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TILING VERTICES AND THE SPACING DISTRIBUTION OF ITS RADIAL
PROJECTIONS
Tobias Jakobi
Department of Mathematics, University of Bielefeld (Germany)
tjakobi@math.uni-bielefeld.de

In [1], Boca, Cobeli and Zaharescu gave an elegant repre- e
sentation of the first consecutive spacing distribution when “T
looking at the visible points of the square lattice Z*. Here [
one considers the lattice points which are visible from the 10}
origin. This amounts to selecting those points (x,y) with I
coprime coordinates. Now place a circle of radius R at the -t
origin and project all interior points onto this circle, effec- '
tively reducing the polar coordinate description of a point I
to its angle information. Then sort all these angles and mea- 06
sure the difference between neighbouring ones. In [1], it I
was proved, even in a more general context, that after 04l
proper rescaling there exists a limit distribution of the dif- t
ferences as R — .

One might ask the question whether the limit distribu- 02
tion encodes relevant information about the degree of order
of the input point set. Phrased differently, can one quantify iy I TR
how much the distribution varies when exchanging the 00 03 L0 L3 10 13 30

original lattice with some other locally finite point set? It is
known that the set of Poisson distributed points in the plane
yields the exponential distribution, which represents the
most unordered set. This is one of the few other examples
that is fully understood analytically.

Here, we take a look at numerical results for the vertex
set of aperiodic tilings in the plane as input (e.g. Ammann-
Beenker, rhombic Penrose and chiral Langon-Billard). In
connection with this problem, we also study the visibility
property for special aperiodic point sets, generated from a
cyclotomic model set description [2]. These cases resemble
the lattice situation to some extent (existence of a gap, etc.).

Figure 1. Spacing distribution of a large Ammann-Beenker
patch (cyclotomic case).

To evaluate how robust the properties of the distribu-
tions are, we apply a randomization procedure to the sets
which discards a vertex with a fixed probability p. It turns
out that many properties seem to be continuous in p. In par-
ticular, the position of the gap is linear, indicating a limit
law in the background.
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SQUAREFREE NUMBERS AND THEIR DIFFRACTION
Michael Baake, Christian Huck and Tobias Jakobi

Department of Mathematics, University of Bielefeld (Germany)
{mbaake, huck,tjiakobi}@math.uni-bielefeld.de

An integer is called squarefree if it is not divisible by a
nontrivial square. The set of squarefree integers is a dis-
crete subset of the line with gaps of arbitrary size. Never-
theless, it has positive density and a pure point diffraction
spectrum [1, 2], as well as other interesting properties as a
dynamical system [3, 4].

Recently, the setting was generalized [5] to squarefree
numbers in algebraic number fields, where many proper-
ties prevail. In this contribution, which complements the
tutorial talk [6], some explicit examples are shown in de-
tail. Our emphasis is on the connection with the underlying
Minkowski embedding [5].

In particular, we present the diffraction for the
squarefree numbers in various rings of integers of qua-
dratic number fields, including the Gaussian integers Z[i]
as well as Z[V2] and Z[z], where t is the golden ratio.

1. M. Baake, R. V. Moody, P. A. B. Pleasants, Diffraction
from visible lattice points and k-th power free integers,
Discr. Math., 221 (2000), pp. 3-42.

2. M. Baake, U. Grimm, Aperiodic Order. Vol. I: A Mathe-
matical Invitation. Cambridge University Press, Cam-
bridge. 2013.

3. F. Cellarosi, Y. G. Sinai, Ergodic properties of square-free
numbers, J. Eur. Math. Soc., 15 (2013), pp. 1343-1374.

4. C. Huck, M. Baake, Dynamical properties of k-free lattice
points, Acta Phys. Pol., A126 (2014), pp. 482-485.

5. F. Cellarosi, I. Vinogradov, Ergodic properties of k- free
integers in number fields. J. Mod. Dynam., 3 (2013),
pp- 461-488.
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Figure 1. Diffraction of the squarefree Gaussian numbers
(non-linear scaling of intensities).

6. C. Huck, Visible lattice points and weak model sets,
Aperiodic 2015 tutorial talk.

This work was supported by the German Research Foun-
dation (DFG) within the CRC 701.

