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RNA-PUZZLES : BLIND ASSESSMENTS OF (SEMI)-AUTOMATIC 3D RNA MODELING
Eric Westhof', Zhichao Miao?

"Architecture et Réactivité de 'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du
CNRS, 67000 Strasbourg France
2GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University,
Guangzhou, China;
e.westhof@unistra.fr

RNA 3D structure modeling dates to the late 1960s and
several computer programs for predicting RNA 3D struc-
tures have been proposed since then. RNA-Puzzles is a col-
laborative effort dedicated to advancing and improving
RNA 3D structure prediction. With the agreement of crys-
tallographers, RNA structures are predicted by different
groups before the publication of crystal structures. Since
the success of AlphaFold in protein structure prediction,
artificial intelligence approaches are continuously de-
signed to solve the problem of RNA 3D structure predic-
tion with strategies like AlphaFold. However, eliminating
redundancy between training and test data is not trivial and
some programs have shown overfitting results. Therefore,
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blind, unbiased evaluations (based on equivalence of com-
parison metrics) of all prediction tools are a necessary re-
quirement.

A dedicated website (http://www.rnapuzzles.org/)
gathers the systematic protocols and parameters used for
comparing models and crystal structures, all the data, anal-
ysis of the assessments, and related publications. Up to
now, 40 RNA sequences with experimentally determined
structures (X-ray or cryo-EM) have been predicted by
many groups from several countries. Many of the predic-
tions have achieved high accuracy after comparison with
the solved structures.

Rfam, RNA 3D STRUCTURES, AND ISSUES FACING RNA 3D STRUCTURE
PREDICTION
Blake Sweeney

EMBL-EBI, United Kingdom
bsweeney@ebi.ac.uk

Rfam is a database of over 4,000 non-coding RNA
(ncRNA) families. Each family is composed of a sequence
alignment called the seed, often manually curated, a con-
sensus secondary structure and a covariance model. Rfam
was originally developed 20 years ago to annotate genomes
with ncRNAs using the covariance models. However, it
has become the de-facto reference database for known
ncRNAs and their alignments. This has led to it being used
in new contexts including, RNA 3D structure prediction.
This has pushed Rfam in new directions. Recently, Rfam
has been improved by aligning sequences and base pair an-

notations from 3D structures into seed alignments. This
connects Rfam alignments with 3D structures directly and
allows improvements of families. We have used this to im-
prove over 30 families and have started annotating
pseudoknots. However despite these improvements, Rfam
still has several limitations that make the prediction of
RNA 3D structures challenging. Briefly, they are that
ncRNA data is limited, biassed and incomplete. In this talk
we will discuss some of these issues, suggest possible im-
provements, and challenge the community to solve them.
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UNRAVELING THE RNA WEB:
DETECTING AND DECIPHERING ENTANGLEMENTS IN 3D STRUCTURES

M. Szachniuk'?, M. Antczak"?, M. Popenda® J. Sarzynska® T. Zok’

"Poznan University of Technology, Poznan, Poland
2Institute of Bioorganic Chemistry PAS, Poznan,
Polandmszachniuk@cs.put.poznan.pl

RNA molecules, essential players in the intricate machin-
ery of cellular processes, exhibit a remarkable level of
complexity in their three-dimensional structures. For many
years, the primary focus in RNA structure study has tradi-
tionally been on base-pairing interactions and simple struc-
ture motifs. However, recent advances have unveiled
another dimension of complexity — the presence of entan-
glements within RNA 3D structures [1]. These structural
intricacies, reminiscent of topological puzzles, may have
profound implications for RNA function and dynamics [2].
On the other hand, some of their types may be bugs injected
into the structure, during its determination or in silico mod-
elling process.

In this presentation, we will explore the diverse range
of entangled motifs that can be found within RNA mole-
cules [3]. We will delve into the computational algorithms
that have been developed to detect and analyse these un-
usual topological configurations in RNA structures [4, 5].
Finally, we will take a look at entanglements in experimen-
tal and simulated models of RNA 3D structure [6] and we
will learn if they can be untangled with any existing meth-
ods.
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Figure 1. Entangled model generated by RNAComposer.
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REFERENCE-FREE RANKING METHOD FOR RNA 3D MODELS

Tomasz Zok', Jan Pielesiak’, Maciej Antczak'?, Marta Szachniuk™?

