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Abstract

The new Rietveld program BGMN is introduced with its
unique features especially useful for fully automatic quan-
titative phase analysis. Some examples including layer sili-
cates are presented.

1 Introduction

The Rietveld Method has become a powerful tool for quan-
titative phase analysis since 1987. Nevertheless some in-
conveniences have limited its use in routine analysis.
Perhaps the most important limitation is the setup and test
of the refinement strategy which requires a comprehensive
knowledge of the working principles of the Rietveld Pro-
gram used.

Some problems have to be mentioned, which are rea-
sons for the difficulties in the routine use of conventional
Rietveld code:

• analytic profile model which parameters (mostly used u,
v, w ...) have to be refined simultaneously with structural
parameters

• due to this joint refinement there is always a correlation
between the two profile and structure parameters

• as a result parameters often reach physically meaning-
less values

Although this list is not complete, it illustrates the pos-
sible frustration of the novice Rietveld user. Everybody
who has ever used a Rietveld program knows the annoying
message ‘Fatal error - program stopped’. The only solution
to get reliable results is a carefully planned refinement
strategy, in which - step by step - the number of free param-
eters increases. Of course this requires long computer ses-
sions if the problem is not simple.

Recently some Rietveld programs targeting only the
quantitative phase analysis were developed. They have in
theory less problems because they don’t refine structural
parameters. But they are basing on older Rietveld code and
inherit in principle the above mentioned problems.

The goal of the development of the new BGMN
Rietveld program from the ground up was the complete
elimination of numerical instability and bad convergence.
As a result the user only has to take into account the crystal-
lographic or mineralogical problem. In the next section it
will be explained, how that goal was reached.

2 Features of the Program

2.1 Numerical Background: Advanced

Peak Model and New Optimization

Algorithm

First, the strong correlation between profile and other pa-
rameters had to be eliminated. The only solution was a de-
velopment of a complete new profile model (Fig. 1).

This new profile model

• strictly distinguishes between wavelength distribution of
the X-ray tube, the instrumental function and the sample
function

• contains a sophisticated model of the instrumental func-
tion (it consists of an individual sum of a variable num-
ber of Lorentz-squared functions at each angular
position)

• models the sample function taking into account peak
broadening due to crystallite size and microstrain

The wavelength distributions of X-ray tubes are al-
ready determined. Before starting the refinement the user
has only to check if he has already computed the instru-
mental function. If not, he has to compute this function
only once for a given geometrical setup.

During the refinement only the parameters of crystal-
lite size and microstrain are varied. The profile portion
which describes the instrument remains constant.

Next, a new numerical algorithm was introduced. This
algorithm has in common optimal convergence behavior
for the refinement of X-ray data. But it has a very valuable
extension:

In conventional Rietveld programs parameters only
can be fixed or freed. In the new algorithm physical mean-
ingful Parameter Ranges with lower and upper limits can
be defined without lengthening the computation time. This
is extremely useful to avoid physically meaningless param-
eter values, for example negative peak widths.

In sum the above mentioned developments lead to a
very useful feature of the program:
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2.2 The full parameter set of the starting

model is calculated in only one step.

Any user interaction during the refinement isn’t necessary
nor possible. The success of the refinement depends only
on the chosen start model. A careful examination of the re-
sult list shows if the parameters have reasonable error val-
ues and if they didn’t reach their limits. If not, one has only
to modify the start model and run the refinement again.

So, a fully automatic refinement of samples with vary-
ing compositions and phase contents using the same start-
ing model becomes a routine task (see example below).

2.3 Correction of Preferred Orientation

One of the most important rules in X-ray powder
diffractometry is: ‘the sample has to be prepared carefully
to avoid preferred orientation’. But often it’s not possible to
prepare such an ideal sample. Many minerals have pre-
ferred cleavage planes or were grown in a manner which
force preferred orientation. As an example the figure shows
needle-shaped crystallites of synthetic diaspore for use in
ceramics.

Analyzing a sample prepared from such crystallites re-
quires a suitable model for correction of preferred orienta-
tion. The well known March model doesn’t work because
of the multiple preferred orientation combined with strong
correction factors.