DIFFRACTION INTENSITIES OF THE RANDOM NOBLE MEANS SUBSTITUTIONS

Timo Spindeler

Department of Mathematics, University of Bielefeld,33501 Bielefeld, Germany
tspindel@math.uni-bielefeld.de

Although there are many open problems (e.g. the famous
Pisot substitution conjecture), the structure of systems with
pure point diffraction is rather well understood [1,2]. Addi-
tionally, the situation for various systems with diffraction
spectra of mixed type has improved [3, 4, 5]. Nevertheless,
the understanding of spectra in the presence of entropy is
only at its beginning and it is desirable to work out concrete
examples.

In 1989, Godréche and Luck [6] extended the study of
conventional substitution rules and introduced the notion
of local mixtures of substitution rules on the basis of a fixed

probability vector along the random Fibonacci
substitution. They presented first results concerning the
topological entropy and the spectral type of the diffraction
measure of associated point sets. This was further devel-
oped in [7]. Here, we are interested in the pure point part of
the diffraction pattern.

The aim is to present a generalisation of this concept by
regarding the so-called noble means families, see also [7],
each consisting of finitely many primitive substitution
rules that individually all define the same two-sided dis-
crete dynamical hull, and to determine a closed expression
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for the diffraction intensities of their randomised versions.
To do this, we will consider an equation system of self-sim-
ilar measures of Hutchinson type, defined by a compact
family of contractions. The solution of this equation system
gives the formula of the diffraction intensities.

1. M. Baake, R.V. Moody, Weighted Dirac combs with pure
point diffraction, J. reine angew. Math. (Crelle) 573
(2004), pp. 61-94.

2. M. Queftélec, Substitution Dynamical Systems. Spectral
Analysis, 2™ ed. Springer, Berlin (2010).

3. M. Baake, M. Birkner, R.V Moody, Diffraction of stochastic
point sets: Explicitly computable examples, Commun.
Math. Phys. 293 (2010), 611-660.

4. M. Baake, F. Gihler, U. Grimm, Spectral and
topologicalproperties of a family of generalised
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Thue-Morse sequences, J. Math. Phys. 53 (2012), 032701
(24pp).

5. M. Baake, U. Grimm, Aperiodic Order. Volume 1: A Math-
ematical Invitation, Cambridge University Press, Cam-
bridge (2013).

6. C. Godreche, J. M. Luck, Quasiperiodicity and randomness
in tilings of the plane, J. Stat. Phys. 55 (1989), pp.1-28.

7. M. Moll, Diffraction of random noble means words, J. Stat.
Phys. 156 (2014), pp.1221-1236.

This work is supported by the German Research Founda-
tion (DFG) via the Collaborative Research Centre (CRC
701) through the faculty of mathematics, University of
Bielefeld.

DIFFRACTION OF A SIMPLE NON-PISOT INFLATION

M. Baake', U. Grimm?

'Fakultat fiir Mathematik, Universitét Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
2Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, UK
uwe.grimm@open.ac.uk

Point sets derived from substitution systems form an im-
portant class of aperiodically ordered structures. There are
many examples for pure point diffractive substitution sys-
tems, such as the ubiquitous Fibonacci chain and its gener-
alisations, but we also have paradigms for structures with
singular continuous diffraction (the Thue—Morse chain)
and absolutely continuous diffraction (the Rudin—Shapiro
chain). One can quite easily combine these and produce ex-
amples with mixed diffraction spectrum including any
combinations of these three components [1].

According to the Pisot substitution conjecture, primi-
tive substitutions with a substitution matrix whose charac-
teristic polynomial is irreducible and whose eigenvalues,
apart from the leading eigenvalues, are less than one in
modulus (in which case the inflation multiplier is a
Pisot—Vijayaraghavan or short PV number) show pure
point spectrum. While there is no proof of this conjecture,
there are no counterexamples known [2], and it is widely
believed to hold.

