IN SITU HIGH TEMPERATURE XRD STUDIES OF THE CRYSTALLIZATION OF
MELT-SPUN Mg₆₃Y₇Ni₃₀

A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, 01171 Dresden, P.O. Box 270016, D-01171 Dresden, Germany

Magnesium-based compounds are well-known materials for hydrogen storage. Particularly, Mg-Ni-compounds show a high hydrogen capacity. Additives of rare earth elements (Y,La,Ce) can also enhance the hydrogen absorption in such compounds [1]. Various non-equilibrium methods like intensive ball milling or rapid quenching are used to refine the microstructure and to improve the kinetics [2,3]. The Mg₆₃Y₇Ni₃₀ composition was selected because of the capability of hydrogen charging by electrochemical methods at room temperature for Mg-RE-TM-glasses (RE = rare earth element, TM = transition metal) and the easy-glass-formation [4].

The thermal behaviour of Mg₆₃Y₇Ni₃₀ was studied under hydrogen atmosphere up to 0.5 MPa in comparison with the crystallization behaviour under high-vacuum conditions.

On the other hand, the influence of electrochemical hydrogen charging before heating on the phase formation was studied. Mg₆₃Y₇Ni₃₀ ribbons were produced by melt spinning to obtain a nanocrystalline - amorphous starting material. The galvanostatic hydrogen charging was performed with -1mA/cm² and a hydrogen concentration [H] of 0.3 < [H] < 1.4 wt% was determined by hot extraction before and after heating. The crystallization was observed by means of a PAAR high temperature chamber XRK900 and hydrogen atmosphere or high-vacuum.

The crystallization of the nanocrystalline - amorphous material starts at T >150°C for ground material and at T = 130°C for 4h ball-milled ribbons. The phases Mg₂Ni, pure magnesium and the metastable phase Mg₆Ni were formed simultaneously. It is assumed, that Y is dissolved in Mg₂Ni or remains in the residual amorphous matrix up to 300°C. Y – phases were observed only at about 300°C. That means, in hydrogen atmosphere a YH₃ phase is formed, whereas for annealing without hydrogen atmosphere an oxide is obtained.

Figure 1 shows a crystallized sample after thermal treatment under high-vacuum up to 250°C in comparison to the crystallization under 0.5 MPa hydrogen. The X-ray patterns are very similar. Obviously, the gas–solid reaction is inhibited by a surface passivation. The hydrogen content after heat treatment is only 0.05 wt% in this case.

Figure 2 shows the phase composition at 230°C and about 70 kPa hydrogen pressure for different electrochemically charged samples. With increasing temperature and hydrogen concentration obtained by electrochemical charging the formation of Mg₆Ni is inhibited in favour of pure magnesium. Above 250°C Mg₆Ni is decomposed in all cases. Furthermore, the hydrogen is found in the Mg₆Ni phase. That means, a solid solution Mg₆Ni₃ (0.2 < x < 0.3) is formed.

For samples having a hydrogen concentration of 1.4 wt% the crystallization of Mg₆Ni₃ (0.2 < x < 0.3) and

Figure 1: Crystallization of Mg₆₃Y₇Ni₃₀ after annealing to 250°C: x = Mg₂Ni, o = Mg₆Ni, v = Mg

Figure 2: Phase composition at 230°C for different charged samples: x = Mg₂Ni, o = Mg₆Ni, v = Mg, □ = Mg₆Ni₃ (0.2 < x < 0.3)
Mg₆Ni is observed only at 230°C. At 250°C the complex compound Mg₆NiH₄ is formed (Figure 3). Mg₆NiH₄ shows the high temperature modification with fcc structure. At equilibrium conditions this phase is formed only at 300°C. Furthermore, a small amount of Ni₂Y₃ or Ni₇Y is assumed above 240°C. Mg₆NiH₄ transforms reversibly into Mg₆Ni at 300°C under desorption conditions. At cooling a gas-solid reaction is detected with the hydrogen atmosphere in the chamber and the Mg₆NiH₄ compound is formed again. At room temperature the rhombic structure was found.

Future investigations will deal with the influence of higher current density on the electrochemical charging and the crystallization. Furthermore, the possibility of a gas-solid reaction with hydrogen should be proved. The role of yttrium on the hydrogen absorption has to be clarified.

Figure 3. Crystallization of Mg₆Ni-Y₅Ni₃ after electrochemical charging with 1.4 wt% hydrogen: ■ - Mg₆NiH₄, + = Ni₂Y₃ or Ni₇Y (?)

T9 - P162

IN-SITU INVESTIGATION OF COₓSN₂ AS CATALYST FOR SELECTIVE HYDROGENATION OF ACROLEIN BY POWDER DIFFRACTION

C. Baehzt, A. Adams, H. Ehrenberg, S. Cavet¹, M. Bron¹, M. Bonifer¹, P. Claus¹

Institute for Materials Science, Petersenstrasse 23, Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry, Petersenstrasse 20, Darmstadt University of Technology; 64287-Darmstadt, Germany, carsten.baehtz@desy.de

The last few years has seen an increasing demand of high temperature powder diffraction experiments under controlled atmosphere [1-4]. Such a setup combined with a gas mixing unit and an online chemical analysis of the product gas stream is suitable for investigations in the field of heterogeneous catalysis.