Therefore a model using spherical harmonics was im-
plemented. This model can correct not only strong pre-
ferred orientation in one direction but also multiple ones.
The program uses spherical harmonics up to the 8th order.
This leads in maximum to 45 free parameters in the triclinic
crystal system. Because of restrictions due to crystal sym-
metry the number of free parameters reduces according to
table 1. As a rule one must choose a higher order model if
the crystal symmetry is higher. Up to 10 or more parame-
ters are required to describe strong preferred orientation in
non-cubic crystal systems.
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Fig. 2: Needle-shaped diaspore crystallites grown in b
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In the next refinement
the orientation distribu-
tion function for dia-
spore calculated with an
8th order correction func-
tion (15 parameters) was
applied. This example
shows correction factors
of about 2.5 to 3 in the di-
rections 101, 002, 102,
103 and 203. A satisfac-
tory agreement between
measured and calculated
data is the result (Fig. 3).

In addition to the imple-
mentation of this ex-
tended correction model
the program includes an
algorithm which auto-
matically reduces the or-
der of the model if the
intensities of the peaks
are too low. So you can
always start with the
maximum model even if
the sample contains only
low content of the phase.
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Crystal system Laue Group

2nd order 4th order 6th order 8th order

triclinic -1 6 15 28 45

monoclinic 2/m 4 9 16 25

orthorhombic 2/m 2/m 2/m 3 6 10 15

tetragonal 4/m 2 5 8 13

tetragonal 4/mmm 2 4 6 9

rhombohedral -3 2 5 10 15

rhombohedral -3m 2 4 7 10

hexagonal 6/m 2 3 6 9

hexagonal 6/mmm 2 3 5 7

cubic m3 1 2 4 5

cubic m3m 1 2 3 4

Table 1: Effective number of free parameters in the spherical harmonics model for correction of preferred
orientation
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Fig. 3: Refinement result for a sample containing 99 % Diaspore and 1 % Boehmite; Rwp = 14.2 % (without pref. Orient. 36 %)



2.4 Anisotropic Peak Broadening

Some minerals form crystallite shapes with strong differing
axis lengths. An example for that behavior combined with
strong preferred orientation is muscovite, here presented in
a mixture with quartz (Fig. 4).

For muscovite a peak broadening of 0 was calculated which
means an unlimited large crystallite size. The difference di-
agram shows volcanic shaped segments at the muscovite
hkl peak positions except 00l, which can be nearly com-
pletely removed by introduction of anisotropic peak broad-
ening (Fig. 5)
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Fig. 4: Refinement result for a sample containing 50 % muscovite and 50 % quartz; isotropic peak broadening due to crystal-
lite size; Rwp = 12.7 %
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Fig. 5: Refinement result for a sample containing 50 % muscovite and 50 % quartz; anisotropic peak broadening due to crys-
tallite size; Rwp = 10.5 %



The quantitative results also improved dramatically:

• isotropic peak broadening: 44.9 % muscovite;
Rwp = 12.7 %

• anisotropic peak broadening: 50.5 % muscovite;
Rwp = 10.5 %

Now also the calculated crystallite sizes have reason-
able values. The site occupation factor for K+ in muscovite
was refined to approximately 0.85 in both cases.

Note that the correction factor of the 004 peak of mus-
covite due to preferred orientation is about 5, the measured
peak is five-fold too high. A 2th order spherical harmonics
model was used to correct this behavior.

2.5 Complex Disordering Models

There are a number of minerals which crystalline order is
noticeable disturbed. Important examples of this behavior
are layer silicates.

They show stacking faults by shifting the layers
against each other. These shifts may be well defined and
have discrete values or can be poorly defined and yield to
two-dimensional diffraction effects. Natural samples may
contain domains of different degree of disorder.

In comparison to an ideal structure, the resulting dif-
fraction pattern shows depending on hkl:

• variable peak broadening

• shifted peak positions and

• asymmetric, tailed reflections.

Conventional Rietveld programs are of limited use in
this case. At maximum they model anisotropic peak broad-
ening with a simple ellipsoidal model or spherical harmon-
ics. It’s not possible to compute individual peak shape
parameters for selected Bragg reflections. The description
of peak asymmetry is only used to correct instrumental ef-
fects. It’s a smooth function which is not applicable to indi-
vidual reflections. Real structure induced shifted peak
positions cannot be calculated.

To handle this complex requirements a new approach
to introduce real structure models into Rietveld refinement
was implemented. A hard coded model was not practicable
because the nature of real structure varies between different
mineral groups (or structure types). Therefore an inter-
preter for a structure description language was developed.
It can be used to introduce additional parameters for de-
scribing disordering effects. Unlimited coupling of param-
eters is possible. To approximate the presence of domains
having different degrees of disorder sub-phases are defin-
able. They share global parameters, for instance lattice con-
stants, and have individual parameters, for instance
broadening models for definite Bragg peaks. Individual
shifting of peak positions can be introduced to approximate
the two-dimensional diffraction effects.

