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The most complete kinematical theory of X-ray diffraction
by real crystals has been formulated by M. A. Krivoglaz [1
— 2]. It allows to classify the lattice defects according to
their influence on the diffraction pattern. Theoretical anal-
ysis of scattering consisting of the Bragg peak and diffuse
lines for different lattice defects and their displacement
field shown that the rate of decrease of the displacement
field with the distance from the defect determines diffrac-
tion effects. The defects with rapidly decreasing field lead
to the reduction of integrated intensity (static
Debye-Waller factor), shift of the Bragg peaks and appear-
ance of diffuse scattering — these are the so-called defects
of the first-kind. The defects with slowly decreasing (1/r)
displacements destroy the Bragg term and only concen-
trated diffuse scattering can be observed as the broadened
quasiline — the lattice defects of the second kind. Point de-
fects, their clusters, precipitates and small dislocation loops
belong to the former while dislocations to the latter type.
The type of displacement field plays the most decisive role
for the classification of the defects.

This is based on the physical nature of the defects and it
has been derived for their random distribution. However,
the situation is more complicated in practice. The effects
can look differently due to correlation which can screen
and reduce the displacement field of the defects in some
cases and enhance it under other conditions. Then the de-
fects which belong to the first kind by their physical nature
can sometimes look like the 2nd type defects, e.g. because
of their high concentration. An interesting case of precipi-
tates and dislocation loops was investigated. Under certain
conditions, special doublets of the Bragg and diffuse
scattering can be observed simultaneously.

In many cases, the relations for line shift and broaden-
ing are given by the product of several functions — function
of the diffraction vector, function of the defect strength and
the so-called orientation factor which determines the
hkl-dependence of the diffraction parameter and is deter-
mined by the orientation of the defects with respect to the
diffraction vector and crystallographic axes.

Dislocations and 2nd kind stresses are the main reasons for
the so-called strain broadening. The problem was treated
by Williamson and Smallman in 1956 [3] but only for a sin-
gle dislocation. Krivoglaz and Ryaboshapka [4] assumed
statistically random distribution of dislocations and de-
rived relations for integral breadth and Fourier coefficients.
Integral breadth is proportional to the square-root of dislo-
cation density and the so-called orientation factor deter-
mining the #Akl-dependence. Wilkens shown that
completely random distribution of dislocations is unrealis-

tic [5] and introduced the so-called restrictedly random dis-
tribution characterized by the dislocation density p and
cut-off radius R, (the radius of the region within which the
distribution is random). This parameter can be taken as a
measure of correlation in dislocation distribution.
Krivoglaz, Martynenko and Ryaboshapka [6] generalized
their original model by including pair correlation functions
and came to similar results. Further extension was done by
Ungar, Groma et al. [7] who introduced more parameters
and included the case of dislocation polarization. Calcula-
tions for dislocation dipoles, dislocation loops and disloca-
tion walls were also performed mostly by Krivoglaz,
Ryaboshapka and Barabash [review in 8 and 9, 10]. In re-
cent years, the most fequently used formalism for descrip-
tion of dislocation-induced line broadening is that of
Wilkens. However, similar but not identical Krivoglaz de-
scription [6] for not too strong correlation in dislocation ar-
rangement can be used as well. It was applied firstin [11].

Integral breadth (in 1/d) can be approximated as fol-
lows
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where p is the mean dislocation density, b is the magnitude
of the Burgers vector, the P factor is related to the correla-
tion in dislocation arrangement and factor 4 is close to
unity. For dislocation density determination the knowledge
of the orientation factor y (often called as contrast factor
and denoted by C) is necessary. The correlation factor P
must be estimated for example from the profile shape or
better from Fourier coefficients. The orientation factor de-
pends on the indices 4, k, [ and determines the anisotropy of
line broadening. The corresponding relations for the most
common dislocations in cubic materials were published by
Krivoglaz [1]. General relations for calculation of the ori-
entation factors were derived in papers [12, 13] based on
the formalism for description dislocation displacement
field by Teodosiu and Steeds. In order to calculate the fac-
tor, some model — dislocation types must be considered. As
each type gives characteristic anisotropy of line broaden-
ing, in some cases it is possible to estimate dominating dis-
location types from such an anisotropy. Crystal symmetry
must be taken into account and corresponding averaging
over all symmetrically equivalent directions must be per-
formed for the calculations of orientation factors. The cal-
culations must be numerical in general case of elastic
anisotropy. In case of preferred orientation of lattice de-
fects in the sample, approapriate weights must be taken in
averaging. If more slip systems are active (and dislocations
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with different Burgers vector) it is better to include the Bur-
gers vector in the orientation factor. Useful simple relations
for orientation factors of polycrystalline cubic and hexago-
nal materials without preferred grain and defect orientation
were derived by Ungar et al [14 - 16]. Calculations of the
orientation factors for non-random defect distribution in
thin films were published by Armstrong et al [17, 18].
The correlation factor can be expressed as

