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Abstract

Time development of monolayer of the living cells repre-
sents the closest approximation to organ development and
function. It inspired the computational approach of cellular
automata and agent-based modeling. Yet, for description
of'the living cell this approach is seldom utilized. In this pa-
per we address reasons why biochemical /molecular biol-
ogy approach is so much more popular. We present the
formal structure of stochastic systems theory for formal de-
scription of the cell culture experiment. We define
phenomenological attributes of cell monolayer system as
cell states assigned by the operator. As system variables we
consider levels of metabolic fluxes in cell compartments
and between them and states of intracellular signals. For
example, cells composition and shape dynamics may be
utilized as phenomenological system variables. Constitu-
ents are also all chemical individui detectable in the system.
Components are sets of constituents which change inde-
pendently, e.g. a set of chemical compounds bound to-
gether by a chemical reaction. In practical terms it means to
determine all measurable — phenomenological — variables
in sufficient time preceeding the change of state to assure
that the state change is independent from any preceeding
history. By counting the number of transitions and state
lifetimes we obtain probability distribution functions for
transitions between states. For the behavior of system vari-
ables we consider that of stable orbits in the state space
which arise from movement in the confined intracellular
space combined with chemical reactions. Recent theoreti-
cal studies indicate also that formation and maintenance of
cell shapes may arise by similar mechanism. Bio-inspired
computing has been a holy grail of computational theory
since its eve. Recent developments in biological systems
description open a question what is really meant by this
term, how much the neural networks are related to neuron
and cellular automata to cells. We address in this paper also
the issue of reality of bio-inspired computing in production
of adequate models and/or integration of living cell ele-
ments in the computational process.

Introduction

The cell state may be ultimately characterized by state of
metabolic and signaling pathways, and by state of cellular
structures. These two parameters complement each other.
The pathways and metabolite transformations define and
maintain the cellular structures. The current state of knowl-
edge, does not allow to devise state of pathways from ob-
servation of structures and vice versa. Both phenomena are
being observed experimentally in many routine experi-
ments.

Any metabolite analysis contains the element of me-
tabolite profiling and targeted analysis. It is always more
than one class of compounds present in targeted analysis.
There is never a complete metabolite profile. On to of that,
the effective level of detection of, e.g. ions emitted from the
electrospray source, depends on sample content, separa-
tion, ion source state, detector setup etc. The information
content of the experiment needs to be examined locally and
independently from any assumptions on the pre-assump-
tions on the sample.

The time-lapse microscopic imaging of cells is gain-
ing increasing popularity with the introduction of fluores-
cent proteins such as GFP. Most of the experiments on
living cells, in particular those which utilize cells derived
from human patients, can not be contrasted by these highly
advanced methods. Then the problem of observation and
data analysis becomes similar to that of metabol(n)omics.
The information content depends on sample pre-treatment
as well as the quality of image capturing. In time cells
changes in size, shape and observable morphologically
contoured partitions, various in their shape, borders and
light intensity.

The time-lapse microscopy experiment is the sim-
ple representation of biological cell dynamics. It is cur-
rently generally accepted that cell fate is best described by
the chaotic attractor. The observable cell states represent
individual basins of attraction. It is not quite clear in which
relation the experimentally observable macroscopic pa-
rameters are to the state variables of the attractor space. In
other words the experiment cuts the state space by its frac-
tion, possibly lowering the space dimension, and of un-
known shape - with respect to system coordinates.

Neither metabolite analysis nor the objective image
dissection gives straight forward answer to diagnostic
questions, similar to that expected from protein or m-RNA
based biomarkers. This is caused by the fact that informa-
tion content of these analyses is higher and provides deeper
insight into the state of examined cells or cell cultures. Sta-
tistical analysis of time evolution of secondary metabolite
contents or parallel changes in image contents represents
time evolution of intercellular communication. With the in-
crease of the throughput of both the metabolomic (Urban)
and microscopic (Levitner) techniques, adequate automa-
tion of data analysis is becoming inevitable. The objective
analysis of the information content of obtained data is an
inevitable first step preceding any extensive pathway re-
constructions, complex statistical evaluation etc.