A quartz glass capillary with 1 mm outer, 0.5 mm inner diameter with a total length of 13 cm is built in a graphite rod of an electric resistance heater and connected by Swagelok fittings with Teflon ferrules to gas pipes. Into these gas pipes two thermocouples are embedded to control the temperature in front and behind of the sample. Additionally, these thermocouples are also fixing the sample in the capillary. First experiments were performed onto the selective hydrogenation of acrolein [5] in the temperature range up to 300°C using molecular hydrogen and CoSn₂ as non-supported catalyst prepared by solid-state chemistry.

The catalyst embankment has an initial high of approx. 9 mm and was compressed by the gas stream to approx. 6 mm, therefore a pressure loss of 8 bar results. The gas stream was 2-5 l/h. The experiments were performed in following order: 1. with N₂ atmosphere, 2. with H₂, 3. with N₂ for hydrogen desorption, 4. with an acrolein/hydrogen mixture (molar ratio 1:20) and again with N₂ for desorption (data point 100 °C of the acrolein/hydrogen series). Additionally, for comparison the sample was measured ex-situ with a standard furnace.

CoSn₂ crystallizes in the space group nr.140; 14/mcm; a = 6,361; c = 5,452 Å [6]. The data evaluation is performed by crystal structure analysis, using the Rietveld method. Fig. 1 displays minor differences in the lattice parameter a between ex-situ and in-situ data using N₂ atmosphere. Obviously are the differences in lattice parameter between N₂ and H₂ atmosphere especially at room temperature. The CoSn₂ lattice expand by adsorption of H₂, desorption experiments show that these process is irreversible and also not influence by acrolein in the H₂ gas stream. Beside thermal expansion, no effect of the atmosphere onto the lattice parameter c is observed.

The decrease of FWHM during the experiment gives evidence for a crystal growth in the temperature range between 200 and 300°C at the first heating. This result was testified in the ex-situ experiments.

Acknowledgement

We gratefully acknowledge the financial support of the BMBF (grant nr. 05KSIRDA/9) and of the DFG (CL 168/3-2).
In the past 15 years the field of secondary lithium ion batteries gained a dramatic increase in interest due to the increasing mobility of our society. Higher specific energy densities as well as higher cell voltages are the desirable key features while costs, capacity fading and possible hazards should diminish. LiMn₂O₄ is well known for the potential use in secondary lithium ion batteries [1, 2]. Its behaviour during cycling strongly depends on doping and coating of the cathode material and on the first charge cycle. This work will demonstrate that in-situ powder diffraction is a powerful tool to investigate such modification of the material during cycling [3, 4]. LiMn₂O₄ synthesised by solid state reaction is compared with commercial produced one, provided by Kerr & McGee. The use of synchrotron radiation and fast detector systems [5] is inevitable for such experiments. The measurements were performed at beamline B2 HASYLAB Germany [6] and investigate the first charge cycle. 33 (and 47 for the Kerr & McGee sample respectively) diffraction patterns for the first charge cycle, equivalent to lithium deintercalation, were collected. For cycling a VMP multi potentiogalvanostatic device (VMP 60, Perkin-Elmer) was used.

In contrast to pure LiMn₂O₄, which exhibit in the range of 3.8 up to 4.4 V two well defined plateaus, the commercial product shows a sloped curve and only 0.35 instead of 0.19 lithium are extracted from the substance, so the capacity is smaller. In general, a plateau in these plots is indicating a two phase region.

LiMn₂O₄ crystallizes in the space group Fd-3m No.227 with a = 8.24 Å. The data evaluation is performed with the program package FULLPROF-Suite. The first sample shows an unusual peak broadening in the range of x = 0.65...

The appearance of the second two-phase region could not be observed by the sample provided by Kerr & McGee, probably it is suppressed by coating and doping of the substance. Additionally the changes of lattice parameters during cycling are slightly smaller compared with pure Li$_2$MnO$_4$.

So powder diffraction technique using synchrotron radiation is a sophisticated method for phase and crystal structure analysis during cycling of battery cells. It leads powder diffraction data sets suitable for Rietveld refinements. Due to the high time resolution and the high instrumental resolution of the set-up a well defined picture of the battery system can be concluded. This allows the tracking of internal processes during cycling with the advantages of in situ investigations.

Fig. 1: First charge cycle of LiMn$_2$O$_4$ as received by Kerr & McGee and by synthesised by solid state reaction.

Fig. 2: Lattice parameter during the first charge cycle of LiMn$_2$O$_4$ as received by Kerr & McGee and by synthesised by solid state reaction.

down to 0.4 in Li$_3$Mn$_2$O$_4$, which is due to a second spinell phase with a slightly different lattice parameter. This effect is also observed in the unmodified Li$_3$Mn$_2$O$_4$ in the range of $x = 0.73$ to 0.6. In this region of deintercalation two phases coexist and counteract with respect to their phase amount. In the region of $x = 0.4$ to 0.24 two coexisting phase were observed again, but here the differences in the lattice parameters are much more pronounced [6, 7].

The appearance of the second two-phase region could not be observed by the sample provided by Kerr & McGee,

PHASE EQUILIBRIUM IN THE YAG-YAP SYSTEM UNDER PRESSURE

S. Gierlotka¹, B. Palosz¹, E. Grzanka¹, A. Swiderska-Sroda¹, S. Stelmakh¹, Ch. Lathe²

¹High Pressure Research Centrem „UNIPRESS”, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
²GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany

Transparent yttrium-aluminum garnet (YAG) nanometric ceramics can be prepared by sintering YAG nanopowders under pressure. However, under pressure YAG decomposes into yttrium-aluminum perovskite (YAP) and Al₂O₃ at the temperatures considerable lower than under ambient pressure. That effect imposes limits on the sintering conditions and time. In order to determine the pressure-temperature conditions at which YAG ceramics can be safely obtained we have conducted a systematic study of the pressure effect on the decomposition temperature of YAG.

