

Lectures - Wednesday morning, June 11

SL17

Determination of thickness of polycrystalline thin films by X-ray reflection, X-ray diffraction and X-ray fluorescence

URČOVÁNÍ TLOUŠ KY POLYKRYSTALICKÉ TENKÉ VRSTVY METODAMI RTG. REFLEXE, DIFRAKCE A FLUORESCENCE

S. Daniš¹, Z. Matěj¹, L. Matějová², M. Krupka³

¹Katedra fyziky kondenzovaných látek, Matematicko fyzikální fakulta UK, Ke Karlovu 5, Praha ²Vysoká škola báňská – Technická univerzita Ostrava, tř. 17.listopadu, Ostrava - Poruba ³PCS s.r.o., Na Dvorcích 18, Praha

V laboratorní praxi se běžně setkáváme s problémem určení tlouš ky tenké vrstvy. Metoda první volby je zde rtg. reflektivita (XRR), která v případě jedné vrstvy vede ke snadnému určení její tlouš ky T (např. [1]):

$$m^{2} = \frac{2}{c} m^{2} \frac{1}{2T} m^{2},$$
 (1)

kde $_{im}$ je úhel dopadu odpovídající *m*-tému maximu tlouš kových oscilací, *m* je index oscilace, je vlnová délka použitého záření a *T* hledaná tlouš ka vrstvy.

Je-li však povrch vrstvy drsný, je aplikace výše uvedeného postupu prakticky nemožná nebo vlivem nárůstu difuzního rozptylu strmě klesá intenzita spekulárně

Obrázek 1. Záznam rtg.reflektivity pro tenkou vrstvu chromu na skle (nahoře), určení tlouš ky vrstvy pomocí (1), dole.

Obrázek 2. Pokles intenzity reflektovaného rtg.záření vlivem drsnosti vrstvy ($_L$) a substrátu a ($_S$). U polykrystalických vrstev může střední drsnost nabývat hodnot i desítek nm, což vede až k potlačení tlouš kových oscilací.

odraženého záření. Jsme schopni nanejvýše odhadnout hodnotu kritického úhlu _c, viz obr. 2.

Další metodou, která nám může pomoci určit tlouš ku tenké vrstvy je rtg.difrakce. Je nutné mít materiál tenké vrstvy krystalický, což je oproti metodě rentgenové reflexe jisté omezení. Podobně jako v případě rtg.reflektivity i zde musíme použít malé úhly dopadu nebo odrazu abychom ozářili co největší objem vrstvy.

V literatuře se metody používající tečný dopad rtg.záření (grazing incidence, GI) popisují například v [2] a [3], i když nejsou primárně určeny ke zjištění tlouš ky vrstvy. Intenzity difraktovaného záření jsou počítány pomocí teorie DBWA. V případě použití synchrotronového záření je možné například určit velikosti nanočástic v tenké vrstvě, popřípadě zjistit drsnosti rozhranní [2]. Metoda GI má určitou nevýhodu – vlivem tečného dopadu je primární svazek "rozmazán" na velké ploše a může se stát, že pro určité úhly dopadu je ozářená plocha větší, než plocha zkoumaného vzorku.

Tuto nevýhodu odstraňuje metoda využívající tečný odchod difraktovaného záření (grazing exit, GE), popsaná autory v [4]. Tato metoda umožňuje určit tlouš ku tenké vrstvy a také index lomu, z něhož lze odhadnout hustotu ("porozitu") materiálu vrstvy. Vliv tlouš ky tenké vrstvy a její hustoty (porozity) je ukázán na obrázku 3, kde lze

Obrázek 3. Simulovaná integrální intenzita difrakční linie 101 anatasu pro různé tlouš ky v GE geometrii. Pro tlouš ku 48nm jsou spočtené dvě křivky, druhá s poloviční hodnotou indexu lomu, resp. hustotou.

pozorovat znatelný posun intenzity difrakční linie v závislosti na úhlu výstupu vlivem změny hustoty.

Třetí metodou, kterou lze použít ke zjištění tlouš ky tenké vrstvy (nebo její hustoty) je metoda rtg. fluorescence (XRF). Pro určení tlouš ky lze použít zeslabení intenzity vybuzené spektrální linie prvku substrátu nebo naopak nárůst intenzity spektrálních linií prvků tenké vrstvy. Pokud není známa tlouš ka tenké vrstvy, je možné určit z intenzit spektrálních čar její plošnou hustotu (například v mg/cm²) a poté, ze znalosti skutečné hustoty (například z rtg.reflektivity), zjistit tlouš ku.