One realistic approach towards objective analysis
of the experiment is to determine evolution of information
fluxes assessed by the experiment in time: Representation
of information content of each timestep portrait. This rep-
resentation is also in relation to dynamic biological system
state in time of measurement. It is the map of information
content in actual point in state space. Such detailed analysis
is extremely computationally intensive, however, it might
be of high value for rapid diagnostic in medicine, biotech-
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nology, and any other discipline utilizing cell biology re-
sults.

Currently, there exist two complementary ap-
proaches to systems theory. One approach is to decompose
the investigated system into subsystems, which are investi-
gated independently. This analytical approach suppose that
properties as well as behavior of the whole system should
be deduced from the properties of its subsystems. In sys-
tems biology, it is necessary to choose certain level of de-
composition which leads to the key subsystem of interest
reason. The other approach supposes that the complicated
system is more then just the sum of its subsystems. This
synthetic approach is the process of understanding how
subsystems influence one another within a whole. There-
fore, the system as a whole determines how the subsystems
behave. However, living systems are complex functional
wholes, which can produce surprisingly unexpected be-
havior. The stochasticity in the behavior arise from our in-
ability to measure exact values of all system attributes with
infinite accuracy on infinite range in infinite time. Unfortu-
nately, the analytical and synthetic approaches had not
gained corresponding position in the science.

Cellular behavior and cell fate estimators are the out-
puts which are expected from the systems biology in the
near future. General mathematical systems theory is re-
quired in he systems biology to construct robust abstract
models for experiments in silico. Interesting new para-
digms of the systems theory were defined in the cybernetics
in 1996 (Zampa). There was a demand for such a definition
of an abstract system which would be sufficiently general
as to cover any real problem and, at the same time, suffi-
ciently specialized, as to enable to find an adequate physi-
cal realization to any theoretically given abstract system.
This new systems theory fulfills also the conditions of liv-
ing organisms, fortunately for systems biology.

Approach

Biology-inspired computational approaches such as neural
networks or artificial life — agent based programming are
only vaguely reflecting the information processing princi-
ples in biological systems. In case that we accept the de-
scription of fate of biological system as a movement in a
chaotic attractor — in multifractal space. However the ap-
propriate observable is a q-deformed entropy. This is re-
flected in measurable values — data points on microscope
camera, nanoscope detected reflectivity and position
changes etc.

Cell monolayer is the simplest model to organ func-
tion utilized in wide variety of applications. It is also clos-
est approximation to the type of cell development which
inspired the invention cellular automata in 1940°. Surpris-
ingly, cellular automata are not the prevailing model ap-
proach in systems biology. Yet, they occasionally surface
out unexpectedly in fields so distant as quantum mechanics
(Blasone et Jizba).

Can we save cellular automata for biology or at least
for objective description of cell monolayers? The time de-
velopment of the cells may be described by stochastic cell
automaton in which probabilities arise from the travel of
systems variables in non-linear state space. The systems

variables, as we propose as zero order hypothesis, are noth-
ing else than metabolite fluxes in cell compartments as well
as signal fluxes between the cells. Probability distributions
for different fates of the cell (automata) are then given by
properties of these underlying non-linear dynamic. Rela-
tions between cell fates and biological system variables
may be mathematically treated as phenomenological attrib-
utes and system variables in engineering Stochastic sys-
tems theory (Zampa). In classical thermodynamics, the
Gibbs (and/or Helmholtz) energy is the correct potential.
Potentials represent a generalized property characterizing
the sub-systems in equilibrium. In statistical physics it arise
from maximization of Boltzmann-Shannon entropy under
conditions of conserved energy, and number of particles. It
is important to consider that Gibbs energy is unique value
determined by all particles in the system. There may be
many combinations of concentrations leading to the same
Gibbs energy.