The experiments were conducted in-situ in the Hamburg Synchrotron Radiation Laboratory HASYLAB using the MAX-80 multi-anvil HP-HT apparatus. The instrument works in the energy-resolved geometry: the incoming beam is white, the diffraction angle is fixed and the pattern is collected with the solid-state detector and the multi-channel analyzer.

At ambient pressure YAG is stable well above 1500°C. At each pressure above 2GPa there exist a narrow (approx. 100deg) range of temperatures where the decomposition speed increases dramatically and above which YAG entirely decomposes into YAP and Al₂O₃ within seconds. The mid-points of those ranges are plotted in Figure1 against the pressure. As can be seen the most pronounced changes occur within 2-4 GPa pressure range. At higher pressures the characteristic decomposition temperature levels-out at approx 650°C.

Our result is in qualitative agreement with an earlier study on the decomposition of yttrium-iron garnets [1].

The process dynamics and the reasons for the decrease of the stability of YAG under pressure will be discussed.

POWDER DIFFRACTION STUDY OF THERMAL EXPANSION AND CRYSTAL STRUCTURE OF THE AURIVILLIUS PHASES IN THE Bi₄Ti₃O₁₂–BiFeO₃ SYSTEM

M. Krzhizhanovskaya¹, S. Filatov¹, V. Gusarov², P. Paufler³, E. Antoshchenkova¹, R. Bubnova², M. Morozov², D. Meyer³

¹Dept. of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
²Institute of the Silicate Chemistry of Russ. Acad. of Sci., Ul. Odoevskogo, 24/2, St. Petersburg 199155, Russia
³Institut für Strukturphysik, Technische Universität Dresden, D-01062, Dresden, Germany

The Aurivillius family of layered Bi-containing oxides is well known for its ferroelectric properties. Usually their crystal structure is described as a combination or intergrowth of (Bi₂O₃)²⁺ layers and (Aₙ₋₁BₙO₃n₊₁)²⁻ perovskite–like blocks, where A is a twelve co-ordinated cation e.g. Na, K, Ca, Sr, Ba, Pb, Bi, etc. and B is an octahedral cation such as Fe, Ti, Nb, Ta, Cr, etc.

In the Bi₄Ti₃O₁₂–BiFeO₃ system the compounds with general chemical formula Bi₄₋₃Bi₃₋₁(Ti,Fe)O₁₂₋₃, n = 3, 3.5, 4, 4.5, 5, 6, 8 synthesised by solid state reaction are noted in [1]. The crystal structures of the compounds with n = 3, 3.5, 4 are determined in orthorhombic system in [2], [3], [4] respectively. The structure of Bi₂Ti₃O₁₂ (n=3) is refined by Rietveld method in orthorhombic space group B2cb at 25, 500 and 650 °C and in tetragonal space group I4/mmm at 800 °C [5]. For Bi₃TiFeO₁₂ (n = 4) the polymorph phase transition from polar orthorhombic A₂1am space group to tetragonal I4/mmm is studied in details by Rietveld method using PND data [6]. Its transition temperature determined as ~ 730 °C is coincident with Curie temperature corresponded to ferroelectric-paraelectric transition.

Now we investigate the thermal behaviour of four aurivillius phases with n = 3, 4, 4.5 and 6 using high-temperature X-ray powder diffraction in air (CuKα-radiation, the temperature range 20-700 °C) and DTA method (20-1300 °C). The temperature dependence of c cell parameter counting on a perovskite layer (c') is presented in Fig. 1 along with the data from [6] for n = 4. The dependence is obviously divided into two ranges: the low temperature region with a lower thermal expansion and a high temperature region with a greater expansion. The linear thermal expansion coefficient α₁c for HT phase is 3 times larger than that one for LT phase. Since a and b cell parameters (5.46 ± 0.03 Å) and correspondingly the paired hkl, khl re-
Reflections are very close to each other in the studied compounds, it is complicated to calculate \(a \) and \(b \) values correctly. To define the orthorhombic-tetragonal transition point we analyze the FWHM temperature changes for unique and paired reflections. For example for \(\text{Bi}_5(\text{Ti},\text{Fe})_4\text{O}_{15} \) \((n = 4)\) the FWHM of the reflection hkl: 119 \((I/I_0 = 100\%)\) practically does not change under heating: 0.33 °2\(\theta\) at 20 °C and 0.31 at 640 °C. FWHM of paired reflection 200 and 020 \((I/I_0 = 30\%)\) decreases from 0.45 °2\(\theta\) at room temperature up to 0.31 at 640 °C. If the orthorhombic structure transfers to tetragonal the FWHM of unique and paired reflections becomes equal. Also a weak endothermic effect is observed on the DTA curve in the range of temperatures 650-740 °C in all studied samples. The Table 1 contains the following specific temperature points: (1) the inflection point of \(c \) cell parameter vs. temperature; (2) the temperature point in which the FWHM of unique and paired reflections becomes equal; (3) the DTA endothermic effect. Clearly, that the temperature of DTA effect is always higher than the changes in XRD pattern on heating. It could be caused by a different heating rate.