Chlorite minerals are an example for an already imple-
mented real structure model. They show a well defined dis-

ordering (semi-random stacking). The layers are shifted
from one to another by exactly b/3 along the three
pseudo-hexagonal Y axes. The resulting X-ray diagram
shows

• sharp and intensive 00l reflections

• relatively sharp, less intensive reflections with k=3n

• broadened or vanished/erased reflections with k3n

The first refinement using the structure model of
Steinfink (Steinfink 1958) without disordering model
showed correct fitting of the k=3n peaks and the problem of
the disappeared lines with k≠3n. The tailed band 02, 11
wasn’t fitted at all by the peaks in this region (Fig.6).

Finally, a far more complex model had to be formu-
lated. A rod-like intensity distribution in reciprocal space
was assumed for the peaks with k≠3n. These rods are pro-
jected by the cosine of the direction on the diffractogram.
The lengths of the rods are a new parameter introduced in
the structure description. As an approximation, the result-
ing band was described by individually broadened hkl re-
flections. The angular shift of 0k0 peaks with k3n was
refined by a new parameter depending on the dimension of
the rods. The width of 0k0 was also parametrized. The rela-
tively sharp peaks with k=3n were described by an
anisotropic broadening model due to anisotropic crystallite
size and an isotropic broadening model due to microstrain.
We used two sub-phases to match differing degrees of dis-
order in the sample. The sub-phases were refined with
identical lattice parameters and identical preferred orienta-
tion correction. Their mixing ratio was also calculated. The
dimension of reciprocal lattice rods and the normal peak
broadening of the sub-phases were refined in a constrained
ratio.

The result is a much better difference plot and a dra-
matic decrease of reliability factor (Fig. 7). The separately
broadened k≠3n reflections merge into a sufficient de-
scribed band-like region. The other reflections are better
fitted because of the distinct shape parameters for different
classes of peaks.

3 Application in Phase Analysis

Minor phases in aluminum oxide-hydroxide system

A number of samples containing Diaspore, Bayerite,
Boehmite, Corundum and Gibbsite with strong varying
compositions had to be analyzed. These sample system is a
good example for the program use in principle:

• First, the device function has to be chosen

• Next, all phases have to be included in the starting model

• Next, the calculation has to be done in fully automatic
mode

• Finally, the results have to be verified
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Fig. 7: Refinement result for ripidolite using disordering model; Rwp = 13.0 %

-10

0

10

20

30

40

50

60

70

80

10 15 20 25 30 35 40 45 50 55 60 65
2 Theta

11-1

112
-112

022

004

002

131 -132

060

33-1132

-133020

110

cp
s
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The measurements were carried out on an URD-6
(Seifert-FPM GmbH, Freiberg/Germany) in reflection
mode with an angular range from 10 ° to 80 ° 2Θ. The step
width was 0.05 ° (except samples 10 and 44 with 0.02°) and
the measuring time per step was 5 s. An appropriate instru-
mental function was calculated.

The following starting model was set up:

• Diaspore: correction of preferred orientation with 8th or-
der spherical harmonics; isotropic peak broadening due
to crystallite size with an upper limit (maximum 20 pa-
rameters)

• Corundum: no preferred orientation; isotropic peak
broadening due to crystallite size with an upper limit (4
parameters)

• Bayerite, Boehmite and Gibbsite: correction of preferred
orientation with 6th order spherical harmonics; isotropic
peak broadening due to crystallite size with an upper
limit (each maximum 22 parameters except Boehmit
with maximum 15 Parameters)

All lattice constants were free with an variation range
of about 2 %. Of course the angle correction parameters for
zero shift and sample displacement were free. In sum the
number of free parameters varied between 26 and 58 due to
the complex modeling of preferred orientation.

All calculations were carried out in one step without
user interaction. The actual choice of the model for pre-
ferred orientation was done automatically by the program.

The needed calculation time depends on the number of
measuring points, the counting statistics and the quality of
the model used. On a Pentium 133 the calculation time var-
ied between 10 and 40 minutes.

For all samples except number 30 a good result for the
phase content was calculated. Some minor phases with
contents below 1 % had parameter values which were
shifted to their limits. Such phases can be excluded in a fi-
nal calculation if one needs a more exact numeric result.
But in general this is not necessary because of their small
contents.

Samples 19, 20 and 23 showed a noticeable amount of
gibbsite. Because of the very strong overlapping with
peaks of bayerite some gibbsite parameters moved to their
limits.