P=r.B,, =npR, ()

Y sin” 0
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where

i

for the case of more dislcoation slip systems. The quantity
R. is the cut-off radius and r, is its value modified by the
second orientation factor . In general, the calculation of P
is more complicated. It depends itself on the dislocation
density and the value r. is unknown. Its value can be esti-
mated from the profile shape. We can take rough estima-
tion as follows: for P =3 is the shape between Cauchy and
quadratic Cauchy (C2) functions, P = 5 corresponds to C2,
for higher P it is close to the Gauss function. Hence, with
the increasing correlation in dislocation arrangments the
profile tails are extended. For the estimation also the de-
pendence of ratio FWHM/( vs. P can also be used. How-
ever, the profile shape is sensitive to P only for small P
values. On the other hand, the dependence [ vs. sin 0 is jus-
tified strictly speaking only for P >3 [6].

For precise evaluation, the Fourier analysis, must be ap-
plied

InA,(L)=-B," In % (4)

It follows that the plot In A(L)/L* vs. In L should be lin-
ear (at least in the region of validity of the used approxima-
tions, i.e. medium values of L). The slope of the plot then
gives By and the In L intercept the value In 7, i.e. also the
correlation factor P. Instead of the simple but diverging
logarithmic term two functions were suggested by Wilkens
and van Berkum. This formalism is used for the description
of dislocation line broadening in two programs using the
method of total powder pattern fitting (or multiple profile
fitting) — program by Leoni and Scardi [19], and Ribarik
and Ungar [20, 21] (see more in their lectures at this confer-
ence and also on the posters). Usually the hkl dependence
of r, is neglected. However, in principle it can also be as-
sumed [lecture of Armstrong at this workshop].

Quite detailed analysis of inhomogeneous distribution
of dislocations is possible from careful measurements of
profile tails and evaluation of moments [22, see also the
lecture of Borbely at this workshop].

In spite of the fact the line profile analysis of disloca-
tion-induced line broadening has been improved in last
years, there are still problems bigger than in crystallite size
description. This is especially high correlation between
dislocation density and dislocation-correlation factor
which makes the fitting difficult. The latter determines the
shape of the profile however, careful measurement with
high statistics of counts is neccessary in order to use this
fact. The correlation is inherent in the description and can-

not be completely overcome by different optimization al-
gorithms. While for nearly random distribution of disloca-
tions the methods work well, for highly-correlated or
strongly inhomogenous distribution of dislocations
approapriate description which could be easily applied in
the profile analysis is missing.

Nearly no studies were devoted to relations and/or sep-
aration between the broadening caused by the 2nd kind
stresses and by dislocations. The only attempt was pub-
lished in [23].
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The study of planar faulting by X-ray diffraction has a long
history dating from the first works in diffractions. (Early
contributions have been reviewed in [1], while further de-
velopments can be found in [2]).

Two types of methods have been so far used, (1) those
which derive a set of useful parameters related to some as-
sumed faulting model and (2) those based on computer
simulations and Monte Carlo procedures which match sim-
ulated patterns with the experimental ones.

There a several limitations to both approaches. In the
first type, Warren’s use of difference equations [1, 3] is the
most used: peak shift, broadening and asymmetry are re-
lated to the probabilities of deformation and twin faulting.
As pointed out recently [4], the original approach can lead
to wrong predictions of the faulting effects on diffraction
profiles. Another drawback is the lack of generality, the
methods need of specific derivations for different struc-
tures and faulting types.

Concerning Monte Carlo schemes, these are trial and
error procedures matching simulated patterns with experi-
mental ones. Simulation procedures are better suited than
Warren’s approach for investigating complex faulted
structures. Yet, simulations strongly rely on the ability of
the researchers to propose faulting models suitable to the
investigated problem, and they make little use of the ob-
served experimental data until the last stages of analysis,
where comparison is performed.

A recent approach by the authors derives quantitative
information about the stacking order in layer crystals di-
rectly from diffraction data, without assuming any prior
model for the stacking disorder [5, 6]. The original formu-
lation was valid for powder diffraction data with one type
of layer in the stacking sequence and a integer number of
times a constant displacement vector between the different
possible layer positions. The solution of the diffraction
equations allowed, in a general framework, to derive fea-
tures of powder diffraction patterns of faulted layer crystals
and better understand the effect of faulting in the diffrac-
tion pattern [6, 7]. The relation between the symmetric and
asymmetric component of broaden peaks were explored for
the general close packed case [7]. This allowed avoiding

the arbitrariness in the modeling of peak profiles affected
by faulting.