"Poznan University of Technology, Poland
?Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poland
tomasz.zok@cs.put.poznan.pl

There has been a surge of interest in predicting RNA 3D
structures lately, with more researchers recognizing the
significance of understanding the structure and function of
RNA. As our knowledge of RNA molecules expands, we
can leverage the advancements made in protein structure
prediction to improve our predictions in the RNA field.
However, a significant challenge when predicting
novel structural folds is assessing the quality of the models
produced. Modeling software often generates multiple
models per input, sometimes even thousands, making se-
lecting the most promising ones crucial. Traditionally, re-
searchers determine the quality of the model based on
energy terms calculated wusing force fields or
coarse-grained statistical potentials. The lower the energy
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calculated, the more likely the RNA structure is considered
to be. However, the energy landscape usually contains
many local minima, leading to inconclusive results.

Therefore, we propose a different approach for ranking
multiple 3D models created from the same sequence by an-
alyzing the base pairs and stacking interactions within
them. We build a consensus secondary structure from the
extracted data and rank each model’s interaction network
against that consensus to provide a final ranking.

We benchmarked our proposed method on public RNA
3D modeling datasets to verify its usefulness, comparing
its performance against state-of-the-art energy-based
evaluations.

POSTTRANSCRIPTIONAL MODIFICATIONS IN RNA EXPERIMENTAL 3D
STRUCTURES: OCCURRENCES AND EFFECT ON INTERBASE HYDROGEN
BONDING

M. Chawla', L. Cavallo', R. Oliva®

"King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division,
Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
2Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4,
1-80143 Naples, Italy
romina.oliva@uniparthenope.it

The physicochemical information of RNA molecules is
greatly enhanced by posttranscriptional modifications,
contributing to explain the diversity of their structures and
functions.

To date, over 150 natural modifications have been char-
acterized in all major classes of RNAs, ranging from
isomerization or methylation, to the addition of bulky and
complex chemical groups [1-2]. Modifications can change
the folding landscape of RNA, resulting at times in alterna-
tive conformations [2-4]. This occurs by altering the inter-
actions between nucleotides. Especially the H-bonding
between nucleobases, both the regular Watson—Crick pairs
enclosed in the RNA stems and the non Watson—Crick
pairs outside the stems [5] - also known as tertiary interac-
tions -, can be affected by modifications due to steric and
energetic effects.

In order to investigate the impact of modifications on
the interbase H-bonding, we have set up an approach com-
bining structural bioinformatics with quantum mechanics
(QM) calculations. Specifically, occurrences and structural
context of modified base pairs (MBPs), i.e. base pairs fea-
turing posttranscriptional modifications, are collected from

the RNA structures in the PDB and classified by
bioinformatics tools. Then, QM calculations are performed
to clarify the effect of the modification on the geometry and
stability of the corresponding base pair. We have applied
this approach over time to both natural and non-natural
(synthetic) modifications (see for instance [6-7]) and, in
2015, we have presented an atlas of MBPs, i.e. a systematic
study of all the MBPs in RNA experimental structures [8].
At the time, we could identify a total of #900 occurrences
for 11 natural modifications, with roughly half of them in-
volved in base pairing. Our atlas 1.0 consisted of 27 MBPs,
unique in terms of identity of H-bonded bases and/or ge-
ometry classification.

Herein, to extend our wunderstanding of how
posttranscriptional modifications act on the structure of
RNA molecules to influence their function, we present an
updated atlas, derived from an over doubled structures
dataset. It consists overall of almost 100 unique MBPs, fea-
turing 35 different posttranscriptional modifications, lo-
cated in a variety of different RNA molecules and
structural motifs. Consistently with our previous findings,
most of the MBPs are non Watson—Crick like and are in-
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volved in RNA tertiary structure motifs. Results of the
structural analyses, along with insight from QM calcula-
tions into the impact of the different modifications on the
geometry and stability of the corresponding base pairs, will
be presented and discussed.

1. P.Boccaletto, F. Stefaniak, A. Ray, A. Cappannini, S.
Mukherjee, et al., Nucleic Acids Res., 50, (2022), D231.

2. P.F. Agris, RNA, 21, (2015), 552.
3. M. Helm, Nucleic Acids Res., 34, (2006), 721.
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34, (2006), 865.
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RNADVISOR: EVALUATION OF RNA 3D STRUCTURES WITH METRICS AND
ENERGIES

C. Bernard', G. Postic', S. Ghannay? F. Tahi'

"Université Paris-Saclay, Univ. Evry, IBISC, 91200, Evry-Courcouronnes, France
2Université Paris-Saclay, CNRS, LISN, 91405, France
fariza.tahi@univ-evry.fr

RNA adopts three-dimensional structures that play a cru-
cial and direct role in its biological function. Understand-
ing these diverse functions is necessary for the
development of RNA-based therapies, but the complex
structure of RNA molecules remains a major challenge.
Computational methods have been developed throughout
the years to fill the gap between the huge amount of known
RNA sequences and their structures. With the increased
number of RNA structures that are still to be discovered,
predictive methods need to be robust and to be able to gen-
eralize to unseen new RNA families.