Na obrázku 4 jsou uvedeny spektrální záznamy pro substrát (Na-Ca sklo) a čtyři vzorky tenké vrstvy TiO_2 různé tlouš ky. Nejmenší tlouš ka odpovídá vzorku označenému 1v, největší v4. Je patrný pokles intenzity spektrální linie CaK (substrát) vlivem absorpce v tenké vrstvě a nárůst intenzity spektrální linie TiK (vrstva).

Pro stanovení tlouš ky je potřeba zjistit skutečnou hustotu, například metodou rtg.reflektivity (z hodnoty kritického úhlu) nebo difrakce (z posunu polohy difrakční linie vlivem refrakce).

- 1. U.Pietsch, V.Holý, T.Baubach, High-Resolution X-Ray Scattering, Springer 2004.
- P.F.Fewster, N.L.Andrew, V.Holý, K.Barmak, Phys.Rev. B72 (2005), 174105.
- D.Simeone, G.Baldinozzi, D.Gosset, G.Zalczer, J.-F.Bérar, J.Appl. Cryst. (2011).44, 1205-1210.
- Z.Matěj, L.Nichtová, R.Kužel, Z.Kristalogr.Suppl. 30 (2009) 157-162.

Obrázek 4. Změna intenzit spektrálních linií CaKa (skleněný substrát) a TiK (vrstva) v závislosti na tlouš ce tenké vrstvy (1v je nejtenčí, 4v nejtlustší).

Obrázek 5. Porovnání tlouš ek tenkých vrstev metodou XRR a XRF. Z XRR byla určena hustota vrstvy (z indexu lomu) a z XRF pak určena tlouš ka. Vlivem různé porozity (hustoty) třech různých typů vrstev je pro každou sérii tlouš ková závislost intenzity spektrální linie TiK různá.

SL18

MEASUREMENT OF LATTICE PARTAMETERS OF SINGLE CRYSTALS AND THIN LAYERS

J. Drahokoupil¹, Petr Veřtát², Kristina Richterová¹, František Laufek¹

¹Institute of Physics AS CR, Na Slovance 2, Prague 8, 182 21, Czech Republic ²Faculty of Nuclear Sciences and Physical Engineering CTU, Trojanova 13, Prague 2 120 00, Czech Republic draho@fzu.cz

The precise measurement of lattice parameters plays an important role in determination a temperature of phase transitions or coefficients of thermal expansions. Usually it is performed on a powder or a bulk sample. Although the measurement of single crystal shows some complications, it has also many advantages. Firstly, the diffraction maximum of single crystal is narrower. Secondly, it can be usually measured to the higher diffraction angles because the Bragg peak overlap is not present there. Hence, the determination of *d*-spacing is more precise and consequently more precise lattice parameters can be obtained.

The following experimental setup was used: X'Pert PRO diffractometer with Co tube, parallel beam mirror in primary beam and parallel plate collimator (0,09°) in diffracted beam. The ATC-3 cradle equipped with the Peltier element was used for alignment of the sample and temperature controlling.

The measurements of lattice parameters on perfect Si single crystal, nice SmScO₃ and TbScO₃ crystals, non-ideal Ni-Mn-Ga crystals and SrTiO₃ thin layer on DyScO₃ substrate will be presented.

Data processing

The diffraction maximum 333 of Si single crystal was carefully measured by two-axis scan with fine step in 2 and , see Fig 1. Every 2 - scan was fitted separately. The maximal intensity and its position of observed peak are presented in Fig. 2. It can be seen that around the maximum the position of peak depends linearly on offset (or). In order to reduce the measurement time, the exact position of diffraction maximum was obtained by simple extrapolation from two-axis scan with a coarser step in u. In our case, we used parabolic extrapolation from three points around the scan with a maximal intensity.

The data processing was tested on the Si crystal. The 41 diffractions were measured, for every one 21 different 2 - scans with a fixed offset. The lattice parameter was then refined using all 41 diffractions with an average error of $0,004^{\circ} 2$; the largest difference was $0,015^{\circ} 2$.

Figure 1. Diffraction 333 of Si single crystal. Top view (top), side view (bottom) with particular 2 - scan for fix offset.

Figure 2. The properties of diffraction maximum: maximal intensity (top) of particular 2 - scan (bottom) its position.