As far as we are aware, there is only one crystal structural study of Aurivillius phase structure with \(c \) parameter 57.6 Å corresponded to a 6 layer-structure [7]. For \(\text{Bi}_7\text{Ti}_3\text{Fe}_3\text{O}_{21} \) we propose the structural model based on 6 layered perovskite blocks. To build up the model the atomic coordinates of \(\text{Bi}_5\text{Ti}_4\text{FeO}_{15} \) [4] were used. It was refined in orthorhombic Fmm2 space group: \(a = 5.474(1) \), \(b = 5.495(1) \), \(c = 57.60(1) \) Å with Rietica for Rietveld refinement program \((R_p = 10.2, \ R_w = 13.3, \ R_B = 5.6\%)\). It was also refined in A2_am space group but no additional reflections which are compatible with this lower symmetry were observed. Relatively high R-factors are caused probably by the structure defects. The FWHN for reflection of 001 type is two-three times larger than that one for other reflections. Perhaps the number of layers in block is not constant in the structure, but the considerable amount of 6-layer phase is present. This structure could also be described in terms of crystal chemistry with oxocentered anions as an alternation of perovskite blocks and Bi-O layers build up from OBi₄ tetrahedra by sharing edges (Figure 2).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=3</td>
<td>610</td>
<td>660</td>
<td>660</td>
</tr>
<tr>
<td>n=4</td>
<td>500</td>
<td>640</td>
<td>740</td>
</tr>
<tr>
<td>n=4.5</td>
<td>600</td>
<td>600</td>
<td>690</td>
</tr>
<tr>
<td>n=6</td>
<td>620</td>
<td>620</td>
<td>650</td>
</tr>
</tbody>
</table>

Table 1. Thermal behaviour of aurivillius phases from HTXRD and DTA data. Specific temperature points (°C): (A) the inflection point of \(c \) cell parameter vs. temperature; (B) FWHM of paired peaks is equal to that of unique; (C) DTA endothermic effect.

![Figure 1](image1.png)

Figure 1.

![Figure 2](image2.png)

Figure 2. The Crystal structure of \(\text{Bi}_7\text{Ti}_3\text{Fe}_3\text{O}_{21} \) and the Rietveld data plot.

© Krystalografická společnost
PREPARATION AND X-RAY POWDER DIFFRACTION STUDIES OF CRYSTAL STRUCTURE AND THERMAL BEHAVIOUR OF (Na,K)-TRIBORATES

R. Bubnova\(^1\), B. Albert\(^2\), M. Georgievskaya\(^3\), M. Krzhizhanovskaya\(^3\), K. Hofmann\(^2\), S. Filatov\(^3\)

\(^1\)Institute of the Silicate Chemistry of Russ. Acad. of Sci., Ul. Odoevskogo, 24/2, St. Petersburg 199155, Russia
\(^2\)Institut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, Hamburg 20146, Germany
\(^3\)Dept. of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia

Recently, the crystal chemistry of borates has been re-investigated because the borate compounds have received great attention due to their non-linear optical, piezoelectric, luminescent and other useful properties. In view of examining new anhydrous borates with interesting physical properties Na\(_3\)O-B\(_3\)O\(_5\)-KB\(_3\)O\(_5\) pseudobinary system has been investigated.

Phase relations in the Na\(_3\)O-B\(_3\)O\(_5\)-KB\(_3\)O\(_5\) system were studied in situ using high-temperature X-ray powder diffraction and DSC as well as annealing and quenching methods. The samples under investigation were prepared by glass crystallisation as well as solid state reaction methods. Below 650 °C in the KB\(_3\)O\(_5\)-enriched part of the system the solutions of Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) (0.5 < x < 1) exist; in the Na\(_3\)O-enriched part two phases β-Na\(_3\)B\(_3\)O\(_5\) and Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) (x ≈ 0.5) co-exist [1]. Above 650 – 670 °C Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) solid solutions in the range of x ≈ 0.75-1.0 decompose to K\(_3\)B\(_5\)O\(_{13}\), K\(_3\)B\(_5\)O\(_{13}\) and Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) solid solution enriched by Na\(_3\)B\(_3\)O\(_5\). The Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) solid solutions in the range of x = 0.5-0.67 melt according to the peritectic reaction Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) → K\(_3\)B\(_5\)O\(_{13}\) + Liquid.

The crystal structure of E\(\text{F}^-\)Å\(\text{I}_1\) [2] was determined in the monoclinic space group using single crystal diffraction data. It contains three-dimensional framework of triborate groups. There are three structurally independent positions for K atoms in channels of the B-O anion framework. The order-disorder distribution of K and Na atoms in these positions has been investigated in series of Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) solid solutions where 0.5 < x < 1. Crystal structures of three Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) solid solutions (x = 0.8, 0.75 and 0.55) were refined from powder data using Rietica program. The samples were biphatic. For example, the sample with 80 mol. % KB\(_3\)O\(_5\) (R\(_p\) = 4.2, R\(_wp\) = 5.3, R\(_B\) = 2.2 %) contained mainly Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) (about 95 mol. %) a = 9.1539(5), b = 6.6295(5), c = 20.742(1) Å, β = 94.07(1)° and traces of K\(_3\)B\(_5\)O\(_{13}\) (about 5 mol. %). Two positions were occupied by K atoms and the third, the smallest one, was occupied by K and Na atoms. The sample with 55 mol. % KB\(_3\)O\(_5\) (R\(_p\) = 5.6, R\(_wp\) = 7.1, R\(_B\) = 2.9 %) contained mainly Na\(_{1-x}\)K\(_x\)B\(_3\)O\(_5\) (about 97 mol. %) a = 9.0561(5), b = 6.6172(5), c = 20.584(1) Å, β = 94.22(1)° and traces of β-Na\(_3\)B\(_3\)O\(_5\) (about 3 mol. %). In this solid solution the smallest cationic position was occupied by Na atoms only. Thus, we can propose that the composition of Na\(_{0.33}\)K\(_{0.67}\)B\(_3\)O\(_5\) is really a new NaK\(_3\)B\(_5\)O\(_{15}\) compound in which K and Na atoms are distributed ordered: two positions are occupied by K atoms and the smallest - by Na ones. The coordination number and the average (Na,K)-O bond length of the smallest polyhedron decrease as K atoms are replaced by Na atoms: the (Na,K)-O bond length decreases from 2.815 Å for KO,
polyhedron in KB₃O₅ structure up to 2.49 Å for NaO₆ polyhedron of Na(K₁₋ₓNaₓ₂₋₃)B₃O₈.

