensor 𝒏ഥ =  𝟏ഥ, 𝟑ഥ,  𝟒ഥ ,

or  𝟔ഥ  , e.g. inversion (𝟏ഥ) and rotoinversions ( 𝟑ഥ ,  𝟒ഥ ,  𝟔ഥ ). This set 
includes space groups constructed on the basis of the 
following point groups: 

 
𝐶௜, 𝐶ଶ௛, 𝐷ଶ௛, 𝑆ସ, 𝐶ସ௛, 𝐷ଶௗ, 𝐷ସ௛, 𝐶ଷ௜, 𝐷ଷௗ, 𝐶ଷ௛, 𝐶଺௛, 𝐷ଷ௛, 𝐷଺௛, 𝑇௛, 
𝑂௛. 

In the second set, marked with the letter 𝐁, he 
included non-symmorphic space groups, in which the first of 
the three generating elements of the factor group has the 
form [𝒏, 𝒕], where the tensor 𝒏 = 𝟐, 𝟑, 𝟒, or 𝟔.  So these are 
proper rotations. This set includes space groups constructed 
on the basis of the following point groups:  

 
𝐶ଶ, 𝐷ଶ, 𝐶ଶ௩, 𝐶ସ, 𝐷ସ, 𝐶ସ௩, 𝐶ଷ, 𝐷ଷ, 𝐶ଷ௩, 𝐶଺, 𝐷଺, 𝐷଺௩, 𝑇, 𝑂, 𝑇ௗ . 

 
The third set, marked with the letter 𝐂, includes 

space groups related to the point group 𝐶௦ . The generating 
element of the factor group is [2ത, 𝒕] so it is a reflection, 
which can also be understood as a combination of rotation by 
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180 with inversion, i.e. as an operation according to the 
twofold rotoinverse axis. 

A different view of the three types of space groups, 
or the generating elements of the factor group, is also 
possible. In the case of type 𝐀, the translational part of the 
operator can be zeroed by suitable choosing the position of 
the origin of the coordinate system. In type 𝐁, the 
translational part of the operator must be parallel to the 
rotational axis of symmetry, so it has the form 𝒕 ∙ 𝒖𝒖, where 
𝒖 is the unit vector parallel to the axis of rotation. So these 
are screw axes. In type 𝐂, the translational part of the 
operator must be parallel to the mirror plane, so it has the 
form 𝒕 − 𝒕 ∙ 𝒖𝒖, where 𝒖 is the unit vector perpendicular to 
this plane. Given these circumstances, the three types of 
non-symmorphic space groups can be expressed by 
relationships: 

 
 𝐀  (𝐺) = ( ) ∙ (𝟏,   0) ∙ (ଶ,  𝒕ଶ) ∙ (ଷ,  𝒕ଷ), 

screw axes 𝐁  (𝐺) = ( ) ∙ (𝟏, 𝒕 ∙ 𝒖𝒖) ∙ (ଶ,  𝒕ଶ) ∙ (ଷ,  𝒕ଷ),   

glide planes 𝐂  (𝐺) = ( ) ∙ (𝟏, 𝒕 − 𝒕 ∙ 𝒖𝒖) ∙ (ଶ, 𝒕ଶ) ∙ (ଷ,  𝒕ଷ).   

 

In a similar way, two other members of the factor 
group can be analyzed, but Zachariasen did not do this in 
detail. He did not use this method  to derive all 230 space 
groups, arguing that they were derived more than half a 
century ago. He gave only a few typical examples of the 
construction of non-symmorphic space groups.  
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In type 𝐀, he used his method to show that 4 non-
symmorphic groups are related to the point group 𝐶ସ௛ in 
addition to the two symorphic ones.  

For type 𝐁, he gave the example of groups related to 
the point group 𝐷ଷ and derived 4 non-symmorphic groups. 

In type 𝐂, starting from the point group 𝐶ௌ derived 
two non-symmorphic groups, one with a primitive lattice, the 
other with a base-centered lattice. 

At the end of the chapter on crystal symmetries, he 
listed all 230 space groups, with three symbols:  

 his own, international (Hermann-Mauguin) and 
Schoenflies.  

Zachariasen, like Seitz, could no longer discover new 
types of space groups, all of which had already been derived 
by Fyodorov and Schoenfkies, but he took their derivation – 
construction – to a higher mathematical level. 

 
Authors quoted by Zachariasen: 
Bravais, Sohncke, Fyodorov, Schoenflies, Seitz, he did not 
quote the authors of the point groups – Hessel and Gadolin. 
He also cited the International Tables for Cystallography. 
 
Some of Zachariasen's works: 
1. The atomic arrangement in glass.  Am. Chem. Soc. 54 

(1932). 
2. On the theory of temperature diffuse scattering. Phys. 

Rev. 60 (1941). 
3. Theory of X-ray Diffraction in Crystals. New York: John 

Wiley and Sons. (1945) Direct determination of stacking 
disorder in layer structures. Phys.Rev. 71 (1947)  
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4. Chemical identity and crystal structure. In The 
Transuranium Elements. National  Nuclear Energy  
Series, vol. 14B, pp. 1462- 72. New York: McGraw-Hill. 
(1949) 

5. General theory of X-ray diffraction in real crystals. 
Phys. Rev. Let.18 (1967):195-96. 

6. Theory of X-ray diffraction in crystals with stacking 
faults. Acta Crystallogr.23 (1967). 

7. Experimental tests of the general formula for the 
integrated intensity of a real crystal.    Acta 
Crystallogr. A24 (1968). 

