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VISIBLE LATTICE POINTS AND WEAK MODEL SETS

Christian Huck

Fakultét fiir Mathematik, Universitét Bielefeld (Germany),
huck@math.uni-bielefeld.de

Recently, the dynamical and spectral properties of
square-free integers, visible lattice points and various gen-
eralisations have received increased attention; see [1,3] and
references therein. One reason is the connection with
Sarnak’s conjecture on the ‘randomness’ of the Mdbius
function, another the explicit computability of correlation
functions as well as eigenfunctions for these systems. Here,
we use the set V of points (x,y) of the square lattice Z that
are visible from the origin as a paradigm. Clearly, these are
just the pairs with coprime corrdinates; see Fig. 1 for an il-
lustration.

By the Chinese Remainder Theorem, V has holes of ar-
bitrary size and it is classic that the natural density exists
and is equal to 6/°. It turns out that V has positive topolog-
ical entropy equal to its density [4] and one thus might ex-
pect to leave the realm of pure point spectrum. However, V
has pure point dynamical and diffraction spectrum [1,4];
see Fig. 1 and note that the disk areas represent the intensi-
ties. In fact, it is a major step to characterise the hull, i.e. the
lattice translation orbit closure of V in the local topology.
One can further show that the patch frequencies exist and
this gives rise to a translation-invariant Borel probability

measure on the hull. Our main result is that the correspond-
ing measure theoretic dynamical system is isomorphic to a
Kronecker system. Moreover, both the dynamical and the
diffraction spectra are given by the points of Q* with
square-free denominator. It turns out that all the examples
mentioned above are weak model sets (the corresponding
windows may have empty interior and a boundary of posi-
tive Haar measure) and it is thus natural to have a look at
this abstract class of cut-and-project sets.
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Figure 1. Central patch of V (left) and the diffraction of V restricted to the square [0,2]* (right).
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A DECORATED SILVER MEAN TILING WITH MIXED SPECTRUM
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There are many inflation tilings with a pure-point and a
continuous part in their dynamical or diffraction spectrum,
also higher-dimensional ones [1,2]. Most are generated by
a constant length inflation, and are thus lattice based. Here,
we describe a procedure to construct a mixed-spectrum, al-
most 2-1 extension of any pure-point inflation tiling, and il-
lustrate it with the well-known silver mean tiling,
constructing thus a mixed-spectrum tiling based on a
quasiperiodic tiling.

The starting point is the observation that many of the
mixed-spectrum examples have a symmetry in their infla-
tion rules [3]. All tiles come in geometrically equal pairs,
and tiles within a pair are distinguished by the presence or
absence of a bar. Swapping the bar status of all tiles is a
symmetry, which commutes with the inflation. Wiping out
all bars defines a factor map which is 2-1 almost every-
where. Provided the maximal equicontinuous factors
(MEF) of both the barred and the unbarred tiling are the
same, the factor map from the barred tiling to its MEF is
then 2-1 almost everywhere, which implies that its
spectrum is mixed [4].

This picture suggests how to construct mixed-spectrum
inflation tilings in a systematic way. Starting with our fa-
vourite pure-point inflation tiling, we split each tile type
into a pair, one with and one without a bar, and assign the
bars in the inflation rule such that i) the bar swap symmetry
is observed, ii) the resulting inflation is primitive, and iii)
the barred and the unbarred tiling have the same MEF. As
there are many ways to assign the bars, often there are such
solutions.

We illustrate the procedure with the silver mean tiling,
for which we introduce a suitably twisted version with bar
swap symmetry. By general arguments, it is in fact true that
the spectrum carried by the kernel of an almost 2-1 map to a

