User manual for the XZ™ crystallization plates

March 2010, Version 2.1

Introduction to the XZ™ plates.

Dialysis and the XZ™ plates.

Dialysis protein crystallization is a well-established method for protein crystallization developed during the early days of structural biology. Dialysis is the only technique that allows crystallization of a biological macromolecule by either salting in or salting out. Although it is a proven crystallization method, that has been used to crystallize and solve the structure of hundreds of proteins (examples listed below), it has been labor-intensive and required significant amounts of protein.

- Aspartate carbamoyltransferase (Stoitz et al. PNAS)
- Poliovirus (Hogle et al. Science)
- Thielers murine ependymitis virus (Grant et al. PNAS)
- Liver alcohol dehydrogenase (Cho et al. Biochemistry)
- Neuroaminidase (Vargess et al. J. Mol. Biol.)
- L-araboside binding protein (Quiocho et al. Nature)
- Photosystem I reaction center (Krause et al. Nature)

The disposable XZ™ microfluidic dialysis technology has been developed to specifically address these issues. With the XZ™ microfluidic dialysis technology, dialysis protein crystallization trials as low as 150μL reaction can be easily and quickly setup. This reaction volume represents a reduction in protein consumption per setup that is >3,000 times lower than the currently available dialysis protocols. Another major advantage of the XZ™ plates is its high-throughput compatibility with common liquid dispensing and imaging systems. In addition, the XZ™ microfluidic dialysis technology offers a direct path to structure due to straightforward setup design, easy access for crystal harvesting, and in-situ x-ray diffraction capability.

XZ™ design

The XZ™ dialysis protein crystallography plate is composed of a microfluidic plate bonded to an open bottom microtiter plate. The microfluidic plate contains a microfluidic network on the bottom which delivers a protein sample solution to the dialysis chambers. The microfluidic plate is sealed on the bottom (microfluidic channel side) with a clear film and on the top with dialysis membrane discs over the dialysis chambers. The dialysis disc side of the microfluidic plate is then bonded to an open-bottom microtiter plate.
Detailed protocol for setting up the XZ™ plates.

1. Load 75 µl (XZ-S-96) / 75 µl (XZ-O-96) / 200 µl (XZ-G-96) / 500 µl (XZ-G-24) precipitant solution to each of the XZ™ plate wells.

 - Using a single or multichannel pipette load the appropriate precipitant solution volume to each of the wells.
 - Seal off precipitant inlets without covering the vacuum port and the protein inlet or vacuum port. Alternatively, the XZ™ plate can be sealed after step 6 in protocol.

2. Apply vacuum to XZ™ device

 - Turn on vacuum pump (Cat. #: XZ-VP) or in house vacuum line with an ultimate vacuum less than 2 mmHg (equal to 2 torr = 2.7 mbar equal to 29.9 inHg).
 - Connect vacuum pump connector (Cat. #: XZ01-01) to vacuum source. Note that connectors on vacuum pump connector are of different size. The larger connector fits into a 6.5 mm (1/4") LD tubing from the vacuum source and the smaller connector fits the 5 mm diameter vacuum port on the XZ™ plate.
 - Connect vacuum pump plate connector (Cat. #: XZ01-01) to XZ™ plate. Make sure all connections are tight, since leaky connections may result in air bubbles forming in all dialysis chambers.
 - Start a timer to allow for 1 minute evacuation of air from the XZ™ dialysis plate and proceed immediately to step 3.

 - During the 1 minute vacuum evacuation, pipette the appropriate volume of protein sample onto the protein inlet film. Make sure that the protein solution is bubble free and centered on the protein inlet. Proceed immediately to step 4.

4. Introduce protein sample into XZ™ plate

 - At the 1 minute mark of vacuum evacuation, puncture the protein inlet film below the protein drop using a disposable needle (Cat. #: XZ01-02). The dialysis chambers will be filled with the protein sample due to the vacuum force.
 - Maintain vacuum on the XZ™ plate for 2 minutes from the time the protein inlet film was puncturated.

5. Purge XZ™ plate with 15 µl (XZ-S-96) / 30 µl (XZ-O-96) / 72 µl (XZ-G-96) / 50 µl (XZ-G-24) purge solution

 - Pipette the appropriate amount of purge liquid (Cat. #: XZ01-05) to the purged part of the protein inlet film. The purge solution will flush out excessive protein solution in the micro-fluidic channel network and ensure complete isolation of the dialysis chambers.
 - Maintain vacuum for 2 min after the addition of the purge liquid.
 - Disconnect vacuum pump connector.
 - Add 15 µl of purge liquid to both protein inlet and vacuum port.

6. Inspection of dialysis experiments

 - Dialysis experiments can be inspected using a stereomicroscope using base/transmitted illumination, using an inverted microscope in transmitted light mode or using an automated imaging system.
 - For the screening plate (Cat. #: XZ-S-96), optimization plate (Cat. #: XZ-O-96), and growth and soaking plate (Cat. #: XZ-G-96) dialysis rings and well numbers are positioned on the bottom of the wells to help locate and identify the dialysis chambers.

7. Harvesting crystals from growth plates. Applies to growth and soaking plate (Cat. #: XZ-G-24)

 - Using a pair of tweezers, the dialysis membrane can be removed from the bottom of the precipitant well while precipitant solution is still present.
 - Cryo-solution may be added prior to removal of the dialysis membrane, however, note that PEGs should be avoided as cryo solvents, if added while dialysis membrane is still present, as they may dehydrate the dialysis chamber.
 - Crystals can now be harvested from the dialysis chamber using standard loops.

8. In situ diffraction crystal quality determination

 - XZ™ plates can be directly mounted in a plate holder at a beamline and crystal quality can be evaluated in situ. Approximate degree of rotation is listed in table below.

<table>
<thead>
<tr>
<th>XZ™ Plate</th>
<th>Degree rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening plate</td>
<td>±/− 20 degrees</td>
</tr>
<tr>
<td>Optimization plate</td>
<td>±/− 20 degrees</td>
</tr>
<tr>
<td>Growth and soaking plate</td>
<td>±/− 35 degrees</td>
</tr>
<tr>
<td>Growth plate</td>
<td>±/− 50 degrees</td>
</tr>
</tbody>
</table>