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Abstract

In the presented article, oxygen precipitates in annealed
Czochralski silicon were studied by X-ray diffraction in
Laue geometry. Reflection and transmission curves ob-
tained by measurement were compared with curves calcu-
lated using Takagi equations and statistical dynamical
theory of diffraction. Parameters of the simulations were:
relative volume and radii of defects the cores of which are
formed by the oxygen precipitates. Spherical shapes of de-
fects was assumed. By using these two parameters the ab-
solute concentration of defects inside the crystal was
calculated. Dependence of the parameters on pre-annealing
at high temperature, on the nucleation temperature and on
the duration of precipitation annealing was studied.

Introduction

When Czochralski silicon crystal is being pulled, the melt
is held within a quartz crucible. The silicon melt is there-
fore contaminated by large amount of oxygen atoms. Most
of these atoms evaporate from the melt’s surface in the
form of SiO oxide, but still not negligible amount of O is
incorporated into the growing crystal. The concentration of
this interstitial oxygen almost reaches the solubility limit in
silicon [1].

Silicon wafers are submitted to series of annealing
treatments during technological process in industry. An-
nealing at high temperature induces diffusion of oxygen at-
oms, which move through the crystal and gather, forming
the so-called nuclei [2-3]. These nuclei can further grow
and form oxygen precipitates. The precipitates contain sili-
con oxide SiOy, usually SiO,. These defects have drastic
impact on electronic properties but they are also beneficial
as traps for fast diffusing metal ions that can be rarely pres-
ent in the crystal despite our efforts to avoid such contami-
nation. The precipitates can also capture dislocations.

It is desirable to control the size and the concentration
ofthe precipitates by appropriate selection of annealing pa-
rameters [3-4]. Measurement of infrared absorption spectra
allows us to non-destructively determine only the concen-
tration of interstitial oxygen before and after anneal,
stochiometry and morphology of the precipitates, however
the size and the concentration of the precipitates remain un-
known. On the contrary etching techniques and transmis-
sion electron microscopy are destructive methods.

A non-destructive method able to determine these pa-
rameters is the X-ray diffraction, either in Bragg or in Laue
geometry. In the Bragg case we usually measure maps of

reciprocal space and the radius of spherical defects, whose
cores are formed by the precipitates, can be determined. In
the Laue case we measure transmission and reflection
curves simultaneously and both the radius and the concen-
tration of defects can be determined by comparing the mea-
surement with the simulation. The simulation of a
reflection curve can be carried out for the Bragg case as
well, see for example [5] and citations therein.

Dynamical diffraction by a defect crystal

In order to study oxygen precipitates in silicon by means of
X-ray diffraction the intensities of diffracted (and transmit-
ted in the Laue case) waves coming from a disturbed crys-
tal must be calculated. Since the precipitates are smaller
than the X-ray coherence length used, ensemble averaging
over all possible defect configurations must be performed.
Holy and Gabrielyan [6] described the theory using statisti-
cal dynamical theory of diffraction and only key points of
the calculation outline will be presented here. Only Laue
case and o-polarization of the primary wave will be consid-
ered for coherent and incoherent approximation in this
work.

Calculation of the coherent part of the signal (i.e. we
neglect the diffuse scattering) is based on Takagi equations
for the case of disturbed crystals in the form

L(F)d(7)=P(F)d(7) (1
where

o K,

v E —

> X o,
. 0 —%x_hfm
PR= g

- XS ) 0
- (D)
4= Dm]

and 1;0’,1 are the coordinates in directions of real parts of the
wave vectors 1;0,}1 , K is the magnitude of the wave vector of

the primary wave, 7, ;, are Fourier components of the crys-
tal susceptibility, £ = <exp(—ihﬁ)> is the Debye-Waller fac-

tor, u(7) is the displacement field of atoms from their
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Figure 1. The layout of the HRXRD diffractometer at the Department of Condensed Matter Physics.

lattice positions, f(7)=exp(—ihii)—E and D, ,(r) are the
amplitudes of the wave fields in the crystal.