There is also a good understanding of substitutions of
constant length, both in one and in higher dimensions
[3-5]. This is due to the fact that, in the constant length
case, the symbolic side and the geometric realisation with
tiles of natural size coincide, because all tiles have equal
length or are congruent. This also leads to a rather direct re-
lation between the diffraction measures of the system (and
systems derived as images of sliding block maps) on the
one hand and the dynamical spectral measures on the other
[6].

So far, much less is known for non-Pisot substitutions.
Here, we concentrate on a particular example [7], the prim-

itive two-letter substitution aa — aaaaaaaa and bb — aa
with inflation multiplier AA = (1 + \13)/2. For the one-di-
mensional point set corresponding to the appropriate geo-
metric realisation in terms of two intervals of length AA and
1, we sketch an argument that indicates that the diffraction,
apart from a trivial Bragg peak at the origin, is singularly
continuous.

1. M. Baake, U. Grimm, Aperiodic Order. Volume 1: A Math-
ematical Invitation. Encyclopedia of Mathematics and its
Applications No. 149. Cambridge: Cambridge University
Press. 2013.

2. S. Akiyama, F. Gihler, J.-Y. Lee, Determining pure dis-
crete spectrum for some self-affine tilings, Disc. Math. Th.
Comp. Sci. (DMTCS), 16:3, (2014), 305-316;
arXiv:1403.0362.

3. M. Queftélec, Substitution Dynamical Systems — Spectral
Analysis. LNM 1294, 2nd ed. Berlin: Springer. 2010.

4. N.P. Frank, Multi-dimensional constant-length substitution
sequences, Topol. Appl., 152, (2005), 44-69.

5. A. Bartlett, Spectral theory of substitutions in , preprint
arXiv:1410.8106.

6. M. Baake, D. Lenz, A. C. D. van Enter, Dynamical versus
diffraction spectrum for structures with finite local com-
plexity, Ergodic Th. & Dynam. Syst., in press;
arXiv:1307.7518.

7. M. Baake, N. P. Frank, U. Grimm, E. A. Robinson, Dif-
fraction of a non-Pisot inflation point set and absence of
absolutely continuous spectrum, in preparation.
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SHAPE LIMIT IN VORONOI TILINGS FOR BERNOULLI SPIRALS

Y. Yamagishi', T. Sushida®, A. Hizume'

"Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu 520-2194, Japan
2Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, 4-21-1
Nakano, Tokyo 164-8525, Japan
yg@rins.ryukoku.ac.jp

Let A:{zk:k eZ} c C be a Bernoulli spiral set in the

complex plane, generated by z =rexp(if, ), 0<r<1. We
studied the geometry and topology of triangular tilings
with the vertex set A in [1], and the shape limit of triangular
tiles as # — 1 in [2]. In the phyllotaxis theory, 1/ is called
the plastochrone ratio, and 0 the divergence angle. Here
we consider the Voronoi tiling with the site set A. The
parastichy number, i.e. the number of spirals consisting of
contact Voronoi cells, is obtained by the continued fraction
expansion of the 68/2r. The Voronoi tiling is a quadrilateral
tiling if it has two parastichies, or hexagonal tiling if it has
three parastichies.

Suppose that 6/27 is a quadratic irrational number. If
we only consider the quadratic Voronoi tilings, then the
limit set of the shapes of the quadrilateral tiles as 7 — 1l is a
finite set of rectangles. In particular, if 0/2x is linearly
equivalent to the golden section T = (1 +V5)/2, the limit is
the square [3].

Rothen and Koch [4] observed the shape invariance
under compression with the golden section divergence an-
gle, in the linear lattice model. Our work is an extension to

the cylindrical model. The shape limit in the linear lattice
model was studied in [5].

1. T. Sushida, A. Hizume, Y. Yamagishi, J. Phys. A: Math.
Theor., 45, (2012), 235203.

2. T. Sushida, A. Hizume, Y. Yamagishi, Acta Phys. Polonica
A, 126, (2014), 633-636.

3. Y. Yamagishi, T. Sushida, A. Hizume, Nonlinearity, 28,
(2015),1077-1102.

4. F.Rothen, A.-J. Koch, J. Physique France, 50, (1989),
633-657.

5. T. Sushida, A. Hizume, Y. Yamagishi, RIMS Kokyuroku
Bessatsu, B47, (2014), 023-032.

This work is partially supported by JSPS Kakenhi Grant
24654029, 15K05011, and the Joint Research Center for
Science and Technology of Ryukoku University. We would
like to thank Smith College for the hospitality extended to
Yamagishi during his stay in 2015-2016.