Only sample 30 stepped out of line. It had a very large
reliability value and the large content of Boehmite was re-
fined only with an isotropic model for preferred orienta-
tion. A short view on the diagram showed the reason. The
Boehmite exhibited a strong peak broadening due to very
small crystallites. A second calculation with a 20 times
higher upper limit for the peak broadening gave a good fit
also for Boehmite in sample 30.

The presented set of samples showed that a wide range
of phase content can be refined without user interaction
with only one common starting model. That works because
the program reaches many decisions automatically.
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Sample
Diaspore Corundum Bayerite Boehnite Gibbsite Param

eters
Rwp/%

wt.-% PO wt.-% PO wt.-% PO wt.-% PO wt.-% PO

05 98.4 8th 0.1 i 0.3* i 1.0 i 0.2* i 41 14.4

10 98.5 8th 0.1* i 0.1* i 1.0 i 0.3* i 41 14.2

19 16.5 6th 0.5 i 76.3 6th 0.6*# i 6.1*# 2nd 52 16.1

21 0.9* i 13.9 i 78.6 6th 0.5 i 6*# 2nd 43 15.9

23 13.1 6th 0.6 i 77.2 6th 0.4*# i 8.7# 2nd 52 16.1

29 0.1 i 99.8 i 0.1* i 0 i 0 i 26 13.0

30 59.2 4th 0 i 3.5* i 33.3# i 4.0* i 31 27.7

30 2nd 20.9 4th 0.2* i 1.2 i 77.4 6th 0.3* i 31 9.4

31 29.8 8th 1.0 i 0.1 i 69.1 6th 0 i 58 13.5

44 98.5 8th 1.0 i 0.3* i 0.2 i 0 i 41 13.6

Table 2: Refinement results of samples containing phases with strong preferred orientation and varying phase content
*: at least one lattice constant moved to one of its limits
#: the peak width moved to its upper limit
i: no preferred orientation (isotropic model)



3.1 Chlorite Minerals

To check the behavior of the above mentioned disordering
model for Chlorite in quantitative phase analysis, mixtures
of different chlorites with quartz, muscovite and oligoclase
were prepared. Muscovite was refined using an anisotropic
peak broadening model. All refinements were done in a
single run without any interaction of the user, starting from
the same structures. The calculation times for such mix-
tures vary between one to four hours.

The quantitative results are satisfactory (Table 3). The
refined total Iron content of Chlorite differs between the
measurements and is in general correspondence to the min-
eralogical classification of the samples used.

The modeling of disorder in chlorites is a first step of
implementing disordering models for layer silicates which
will be followed by more complicated phases in the future.

4 Summary

The presented program BGMN has a set of unique features
which are very useful for quantitative phase analysis.

Because of the underlying numerical algorithms the
program can handle samples with a wide varying phase
content and strong preferred orientation in a fully auto-
matic way. After application of a suitable starting model
based on the qualitative analysis no user interactions during
the calculation are required.

Furthermore, the structure-based modeling of broad-
ening and shifting of individual Bragg peaks is an useful
tool to approximate the diffraction patterns of disordered
layer silicates. The problem of refining such a complicated
set of parameters is soluble by means of the program. If the
formulation of the dependencies was carried out once, a
convenient refinement of multiphase samples including
disordered layer silicates is possible.
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Chlorite

mineral

Refined
Fe

Chlorite wt.% Quartz wt.% Muscovite wt. % Oligoclase wt. %
Rwp/%

norm. ref. norm. ref. norm. ref. norm. ref.

penninite 0.7 50 50.9 50 49.1 - - - - 15.5

penninite 0.6 33.3 36.2 33.3 31.1 33.3 32.7 - - 14.2

penninite 0.7 30 31.4 30 28.7 30 31.2 10 8.7 13.9

ripidolite 2.7 48 46.6 52 53.4 - - - - 21.3

ripidolite 2.1 32 32 34.7 32.9 33.3 34.2 - - 17.6

thuringite 3.9 47 47.4 50 50.4 - - - - 25.8

Table 3. Refinement results of reference mixtures containign chlorites; transmission measurements.
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Vzorek Analyzovaná oblast Pøítomné fáze

1a - DK vnìjší povrch α , ß , γ , Sn

1b - DK vnitøní povrch α , β , γ , Sn

2a - ŠK vnìjší povrch α

2b - ŠK vnitøní povrch α , β , γ , Sn

2c - ŠK
fólie s cínovou
vrstvou

ß , Al