The information flux in dynamic systems whose sys-
tem variables obey the non-linear dynamics rules at any
time adopts available g-deformed entropy maximum. In
another words, Renyi entropy maximum is the appropriate
potential which enables to compare system states (Stys).
Recent experiments (Cai et al, Choi et al) show that there is
heterogeneity in molecule distribution among cells in the
culture. Yet, all cells follow homogeneous fate. We pro-
pose that all cells in the culture represent multifractal ob-
jects whose Renyi entropy is (a) that of the respective cell
culture — for cell cultures with no observable integration or
(b) contributing to that of the cell monolayer.

In stochastic systems theory we define stochastic
causal model which describes rules according to which
system achieves values of phenomenological attributes. In-
ternal variables of the model are system variables. Using
the Blasone et al. terminology, there are observables and
be-ables. The model is determined by time development of
system variables. When the systems model is build, we
have to determine time behavior of phenomenological at-
tributes, and build models of system variables time behav-
ior which is conform with observed phenomenological
attributes development.

In reality, model trajectories must substantiate the
multifractal character of the observed biological cell fate.
The simplest model leading to chaotic dynamics is the pin-
ball model with regions of asymptotically stable non-es-
caping periodic orbits. The geometry of the pinball leading
of numerous stable trajectories consists of relatively dense
structure of circles divided by free paths. The cell interior is
also full of particles of different sizes and shapes which in
most cases do not interact in a biochemical manner (i.e.
complex formation or chemical reactions). Particles may
well manifest stable trajectories from which they escape
only occasionally to undergo biochemical interaction,
namely transferring signal or chemical transformation. We
thus propose the intracellular pinball model as working
model for underlying mechanisms which lead to observed
stochastic cellular automaton behavior of cell cultures. The
intracellular pinball model naturally predicts numerous
probability distributions.

Phenomenological attributes of cells are generally
shapes and shape changes. Their relation to natural system
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variables has always been difficult to explain. Recently a
series of publications appeared which shows that cell-like
3D space partitioning naturally arises in the system of sim-
plified discrete chemical reactions (Cybulski et al). We
propose that in the dense mixture of compounds of
non-negligible size arose set of stable states which corre-
sponds to set of most probable states. The states have vast
structural and chemical variability, yet until non-extensive
entropy flux remains the same they contribute in the same
way to system state.

Results and discussion

There are numerous experimental non-idealities in the
time-lapse microscopy which can not be eliminated. Ma-
jority of alternative approaches requires sample modifica-
tion (i.e. by fluorescent probe) which is often impossible in
real life samples. We thus rather accept the experimental
setup which is optimized for (a) least interference in the bi-
ological behavior of the sample and (b) maximum dynamic
resolution of the camera. Actually, the sample image is
captured each time with three different camera setups to in-
crease the dynamic range. Properties of phenomenological
attributes, i.e. intensities I all three RGB colour signals and
at all three camera settings, are analysed by the operator
which attributes them biological names and automatically
by computer.

In manual analysis the operator becomes inevitably
part of the system in the same sense as the equipment and
analytical software. However, it still seems to be the only
solution for many instances of cell biology. We made the
meta-analysis of the system of cell culture development in-
cluding the operator. Skilled biologist returns of course
rather different dataset than the computer engineer. Yet,
without manual analysis the macroscopic description of
medically relevant cell cultures does not seem to be possi-
ble.

The phase contrast microscopy represents the observed
object by the way of comparison of the refractivity index of
the object (i.e. living cell) interior and refractivity index of
free medium. As a result there is obtained image of light in-
terference intensity in the focal point of the microscope.
Refractivity index is a sum of non-absorptive, mainly elec-
tromagnetic, interactions of light with the matter. The ob-
jective assessment of the value of the refractivity index in
the living cell interior is practically impossible using the
phase contrast (Zernike). For the purpose of this discussion
it is also important that the refractivity index is wavelength
dependent. If the detection system is for example a stan-
dard photograph, each of the three channels (Red, Green
and Blue) carries different, partly independent information,
which may be used for state definition. The information
carried by each of the data points at each channel represents
the free energy of the cell interior with the degree of inade-
quacy comparable to that of one of the protein or ion con-
centrations observed in fluorescence microscopy
(Zernike). For the analysis we propose that observed ele-
ments of the state trajectory are individual elements of the
symbolic trajectory proposed by Vattay. By trajectory
element we understand the ordered couple