34/

Figure 1. A quadrilateral Voronoi tiling with similarity symmetry, generated by z = (0,999426) exp (2mit), T = (1 + \/5)/2. A
global view and a local view. Each site point is indexed by an integer. The tiles are close to squares.
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ENGINEERING SPECTRAL CROSSOVER AND FLAT BAND STATES IN
APERIODICALLY DISTORTED LADDER NETWORKS

Arunava Chakrabarti

Department of Physics, University of Kalyani, Kalyani, West Bengal 741235, India
arunava_chakrabarti@yahoo.co.in

We discuss the nature of electronic spectrum of a class of
tight binding aperiodic ladder networks using real space
renormalization methods. The ladder (Fig. 1) is described
by the Hamiltonian:

H :Zn: g, n><n‘+z Lo n><774 (1)

Using a simple change of basis we decouple the
Schroedinger equation for the ladder into a set of two dif-
ference equations as,

[E—(Sn +Yn )](pn,A = (tn,n+l + xn )(\Dn+l,A + (2)
+ (tn,nfl + 7\‘;171 )(pnfl,A

[E_(Sn _Yn )](pn,B :(tn,n+] _7\’11 )(\Dn+],b’ +

+ (tn,nfl _7\'"71 )(pn—l,B

We then introduce aperiodicity in the on-site potentials
€, and then, sequentially, in hopping integrals ¢,,, along the
arms of the ladder and in between them (y,) to simulate a
quasi-periodic distortion in ladder geometry. Aperiodic
modulations of the form A, = A, cos(nQn'a + §) and its
variants [1] are considered for the on-site potentials as well
as for the intra-arm, inter-arm and diagonal hopping
integrals, simulating a distortion in ladder geometry. It is
seen that, suitably chosen correlations between the parame-
ters, strongly supported by a non-trivial role of the phase
factors & in each case can result in a distortion-driven
metal-insulator crossover in the spectral properties (Fig. 2)
as well as flat, dispersionless bands that are of much cur-
rent interest in view of the topological states [2]. Such
modulations are possible in the formation of optical lattices
and the study thus opens up the possibility of encountering
exotic electronic states in quasi-one dimensions.

1. S. Ganeshan, K. Sun and S. Das Sarma, Phys. Rev. Lett.,
110, (2013), 180403.

2. C.Danieli, J. D. Bodyfelt, and S. Flach, arXiv:1502:06690,

(2015).

n-2.B

n—-1,B n,B

Figure 1. Portion of an infinite aperiodic ladder network.

n+1,B n+2.B
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E

Figure 2. Local density of states of the two decoupled arms
showing the possibility of a distortion-driven metal-insulator
crossover in the ladder spectrum.
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SIMILAR SUBMODULES AND COINCIDENCES OF CUBIC MODULES

P. Zeiner

Faculty of Mathematics, Bielefeld University, Box 100131, 33501 Bielefeld, Germany
pzeiner@math.uni-bielefeld.de

Similar sublattices and coincidence site lattices in low di-
mensions are quite well understood [1, 2]. Moreover, simi-
lar submodules and coincidence site modules (CSMs) of
certain planar modules with n-fold symmetry have been
studied in detail [3, 4]. For n =5,8,10,12, these modules
correspond to certain algebraic polynomials of degree four,
whereas planar lattices correspond to quadratic polynomi-
als. Here, we want to discuss certainmodules of rank 3, cor-
responding to cubic algebraic polynomials. We investigate
their similar submodules and CSMs and the connections
between them [5]. It turns out that several new phenomena
occur. We illustrate them by several examples, including
modules corresponding to the polynomial x* + 3x—1.

1. M. Baake, R. Scharlau, P. Zeiner, Similar sublattices of
planar lattices, Canad. J. Math., 63, (2011), 1220-1237,
arXiv:0908.2558.
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2. M. Baake, Solution of the coincidence problem in dimen-
sions d < 4, in The Mathematics of Long-Range Aperiodic
Order, edited by R.V. Moody (Dordrecht: Kluwer),1997,
pp- 9-44, arXiv:math.MG/0605222.