8. Theoretical corrections for extinction. Acta Crystallogr. 
A25 (1969):102. 

9. On californium metal. J. Inorg. Nucl. Chem. 37 
(1975):1441-42. 

 
Sources used: 
1. Theory of X-ray Diffraction in Crystals. New York: John 

Wiley and Sons. (1945) 
2. A Biographical Memoir: W . H. Zachariasen, by M. 

Ingraham, National Academy of Sciences, Washington 
D.C. 1992 
https://en.wikipedia.org/wiki/William_Houlder_Zacharia
sen 
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BLACK-WHITE AND COLOUR GROUPS 

 
The systematics of space groups representing types 

of symmetry of crystal structure was developed at the end 
of the XIX century and is associated with the names of 
Fyodorov and Schoenflies. The work of Seitz and 
Zachariasen in the first half of the twentieth century was a 
contribution only in terms of the methodology of derivation 
of space groups, a more complete and elegant use of the 
possibilities of mathematics. However, the development did 
not stop there, and the extension of symmetry types began 
to be considered. In addition to the three spatial 
coordinates of the atom expressing its position in the unit 
cell of the crystal, another parameter began to be 
considered which could characterize the atom and take on 
two or even more values. A parameter with two values was 
already in 1929 the subject of consideration of the German 
mathematician Heinrich Heesch 21, who in his doctoral 
thesis gave the name black-white to the respective 
symmetry groups.  Allegedly already in that period Russian 
crystallographer A. V. Shubnikov corresponded with Heesh. 
Later, in 1951 Shubnikov published a rigorous derivation of 
58 black-white point groups.  In his work, Shubnikov began 
to use the term antisymmetry, which seems to have 
originated in the oppositeness of the states corresponding 
to the two possible values of this antisymmetry parameter. 
For example, in antiferromagnetics there are possible two 
opposite orientations of the magnetic moments of the 
atoms, which contributed to the use of the threefold naming 
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of these groups - the black-white, magnetic, and Shubnikov 
groups. Shubnikov at that time collaborated with N. V. Belov, 
who in 1956, together with R. F. Tarchova, considered the 
case of several possible values of this additional parameter. 
Under the influence of the name black-white groups, the 
name coloured groups 19 was coined. The number of 
possible types of symmetry thus grew considerably, and this 
involved an increase in the number of point, translation and 
space groups. On groups of this type, Shubnikov and Belov 
published a book in 1964, Colored symmetry 20. 

It is convenient to illustrate the construction of 
black-white groups by the example of a crystal in which the 
magnetic moment of a particular atom can have only one of 
two orientations opposite to each other. Consider the case 
in which an atom is moved from a particular location in the 
unit cell of the crystal by an operation of symmetry to 
another position (equivalent from the point of view of space 
symmetry), but in which it should have an oppositely oriented 
magnetic moment. Thus, complete identification is achieved 
only when the magnetic moment of the displaced atom is 
flipped over. From a mathematical point of view, the flipping 
can be expressed symbolically by the number –1, which is 
understood as the magnetic moment flipping operator (spin 
inversion, colour inversion, antisymmetry operator), which is 
added to the operator representing the corresponding space 
operation (rotation, reflection or translation). However, by 
another symmetry operation, the atom can be brought to a 
position where the same orientation of the magnetic moment 
is required; the conservation of its direction can be 
expressed by applying the operator represented by +1. The 
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pair of numbers (operators) –1, +1, in terms of the binary 
multiplication operation, forms a group, in this case called 
the spin inversion group and denoted by the symbol 𝑅 =

{1, −1} or according to Shubnikov 𝑅 = {1, 1′}. The comma 
(apostrophe) above the symbol represents the combination 
of the corresponding spatial operation with the magnetic 
moment flip, or more generally with the change of the value 
of the antisymmetry parameter. For example, the rotation 
by 90 about the fourfold axis of symmetry associated with 
the flipping of the magnetic moment is denoted by 
Shubnikov with the symbol 4’. In structures in which the 
atoms have doubly oriented magnetic moments, only some of 
the symmetry operations are combined with magnetic 
moment flipping, so they form only part of the relevant set 
of symmetry operations. 

Shubnikov groups, often called magnetic groups, 
include three types of groups. The first kind are the so-
called colourless magnetic groups 𝑀୭ , identical to the space, 
point or translation groups 𝐺, not containing combinations of 
space transformations with magnetic moment flipping, so 
that: 𝑀୭ ≡ 𝐺 ; thus, there are 230 colourless space groups, 
32 colourless point groups, and 14 colourless translation 
groups. 

The same calculus applies to the second kind - 
paramagnetic groups P also called grey groups, whose 
elements are both the operations of the space group (or 
point or translation group), but also all the operations of this 
group combined with the magnetic moment flip, which is 
expressed by notation: 𝑀୔ ≡ 𝐺 + 𝐺1′. This essentially means 
that the probability of occurrence of one or the other 
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orientation of the magnetic moment at a given location of 
the unit cell of the crystal is the same. 

