Lectures (L) and Exercises (E)

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Introduction to the nucleation and growth of protein crystals</td>
<td>Peter G. Vekilov</td>
<td>13</td>
</tr>
<tr>
<td>L2</td>
<td>Conventional crystallization methods and their modifications</td>
<td>Jeroen R. Mesters</td>
<td>13</td>
</tr>
<tr>
<td>L3</td>
<td>Crystallization of membrane proteins in lipidic mesophases</td>
<td>Martin Caffrey</td>
<td>14</td>
</tr>
<tr>
<td>L4</td>
<td>Knowledge-based crystallogenesis methods to grow better crystals for structural biology</td>
<td>Richard Giegé, Claude Sauter</td>
<td>15</td>
</tr>
<tr>
<td>L5</td>
<td>Crystallization and Crystallographic Analysis in a Microfluidic Chip</td>
<td>Claude Sauter</td>
<td>15</td>
</tr>
<tr>
<td>L6</td>
<td>Interpretation of the crystallization drop results</td>
<td>Terese Bergfors</td>
<td>16</td>
</tr>
<tr>
<td>L7</td>
<td>The use of microseeding in protein crystallization: practical variations on the Microseed Matrix Screening (MMS) method</td>
<td>Patrick Shaw Stewart</td>
<td>17</td>
</tr>
<tr>
<td>L8</td>
<td>Counter diffusion methods for protein crystallization and screening: gels, capillary volumes and microgravity</td>
<td>José A. Gavira</td>
<td>18</td>
</tr>
<tr>
<td>L9</td>
<td>“What to do if everything has failed”</td>
<td>Terese Bergfors</td>
<td>18</td>
</tr>
<tr>
<td>L10</td>
<td>On the use of additives in protein crystallization</td>
<td>Rolf Hilgenfeld</td>
<td>19</td>
</tr>
<tr>
<td>L11</td>
<td>Unconventional Crystallization Techniques for Screening and Optimisation</td>
<td>Naomi E. Chayen</td>
<td>19</td>
</tr>
<tr>
<td>L12</td>
<td>In situ dynamic light scattering for analysis and optimization of crystallization processes</td>
<td>Christian Betzel</td>
<td>20</td>
</tr>
<tr>
<td>L13</td>
<td>E.coli - a factory for recombinant proteins</td>
<td>Lubomír Janda</td>
<td>21</td>
</tr>
<tr>
<td>L14</td>
<td>The road from protein expression and purification to protein crystallization</td>
<td>Estela Pineda Molina</td>
<td>21</td>
</tr>
<tr>
<td>L15</td>
<td>Protein as the main variable in crystallization</td>
<td>Lubica Urbániková</td>
<td>22</td>
</tr>
<tr>
<td>L16</td>
<td>Preparation of protein samples for crystallization experiments</td>
<td>Pavlína Řezáčová</td>
<td>22</td>
</tr>
<tr>
<td>L17</td>
<td>Rational biochemical approaches to improve crystallogenesis</td>
<td>Jannette Carey</td>
<td>23</td>
</tr>
<tr>
<td>L18</td>
<td>Tips and tricks for protein crystal manipulation and handling</td>
<td>José A. Gavira</td>
<td>23</td>
</tr>
<tr>
<td>L19</td>
<td>Publication of scientific results with emphasis on crystallization communications</td>
<td>Howard Einspahr</td>
<td>24</td>
</tr>
<tr>
<td>L20</td>
<td>Nucleation of protein crystals: novel insights</td>
<td>Peter G. Vekilov</td>
<td>24</td>
</tr>
<tr>
<td>L21</td>
<td>The growth of large crystals for neutron diffraction: Thermal control</td>
<td>Monika Budayova-Spano</td>
<td>25</td>
</tr>
<tr>
<td>L22</td>
<td>Illuminating the Screening Process with Fluorescence</td>
<td>Marc Pusey</td>
<td>26</td>
</tr>
<tr>
<td>L23</td>
<td>Ready, set, screen: X8 PROSPECTOR</td>
<td>Marianna Biadene</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>Introduction to lab exercises - macromolecular crystallization</td>
<td>Ivana Kutá Smatanová</td>
<td>27</td>
</tr>
<tr>
<td>E1</td>
<td>Conventional techniques and their modifications, crystallization of own proteins</td>
<td>Jeroen Mesters</td>
<td>30</td>
</tr>
<tr>
<td>E2</td>
<td>Crystallization of membrane proteins in lipidic mesophases</td>
<td>Martin Caffrey</td>
<td>31</td>
</tr>
<tr>
<td>E3</td>
<td>Observation of crystal growth / Seeding</td>
<td>Terese Bergfors</td>
<td>31</td>
</tr>
<tr>
<td>E4</td>
<td>Crystallization in Microfluidic Chips</td>
<td>Claude Sauter</td>
<td>32</td>
</tr>
<tr>
<td>E5</td>
<td>Crystallization under oil - Unconventional Crystallization Techniques for Screening and Optimisation</td>
<td>Naomi E. Chayen, Lata Govada, Sahir Khurshid</td>
<td>32</td>
</tr>
<tr>
<td>E6</td>
<td>Additive experiments, microseeding, grids for optimization; optimization techniques using automatic contact dispensing</td>
<td>Patrick Shaw Stewart</td>
<td>33</td>
</tr>
<tr>
<td>E7</td>
<td>Dynamic light scattering</td>
<td>Karsten Dierks</td>
<td>33</td>
</tr>
<tr>
<td>E8</td>
<td>Protein crystallization using the GCB©</td>
<td>José A. Gavira</td>
<td>34</td>
</tr>
<tr>
<td>E9</td>
<td>Conventional techniques and crystallization of own proteins</td>
<td>Lubica Urbániková</td>
<td>34</td>
</tr>
<tr>
<td>E10</td>
<td>Crystallization of own proteins using commercial screening kits</td>
<td>Lubica Urbániková</td>
<td>35</td>
</tr>
<tr>
<td>E11</td>
<td>Publication of scientific results with emphasis on crystallization communications</td>
<td>Howard Einspahr</td>
<td>35</td>
</tr>
<tr>
<td>E12</td>
<td>Limited proteolysis</td>
<td>Jannette Carey</td>
<td>35</td>
</tr>
<tr>
<td>E13</td>
<td>Crystal observation, testing, handling, mounting and cryocooling</td>
<td>Petr Pachl, Jiří Brynda</td>
<td>36</td>
</tr>
</tbody>
</table>