While structure predictions are a vast and complex
problem, the evaluation and assessment of structure nativ-
ity is also at stake. RNA structure is a 3D object where the
evaluation of a prediction has been discussed for years.
Current methods rely on the comparison of a reference
solved structure with a prediction, categorised as metrics. It
can compare deviation on atoms like RMSD or eRMSD
[1], or overlaps between them like CLASH score [2]. Other
metrics are inspired by protein 3D evaluation metrics from
the CASP competition. Indeed, RNA and protein 3D struc-
tures share common properties as 3D objects and adapta-
tion of the known protein’s metrics like TM-score [3] can
be done to RNA. It remains structural differences between
protein and RN A molecules that hamper the full efficiency
of structural evaluation metrics. RNA-oriented metrics
have been developed to take full advantage of structural
specificities like INF [4] or MCQ [5] scores.

Nonetheless, the metrics rely on a known solved struc-
ture, which in practice is not available. Predictive models
are also based on the generation of multiple structures be-
fore selecting the best ones. Common approaches are thus
to replicate the molecule free energy, where a minimum of
energy would mean a stabilisation in the structure. This ad-
aptation of the free energy of the structure has become a
standard in the ranking, filtering and confidence assess-
ment of structures. It often uses knowledge-based statisti-
cal potentials, with the requirement of a reference state to

simulate structures without native interactions. This is the
case for NAST [6], 3dRNAScore [7], DFIRE-RNA [8] and
rsRNASP [9]. Recent advances tend to use deep learning to
prevent manual pre-processing of RNA features like
RNA3DCNN [10] or ARES [11].

RNA 3D structures remain of high complexity, and
there is not a single existing metric or energy that could
evaluate correctly all the available structures. Metrics and
energies can be redundant between each other, while also
complementary for structure assessment. The different ex-
isting metrics can be required to develop and understand
predictive models’” weaknesses, while the diverse energies
could help improve models’ generation such as the filtering
process.

The current metrics and energies are the results of years
of research by various groups. Each work has been devel-
oped in different programming languages, with different
installation procedures and library versions that have
evolved over the years. The installation process can be la-
borious for the community and is multiplied by the number
of different metrics and energies. Efforts should be made
on developing predictive models while engineering aspects
for structures assessment should not be a bottleneck.
Works have been done by the community with the develop-
ment of RNAPuzzles [12], a CASP-like competition for
RNA 3D structure assessment. It comes with RNA-tools
[13], a centralised platform that tries to include the avail-
able RNA 3D structure related works. Nonetheless, it is
limited in practice with the need to manually include binary
files; that depend on the operating system of the user. There
are also web servers available for some metrics and ener-
gies, which are useful for non-coder users. However, it lim-
its the automation procedure, which should be considered
due to the increasing number of solved 3D structures.

To help the development and the automation of RNA
3D structures evaluation, we have developed RNAdvisor: a
software usable with one command line and that can com-
pute both metrics and energies for given RNA. It uses eight
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existing codes written in C++, Java or Python and gathers
them into a single interface. All the laborious installations
are done in different stages of the Dockerfile. It leverages
Docker containers for easy installation across diverse oper-
ating systems, simplifying accessibility for all researchers.
It enables researchers to access both metrics and energies
in one line of code, with customizable parameters to suit in-
dividual preferences.

RNAdvisor represents a significant advancement for
the automation of RNA 3D structure evaluation. It offers a
unified tool that enhances the accessibility of existing met-
rics and energies. It helps accelerate investigation in RNA
3D structure predictions.

The source code is available at:
https://github.com/EvryRNA /rnadvisor.

1. Bottaro S, Di Palma F, and Bussi G. The Role of
Nucleobase Interactions in RNA Structure and Dynamics.
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W375-W383.

3. Zhang Y and Skolnick J. Scoring function for automated
assessment of protein structure template quality. Proteins
2004;57:702—-10.

