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VISIBLE LATTICE POINTS AND WEAK MODEL SETS
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Re cently, the dy nam i cal and spec tral prop er ties of
square-free in te gers, vis i ble lat tice points and var i ous gen -
er ali sa tions have re ceived in creased at ten tion; see [1,3] and 
ref er ences therein. One rea son is the con nec tion with
Sarnak’s con jec ture on the `ran dom ness’ of the Möbius
func tion, an other the ex plicit computability of cor re la tion
func tions as well as eigenfunctions for these sys tems. Here, 
we use the set V of points (x,y) of the square lat tice Z2 that
are vis i ble from the or i gin as a par a digm. Clearly, these are
just the pairs with coprime corrdinates; see Fig. 1 for an il -
lus tra tion.

By the Chi nese Re main der The o rem, V has holes of ar -
bi trary size and it is clas sic that the nat u ral den sity ex ists

and is equal to 6/p2. It turns out that V has pos i tive top o log -
i cal en tropy equal to its den sity [4] and one thus might ex -
pect to leave the realm of pure point spec trum. How ever, V
has pure point dy nam i cal and dif frac tion spec trum [1,4];
see Fig. 1 and note that the disk ar eas rep re sent the in ten si -
ties. In fact, it is a ma jor step to char ac ter ise the hull, i.e. the 
lat tice trans la tion or bit clo sure of V in the lo cal to pol ogy.
One can fur ther show that the patch fre quen cies ex ist and
this gives rise to a trans la tion-in vari ant Borel prob a bil ity

mea sure on the hull. Our main re sult is that the cor re spond -
ing mea sure the o retic dy nam i cal sys tem is iso mor phic to a
Kronecker sys tem. More over, both the dy nam i cal and the
dif frac tion spec tra are given by the points of Q2 with
square-free de nom i na tor. It turns out that all the ex am ples
men tioned above are weak model sets (the cor re spond ing
win dows may have empty in te rior and a bound ary of pos i -
tive Haar mea sure) and it is thus nat u ral to have a look at
this ab stract class of cut-and-pro ject sets. 
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Fig ure 1. Cen tral patch of V (left) and the dif frac tion of V re stricted to the square [0,2]2 (right).
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There are many in fla tion til ings with a pure-point and a
con tin u ous part in their dy nam i cal or dif frac tion spec trum,
also higher-di men sional ones [1,2]. Most are gen er ated by
a con stant length in fla tion, and are thus lat tice based. Here,
we de scribe a pro ce dure to con struct a mixed-spec trum, al -
most 2-1 ex ten sion of any pure-point in fla tion til ing, and il -
lus trate it with the well-known sil ver mean til ing,
con struct ing thus a mixed-spec trum til ing based on a
quasiperiodic til ing.

The start ing point is the ob ser va tion that many of the
mixed-spec trum ex am ples have a sym me try in their in fla -
tion rules [3]. All tiles come in geo met ri cally equal pairs,
and tiles within a pair are dis tin guished by the pres ence or
ab sence of a bar. Swap ping the bar sta tus of all tiles is a
sym me try, which com mutes with the in fla tion. Wip ing out
all bars de fines a fac tor map which is 2-1 al most ev ery -
where. Pro vided the max i mal equicontinuous fac tors
(MEF) of both the barred and the un barred til ing are the
same, the fac tor map from the barred til ing to its MEF is
then 2-1 al most ev ery where, which implies that its
spectrum is mixed [4].

This pic ture sug gests how to con struct mixed-spec trum
in fla tion til ings in a sys tem atic way. Start ing with our fa -
vour ite pure-point in fla tion til ing, we split each tile type
into a pair, one with and one with out a bar, and as sign the
bars in the in fla tion rule such that i) the bar swap sym me try
is ob served, ii) the re sult ing in fla tion is prim i tive, and iii)
the barred and the un barred til ing have the same MEF. As
there are many ways to as sign the bars, of ten there are such
solutions.