Thermal expansion of Na₈₋ₓKₓB₃O₅ solid solutions is similar to all studied samples. It has sharply anisotropic character: for example, the main coefficients of expansion for Na₈₋ₓKₓB₃O₅ are α₁₁ = 52, α₂₂ = 3, α₃₃ = 0.5×10⁻⁶ °C⁻¹, μ = (cα₂₃) = 2°. Thermal dependencies for unit-cell parameters are shown for the solid solutions Na₈₋ₓKₓB₃O₅ (x = 0.5, 0.67) in comparison to KB₃O₅. Minimum expansion α₂₂ = α₃₃ is directed along infinite channels of framework structure.

The extended use of IFR nuclear plants of the last generation must be accompanied by in-depth studies about waste management and inertisation prior to storage in repository sites, with the aim of reducing the environmental impact of nuclear waste. Electro-refining processes could produce, as a by-product, highly soluble alkaline and alkaline-earth chlorides that must be trapped in some inert matrix, temperature and transmutation resistant. Zeolites and framework materials are potentially a good matrix for trapping such ions within their channels. Na-sodalite (Na₉Si₆Al₁O₁₅Cl₂) was synthesised under hydrothermal conditions from a natural kaolinite in a 4M solution of sodium hydroxide, at 80°C. Kaolinite is a promising starting material, due to its Si:Al=1:1 ratio and to its low costs. The so-obtained Na-sodalite was exchanged with K at high temperature via a solid state reaction with excess KCl. The reaction was performed ex-situ at 800 °C by mixing it with an excess of KCl corresponding to 1:10 in weight, and pressing in an uniaxial press. The resulting pellet was heated in an oven at 800 °C for 12 hours and then quenched rapidly. The K-exchanged sodalite was then analysed by X-ray powder diffraction in order to evaluate its cell parameter and to fully refine its structure. The results, concerning cell parameters, can be found in the figure (open squares): about 60% of the ions in the channel are potassium. The line in the figure was obtained by interpolation of the two theoretical values of pure Na-sodalite and pure K-sodalite: from this line, the K content of sodalite can be inferred. The relationship between cell parameter and composition was confirmed by chemical analyses performed by means of atomic absorption experiments and by the refinement of the occupancy of Na-site, which showed about 60% substitution with K.

The same exchange reaction was performed in-situ in a hot-chamber installed on the diffractometer, with two different sodalite : KCl proportions (5:1 and 10:1). The exchange reaction was followed in-situ with the evaluation of the change on the cell parameter as a function of time. The final cell parameter is diagrammed in the figure (triangle up and black square for the 5:1 and 10:1 mixtures respectively); the higher the excess of KCl (melting point 772 °C) in the reaction, the higher the exchange kinetics in the sample, because a substantial part of KCl sublimes at high temperature. Again, the structural refinement showed a good agreement between the composition evaluated from the cell parameter and the K occupancy of the Na site. The cell parameter of the K-exchanged sodalite proved then to be a good indicator of the content of potassium in the structure, and therefore of the degree of advancement of the exchange reaction.

Further analyses are being carried out to test the possibility of using the products of this exchange reaction as actual inertisation matrices for different radiogenic ions.

This research has been supported by RFBR (project 02-03-32642).

NEUTRON DIFFRACTION STUDY CRYSTAL STRUCTURES OF KAlO$_2$ AND Cs$_3$PO$_4$ IN WIDE RANGE OF TEMPERATURES

Voronin V.I.a, Proskurnina N.V.a, Shekhtman G.Sh.b, Byrmakin E.I.a, Stroev S.S.b

a Institute of Metal Physics, Ural Division of Russian Academy of Sciences, S. Kovalevskoi Str.18, Ekaterinburg GSP-170, Russia

b Institute of High Temperature Electrochemistry, Ekaterinburg, Russia

Solid orthophosphate ceria and potassium aluminate electrolytes are desirable materials for industrial applications. It is well known that the main factor determining an electrical property of the solid electrolytes is their crystal structure. Therefore, cation conductivity and crystal structure of KAlO$_2$ and Cs$_3$PO$_4$ has been studied in present work. Conductivity dependences on temperature in Arrhenius plots – lg(σT) vs 1/T are shown in Figure 1 and 2.