4. Parisien M, Cruz J, Westhof E, and Major F. New metrics
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3D structures and models. RNA (New York, N.Y.)
2009;15:1875-85.
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PREDICTION OF SECONDARY STRUCTURE FOR LONG NON-CODING RNAS USING
A RECURSIVE CUTTING METHOD BASED ON DEEP LEARNING

L. Omnes', E. Angel', P. Bartet®, F. Radvanyi?, F. Tahi'

"Université Paris-Saclay, Univ Evry, IBISC, 91120 Evry-Courcouronnes, France
2CNRS - Institut Curie, 75000 Paris, France
SADLIN Science, 75000 Paris, France
fariza.tahi@univ-evry.fr

While the primary structure of RNA is defined by its se-
quence of nucleotides, the secondary structure refers to the
pairings that occur between the nucleotides. The secondary
structure emerges from the interactions between comple-
mentary bases. The secondary structure is crucial as it de-
termines the overall shape and stability of the RNA
molecule, which, in turn, influences its function.

The accurate prediction of RNA secondary structure,
particularly for long non-coding RNAs (IncRNAs), holds
immense potential in healthcare. It can be used for diagnos-
tic, therapeutic, and drug discovery purposes, enabling pre-
cision medicine approaches, and developing targeted
therapies for various diseases. A better understanding of
their structures could improve disease diagnosis and treat-
ment, notably for cancer, and allow for novel therapeutic

interventions in the future. However, the majority of previ-
ous approaches [5-9] have focused on short RNAs and are
too costly in terms of computation budget to cope with the
increasing complexity of long RNAs. Plus, the ones that
can scale to long RNAs lack accuracy to reliably predict
their structures.

We propose a new approach combining recursive cut-
ting and machine learning. By leveraging existing success-
ful methods for small RN As and introducing innovative cut
point selection, this approach aims to improve the accuracy
and efficiency of long RNA structure prediction. Our
model uses as input only the RNA sequence, without the
need for homologous sequences which are often not avail-
able for long RNAs. Our method proves to be
computationally efficient by recursively partitioning a se-
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Figure 1. Successive iterations of the recursive cutting strategy.
Successive steps occur until all fragments are small enough to be
sent to the structure prediction model. At each step, left-most and
right-most parts are combined to form a single fragment.

quence into smaller fragments until they can be easily man-
aged by an existing model. We use deep learning to search
for cut points in a linear time complexity. A visual example
of the successive iterations of the partitioning strategy can
be seen in Fig. 1. We used the bpRNA 1m [11] dataset for
training and for our experiments.

We perform a benchmark of MXfold2 [7], Linearfold
[3] and our proposed approach on the bpRNA 1m [11] da-
tabase and show that our approach indeed demonstrates
better performance for long RNAs and a potential to bring
significant improvements in the future, as well as interest-
ing enhancing properties, which we discuss.
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2. S. McCaskill, “The equilibrium partition function and base
pair binding probabilities for RNA secondary structure,”
Biopolymers, vol. 29, no. 6-7, pp. 1105-1119, 1990.4. D.
Balzar & N. C. Popa, in Diffraction Analysis of the
Microstructure of Materials, edited by E.J. Mittemeijer &
P. Scardi (Berlin: Springer), 2004, pp. 125-145. 3. H. J.
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PROTEIN QUATERNARY STRUCTURES IN SOLUTION ARE
A MIXTURE OF MULTIPLE FORMS

Gideon Schreiber’, Shir Marciano', Debabrata Dey’, Dina Listov’,
Sarel J Fleishman', Adar Sonn-Segev?, Haydyn Mertens®, Florian Busch®, Yongseok Kim*,
Sophie R. Harvey*, Vicki H. Wysocki*

"Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
2Refeyn Ltd, 1 Electric Avenue, Ferry Hinksey Road, Oxford OX2 0BY, UK
3Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, 22607, Germany
“Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural
Biology, The Ohio State University, Columbus, OH, 43210, USA

Over half the proteins in the E.coli cytoplasm form homo or
hetero-oligomeric structures. Experimentally determined
structures are often considered in determining a protein’s
oligomeric state, but static structures miss the dynamic
equilibrium between different quaternary forms. The prob-
lem is exacerbated in homo-oligomers, where the
oligomeric states are challenging to characterize. Here, we
re-evaluated the oligomeric state of 17 different bacterial
proteins across a broad range of protein concentrations and
solutions by native mass-spectrometry (MS), mass pho-
tometry (MP), size exclusion chromatography (SEC), and
small-angle X-ray scattering (SAXS), finding that most ex-
hibit several oligomeric states. Surprisingly, many proteins
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did not show mass-action driven equilibrium between the
oligomeric states. For approximately half the proteins, the
predicted oligomeric forms described in publicly available
databases underestimated the complexity of protein quater-
nary structures in solution. Conversely, AlphaFold
Multimer provided an accurate description of the potential
multimeric states for most proteins, suggesting that it could
help resolve uncertainties on the solution state of many
proteins.