3. M. Baake, U. Grimm, Bravais colourings of planar mod-
ules with N-fold symmetry, Z. Kristallogr., 219, (2004),
72-80, arXiv:math.CO/0301021.

4. P.A.B. Pleasants, M. Baake, J. Roth, Planar coincidences
with N-fold symmetry, J. Math. Phys., 37, (1996),
1029-1058, arXiv:math.MG/0511147.5. S. Glied, Similar-
ity and coincidence isometries for modules, Can. Math.
Bull., 55, (2011), 98-107, arXiv:1005.5237.

5. S. Glied, Similarity and coincidence isometries for mod-
ules, Can. Math. Bull., 55, (2011), 98-107,
arXiv:1005.5237.

COINCIDENCE SITE PATTERNS IN THE PINWHEEL TILING

Reinhard Liick

Weilstetter Weg 16, D-70567 Stuttgart, Germany
r.v.lueck@web.de

Coincidence site lattices (CSLs) have been investigated for
periodic as well as for quasiperiodic lattices in two and
higher dimensions since some decades. They arise by a ro-
tation of a lattice with respect to a copy of itself and can al-
most be characterized by the so-called Sigma-value (),
which indicates the reciprocal value of the density of coin-
ciding lattice points. We investigated empirically coinci-
dences in the pinwheel tiling [ 1] caused by rotation as well
as by shift or reflection. For rotation angles 2 arctan(m/n)
withm*+ n* =k 5", k=1,2; p=0, 1,2, ... coinciding tiles
and patches of coinciding tiles were generated. In contrast

to CSLs of other tilings, these coinciding tiles are distrib-
uted inhomogeneously and anisotropically. No analogous
to the Sigma value does exist; the density of coinciding
tiles is discussed for a few examples using the generating
substitution process.

1. M. Baake and U. Grimm, 4periodic Order, Volume 1
(Cambridge University Press), 2013, p 224.

This contribution is prepared in collaboration with David
H. Warrington and dedicated to him on the occasion of his
80" birthday.
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AN ICOSAHEDRAL QUASICRYSTAL AS A GOLDEN MODIFICATION OF THE
ICOSAGRID AND ITS CONNECTION TO THE E8 LATTICE

Fang Fang, and Klee Irwin

Quantum Gravity Research, Los Angeles, CA, U.S.A.
fang@quantumgravityresearch.org

We present an icosahedral quasicrystal as a modification of
the icosagrid, a multigrid with 10 plane sets that arranged
with icosahedral symmetry. We use the Fibonacci chain to
space the planes obtaining a quasicrystal with icosahedral
symmetry. It has a surprising correlation to the Elser-
Sloane quasicrystal [4], a 4D cut-and-project of the E8 lat-
tice. We call this quasicrystal the Fibonacci modi?ed
icosigrid quasicrystal(FMIQ). We found that the FMQC
totally imbeds another quasicrystal that is a compound of
20 3D slices of the Elser-Sloane quasicrystal. The slices,
which contains only regular tetrahedra, are put together by
a certain ‘golden rotation’ [5]. Interesting 20Gs (20-tetra-
hedron clusters arranged with the ‘golden rotation’) appear
repetitively in the FMQC and are arranged with ico-
sahedral symmetry. It turns out that this ‘golden rotation’ is
the dihedral angle of the 600-cell (the super-cell of the
Elser-Sloane quasicrystal) and the angel between the tetra-
hedral facets in the E8 polytope known as the Gosset
polytope. We suggest that the FMIQ is an alternative result
of releasing the transdimensional “geometric frustration”
while maintaining the regularity of the tetrahedra [6-10].

1. I Brovchenko and A. Oleinikova. Multiple phases of liquid
water. Chem Phys Chem, 9(18):2660— 2675, 2008.

2. P.F. Damasceno, M. Engel, and S. C. Glotzer. Predictive
self-assembly of polyhedra into complex structures. Sci-
ence, 337(6093):453-457, 2012.