(C(LV, 15V sV LDV, 15V 55V, ) (1)

where C(2,v,,V,,,...,V,,, ) is complete immediate cause
of the state D(#,v,,,V,,,...,V,, ) characterised by set of
variables v, ,,v,,,...,v, ) The variables are not necessary
concentrations. Quite the contrary. We may set the analogy
with multiphase systems in thermodynamics: the system is
equally characterized by size of droplets, surrounding me-
dium etc. as by actual chemical concentration of all of the
chemicals. However, when, as in most cases, the system is
not in global minimum, the distribution of phases in given
medium is more adequate approximation to the adequate

Time-lapse microscopy
00.08

Figure 1. Upper part: Microscopic image represents only the layer within the focal plane and that unevenly. The phenomenological at-
tributes have unknown relation to the distribution and optical properties of matter in the cell. Lower part: Time course of information
content in a segment of time-lapse microgram. Time is denoted in hundreds of images.
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Figure 2. Cell monolayer culture image No. 1000 (999
min) and 2500 (2499 min) of the time-lapse experiment.
The cell discussed in subsequent graphs is denoted by
the red dot.

state function (i.e. Gibbs or Boltzmann energy) than pre-
cise knowledge of concentrations. Which are often
determined in highly imprecise way, too.

Although theoretically apparently complex, the pro-
posed method is essentially equivalent to biological intu-
ition. Natural elements of the trajectory are elements of the
cell cycle which have different names for different organ-
isms. In the case of He-La cells mitosis and interphase.
Naturally are observed events like cell death, cell fusion,
anomalous cell division etc. The reality is that the manual
analysis of the 3500 to 5000 images allows the operator to
note only mitosis and interphase and notify the neighbour-
hood of newly appearing cells.

Figure 2 shows a dataset in the course of manual analy-
sis and example of corresponding sub-graphs. The
sub-graph showing fate of the cell followed from the point
of view of the individual cell as system element (Fig. 3) is a
reflection of the model according to which cells communi-
cate only by direct long-term physical contacts. The cell
fate itself and any change in number of its neighbours are
noted. The sub-graph showing cell fate from the point of
view of the whole system (Fig. 3) is an expanded version

based on the assumption that any change in any cell is noti-
fied (i.e. through signal molecules) by all the cells. Detailed
discussion would largely exceed the scope of this article.

From data obtained in this way, one may produce plot
of length of these elementary trajectories versus experi-
ment time (Fig. 4). The initial hypothesis was that there is
certain “bounded asynchrony” in the cell development, as
was proposed by Fisher et al. Since there was no guidance
how to construct the model from the data, we decided to
follow strictly the receipt of GSST. We assume that the sys-
tem universum, the set of elementary sub-systems n, € I, ,
is formed by the set of all cells in the observed sample. The
elementary sub-systems interact only by information bonds
of the input or output type.

Sum of immediate input states plus internal develop-
ment of sub-system (energetic and information develop-
ment) creates complete immediate cause C(C,,,C,, ),
Where Cext (t’ X 12 X:,z LA X t,m ) and

Ciot C X Lovmer o> XtminsYemene1s--+5V,y ) Of the state
D(t,v,,,V, sV, ) This very general view is a
framework defining parameters which we should search to
define a trajectory element.

The analysis presented in fig. 2 shows the simplest ap-
proach consisting just of neighbouring cell counting —
which splits the set C,,into sub-sets C, < C,, where n is
number of neighbouring cells. And this is maximum infor-
mation which the operator is physically able to record.

Let us discuss general definition of trajectory for this
particular simplified case. Let us have set M representing
all mitoses and / representing all interphases.

ext 2

Mul=C,MNnI=0 2)

The relation e(u |, , ) defined as

() () ()
p,-—=>Lp)-—=>Lp,)——...
£ () tia ()
- > L) o ou,
where
Mo, eMandp, #u, 3)
il(“l)yiz(u1)’~'ix(u1)€1 4)

where A differs for each p; . Elements of C defined this way
have unique identifier referred to as cell record and thus the
seemingly complicated index structure is not correspond-
ingly complicated in the computer implementation.