In the third kind, the non-trivial magnetic group 𝑀, 
i.e., the black-white group, there are two equally numerous 
sets of symmetry operations - space operations combined 
with magnetic moment flipping and space operations without 
this flipping; these two sets of space operations are 
disjunctive - the operations of the second set are not found 
in the first set, and vice versa. There are 1191 such space 
groups.  

The sum of the number of colourless, grey and black-
-white space groups gives the number 

 
230 + 230 + 1191 = 1651, 

 
which is the total number of so-called Shubnikov space 
groups. 

The formation of black-white 𝑀 groups from the 𝐺 
group of space transformations is based on its subgroup 𝐻 
with an index of 2 (𝐻 has half of the elements of the 𝐺 
group). The elements of subgroup 𝐻 are space 
transformations (rotations, reflections, translations) 
without a combination with a flip of the magnetic moment, 
while all other elements of the group 𝐺, i.e. elements of the 
coset 𝐺 − 𝐻, are combined with flipping; they are written in 
the symbolic form (𝐺 − 𝐻)1ᇱ. The notation of the black-
white group 𝑀 thus has the form:  

 
𝑀 = 𝐻 + (𝐺 − 𝐻)1ᇱ . 

 



142 
 

Such a construction of black-white groups is directly 
applied to both point and translation groups, but for space 
groups, as shown below, there are two types of black- white 
groups. For the point groups, there are 32 colourless, 32 
gray and 58 black-white, a total of 122 Shubnikov groups.  

 
It should be noted that not all black-white groups are 

suitable for describing structures with ordered magnetic 
moments (ferromagnetics, antiferro-magnetics, and 
ferrimagnetics), because in some cases there is a mismatch 
between a dashed operation and an undashed one. Out of 58 
black-white point groups, only 27 are feasible in this sense.   

To illustrate the three types of Shubnikov point 
groups, the following figure will be used, which shows three 
plane objects. Their symmetries are described by a 
colourless, gray, and black-white point group. 

 

 
 

The colourless point group 𝐺 of the first object 
contains primarily rotations of 0, 120 a 240 (symbols 
𝑒, 3, 3ଶ) related to the threefold axis of symmetry 
perpendicular  to the plane of the triangle and passing 
through its center, as well as three reflections 
𝑚଺଴,  𝑚ଵଶ଴ and 𝑚ଵ଼଴ in three planes perpendicular to the plane 
of the triangle, which form angles of 120 to each other. In 
each of these transformations, the object identifies with 
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itself. Thus, the colourless point group of symmetry 𝐺 
contains the following elements: 

 
𝐺 ≡ {𝑒,   3,    3ଶ,  𝑚଺଴,  𝑚ଵଶ଴,  𝑚ଵ଼଴} . 

 
The third of the objects in the picture, in addition to 

the identical operation, identifies with itself even after 
rotations of   120 and 240  around the threefold axis, while 
this set of symmetry operations with the designations 𝑒,

3,  3ଶ forms a subgroup with an index of 2 of group 𝐺.  After 
reflection, however, the object gets into the same position 
only after the mutual swapping of black and white. 
Therefore, reflection must be combined with the inversion 
of colour, represented by an apostrophe. The black and 
white point group 𝑀 then has the following elements: 

 
𝑀 ≡ {𝑒, 3,  3ଶ,  𝑚′଺଴,  𝑚′ଵଶ଴,  𝑚′ଵ଼଴ }. 

 
For the middle object – from the point of view of 

symmetry operations – the same applies as for the first 
object, while from the point of view of the arrangement of 
the magnetic moments of atoms, it is an image of the 
symmetry of the paramagnetic substance. According to what 
was mentioned above, the Shubnikov group describing the 
symmetry of this object contains all the elements of the 
colourless group and, in addition, all these elements 
associated with the inversion of colour (magnetic moment): 

 
𝑀 ≡ {𝑒, 3, 3ଶ,  𝑚଺଴,  𝑚ଵଶ଴,  𝑚ଵ଼଴,

𝑒′, 3′, (3ଶ)′,  𝑚′଺଴,  𝑚′ଵଶ଴,  𝑚′ଵ଼଴}. 
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From this point of view, the symmetry of the first of 
the three objects would represent the symmetry of a 
substance containing atoms without a magnetic moment, and 
the symmetry of the third – the symmetry of an 
antiferromagnetic substance.  

As an example of the construction of black-white 
point groups in three-dimensional space, we can mention 
groups formed from a point group marked in international 
tables with the symbol 4/m, which has eight elements: 

 
- identity marked with the symbol 1, inversion (symbol 1ത),  
- rotations around the fourfold axis by 90, 180 and 270 
(symbols 4, 4ଶ, 4ଷ),  
- and these rotations combined with inversion (symbols 4ത, 4തଶ,  4ഥ ଷ). 
 

The equivalences 4ଶ ≡ 2 apply, i.e. a double rotation 
of 90 around the fourfold axis is equivalent to one rotation 
of 180 around the twofold axis, and 4തଶ ≡ 2ത ≡ 𝑚, i.e. a 
rotation of 180 with the following inversion is equivalent to 
the reflection 𝑚 in a plane perpendicular to the rotation 
axis. Writing of the 4/m point group using the symbols of 
individual symmetry operations: 

 
𝐺ସ/௠ ≡ {1, 4, 4ଶ, 4ଷ, 1ത, 4ത, 4തଶ,  4ഥ ଷ} ≡ {1, 4, 2, 4ଷ, 1ത, 4ത, 𝑚,  4ഥ ଷ}. 