It is seen that behavior of conductivity is very similar in these compositions. In initial KAlO$_2$ and Cs$_3$PO$_4$ samples conductivity jump are observed in high temperature region and the values of activation energy are decrease. The conductivities are significantly increased as the doped element content increases, end bending points are on Arrhenius plots at some temperatures. To understand the reason of such behavior of conductivity neutron-diffraction experiments in a wide range of temperatures were carried out. Because of samples chemical activity and their hygroscopicity and to prevent their contacts with air all samples were placed in quartz-closed ampoules. Therefore, there is a wide diffused halo of amorphous quartz on neutron diffraction patterns. The neutron diffraction patterns obtained for KAlO$_2$ and Cs$_3$PO$_4$ (fig. 3, 4) show that the samples were monophasic. The Rietveld analysis of the diffraction pattern revealed that the KAlO$_2$ and Cs$_3$PO$_4$ crystallize in the orthorhombic space groups, Pbca for KAlO$_2$ ($a = 5.4446(9)$ Å, $b = 10.931(1)$ Å, $c = 15.458(2)$ Å) and Pnmm for Cs$_3$PO$_4$ ($a = 14.590(5)$ Å, $b = 10.219(3)$ Å, $c = 7.780(2)$ Å). Analyze also showed that KAlO$_2$ structure has the tetrahedra AlO$_4$ forming three-dimensional framework with full connectivity. On the contrary in Cs$_3$PO$_4$ the tetrahedra PO$_4$ are separated spatially. We found that Cs$_3$PO$_4$ and KAlO$_2$ exhibits structural phase transition at T

Fig. 1. Arrhenius plots K$_{1-x}$Al$_x$Ti$_2$O$_7$.

Fig. 3. Neutron diffraction pattern of KAlO$_2$ at room temperature.

Fig. 2. Arrhenius plots Cs$_{2+x}$BaPO$_4$.

Fig. 4. Neutron diffraction pattern of Cs$_3$PO$_4$ at room temperature.
~ 790 K and ~ 813 K, correspondingly (fig. 5,6), followed by the thermal conductivity jump (fig. 1,2).

Using high temperature structure β-cristobalite study results [111] it has been showed that at T > 540°C the aluminum, potassium and oxygen atoms occupy, respectively, the special equivalent positions 8a, 8b and 16c in the space group Fd-3m. It is an “ideal” model that gives a bad experiment description. Disordered models give good accordance with experiments. In the first model the oxygen atoms do not lie on well-defined positions, but the Al-O bond precesses about its average orientation so that the oxygen atoms lie on an annulus of fixed radius (∼ 0.5 Å). In the second model the oxygen atoms are placed in the 96h sites, with partial occupancy of 1/6. We cannot prefer any of these models from our experimental data. More precise example is given in Fig. 5.

In high temperature phase orientationally disordered phosphate ions occupy an FCC lattice, and the sodium cations occupy all tetrahedral and octahedral interstices (neutron diffraction patterns show at fig.6).

Crystal structures of KAlO$_2$ and Cs$_3$PO$_4$ are cubic at room temperature because of doping them by titanium and barium, respectively. However these cubic structures are disordered as for according high temperature phases, but this disordering is static and dynamic at high temperature. There is an increase of disordering degree of the K$_{1-x}$Al$_x$Ti$_x$O$_2$ (x=0.2) sample as the temperature increases and Debye-Waller factor significant increases.

Because of crystal structure features it was suggested the conductivity mechanism at high temperatures in so called superionic state. As it was mentioned earlier there are rigid tetrahedra PO$_4$ groups in orthophosfat cesium which are saved their form in whole temperature region. However, large Debye-Waller factors in superionic state suggest dynamic disordering. These facts mean group motion as a whole. Such model was suggested for isostructural compound Na$_3$PO$_4$ based on complex study of structural state at high temperatures using different methods. Inelastic neutron scattering experiments showed rotor motion of these complexes. It’s the model suggests strong coupling between the reorientation of anions and the mobility of cations – the “paddle-wheel mechanism”. The cubic structure appears at room temperature at doping of compounds that is why such correlated tetrahedra PO$_4$ rotation and cesium ions diffusion appears at lower temperature. This process is illustrated by bending point on Arrhenius plots; bending point temperature decreases with barium concentration (Fig.2).

Additional conducting channels appear at phase transition into cubic phase in KAlO$_2$ lattice. At the same time such “paddle-wheel mechanism” occurs in KAlO$_2$. Because of tetrahedrals link by oxygen atoms there are correlating AlO$_4$ vibrations and motion of K cations with increasing temperature. This correlation is confirmed by sharp activation energy decreasing at doping with titanium (Fig.1). And the bending point temperature decreases as the Ti concentration increase.

Work supported by State Scientific Research Program “Neutron Investigations of Condensed Matter” (State control No. 40.012.1.1.11.50) and the basic research program of the Department of Physical Sciences of the Russian Academy of Sciences “Neutron studies of the substance structure and fundamental properties of matter”.