pure-point factor must be pure. The factor map from the
barred to the unbarred tiling is such a map, wherefore the
spectrum in the odd sector with respect to the bar swap
must be pure, either absolutely continuous or singular con-
tinuous. To discriminate between the two, we compute the
autocorrelation of the twisted silver mean tiling with a dec-
oration which is odd under the bar swap. This auto-
correlation does not tend to zero for a series of distances
tending to infinity, which by the Riemann— Lebesgue
lemma implies that its Fourier transform, the diffraction
spectrum, must have a singular component. As the diffrac-
tion spectrum is contained in the dynamical spectrum, the
latter thus has a singular continuous component in the odd
sector, so that it must be purely singular continuous there.
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Figure 1. 3D period doubling structure: isometric projection of
generation 4 displaying three-fold and mirror symmetry.
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We briefly review the connection of the period doubling
sequence to the period doubling route to chaos [1, 2]. We
develop the formalism necessary to generalize the period
doubling sequence to arbitrary dimension by straightfor-
ward extension of the substitution and recursion rules [3,
4]. We discuss the symmetries of the structures (see e.g.
Fig. 1). We show that the period doubling structures of ar-
bitrary dimension are pure point (i.e. Bragg) diffractive [5,
6].

1. N. Metropolis, M. L. Stein and P. R. Stein, J. Comb. The-

ory A15 (1973), 25-44.

2. M.J. Feigenbaum, J. Stat. Phys. 19 (1978), 25-52.

3. J.-P. Allouche and J. Shallit, Automatic Sequences: The-
ory, Applications, Generalizations. Cambridge University
Press. 2003.

4. M. Baake and U. Grimm, Aperiodic Order, Vol. 1: A Math-
ematical Invitation, Cambridge University Press. 2013.

F. M. Dekking, Z. Wahrscheinlichkeit. 41 (1978), 221-239.

J.-Y. Lee, R. V. Moody and B. Solomyak, Discrete
Comput. Geom. 29 (2003), 525-560.

>

A SUBSTITUTION TILING WITH DENSE TILE ORIENTATIONS AND 7-FOLD
ROTATIONAL SYMMETRY
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Planar tilings have been a focus of study not only for their
interesting algebraic and geometric properties, but also be-
cause these serve as models for aperiodic crystal structures.

In this talk, a construction of a vertex-to-vertex planar
tiling with 7 - fold rotational symmetry via substitution will
be presented. Substitution is defined on a prototile set con-

sisting of a regular heptagon and triangles. For the tiling to
be vertex-to-vertex, rules are imposed by placing arrows
on the sides of each prototile. It will be shown that the
7-fold tiling has dense tile orientations. Moreover, proper-
ties pertaining to areas of the prototiles will be discussed.
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The main purpose of crystallography is to solve and refine
crystal structures based on measured diffraction data.
Complex crystal structures require big datasets consisting
also of weak peaks. By using powerful synchrotron facili-
ties and modern detectors it is possible to collect diffraction
patterns with a very high dynamic range. It is, however, a
big challenge to properly process the measured data. One
of many corrections applied during structure refinement
process is the Debye-Waller (D-W) factor correction. It
compensates for the perturbations arising from thermal vi-
brations (phononic term) or flips (phasonic term) of atoms.
The D-W factor can be also generalized to a statistical in-
terpretation [1, 2]. The general formula for D-W factor is
exp[-k’c?], where £ is the scattering vector and o is a vari-
ance of the distribution of atomic arrangement (both is
physical or perpendicular space).

In our presentation we discuss the limitations of the
D-W factor in terms of structure refinement and propose a
way to improve the results of such analysis. We prove that
the D-W factor substantially limits the range of diffraction
data possible to use in a refinement process. It works cor-
rectly only for small values of the exponential in the
abovementioned formula. For real crystals (including
quasicrystals), satisfactorily good results are only obtained
for strong reflections with intensities higher than 1% in rel-

ative scale. Peaks with intensities 10*-10” are refined
rather incidentally (see e.g.[3]). This means that including
weak reflections in a refinement procedure frequently
makes the refinement results worse.

We show how to improve the use of D-W factor. Our
calculations are performed for a simple 1D model
quasicrystal — the Fibonacci chain. Both the model choice
and its low dimensionality do not affect our concluding re-
marks. For the Fibonacci chain we modelled the fluctua-
tions in physical as well as perpendicular space. We claim,
that redefinition of the D-W factor by either including
higher-order moments of the statistical distribution or re-
placing the Gauss function with more appropriate func-
tions essentially allows also weak peaks to be included in
the refinement. Our results are general and can be applied
for structural investigations of perfect crystals, including
quasicrystals, but also any systems with defects or highly
disordered.
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