 
This group has 3 subgroups of index 2: 
 

𝐻ଵ = 4 ≡ {1, 4, 2, 4ଷ} ,  𝐻ଶ = 4ത ≡ {1, 4ത, 𝑚, 4തଷ} , 𝐻ଷ = 2/𝑚 ≡

{1, 2, 1ത, 𝑚}. 
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Based on them, the following three black-white groups can 
be constructed: 
 

  𝑀ଵ = 4/𝑚ᇱ  ≡ {1, 4, 2, 4ଷ, 1ത′, 4ᇱഥ , 𝑚′, 4തଷ′} 
                     𝑀ଶ = 4′/𝑚′ ≡ {1, 4ത, 2, 4തଷ, 1തᇱ, 𝑚ᇱ, 4ᇱ, 4ଷ′} 
                     𝑀ଷ = 4′/𝑚 ≡ ൛1, 2, 1ത, 𝑚, 4ᇱ, 4ଷᇱ

, 4ത′, 4തଷ′ൟ 
 
The 4/m point group itself is considered to be a 

colourless magnetic  group 𝑀୭within the Shubnikov groups: 
 

𝑀୭ ≡ 4/𝑚 ≡ {1, 4, 2, 4ଷ, 1ത, 4ത, 𝑚,  4ഥ ଷ} 
 

while the paramagnetic group  𝑀୔ contains, in addition to the 
elements of the colourless group, its elements combined 
with magnetic moment flipping: 
 

𝑀୔ ≡ ൛1, 4, 2, 4ଷ, 1ത, 4ത, 𝑚,  4ഥ ଷ, 1ᇱ, 4ᇱ, 2ᇱ, 4ଷᇱ
, 1ത′, 4ᇱഥ , 𝑚′, 4തଷ′ൟ . 

 
Here it is worth recalling again that not all the black-white 
point groups presented here are realizable in magnetically 
ordered structures, such as the group  𝑀ଷ = 4′/𝑚. 

In a similar way to point black-white groups, the 
translation black-white groups are also constructed. That is, 
a subgroup with index 2, i.e., half of all possible translations, 
is selected from the translation group and the other half of 
the translations are combined with a magnetic moment flip 
(colour inversion). The translation groups contain an infinite 
number of elements (translations), but the corresponding 
procedure can be illustrated on a single unit cell. For 
example, in a primitive tetragonal lattice, half of the lattice 
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points can be selected with the magnetic moment flipped in 
three ways, as indicated in the following figure, in which the 
"colourless" lattice is shown first: 

 

 
The black rings represent lattice points, which are assigned 
magnetic moments of opposite orientation to those in the 
white rings. In a body centred tetragonal lattice, there is 
only one possible way of selection - when the translation 
directed to the center of the cell is coupled with a flip of 
the magnetic moment: 

 
In the structures described by the black-white 

translation groups, positions with oppositely oriented 
magnetic moments alternate, and so the unit cell, if it is to 
respect the magnetic ordering as well, must in general 
become larger. 

A similar procedure to that used for point and 
translation groups is also used in the construction of space 
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black-white groups, but in this case two types are 
distinguished. Among the 1191 space black-white groups, 
there are 674 in which the translation subgroup 𝐻 is the 
same as in the group 𝐺, i.e., its elements are not combined 
with a magnetic moment flip. Therefore, the magnetic unit 
cell is the same as the crystallographic one. These black-
white space groups are referred to as the groups of the 
first kind. In the remaining 517 black-white space groups 
(groups of the second kind), the translation subgroup 
contains half of the translations combined with magnetic 
moment flipping (according to Shubnikov, these are 
antitranslations); the magnetic unit cell is then larger than 
the crystallographic one. 

The construction of two-colour, i.e., black-white 
groups (point, translation, and space), is based on the 
decomposition of the colourless group into a subgroup with 
index 2 and the corresponding coset; the antisymmetry 
parameter s then takes only two values. All elements of the 
coset are combined with the antisymmetry operation, i.e. 
with the second value of the parameter s. In the 
construction of multicolour groups, when the parameter s 
can take n values (n - "colours"), the decomposition of the 
colourless group into an invariant subgroup with index n and 
the corresponding n - 1 cosets is used. The elements of the 
cosets are then successively combined with operators 
representing the individual values of the parameter s. This 
gives rise to a much more numerous set of symmetry types, 
which, however, does not have the same practical application 
as the set of black-white groups. 
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CRYSTALS WITH ANOTHER TYPE OF 
SYMMETRY 

 
A crystal is commonly understood to be a solid in 

which the distribution of the constituent particles is 
characterized by a three-dimensional periodicity1. This 
periodicity is the reason for the existence of symmetry in 
both the structure of the crystals and their external shape. 
In real crystals, whether natural or synthetic, there is no 
perfect three-dimensional periodicity of the positions of 
the atoms; it is disturbed both by the oscillations of the 
atoms and by various types of point, line or plane defects. 
This can also break the symmetry of the crystal. If, 
nevertheless, the arrangement of the atoms can be 
regarded as periodic, or if there is at least a correlation 
between the positions of the atoms at a distance, such a 
crystal is said to be ordered; otherwise it is a disordered 
crystal. Disordered crystals include in particular solid 
solutions which are characterised by the non-periodic 
occupation of certain atomic positions by two or more atomic 
species. Crystals with partially broken or incomplete 
symmetry include OD crystals, the second group are 
aperiodic crystals, which include so-called incommensurable 
modulated structures, incommensurable composite crystals 
and quasicrystals. 