In biological terms ;i resp. pj» are daughter cell
originating from the subsequent mitosis after 1, in one
mother-daughter cell lineage, i, (u,),i, (1, )..i, (1, ) are
mutually different interphases occurring subsequently in
the mother-daughter lineage defined by p; and pjry. (It
should be noted here that notation p;jand Ly, .is purely ar-
bitrarily for the purpose of the derivation and correspond to
unique cell identifier as it is introduced in Fig. 2)

This is sub-system n(uj) for which we may define or-
dered sub-set

C(H’i):{}19i1(u1)’iz(ul)--ix(ul)} (5)
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Figure 3. Left: Fate of the cell followed from the point of view of the individual cell as system element. Solid line represents one single

cell fate, dashed lines represent cell neighbourhood. Complete information is depicted only for the marked cell. Right: Cell fate from the
point of view of the whole system. Cell numbering beginning with AG denotes automatically generated. Times of these AG cells repre-
sent any change in any cell in a particular neighbourhood network. By neighbourhood network we understand a cell cluster, all cells in

contact either directly or mediated by other cell or cells.

where A is number of different interphases between the
mitoses in the particular lineag or states of the sub-sys -
temn(uj). In other words C(W;) is the ordered set of attrib-
utes of the sub-system . The number and identity of attrib-
utes is not known.

Time intervals ¢ (u;)>0,x=12,...,A+1 form or-
dered set O(L;) as

e(“i)={t1(uf),tz(ui)r”atx(ui)} (6)

Cartesian product
Q(u,)=Clu, )x0(u,) )

for each p; is called trajectory €(;). It should be noted tha
instead of representation of the experiment time by mea-
surement time, we represent it by times between observ-
able changes of attributes in any of the sub-systems of the
system.

In the preceding three paragraphs we discussed defini-
tion of cell states. We defined on mitotic state and A differ-
ent states during the interphase. In reality, both within the
mitosis and, namely, within interphase, there may be spot-
ted different properties of the cell. They have to be mostly
ignored in order to secure sensible time of the manual anal-
ysis. We assume that for the integration of the cell into the
monolayer is most important cell-to-cell communication
and that between neighbouring cells. Thus we decided to
notify any change in the number of neighbouring cells.
This is equivalent to assumption that each cell is a sub-sys-
tem which has information bonds with geometrically
neighbouring sub-systems. We then introduce a variable
di(p;) where A =0, 1, 2, ..., § which represents the informa-
tion bond to cells with which cells in the lineage of the mi-
totic cell w; are in observable physical contact. The value
do(1;) represents information bonds of the cell in mitotic
state, values ¢1(1i), P2(1i), ..., dc(Li) represent all other dif-
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Figure 4. Dependency of cell cycle time on experiment time. Originally certain degree of synchronicity and
uniformity of cell cycles was expected. However, this was not observed.

ferent information bonds. In another words, we consider
¢i(1;) the appropriate variable of the system.
For the purpose of further derivation we define

() # (e )if e () # b (1)) ®)

and may define ordered set ¢(1t , ) by

¢(Hi)=¢o(ui)s¢1(“i)a--'»¢g(uf) )

where we assume that for each 7; (1, ) there is a7, in the set
C. Precisely saying

C'=Muiii(u,)...} (10)
for all p; and observable 7; (1, ). In other words

C'cC (11)
and
e'(ui):{té(ui)ati(ui)a'“atg(“i)} (12)

Where ¢;(u, ) is time at which was first observed corre-

sponding ¢, (1, ).
We may then define real trajectory Q'(u ; ) as Cartesian
product

QW )=0"(u; )xdu;) (13)

and use it for further calculation.