IN-SITU NEUTRON DIFFRACTION STUDY OF α-BISMUTH MOLYBDATE

H. Fansuri1, D. K. Zhang1, M. Elcombe2 and A. Studer2

1Centre for Fuels and Energy, Curtin University of Technology, Brodie Hall Building, 1 Turner Avenue, Technology Park, Bentley, Western Australia 6102
2Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights Science and Technology Centre, Private Mail Bag 1, Menai NSW 2234

The room temperature HRPD (High Resolution Powder Diffraction) and in-situ MRPD (Medium Resolution Powder Diffraction) have been performed to study the unit cell structure changes in an α-Bi$_2$Mo$_3$O$_{12}$ catalyst under ambient and reaction conditions. The unit cell parameters (a, b, c and α, β, and γ), inter-atomic distances and temperature factors have been obtained after refining the HRPD and MRPD diffractograms using the Rietveld method and the RIETICA software. The unit cell parameters of α-Bi$_2$Mo$_3$O$_{12}$, resulting from the Rietveld refinement of the room temperature HRPD diffractogram, are $a = 7.1517(38)$ Å, $b = 11.5263(52)$ Å, $c = 11.9568(66)$ Å and $\beta = 115.2733^\circ$ (43). The refinement of in-situ MRPD diffractograms shows that the unit cell expanded anisotropically, where the expansion in the b direction is faster than in the other directions. It is also shown that some oxygen atoms, namely O1, O4, O5, O11 and O12, are more sensitive toward the in-situ condition. Oxygen atoms No 1, 11, and 12 are lying on the interface between two bismuth molybdate layers in the unit cell and bounded solely to molybdenum atom. These oxygen atoms are suspected of being the source of the oxidising oxygen responsible for the selective oxidation of propylene to acrolein.

NEUTRON DIFFRACTION STUDIES OF TEMPERATURE INDUCED PHASE TRANSITIONS IN Rb$_2$KFeF$_6$ ELPASOLITE

S. G. Vasilovsky1, A. I. Beskrovny1, V. V. Sikolenko1,4, A. V. Belushkin1, I. N. Flerov2, A. Tressaud3, A. M. Balagurov1

1Joint Institute for Nuclear Research, Dubna, Russia
2Kirensky Institute of Physics, Krasnoyarsk, Russia
3Institut de Chimie de la Matiere Condensée de Bordeaux, Pessac, France
4Hahn-Meitner-Institut, Berlin, Germany

Rb$_2$KFeF$_6$ fluoride belongs to compounds family with general chemical formula A_2BMF_6 (A, B – monovalent cations, M – trivalent cation). The space group of their cubic prototype is Fm3m (Z = 4). In this system two kinds of non-equivalent octahedral groups (BF$_6$ and MF$_6$) alternate along the three four-fold axes. The region of cubic lattice stability depends on tolerance factor [1]. Fm3m symmetry is usually observed in the wide temperature region at the 0.88 < t < 1.0. Distortion of the octahedral group takes place at the t < 0.88. This fact leads to crystal symmetry reduction. The structure of crystals with low M$^{3+}$ (M = Cr, Ga, Fe) radius is still poorly known. These compounds usually demonstrate ferroelastic phase transition which corresponds considerable high changing in entropy DS. We studied structure of the Rb$_2$KFeF$_6$ (t = 0.885; DS/R = 1.88) at the wide temperature region. Fig. 1 shows neutron diffraction pattern and the result of Rietveld refinement at the room temperature.

We performed refinements with fluorine atoms in 96k position and Rb – in different positions according to group-theory analysis [2] of distortions of initial Fm3m structure caused by octahedron or/and polar atoms displacements. Refinement of the low temperature phase in the frame of Pmnn space group was also performed.

n-Alkylammonium halides (n-$C_{n}H_{2n+1}NH_{3}^{+}X^{-}$) are used as surfactants, lubricants, and as models for biological membranes. A spectrum of intermolecular interactions are present in the crystals, ranging from van der Waals interactions between the hydrocarbon chains to ionic and hydrogen bonding interactions in the polar layer. The molecules pack in alternating polar and hydrocarbon layers. Long-chain n-alkylammonium halides exhibit polymorphism at room temperature and a complex sequence of solid-solid phase transitions at higher temperatures. The polymorphs of the n-alkylammonium chlorides, with alkyl chain lengths up to 18 carbon atoms, were studied by powder and single crystal X-ray diffraction and by thermal analysis techniques. All members of this series exhibit polymorphism. The crystal forms can be classified according to their long spacings as determined by powder diffraction. The i form has the smallest long spacing and the k form the largest. The crystal structures of the i and k forms of n-octadecylammonium chloride, $C_{18}H_{37}NH_{3}^{+}Cl^{-}$, were determined by powder and single crystal X-ray diffraction methods. In the i form the molecular chains are in the all-trans conformation and interdigitated whilst in the k form the chains are non-interdigitated and not completely extended, exhibiting a kink between the second and third carbon atoms. Hydrogen bonding interactions are present between the ammonium groups and chloride anions in the ionic layers. The transition sequences between these forms and the high temperature phases could be determined by thermal analysis (DSC) and a phase sequence diagram constructed. Variable-temperature powder diffraction studies confirmed the transition sequences and proved that the e form consistently crystallizes from the melt.

PHASE TRANSITION TRIGGERED BY SUBSTITUTION IN MONAZITE-TYPE LaVO$_4$

H. Borrmann, M. Schmidt

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.