 
1 According to the 1992 definition of the International Union of 
Crystallographers, a crystal is understood as a solid substance 
characterized by a diffraction diagram with sharp diffraction traces. 
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OD structures 
 
A special type of crystals with disruption of strictly 

three-dimensional periodicity are OD crystals, whose 
structure is referred to as OD structure (Order - 
Disorder). This type of structure can be understood as 
composed of plates (layers) with intrinsic symmetry, while 
they are not layered structures in the chemical sense. The 
symmetry of the layers applies only within their framework 
and is described by two-dimensional symmetry groups. In 
terms of the overall crystal structure, these are partial 
symmetry operations, valid only in part of the whole crystal 
space. The existence of local symmetry, which is not part of 
the symmetry of the whole crystal, creates preconditions 
for ambiguity in the stacking of the layers. Whether the 
resulting structure will be ordered or disordered depends 
on the sequential stacking of the layers. The possible 
variability in the stacking of the layers leads to the 
formation of so-called polytypes; these include, for 
example, SiC crystals or micas. 

As a macroscopic example of polytypes, we can use 
the stacking of identically sized spheres. If they are to be 
stacked as tightly as possible, a layer with a hexagonal  
arrangement will appear in the plane (in the following figure 

A 
C 

B 

A 

C 
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the circles are drawn with a solid bold line). We denote the 
positions of these spheres as the "A" positions. When a 
second such layer of spheres is placed on top of the first 
layer so that the arrangement is as tight as possible (circles 
drawn with a solid thin line), the spheres of the second layer 
will fit into the wells between the spheres of the first layer, 
either in the positions marked 'B' or in the positions marked 
'C'. Suppose that they occupied the B-type positions as 
shown in the figure. The spheres of the third layer (the 
circles drawn by the dashed line) sit in the holes in the 
second layer, and again they may take positions of two kinds 
- those above the spheres of the first layer - 'A-type' 
positions, or 'C-type' positions, which are positions above 
the other holes of the first layer. If such stacking is 
repeated regularly, in the first case (stacking of layers is 
referred to as ABABAB...) a hexagonal structure is formed, 
in the second case (referred to as ABCABCABC...) a cubic 
structure is formed. However, stacking can also take place 
in more complicated ways, which is the essence of the 
formation of polytypes. If even the more complex stacking 
is repeated periodically, an ordered structure is formed. It 
should be noted that such structures (polytypes) occur not 
only in hexagonal structures. It is noteworthy that the 
tightest stacking of spheres in plane and space was already 
addressed in the early 17th century by Johann Kepler, the 
author of the laws of planetary motion 4. 

Disjunct (non-overlapping) parts of the OD structure 
characterized by two-dimensional periodicity are called OD 
layers. They do not have to match the layers selected on the 
basis of chemical identity or cleavage. The goal of selecting 
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OD layers is not to explain polytypism, but to describe it on 
the basis of symmetry. In OD structures, there are 
symmetry operations applied throughout the crystal volume, 
but also operations applied only within layers, the so-called 
local symmetry operations, the set of which forms a plane  
group (two-dimensional group). A set of symmetry 
operations valid in the entire volume of a crystal forms its 
space group, but the set that is created by adding local 
operations usually no longer meets all the criteria for the 
existence of a group, a more loosely defined mathematical 
structure is created – the so-called grupoid. 

In the theory of OD structures, an important role is 
played by the proximity condition, which assesses the 
geometric equivalence of layers and thus the possibility of 
immediate overlapping. For example, geometrically 
equivalent layers, or layers whose translation groups are 
identical, or have at least a subgroup in common, satisfy the 
neighborhood condition. If the placement of the layer (both 
position and orientation) is unambiguous, determined by 
adjacent layers, and meets the neighborhood condition, the 
resulting structure is ordered. However, if there are 
multiple storage options complying with the neighborhood 
condition, then the resulting structure belongs to the OD 
structure. Therefore, structures that meet neighborhood 
conditions are either ordered or are OD structures. All OD 
structures belong to polytypes, but this does not have to be 
the other way around. 

All OD structures, even those of different chemical 
compositions, if they are formed on the basis of the same 
type of symmetry, belong to the so-called OD family of 
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grupoids. This concept has an analogous meaning to that of 
a space group: just as there is a finite number of space 
groups to describe an essentially infinite number of 
variations of structures, so there is also a finite number of 
families OD of groupoids to describe an infinite number of 
possible variations of OD structures. If we move from the 
abstract to the concrete level, the OD structures of a 
concrete substance formed on the basis of the same type of 
symmetry – differing only in the way the layers are 
deposited – belong to the same family: the members of the 
family are concrete real structures. 

The theory of OD structures was developed in the 
fifties of the last century by the German crystallographer 
K. Dornberger-Schiff 22, and from the Slovak 
crystallographer, S. Ďurovič 23,  who collaborated with 
her, participated in the completion of the theory. His share 
was accepted by the International Union of 
Crystallographers by commissioning him to write part of the 
relevant chapter in the International Tables for 
Crystallography 24. 