P39

3. V. Dmitrienko and M. Kl’eman. Tetrahedral structures
with icosahedral order and their relation to quasicrystals.
Crystallography Reports, 46(4):527-533, 2001.

4. V.Elser and N. J. A. Sloane. A highly symmetric four-di-
mensional quasicrystal. J. Phys. 4, 20(18):6161-6168,
1987.

5. F.Fang, K. Irwin, J. Kovacs, and G. Sadler. Cabinet of cu-
riosities: the interesting geometry of the angle § =
arccos((3¢ - 1)/4). ArXiv e-prints, 1304.1771, Apr. 2013.

6. A.Haji-Akbari, M. Engel, A. S. Keys, X. Zheng, R. G.
Petschek, P. Palfy-Muhoray, and S. C. Glotzer. Disordered,
quasicrystalline and crystalline phases of densely packed
tetrahedra. Nature, 462:773-777, 2009.

7. R.V.Moody and J. Patera. Quasicrystals and icosians.
J. Phys. A, 26:2829-2853, 1993.

8. J. Peters and H.-R. Trebin. Tetracoordinated quasicrystals.
Phys. Rev. B, 43:1820-1823, Jan 1991.

9. C.L. Phillips and S. C. Glotzer. Effect of nanoparticle
polydispersity on the self-assembly of polymer tethered
nanospheres. The Journal of Chemical Physics,
137(10):104901, 2012.

10. C. L. Phillips, E. Jankowski, M. Marval, and S. C. Glotzer.
Self-assembled clusters of spheres related to spherical
codes. Phys. Rev. E, 86:041124, Oct 2012.

OCTAGONAL TYPE OF THE QUASIPERIODIC SUCCESSION ALGORITHM

U. Gaenshirt', M. Willsch?

7Sculptor and Researcher, Wartburgstr. 2, D-90491 Nuremberg, Germany
physicist, Siemens AG, D-91050 Erlangen, Germany
uli.gaenshirt@yahoo.de

The decagonal quasiperiodic succession algorithm [1], re-
lated to decagonal cluster cells [2], generates the growth of
an infinite cartwheel-type tiling, although it acts locally.
The paper presents a new version type, applicable for
coverings of octagonal clusters cells Q (Fig. 1a) which
have an equivalent relation to the Gdhler octagons Q in a
perfect Ammann-Beenker tiling [3]. The cell Q is based on
the quasiperiodic Ammann 8-grid T, a superposition of
four 1D-grids I'*, I, I, . The used substitution factor of
I is A (silver mean A= 1+\2). The growth process is con-
trolled by the scale values a, b, ¢, d of the twin-scales I**,

1", I, I** (in general I'*) which are fixed on the cell grid
I'? in a specific relation. On both scales I'" and I* of a
twin-scale I** two identical values x, with xe {x*}, are
synchronised by a sliding ruler. Its length, L™, is the aver-
age of the g-line grid intervals L! and S, with respect to the
ratio V2:1 of their lengths and 1:V2 of their frequency rate
in an infinitely expanded grid T'*”.

The octagonal quasiperiodic succession algorithm dis-
tinguishes 7 neighbour transformations A, (Q) with 4 speci-
fied equations each. The algorithm correlates the
twin-scales of a cell @ with the parallel twin-scales of a cell
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Figure 1. (a) Cluster cell @ with four twin-scales I'*, (b) Twin-scale correlation of cluster cells @ and h,(Q).

h; (@), converts their values and then verifies or falsifies
the transformation. A verified transformation (e.g. Fig. 1b)
will be denoted 4, (Q). Beginning with a start-cell Q only
cells of the form Qy.., = h, (h,(...(h,(Qy))...)) are realized.

As aresult we propose a recursive 7x4-formula set gen-
erating a flawless infinite step-by-step growth of an octag-
onal Ammann-Beenker substitution tiling, solely using
local information.
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1. U. Gaenshirt, M. Willsch, Philos. Mag., 87, (2007),
3055-3065.