Vanadates $REVO_4$ of the rare-earth elements crystallize in the tetragonal zircon-type structure, except with lanthanum for which the monoclinic monazite-type structure is preferred. However, for certain elements metastable phases of the respective other structure type have been observed. We have studied the substitution series $La_{1-x}Ce_xVO_4$ and $La_{1-x}Nd_xVO_4$. Particular emphasis was put on those phases where the structure changes from monazite to zircon type. Furtheron the temperature-dependent stability of these particular samples was investigated. High-resolution powder diffraction methods using an image-plate based Guinier-camera had to be used to clearly resolve the pattern of the tetragonal phase along with the quite complicated pattern of the monoclinic phase in two-phase samples.
Leucite based materials are being a subject of an extensive scientific interest in recent years, especially in a field of dental prosthesis. Presence of leucite (KAlSi$_2$O$_6$), exhibiting high values of a thermal expansion coefficient, in a porcelain matrix enables its fusion to metal reinforcement. In addition thanks to its phase-transition behaviour leucite could potentially toughen leucite-glass (porcelain) systems and so lead to dental materials having high fracture toughness.

As the amount, average crystal size and structure of the leucite phase directly affect thermal and mechanical properties of the final composite material; suitable technology of its preparation is necessary to be developed.

A new preparation procedure of leucite based on its crystallisation from an amorphous precursor was studied. The precursor was synthesized from a gel containing aluminium, amorphous silica and potassium hydroxide solution in hydrothermal conditions at 200°C for 2h. Leucite was subsequently prepared by calcinations of obtained powders.

Crystallisation of leucite was monitored at 800, 900 and 1000°C using X-ray powder diffraction analysis. At high temperatures the stable form of leucite is cubic (high leucite), and as it cools below a temperature of about 630°C there is a displacement phase transformation to tetragonal (low leucite). As this transformation is substantial for the toughening mechanism in leucite dental porcelains the process of leucite transformation was studied using X-ray diffractometer equipped with high temperature cell.

Acknowledgements.
This work was supported by GA CR Grant 104/03/0031.

Structural Aspects of the Metal-Insulator Transition in BaVS$_3$

This study presents structural transitions of the one dimensional system BaVS$_3$ at low temperature by means of high resolution synchrotron powder diffraction. At room temperature the structure is hexagonal (P6$_3$/mmc) with face sharing VS$_6$ octahedral chains along the c axis separated by Ba atoms leading to a V-V intrachain distance of 2.808(1) Å and an interchain distance 6.714(1) Å. The hexagonal structure at room temperature becomes orthorhombic (Cmc$_2$$_1$) at 240K with a V straight chains transformed into uniform zigzag but without significant change in the electronic properties. At 70K a metal-insulator transition occurs with the appearance of a superstructure which doubles the chain periodicity. The structure refined at 40K revealed a weak monoclinic distortion ($\beta = 90.046(1)^\circ$) with 4 non-equivalent V sites. A valence bond analysis shows no evidence for charge disproportionation on these sites. However at 5K, the faces of the VS$_6$ octahedra are stretched (site V1) or compressed (V3) inducing a 0.5e-charge disproportionation between the V1 and V3 sites.
HIGH PRESSURE STUDIES OF THE LiAlD$_4$ AND NaAlD$_4$ SYSTEMS

M. P. Pitt1, W. G. Marshall2, D. Blanchard1, H. Fjellvåg3, B. C. Hauback1

1Institute for Energy Technology, P.O. Box 40 Kjeller, N-2027 Norway
2ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK.
3University of Oslo, Dep. of Chemistry, P.O. Box 1033 Blindern, 0315 Oslo, Norway

Recent targets set by the International Energy Agency and the United States Department of Energy stipulate that hydrogen storage materials for mobile applications should possess at least 5 wt.% reversibility capacity at less than 80°C [1]. The aluminohydrides (alanates) present a new class of promising storage materials that are approaching these mobile targets. The Ti-doped NaAlD$_4$ system first achieved reversibility in 1997 [2], and there has since been considerable research into both its structural [3, 4] and cycling/kinetic properties [5,6]. Although the LiAlD$_4$ system has not yet achieved reversibility, there has also been renewed interest in its structural features [7,8].

In terms of volumetric efficiency, it is desirable to store as many hydrogen atoms per unit cell as possible, and high isostatic loading offers the ability to investigate the possibility of stabilising such phases. For the NaAlD$_4$ and LiAlD$_4$ systems, theoretical VASP calculations predict pressure induced phase transitions at 6.4 GPa and 2.6 GPa respectively [9], which allows up to a 15% reduction in unit cell volume, allowing for more efficient storage of hydrogen. Fig. 1 shows the compression of unit cell volume as a function of pressure for the LiAlD$_4$ system. At 2.6 GPa, the structure transforms from monoclinic $P2_1/c$ to tetragonal $I4_1/a$ (NaAlD$_4$ type), and at 33.8 GPa to orthorhombic $Pnma$. We have carried out in-situ TOF neutron diffraction measurements using the high flux PEARL diffractometer at RAL, ISIS to investigate these theoretical predictions.

Fig. 2 shows the data series for LiAlD$_4$ loaded to 46 tons. Rietveld analysis reveals the start of a phase transition at ~4.2 GPa, that is characterised by the displacement in d-spacing of the reflections (130) and (01-3). The intensity of (130) is preserved, while (01-3) displays amorphisation. The observations indicate that planes in the cell that cannot be shifted will disorder, implying that the Li begins to disperse before the AlD$_4$ tetrahedra collapse. The data also show the presence of a new phase as broad reflections at ~2.1 and 2.2 Å. Model calculations of the LiAlD$_4$ structure in space group $I4_1/a$ show that this structure is not responsible for the extra reflections in the data.

The NaAlD$_4$ system does not display a phase transition to the highest pressure applied at 6.5 GPa.

Fig. 2 Raw data series for the LiAlD₄ system from 20 tons load to 46 tons load.