The terms order-disorder are also used outside of 
crystallography, in a similar, yet different meaning. In 
physics, it represents the presence or absence of a certain 
kind of symmetry or correlation in a system of many 
particles. From the point of view of condensed matter 
physics, systems of many particles are considered to be 
ordered near absolute zero temperature, their heating leads 
to a phase transition to a less ordered state. An example of 
such a phase transition is the melting of ice – the loss of the 
crystalline arrangement, or the demagnetization of iron by 
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heating above the Curie temperature – the loss of the 
magnetic arrangement. When assessing orderliness, it can 
be not only about the positions of atoms or their groups, but 
also about the spatial arrangement of other parameters of 
atoms, such as their magnetic moments. Orderliness can also 
be assessed in terms of correlation between localities at 
different distances from each other – in this case, short 
range order and long range order are distinguished.   
 
Aperiodic crystals  

 
According to the definition of the International 

Union of Crystallographers from 1992, these are crystals 
that appear to be crystalline in terms of X-ray diffraction, 
because their diffraction image contains sharp diffractions, 
but in which there is no three-dimensional periodicity of 
atomic arragement. Such crystals include: 

 incommensurable modulated structures,  
 incommensurable composite crystals, and 
 quasicrystals. 

 
Modulated structures are divided into symmetrical 

and incommensurable, with their common feature being the 
additional periodicity of the positions of the atoms, 
superimposed to the basic periodicity determined by the 
lattice parameters. The superimposing periodicity — 
compared to the distances determined by the lattice 
parameters 𝑑 — corresponds to a many times greater 
repetition distance  . This is a similar phenomenon to radio 
waves, in which on the fundamental (carrier) frequency of 
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the electromagnetic wave is superimposed a significantly 
lower frequency of the transmitted signal, i.e. a much longer 
wavelength. If the ratio 𝑑/ cannot be expressed by the 
ratio of integers, the structure is referred to as 
incommensurate and is an aperiodic structure. Otherwise, 
the structure is referred to as commensurate and is not 
classified as aperiodic structures. Structures whose 
symmetry is judged by the arrangement of the magnetic 
moments of atoms can also be incommensurate. 

 

 
The figure shows a structure in which modulation of 

the positions of atoms in the horizontal direction is applied, 
in the vertical direction the periodicity determined by the 
relevant lattice parameter is maintained. The number of 
atoms per unit length in the horizontal direction is not 
constant, but changes periodically. Such modulation is 
referred to as positional modulation, and the occupation of 
positions by various types of atoms can also be modulated – 
in this case, it is occupation modulation. 

An incommensurate composite crystal consists of 
two or more sub-systems with modulated structures whose 
basic structures are incommensurate with each other. 
Crystals of this kind were first described by E. Makovický 
26.  Examples of such crystals are various adherent 
crystals or adsorbed monolayers. 



155 
 

Quasicrystals represent a type of crystalline 
substance whose structure is somewhat ordered, but it is 
not periodic, lacking translational symmetry. A copy of a 
structure does not identify with its original by any of its 
displacements – it is aperiodic. Sharp diffraction records 
indicate their crystalline state, but also the presence of 
fivefold or tenfold axes of symmetry, not present in 
crystals. Quasicrystals were discovered in 1982 by D. 
Schechtman 25, for which he received the Nobel Prize in 
Chemistry in 2011.  

Aperiodic surface 
coverage was discovered by 
mathematicians as early as 
the 1960s and was used to 
describe the structure of 
quasicrystals about 20 
years later. It can consist 
of several shape units, while 
the stacked units fill the 
space perfectly, without 
gaps, without overlaps. An example of such a covering with 
the fewest number of shape units is Penrose tiling (Penrose 
tiling 32,33), It is created by laying tiles of only two 
types of diamond shape, with sides of the same length but 
different angles (pictured). Penrose paving is characterized 
by five-fold axes of symmetry, as well as mirroring. 

From a mathematical point of view, an image of a 
three-dimensional aperiodic structure can be obtained by 
projecting a periodic hyperlattice, defined in 
multidimensional space, into three-dimensional space. 
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GLOSSARY 

axis of symmetry – an element of symmetry – a line, by 
rotating around which the object can get to the position 
identical to the initial position. For crystals, only twofold, 
threefold, fourfold, and sixfold axes of symmetry are 
involved; other multiplicities are referred to as forbidden in 
the context of crystals. 

centre of symmetry – an element of symmetry – a point with 
respect to which the inversion is performed. 

column matrix – vector notation with a matrix that has only 
one column and, for vectors in three-dimensional space, 
three rows. 

coset of a group - the set of elements of a group which is 
formed by "multiplying" all the elements of its subgroup by 
an element which does not belong to the subgroup. If the 
subgroup contains exactly half of the group elements, there 
is only one coset, otherwise there are more cosets. Due to 
the fact that the operations in the group may not be 
commutative - the result of the "product" depends on the 
order of operations - therefore left and right cosets of the 
group are distinguished, obtained by multiplying the 
elements of the subgroup from the left and right sides, 
respectively. 

crystal class – one of the 32 types of external symmetry of 
crystals characterized by a set of rotational or inverse axes 
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and mirror planes. In mathematical terms, described by one 
of the 32 point groups of symmetry.  