2. P. Gummelt, Geometriae Dedicata, 62, (1996), 1-17.

3. S.L Ben Abraham, F. Gihler, Phys. Rev., B 60, (1999),
860-864.

STRUCTURE FACTOR FOR GENERALIZED PENROSE TILING

M. Chodyn', P. Kuczera'? and J. Wolny'

"Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicz
Avenue 30, 30-059 Krakow, Poland
2Laboratory of Crystallography, ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich, CH-8093, Switzerland
maciej.chodyn@gmail.com

The Generalized Penrose Tiling (GPT) [1,2] can be consid-
ered a promising alternative for Penrose Tiling (PT) as a
model for decagonal quasicrystal refinement procedure,
particularly in the statistical approach (also called the Av-
erage Unit Cell (AUC) approach) [3]. The statistical
method using PT has been successfully applied to the struc-
ture optimization of various decagonal phases [4]. The ap-
plication of the AUC concept to the GPT will be presented.
In the higher dimensional (nD) approach, PT is ob-
tained by projecting a 5D hypercubic lattice through a win-
dow consisting of four pentagons, called the atomic
surfaces (ASs), in the perpendicular space. The vertices of
these pentagons together with two additional points form a
rhombicosahedron. The GPT is created by projecting the
5D hypercubic lattice through a window consisting of five
polygons, generated by shifting the ASs along the body di-

agonal of the thombicosahedron. Three of the previously
pentagonal ASs will become decagon, one will remain pen-
tagonal and one more pentagon will be created (for PT it is
a single point). The structure of GPT will depend on the
shift parameter, its building units are still thick and thin
rhombuses, but the matching rules and the tiling changes.
Diffraction pattern of GPT have peaks in the same posi-
tions as regular PT, however their intensities are different.

Binary decagonal quasicrystal structure with arbitrary
decoration for a given shift value was simulated. Its diffrac-
tion pattern was calculated using AUC method [5,6]. Gen-
erated diffraction pattern were used as “experimental data
set” in structure refinement algorithm made to test the re-
fining of shift parameter.
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ELECTRONIC TRANSPORT IN TEN MOST STUDIED APERIODIC SYSTEMS
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The electronic transport in solids with a large number of
impurities is still an unclear issue, where the interference
between the electronic wavefunction and aperiodic poten-
tials has multiple consequences. Due to the presence of
such impurities, the translational symmetry is lost making
the reciprocal lattice method inadequate or useless. In con-
sequence, the most studies of aperiodic systems have been
carried out in finite clusters with or without the periodic
boundary condition. The former frequently introduces un-
desirable contributions derived from the artificial periodic
boundary condition and the latter over emphasizes the mo-
lecular character of discrete energy spectra. In this work,
we use a full real-space renormalization plus convolution
method [1] to study the electronic transport in aperiodic
macroscopic systems with bond disorder under constant or
oscillating electric fields. This method has the advantage of
being computationally efficient, making able to address
macroscopic aperiodic systems without introducing extra
approximations [2]. We present numerical and analytical
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results of de and ac electrical conductivities for ten most
studied aperiodic systems, such as generalized Fibonacci,
Thue-Morse, period-doubling, triadic Cantor, Rudin-
Shapiro and paper folding sequences [3]. In particular, ana-
lytical studies reveal more than one transparent state in the
Thue-Morse, period-doubling and triadic Cantor systems.
Moreover, the dc conductivity spectra show narrow zones
with almost ballistic transport when sequences are not
quasiperiodic. Finally, a comparative analysis of the ac
conductivity in these systems is also presented.
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APERIODIC TILINGS FROM HIGHER DIMENSIONAL LATTICES

Mehmed Koca

Sultan Qaboos University, College of Science, Department of Physics, Al-Khod 123, PO Box36, Muscat,
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A general group theoretical discussion on the projection of
the higher dimensional lattices described by the affine
Coxeter-Weyl groups is presented. When the lattices are
projected onto the Coxeter plane it is noted that the maxi-
mal dihedral subgroup D/ with / representing the Coxeter

number describes the 4-fold symmetric aperiodic tilings. A
number of examples have been presented for the groups
B4, FA, BS, B6 and E6 describing the 8 fold, 10 fold, 12
fold symmetries. Projection of the hypercubic lattice B6
into 3D with icosahedral symmetry is discussed.
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