Introducing the Green’s function G° representing the
inverse operator L and performing the single-group ap-
proximation [6], Takagi equations can be rewritten into the
Dyson equation in an integral form

(d@)=d° )+ [ a7 | 7" G (F—F') o

<ﬁ(?' G (7 =" P )><c?(7" )>

where d° (7)is the wave field in a quasiperfect crystal (i.e. a

perfect  crystal with  susceptibility  coefficients
X' = X s E)- Nontrivial solution can be obtained for the
coherent waves in the disturbed crystal after Fourier trans-
formation of equation (2).

Calculation of the incoherent part is performed using
the ensemble averaged mutual coherence function

(1.7 =(dFH®d" () 3)

where ® denotes the direct product and * an adjoint vector.
The solution can be obtained from Bethe-Salpeter equation
in an integral form after using single-group approximation

[6]

(1, G.F0) =1, .7+ [ dF" [ dF"(G (F=7") @)

K g F" =" NG, (F' =F"))* (y,, (7", 7")

where v; (7,7) = <c?(?)®c?(7’)>+ is the mutual coherence

function of the wavefield in the coherent approximation,,
j kI m n=0,h GF—F) is the Green’s function repre-
senting the inverse operator of the Dyson operator
D) =12(;)-<13(;' GO (7 =P (F" )> and Ky, are the
components of the intensity operator. Equation (4) can be
solved by iterations. According to reference [6] the first it-
eration is sufficient and the higher ones are negligible. We
consider only one incoherent scattering of each wave in the
crystal; however the incoherently scattered waves can dif-
fract again coherently.

Experiment

The experiment was performed on the high resolution
X-ray diffractometer at the Department of Condensed Mat-
ter Physics at Masaryk University Brno. The layout is
shown in Fig. 1. The characteristic radiation Kot; of molyb-
denum was monochromized by Gobel mirror and by
Bartels monochromator (diffraction (220) by germanium
single crystals). Two scintillation detectors were used in
order to simultaneously measure both the transmitted and
the diffracted intensities.

The samples were cut from a wafer from the top of a sil-
icon ingot. The orientation of the ingot was (111). The
thickness of the wafer was 2 mm. The samples were an-
nealed according to the following treatment

(1150 °C/3 min) + 7,/24 h + 800 °C/4 h + 1000 °C/x

where the pre-annealing in the brackets was performed for
some samples in order to dissolve nuclei grown during the
pulling of the crystal, 7, was the nucleation temperature
(500 °C or 550 °C) and x was the duration of the precipita-
tion anneal (up to 24 hours or 48 hours respectively). The
concentration of interstitial oxygen in the samples was
measured by the infrared absorption spectroscopy using
the IOCS88 standard.

Simulation

The simulation was performed by using software written
by prof. Vaclav Holy. The software uses the statistical dy-
namical theory of diffraction by a defect crystal described
in reference [6]. The defects are assumed to be spherical,
homogeneously distributed through the crystal and coher-
ently nondiffracting. Simulation parameters are the radius
of the defects R, and their volume V,,, relative to the vol-
ume of the crystal. The absolute concentration can be di-
rectly calculated using these two parameters according to
the formula

rel
= ) (6))
4R v
3 g

The radii of the defects are assumed to be random values
with Gaussian distribution around the given value.

It is necessary to mention that the defects are not the
precipitates themselves. The surrounding silicon lattice is
deformed to a great extent and this area of strong deforma-
tion does not coherently diffract as well. Therefore we in-
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Figure 2. Schematic picture of a defect with a precipitate forming
its core.

vestigate defects consisting of precipitates forming their
cores and areas of strong deformation field around them.
However there is also the area of weak deformation further
from the precipitate which can already diffract in certain
way, since the lattice is no longer deformed enough. The
coherent diffraction is suppressed with respect to the one of
an ideal crystal due to this fact. This weak deformation
field was not considered in the performed calculation.