crystal lattice, lattice – a set of periodically spaced points 
in crystal space. In three-dimensional space, the three basic 
directions of the distribution of points, as well as the 
distances between adjacent points in these directions, are 
represented by a triplet of basis vectors, their directions 
and length. The position vector of each lattice point can be 
expressed as an integral linear combination of the triplet of 
basis vectors. A lattice in real space is called a direct lattice. 
In physics, a crystal lattice is usually understood as a lattice 
including the filling of atoms. 

cyclic group – a group that is formed by successive (multiple) 
application ("multiplication") of a single, so-called generating 
element - its "powers". After n - applications of the 
generating element, the object reaches the initial position, 
so that the n-th "power" of the generating element coincides 
with the neutral element of the group. For example, a cyclic 
group is the set of symmetry operations of a square, formed 
by successive rotations by 90 about an axis perpendicular 
to its plane passing through the centre of the square. After 
four rotations, the square is brought to its initial position, 
i.e., to the position as after "multiplication" by the neutral 
element, i.e., rotation by 0. 

determinant of the matrix – numerical value assigned to the 
matrix, which for matrices with three rows and three 
columns is obtained as the sum of six products of triplets of 
its elements, selected in the prescribed way. The 
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determinants of matrices representing proper operations of 
symmetry have the value +1, for improper operations the 
value -1. 

direct lattice – a lattice in real space ( crystal lattice). 

factor group – group F, which is formed from the group G so 
that its neutral element is the invariant subgroup H of the 
group G (the so-called normal divisor of the group G) and the 
other elements are the cosets of the group G with respect 
to the subgroup H. The elements of a factor group are thus 
disjunctive sets of elements of the group G as a whole. 

generating elements of a group – several elements of a 
group, the repetition and combination of which will produce 
all other elements of the group. Three generating elements 
are sufficient to create (generate) the largest point group 
of crystals (it contains 48 elements). If one generating 
element is sufficient to generate the whole group, the group 
is cyclic. 

glide plane – an element of symmetry – a plane where the 
identification of the crystal structure is achieved by 
reflection in this plane combined with a non-lattice 
translation parallel to this plane. 

group (definition) – a group G is a set of elements in which a 
binary operation is defined, i.e. an operation between two of 
its elements, which generally produces another element of 
the group; the operation must be associative, there must be 
a neutral element in the set, and there must be an inverse 
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element to each element of the set. The name "element 
multiplication" is used for the operation between two 
elements of a group. "Multiplication" with a neutral element 
does not change the elements of the group. The result of 
"multiplying" an element with an inverse element is a neutral 
element. An example of a group is the set of integers with 
respect to the sum operation; the sum of the numbers is 
associative, the neutral element is zero, and each negative 
number is the inverse element of a positive number with the 
same absolute value. 

group of symmetry operations – the set of symmetry 
operations satisfying the group existence conditions. 
Elements of this group can be rotations, reflections, 
inversions, translations and their combinations. A binary 
operation in this group is the successive execution of two 
symmetry operations, resulting in another symmetry 
operation. 

grupoid – a set of elements between which a binary operation 
(operation between two elements) is defined; with respect 
to this operation the set is closed, but  no other conditions 
are imposed. In the context of crystals, these are elements 
representing symmetry operations.  A grupoid is a figure 
defined more loosely than a group. 

holohedral group – point group, which in the respective 
crystallographic system describes the symmetry of the 
lattice; by filling the lattice with atoms, the point symmetry 
can only be reduced, it is then represented by subgroups of 
the holohedral group. The point symmetry of the primitive 
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and the centred lattice, in so far as they belong to the same 
crystall system, is the same - described by the holohedral 
group. 

improper rotation  improper symmetry operations. 

improper symmetry operations – reflection and inversion, as 
well as their combinations with rotation; the determinant of 
the transformation matrix of such operations is equal to  –
1. These operations cannot be performed on a real object, 
but there may be objects that are its mirror or inverse 
image. 

invariant subgroup – a subgroup whose left cosets coincide 
with the right cosets; for an invariant subgroup the name 
normal divisor of the group is also used. 

inverse group element – a group element whose "product" 
with the group element with respect to which it is inverse is 
equal to the neutral element. There are pairs of mutually 
inverse elements in groups, e.g.  rotations about 90 and 
270, because their sequential application coincides with the 
rotation about 0.  Some elements of a group are inverse to 
themselves, e.g.  rotation by 180. 

inversion – a point symmetry operation in which each point 
of an object with position vector 𝒓 is transformed into a 
point with position vector −𝒓. This definition is valid when 
the centre of symmetry lies at the origin of the coordinate 
system. The term reflection at the centre of symmetry is 
also used for the inversion. 
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isomorphic groups – such groups, between the elements of 
which there is a simple, i.e.  mutually unambiguous 
representation (assignment); therefore they have the same 
number of elements. For example, a group of matrices is 
isomorphic to a point group of symmetry operations if each 
element of the point group is assigned to a particular matrix 
representing the corresponding symmetry operation. The 
multiplication of the two matrices by each other is then 
consistent with the "multiplication" of the elements of the 
point group; the product of the two matrices produces a 
matrix representing the resulting symmetry operation. 

lattice basis vectors - a triplet of vectors not lying in the 
same plane, whose integral linear combinations can be used 
to construct (describe) an entire space lattice. For a known 
lattice, they are chosen to be as short as possible and their 
arrangement is consistent with the symmetry of the lattice. 

lattice postulate – the assumption of strict three-
dimensional periodicity of the physical properties and 
distribution of atoms in crystals. 