In this presentation we will review the latest work done
by the authors in the analysis of diffraction pattern of sam-
ples with planar disorder. Some theoretical developments
will be reviewed together with applications to real data will
be shown.

If we lift the restriction on the same type of layer for the
diffraction equations the expression for the interference
functions (definitions and more detailed mathematical
background can be found in [4, 5] ) can written as:

o) =
2%“ MZARe(FW (PF*,., (%))cos[2n(R, ~R,,.,, )] -

A=0 w=0

Im(F, (F)F * (r*))sin[2n(Rw -R,. )]

w+A

()

Expression (1) reduces to the ones already derived in [4]
for structures with all layers having the same structure fac-
tor:

oM =2F)> S cosl2n(R, -R,.,)] ()

A=0 w=0

In the case of a constant structure factor per layer, the
interference function (experimental observable) can be re-
lated to the probability correlation function which de-
scribes the stacking ordering of the layers [5, 6]. The
problem of the diffraction pattern of planar disordered
structures then reduces to the extraction from the available
data of the probability correlation function.

It has been shown in [7] that (2) forces a relation be-
tween the symmetric and asymmetric component of the
peak broadening. This biunivocal relation implies that once
a symmetrical component is chosen the asymmetrical com-
ponent is completely determined, which reduces, at least in
this sense, the arbitrariness of the asymmetry modeling.
The relations can also be used to address the implications
of an assumed peak profile model in the underlying planar
disorder.
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Table 1
Profile Symmetric term Asymmetric term
) 2 [log2 -1 , & A
Gaussian G = |22 exp(-4 log2(—2)) G* () = - D exp(~-)sin[27A( - )]
f T f 2 A=1 AL,
1 1 -
= (1) L) = 2rh)
; T _
Lorentzian 14 (21 IOJ cosh[lj C12m(-1,)
S A,
Pseudo Voigt pyVir*) =G (r*)+ (1-n)L' (r*) PV =G )+ 1-)L ()
1
pVII* (r*) = i, -
2\ B 1 Af Af .
Pearson VII 1+ {2 @ —1) l—flo} ] pVII (r*) = EAZ:; A—OKW”2 A—Qsm[ZTcA(l0 -]

Table 1 shows the corresponding expression of the
asymmetric component for common used symmetrical pro-
files:
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X-ray line profile analysis is a potentially powerful non-de-
structive method for characterising the microstructure of
materials. In the past decade, the technique has quickly
evolved from a stage where “simple” assumptions were
made concerning the shape and breadth of line profiles to
state-of-art methods, allowing the synthesis of diffraction
profiles directly from the microstructural properties of ma-
terials (see [1] for state-of-art methods). These micro-
structural properties include, lattice faulting/twinning,
dislocations and crystallite shape and size distributions (see
[1] and reference therein).

However, not all available models have reached their
maturity. In particular, the Wilkens model [2-4] is com-
monly adopted for the (Fourier) description of X-ray
line-profile broadening caused by the presence of disloca-
tions. In this contribution, some insights concerning its
physical significance and interpretation will be presented.

The Wilkens model provides analytical expressions for
the Fourier transform of a line profile broadened by dislo-

cations in terms of two free parameters: the average dislo-
cation density p and the effective outer cut-off radius R, of
the strain field. This model was developed assuming a sim-
ple microstructure in which a restrictedly random distribu-
tion of dislocations is present. This means that equal
numbers of parallel and antiparallel straight dislocations
populate a single slip-system and are randomly distributed
within a sub-area F, of the total area Fy [2]. A number of
important assumptions are made in this case: (i) the radius
R, of the sub-area is approximately equal to the outer
cut-off radius Rg; (ii) the total dislocation density p is uni-
form i.e. the ratio between the total number of dislocations
Ny and the total cross-sectional area F, and the ratio be-
tween the number N, of dislocations in the sub-area and the
area of such region F, are equal: p = N¢/F=N,/F,,. These as-
sumptions are necessary to overcome the logarithmic di-
vergence encountered by Krivoglaz & Ryaboshapka [5] in
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their alternative formulation of dislocation broadened line
profiles.

It will be shown here that two formulations of the
Wilkens model can be developed (see [2, 3]); diffraction
patterns for (real) elastically anisotropic materials will be
simulated, showing qualitative and quantitative differences
in the result of the two models.