1. Marciano S, Dey D, Listov D, Fleishman SJ, Sonn-Segev
A, Mertens H, Busch F, Kim Y, Harvey SR, Wysocki VH,
Schreiber G. Protein quaternary structures in solution are a
mixture of multiple forms. Chem Sci, 13 (2022), 11680.

STRUCTURAL PLASTICITY IN THE LOOP REGION OF ENGINEERED LIPOCALINS
WITH NOVEL LIGAND SPECIFICITIES — ANTICALINS

A. Skerra

Lehrstuhl fiir Biologische Chemie, Technische Universitdt Miinchen, Emil-Erlenmeyer-Forum 5,
85354 Freising, Germany
skerra@tum.de

Anticalins are generated via combinatorial protein design
on the basis of the lipocalin protein scaffold and constitute
a novel class of small and robust binding proteins. These
engineered lipocalins offer prospects as an alternative to
antibodies for applications in medical therapy as well as in
vivo diagnostics. The lipocalins are natural binding pro-
teins with diverse ligand specificities which share a simple
architecture with a central eight-stranded antiparallel
B-barrel and an a-helix attached to its side. At the open end
of the B-barrel, four structurally variable loops connect the
o-strands in a pair-wise manner and, together, shape the
ligand pocket. Using targeted random mutagenesis in com-
bination with molecular selection techniques, this loop re-
gion can be reshaped to generate pockets for the tight
binding of various ligands ranging from small molecules

over peptides to proteins. While such Anticalin proteins
can be derived from different natural lipocalins, the human
lipocalin 2 (Len2) scaffold proved particularly successful
for the design of binding proteins with novel specificities
and, over the years, more than 20 crystal structures of
Lcen2-based Anticalins have been elucidated. Using a novel
way of graphical representation, the conformational vari-
ability that emerged in the loop region of these functionally
diverse artificial binding proteins can be illustrated in com-
parison with the natural scaffold. This analysis has pro-
vided picturesque evidence of the high structural plasticity
around the binding site of the lipocalins which explains
their proven tolerance toward excessive mutagenesis. Fur-
thermore, apart from a simple lock-and-key mode of ligand
recognition, structural evidence suggests two distinct
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mechanisms of spatial adaptation during the formation of
Anticalin-ligand complexes: (i) induced fit, in which
conformational alteration follows ligand binding, and (ii)
conformational selection, which is based on a pre-existing
mixture of conformational states. Taken together, these
molecular mechanisms demonstrate remarkable resem-
blance between the binding site of lipocalins (natural or en-
gineered) and the well characterized complementarity-
determining region of immunoglobulins (antibodies),
which represent two structurally and functionally different
types of mammalian plasma proteins.
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the engineering of binding proteins. FEBS Lett. 588,
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We develop novel strategies and web-based protein engi-
neering tools under the ELIXIR Czech Republic umbrella.
These are fully automated computational workflows which
can operated using the intuitive graphical user interface [1].
Protein sequence or structure is typically the only input re-
quired for the calculation. The tools can be accessed freely
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via the Protein Engineering Portal (Figure 1). The tools are Qerzme #) rerror §'mazpAT”

particularly suitable for experimentalists without prior

structural biology or bioinformatics knowledge. The Na- g e g R

tional Supercomputing Centre IT4Innovations provides G s s L Lotremg

the infrastructure for high-performance computing. This

talk will introduce some of our web tools and illustrate their i i FamL
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use for engineering proteins for biotechnological and bio-
medical applications [2].

Figure 1. The graphical user interface of the Protein Engineering
Portal provides unified access to the software tools and databases
developed by the Loschmidt Laboratories and partners:
https://loschmidt.chemi.muni.cz/portal/.

1.  Marques, S. M., Planas-Iglesias, J., Damborsky, J., 2021:
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rent Opinion in Structural Biology 69: 19-34.
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vanced Drug Delivery Reviews 183: 114143.
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