¢, (1, ) now contains all information about information
bonds between the sub-systems. Let us denote the bond be-
tween two neighbouring cells &;;, or

O (1) =185 8 nee Gt (14)

where j, x, z may identify any cell record, i.e. any
sub-systemn, e I1. &; itself does have three components:

cell record 1 (y; or #;), cell record 2 (p; or i;) and order in

which the bond was formed. Let us denote the order @ =£',0
or /. The identification of fand / we arbitrarily identify with
cases when a new bond is formed due to change in the
neighbourhood of the cell with the cell record 1(y; or i;),

and / for the cases when the cell with cell record 1 (; or i;)

creates a new bond due to change in geometry or mitosis. 0
is the case when divided mitotic cell inherits all neighbours
from its mother. We may write for example

Z:vg/ =(Mi’ib;70‘)ij) (15)

This rather complicated definition allows us to discrim-
inate between trajectories and propose framework for fur-
ther analysis of the experiment. In the simplest
approximation, we may overlook all different states of the
cell in the interphase and characterize the sub-system
m(p , ), the mother-daughter following mitosis ., cell lin-
eage, only by time between two mitoses. This is the length
of the cell cycle and is depicted in the Figure 3. As it is
seen, there is no observable regularity in this dataset. This
may be due to insufficient number of observation as well as
due to inadequate representation of the trajectory.

In reality we have to work with available data. Al-
ready in the existent dataset there is substantial amount of
information which is not generally used. For example, we
may consider the trajectory Q'(p, ) or its sub-sets where
only the set ¢, ) is simplified, which leads to merge of
certain &, =(u,,i;,0, ) and, consequently, to merge of
certain ¢; (L, ). The use of maximum information contained
inQ'(u, )is schematically drawn in the figure 2.

Another approach is to consider the system in the
whole. Which means to define global trajectory

o=JQm) (16)

In this global trajectory contains information about all
observable events in the system and their timing. in the sys-
tem we may define system variables set
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d=UJow,). a7
and new time set
0'=U6'(,) (18)

With the assumption that the sub-system n( ;) is affected
by all events in the system. For the definition of sub-system
trajectory we may then write

Q1)) =P, (1,)x 0, () (19)
in which @ (., ) are all observable changed combinations
of attributes which were observed at all time instants
0, (1, ) at which the particular sub-system m(u, ) existed.
This is schematically depicted in the figure 2.

Already these two simple approximation to system
trajectory required substantial expansion of the dataset. In
biological terminology all changes in the number of neigh-
bours may be assigned to “newborn” cells (Figure 2). The
neighbourhood was determined at each division, or to each
of the “inherited neighbours” (Figure 2). This expansion
brought us to the limit of index space.

Current substantial step forward brings information
equivalent to those employed in the bound asynchrony
model (Fisher). Instead of observing unique signalling
pathways, which was possible in model organism C.
elegans we propose observation of macroscopic states of
neighbouring cells. This makes the method applicable to
any cell culture, basically to any medicine or biotechnol-
ogy practitioner.

In the course of the analysis we clearly observe
other states of the culture, opening and closing of the
intercellular channels and matter flux, formation of
pseudopodia and matter transfer in non-neighbouring cells
etc. These observations have never been considered in cell
signalling based models for cell development. Further, for
example the extent of the contact area between neighbour-
ing cells may be a measure of probability and/or intensity
of signal transduction. It has never been examined whether
it is true although it is in principle simply measurable.

Real problem is that acquisition of this information
by manual work of the operator is beyond her/his physical
limit. It is not surprising that no model with substantial pre-
dictive power based on real life experimentally determined
trajectories is available for mammalian tissue cultures. The
automated analysis requires development of new methods
which, equally well, are likely to be based on a stochastic
(pseudo-)biological model. We propose to identify cells in
the stage in which their margins may be easily identifiable
(e.g. mitosis) and the evolution of cell borders will be fol-
lowed similarly as in the analysis by the operator. This will
enable quantification of cell properties - exact definition of
cell states which are now covered under one common name
etc. This is the first prerequisite for advance definition of
cell monolayers state using, for example, thermodynamic
formalism (Vattay).
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