The described defect is schematically drawn in Fig. 2.
The effective radius can be, according to Caha et al. [7],
defined by the condition

pV _E 2 = 10LVh
4nR: b7 4n
where V' is the volume of the precipitate, p describes the
difference between the real precipitate volume and space
available in the unstrained lattice and /4 is the diffraction
vector.

Finally the simulated curves have to be convoluted with
the apparatus function consisting of the total reflection
curve of the Bartels monochromator in order to be com-
pared with the measurement. Examples of simulations and

u(R, )= (6)
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measurements are plotted for unannealed and annealed
crystal in Fig. 3.

Results

The measured and simulated transmission and diffraction
curves, obtained both in Laue set-up, were in good agree-
ment only far from the coherent peak, see Fig. 3 b). We be-
lieve that the reason is neglecting the weak deformation
field of the lattice which would suppress more of the coher-
ent signal. Despite this it seems that the relative volume of
the defects had been determined well. The relative volume
of the defects is plotted against the duration of the precipi-
tation anneal in Fig. 4 for all investigated samples. The er-
ror-bars in Figs. 4-8 represent the step of a simulation grid
we used for finding the best fit. We can see that the precipi-
tates grow faster with higher nucleation temperature. This
effect is given by the dependence of the critical radius on
temperature [1]. The growth of the precipitates in the case
of pre-annealed samples is slower and the nuclei formed
during the ingot growth are at least partially dissolved dur-
ing the pre-annealing at 1150 °C/3 min.

Opposite to the relative volume, the radii and calculated
absolute concentrations of the defects were determined
with large uncertainty. The radius of precipitates varied in
the range from 500 nm to 800 nm for samples nucleated at
500 °C and in the range from 300 nm to 650 nm for samples
nucleated at 550 °C. No significant dependency on precipi-
tation duration was observed. The calculated precipitate
concentrations are plotted in Figs. 5-6. Since the defects are
the same or little smaller in size with increasing duration of
the precipitation annealing, their concentration increases.
This is not in agreement with the classical theory of precip-
itation [2] where the nuclei form only during the nucleation
part of the annealing process and not during the precipita-
tion. On the contrary the radii should increase because the
longer the already formed precipitates are annealed, the
bigger they grow. The problem consists in the determina-
tion of radii which is sensitive mainly to the width of the
diffraction peak affected also by the coherent part. Since
the model used in this paper does not include the weak de-
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Figure 3. Measured and calculated reflection and transmission curves for a) not-annealed silicon crystal (not annealed sample) and b)

sample annealed at 500 °C/24 h + 800 °C/4 h + 1000 °C/48 h.
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Figure 8. The relative volume of the defects compared with the
loss of interstitial oxygen for samples with 7, = 550 °C and a)
without b) with pre-annealing.

Although the relative volume is connected to the loss of
interstitial oxygen, we cannot compare them quantitatively
since without the information about the real size of the pre-
cipitates we cannot say how many oxygen atoms they con-
tain. But we can compare at least the shape of the curves
and it fits quite well, as seen in Figs. 7 and 8.

Conclusion

The presented method of investigating the oxygen precipi-
tates in Czochralski silicon proved to give reasonable re-
sults of the relative volume of the defects that are in
agreement with the theory of precipitation and with the in-
frared measurements despite the fact that the model is not
completely correct. The radii of the defects and therefore
consequently the absolute concentrations cannot be deter-
mined well in the current state of the model. For further in-
vestigation it is necessary to complete the model with the
area of weak deformation and check whether this is truly
the cause of the simulation not fitting the measurement. In
case the simulated curves fit better it would be possible to
combine the results of this method and of the infrared ab-
sorption measurements in order to determine the real size
of the precipitates themselves.
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