CL1

ADVANCES IN X-RAY CRYSTALLOGRAPHY

Marcus J. Winter

Agilent Technologies, Yarnton, Oxfordshire, U.K. marcus.winter@agilent.com

Agilent Technologies (XRD) – formerly Oxford Diffraction, has made some of the most notable advances in X-ray crystallography over recent years. These include the adaption of graded focussing / monochromating X-ray mirrors to 'conventional' fine focus X-ray sources - to achieve the high brilliance Enhance Ultra (Cu) X-ray source.

Further advances in X-ray source design are marked by the Mova (Mo) and Nova (Cu) microfocus X-ray sources: whilst operating at low powers (typically 40 - 50 W), these sources achieve X-ray brightnesses considerably higher than is possible using 2 - 3 kW fine focus X-ray tubes, and comparable with rotating anode – type sources.

In parallel with X-ray source breakthroughs, CCD area detector technology has been considerably improved: for instance with the Eos S2 (Smart Sensitivity) and Atlas S2 CCD detectors. The Eos is the highest sensitivity CCD de-

CL2

tector which is commercially available – with a gain of 400 electrons per Mo photon, rapid read-out and 18-bit dynamic range. The much superior dark current (background) and read-out noise characteristics of CCD detectors mean that they considerably outperform the integrating CMOS detector technology.

The benefits of these developments in X-ray source and detector technologies and in the CrysAlis^{*Pro*} data-collection and data-analysis software suite will be illustrated through examples from a number of applications.

As a further valuable assistance to the crystallographer, the PX Scanner has been established: this is for the evaluation of the X-ray diffraction properties of crystals directly in situ in crystallisation plates: whilst the (putative) crystals are still growing in their mother liquor. Some applications of the PX Scanner system will be summarised.

XRD NEWS FROM PANALYTICAL

Stjepan Prugovečki, Jan Gertenbach

PANalytical B.V., Almelo, The Netherlands

The "standard" powder diffraction is still by far the most common application of modern diffractometer platforms. The demands for higher intensities, lower background, easiness of use, etc. are increasing, pushing the instrument manufacturers for continuous development of new or improved configurations, modules and software. In this talk we shall present and illustrate applicability of a new Bragg-Brentano^{HD} optical module and new functionalities implemented in the recent release 4.0 of the HighScore Plus software. Bragg-Brentano^{HD} is a new incident beam optical module, significantly reducing background, improving peak/ background ratio and increases intensity in powder diffraction application. Bragg-Brentano^{HD} module is also suitable for SAXS and X-ray reflectivity. Examples and comparisons with other optical modules will be shown.

New functionalities of the HighScore Plus package will be shown and explained , in particularly the Partial Least-Squares Regression (PLSR) module.

UPGRADING HOME-LAB X-RAY DIFFRACTOMETERS WITH INCOATEC'S UNIQUE MICROFOCUS SOURCE

A. Beerlink, J. Graf, J. Wiesmann, C. Michaelsen

Incoatec GmbH, Max-Planck-Strasse 2, 21502 Geesthacht, Germany. sales@incoatec.de

Modern microfocus X-ray sources define the state-of-the-art for a broad spectrum of applications in home laboratories, such as protein and small molecule crystallography, and small-angle scattering. These sources are combined with multilayer Montel optics to image the source spot onto the sample. These optics provide a parallel or focused monochromatic X-ray beam, magnified to a suitable size.

Low power sealed microfocus sources, such as Incoatec's I S represent an attractive alternative to rotating anodes, with a significant reduction in cost and maintenance. Power loads of a few kW/mm² in anode spot sizes below 50 m deliver a compact brilliant beam. For example, the I S HighBrilliance delivers more than 10^{10} photons/s/mm² with spot sizes in the 100 m range. It is available for Cu, Mo, Ag, Cr and Co anodes. Since the launch in 2006 nearly 500 I S systems are now in opera-

tion worldwide for a large variety of applications in biology, chemistry, physics and material science.

Are you tired of getting spare parts for an ancient rotating anode or is your detector performance only limited by your beam delivery system that lacks intensity?

We will demonstrate how to bring former high end diffractometers back to a superb performance for cutting edge science after an upgrade with a high performance IĕS source. Incoatec ensures full software and safety integration, and an installation hand in hand with your local service responsible, providing a constant service support from your partners on site.

In addition to all Bruker or Nonius systems, Incoatec also offers integrations into a wide range of instruments from Rigaku, Marresearch, or STOE, also with Dectris or Huber components.