lattice translation – a translation that shifts the lattice to 
a congruent position; these are translations described by a 
vector that is an integral linear combination of the lattice 
basis vectors. 

mirror plane  reflection plane  

mirroring  reflection 
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neutral element of a group – an element whose combination 
("multiplication") with other elements of the group does not 
change them. The neutral element in terms of summation is 
the number 0, in terms of multiplication the number 1, in 
terms of rotational symmetry operation the rotation by 0 
respectively by 360. 

non-lattice translation – translation that cannot be 
expressed as an integral linear combination of the basis 
vectors of the lattice; instead of integers, multiples of one 
half, one third, one quarter or one sixth of the length of the 
lattice translation are applied, which is related to the 
multiplicity of rotational axes of symmetry. 

normal divisor  invariant subgroup. 

plane of symmetry   rerflection plane. 

point group – a set of point operations of symmetry – 
rotations, reflections and inversions, which meets the 
conditions for the existence of a group, describing the 
symmetry of one of the 32 crystal classes. 

point symmetry operations – symmetry operations in which 
the position of at least one point of the transformed object 
does not change. These are inversions, rotations and 
reflections. 

proper symmetry operation – a symmetry operation 
representing only rotation about the axis, which does not 
combine with reflection or inversion; the determinant of its 
transformation matrix has the value +1.  
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reciprocal lattice – a lattice in  reciprocal space that is 
the transformed image of the direct lattice into reciprocal 
space. The distribution of points in a reciprocal lattice is 
also periodic and can be expressed by a linear combination 
of the basis vectors of the reciprocal lattice. There are 
unambiguous relationships between the basic vectors of the 
reciprocal lattice and the basis vectors of the direct lattice. 

reciprocal space – virtual space, a mathematical 
transformation of direct space in which distances are 
measured in inverted units of length. It is used, for example, 
in determining the structure of crystals by X-ray 
diffraction methods. The position of points in this space is 
determined by reciprocal vectors. 

reciprocal vectors – vectors in reciprocal space; they are 
important when a Cartesian coordinate system is not used, 
but a system based on basis vectors representing directions 
and distances corresponding to the crystal structure. They 
are expressed as a linear combination of the three basis 
vectors of the reciprocal lattice. 

reflection – a point symmetry operation in which the points 
of space are moved to the opposite side of the symmetry 
plane along lines perpendicular to this plane, while 
maintaining the distance from it; the reflection matrix 
determinant has the value –1. 

reflection plane, mirror plane – element of symmetry – 
plane with respect to which reflection is performed. It is 
always parallel to some lattice plane of the crystal. 
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rotation – a point symmetry operation by which a shape is 
brought to an identical position by rotating it about the axis 
of symmetry by a certain angle; for crystals, these are only 
the angles 60, 90 and their integer multiples. 

rotation axis   axis  of symmetry. 

scalar product of a vector with a tensor – a mathematical 
operation representing a transformation of the position of 
a point marked by the end point of the vector; the shape of 
the tensor depends on the type of operation, whether it is 
an inversion, rotation or reflection. The result of the 
transformation also depends on whether the tensor is 
multiplied by the vector from the right or from the left. 

screw axis – an element of symmetry – a line at which the 
identification of the crystal structure is achieved by 
combining rotation about that line with non-lattice 
translation along that line. 

space group – a group of symmetry operations whose 
elements are combinations of elements of the point group 
and the translation group. The point group and the 
translation group are its subgroups, the translation group is 
its invariant subgroup. 

subgroup – any subset of a group whose elements satisfy the 
group's existence conditions. 

symmetry (of crystal) – the property of a crystal, 
externally, of retaining its shape under rotations or 
reflections (corresponding to the point group of the 
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crystal), in terms of the arrangement of the atoms in crystal 
also with respect to lattice translations, (i.e., operations 
belonging to the space group of the crystal) (→ symmetry 
operation) 

symmetry element – a set of points (point, line, or plane) 
according to which symmetry operations are performed. 
Symmetry elements are symmetry centres, rotational axes, 
screw axes, reflection planes, glide planes. 

symmetry operation – a transformation of an object after 
which the original and transformed objects are 
geometrically and physically equivalent. These are rotation, 
reflection, inversion, and, for crystal structures, lattice 
translation, as well as combinations of these. 

transformation matrix – a mathematical tool allowing to 
calculate the position coordinates of a point after 
transformation (rotation, reflection) when the coordinates 
of the initial position are known; in three-dimensional space 
it is a table (scheme) of nine members (elements, numbers) 
arranged in three rows and three columns related to three 
space coordinates. The numerical values of the members and 
their arrangement in the matrix can be used to express 
whether a given transformation is an inversion, a reflection 
or a rotation; the position of the reflection plane or rotation 
axis and, in the case of a rotation axis, the angle of rotation 
can be expressed. 

transformation tensor – a mathematical tool derived from 
the transformation matrix. In contrast to it, for each 
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element of the tensor, in addition to the numerical value, 
there is also a pair of vectors expressing the belonging to 
the coordinate axes in accordance with the rows and columns 
of the matrix. 

translation group – the set of translation symmetry 
operations satisfying the group existence conditions. In 
lattices, these are translations that are, in vector form, 
integral linear combinations of the triple of basis vectors of 
the lattice.  

translation, displacement – a transformation in which all 
points of an object are displaced equally. 
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