We il lus trate the pro ce dure with the sil ver mean til ing,
for which we in tro duce a suit ably twisted ver sion with bar
swap sym me try. By gen eral ar gu ments, it is in fact true that
the spec trum car ried by the ker nel of an al most 2-1 map to a 

pure-point fac tor must be pure. The fac tor map from the
barred to the un barred til ing is such a map, where fore the
spec trum in the odd sec tor with re spect to the bar swap
must be pure, ei ther ab so lutely con tin u ous or sin gu lar con -
tin u ous. To dis crim i nate be tween the two, we com pute the
autocorrelation of the twisted sil ver mean til ing with a dec -
o ra tion which is odd un der the bar swap. This auto -
correlation does not tend to zero for a se ries of  dis tances
tend ing to in fin ity, which by the Riemann—  Lebesgue
lemma im plies that its Fou rier trans form, the dif frac tion
spec trum, must have a sin gu lar com po nent. As the dif frac -
tion spec trum is con tained in the dy nam i cal spec trum, the
lat ter thus has a sin gu lar con tin u ous com po nent  in the odd
sector, so that it must be purely singular continuous there.
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We briefly re view the con nec tion of the pe riod dou bling
se quence to the pe riod dou bling route to chaos [1, 2].  We
de velop the for mal ism nec es sary to gen er al ize the pe riod
dou bling se quence to ar bi trary di men sion by straight for -
ward ex ten sion of the sub sti tu tion and re cursion rules [3,
4]. We dis cuss the sym me tries of the struc tures (see e.g.
Fig. 1).  We show that the pe riod dou bling struc tures of ar -
bi trary di men sion are pure point (i.e. Bragg) diffractive [5,

6].
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Pla nar til ings have been a fo cus of study not only for their
in ter est ing al ge braic and geo met ric prop er ties, but also be -
cause these serve as mod els for aperiodic crys tal struc tures.

In this talk, a con struc tion of a ver tex-to-ver tex pla nar
til ing with 7 - fold ro ta tional sym me try via sub sti tu tion will 
be pre sented. Sub sti tu tion is de fined on a prototile set con -

sist ing of a reg u lar hep ta gon and tri an gles. For the til ing to
be ver tex-to-ver tex, rules are im posed by plac ing ar rows
on the sides of each prototile. It will be shown that the
7-fold til ing has dense tile ori en ta tions. More over, prop er -
ties per tain ing to ar eas of the prototiles will be dis cussed.
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Fig ure 1. 3D pe riod dou bling struc ture: iso met ric pro jec tion of
gen er a tion 4 dis play ing three-fold and mir ror sym me try.
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The main pur pose of crys tal log ra phy is to solve and re fine
crys tal struc tures  based on mea sured dif frac tion data.
Com plex crys tal struc tures re quire big datasets con sist ing
also of weak peaks. By us ing pow er ful syn chro tron fa cil i -
ties and mod ern de tec tors it is pos si ble to col lect dif frac tion 
pat terns with a very high dy namic range. It is, how ever, a
big chal lenge to prop erly pro cess the mea sured data. One
of many cor rec tions ap plied dur ing struc ture re fine ment
pro cess is the Debye-Waller (D-W) fac tor cor rec tion. It
com pen sates for the per tur ba tions aris ing from ther mal vi -
bra tions (phononic term) or flips (phasonic term) of at oms.
The D-W fac tor can be also gen er al ized to a sta tis ti cal in -
ter pre ta tion [1, 2]. The gen eral for mula for D-W fac tor is

exp[-k2s2], where k is the scat ter ing vec tor and s is a vari -
ance of the dis tri bu tion of atomic ar range ment (both is
physical or per pen dic u lar space).

In our pre sen ta tion we dis cuss the lim i ta tions of the
D-W fac tor in terms of struc ture re fine ment and pro pose a
way to im prove the re sults of such anal y sis. We prove that
the D-W fac tor sub stan tially lim its the range of dif frac tion
data pos si ble to use in a re fine ment pro cess. It works cor -
rectly only for small val ues of the ex po nen tial in the
abovementioned for mula. For real crys tals (in clud ing
quasicrystals), sat is fac to rily good re sults are only ob tained
for strong re flec tions with in ten si ties higher than 1% in rel -

a tive scale. Peaks with in ten si ties 10-4-10-3 are re fined
rather in ci den tally (see e.g.[3]). This means that in clud ing
weak re flec tions in a re fine ment procedure frequently
makes the refinement results worse.

We show how to im prove the use of D-W fac tor. Our
cal cu la tions are per formed for a sim ple 1D model
quasicrystal – the Fibonacci chain. Both the model choice
and its low dimensionality do not af fect our con clud ing re -
marks. For the Fibonacci chain we mod elled the fluc tu a -
tions in phys i cal as well as per pen dic u lar space. We claim,
that re def i ni tion of the D-W fac tor by ei ther in clud ing
higher-or der mo ments of the sta tis ti cal dis tri bu tion or re -
plac ing the Gauss func tion with more ap pro pri ate func -
tions es sen tially al lows also weak peaks to be in cluded in
the re fine ment. Our re sults are gen eral and can be ap plied
for struc tural in ves ti ga tions of per fect crys tals, in clud ing
quasicrystals, but also any systems with defects or highly
disordered. 
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