The first and most widely used formulation [1] will be
termed simplified Wilkens model. It assumes that the “aver-
age” Fourier term is independent of the slip system, the
only Akl dependence being carried by the average contrast
factor <Cy> and by the reciprocal interplanar distance d *;,k,
[2,3].

The second formulation, called full Wilkens model, in-
cludes the slip-system and 4kl dependencies into the Fou-
rier coefficients, therefore expressing the resultant Fourier
coefficients as the convolution product:

N
A(L’d*hkl):HAj (Lad*hkz )=
(M
_ T p2(d* VI P < C/ o ¥
=¢Xp 5 (d* ) ﬁz wS*M;)
j=1
where 4, (L,d* ;) is the Fourier transform for the j-th
slip-system, b is the magnitude of Burgers vector, L is the
N

Fourier length, % Z Cl, f*(n ;) defines the slip-depend-
j=1
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ency of the contrast factors and is Wilkens function (see
[2].

A set of simulated patterns for Cu, Ni and CeO, will be
employed to highlight the difference between the two mod-
els. Simulations are made assuming an ideal diffractometer
with CuK,,; wavelength, dislocations density, p=2.0x1016
m? and an effective outer cut-off radius, R=10.0 nm.
These setting correspond to a Wilkens parameter M = R,
p'? = 1.4, which is within the range of applicability of the
theory [2-4]. These simulations highlight the slip-system
and Akl dependency of the quantities in (1) and the influ-
ence they have on the profile for increasing d’ ;.

[1] E.J. Mittemeijer & P. Scardi, editors: Diffraction Analysis
of the Microstructure of Materials, Springer Series in Ma-
terials Science, Vol. 68. (Springer-Verlag, Berlin, 2004).

[2] M. Wilkens (1970a), NBS Spec. Publ. 317, 2, 1195-1221.
Proceedings of Fundamental aspects of dislocation theory,
eds. J. A. Simmons, R. De Witt and R. Bullough.

[3] M. Wilkens (1970b), NBS Spec. Publ. 317,2, 1191-1193.
Proceedings of Fundamental aspects of dislocation theory,
eds. J. A. Simmons, R. De Witt and R. Bullough.

[4] M. Wilkens (1970c), Phys. Stat. Sol. A, 2, 359-370.

[5] A.Krivoglaz & K. P. Ryaboshapka, Fiz. Metal.
Metalloved, 15(1), 18-31.

STATUS OF NIST NANOCRYSTALLITE SIZE SRM 1979

N. Armstrong’, J. P. Cline?, W. Kalceff', J. Ritter’ & J. Bonevich®

"Department of Applied Physics,University of Technology Sydney, AUSTRALIA
2Ceramics & *Metallurgy Divisions, National Institute of Standards and Technology (NIST), USA.

The NIST nanocrystallite size Standard Reference Material
(SRM) 1979 will provide a standard for both scientific and
commercial laboratories to quantify the size distribution
and shape of nanocrystallites using X-ray line profile and
electron microscopy techniques. It will also apply a
Bayesian/Maximum entropy (MaxEnt) method of X-ray
diffraction data analysis especially developed for certify-
ing the SRM. It is expected that SRM 1979 will play a piv-
otal role in the rapidly developing nanotechnology industry
by providing uniformity in the measurement of crystallite
size and shape data, while clarifying the underlying as-
sumptions of many existing line profile techniques.

In this paper we discuss the preparation and analysis of
the two proposed SRM 1979 candidate materials. An out-
line of the procedure is given, together with a detailed dis-
cussion of the X-ray line profile analysis used to determine
both the size and shape information of the SRM 1979 spec-
imens.

SRM 1979 will consist of two material specimens pre-
pared in 1kg batches from bulk feedstock. The specimens
have been produced to minimize the presence of structural
defects that may result in strain broadening in the line pro-
files. The first material sample is ceria (cerium (IV) oxide,

Ce0,) with an (approximate) average spherical crystallite
size of 20 nm over a size range of 5-35 nm. The SRM is
produced from a precipitation reaction between cerium
(IV) sulfate solution and an ammonium hydroxide solu-
tion, conducted in a fixed-element flow reactor. Ceria has a
cubic symmetry resulting in well-spaced diffraction lines.
This allows rapid and simplified analysis techniques to be
used to determine the shape and dimensions of the crystal-
lites, while minimizing systematic error arising from over-
lapping peaks. Moreover, the spherical morphology
ensures that the size broadening will be isotropic in hkl.
This enables models for simple shapes to be applied.

The second SRM 1979 specimen is zinc oxide (ZnO)
which is also prepared in a fixed-element flow reactor, by a
precipitation reaction between zinc acetate and an ammo-
nium hydroxide solution. This SRM specimen has a cylin-
drical crystallite morphology with an approximate length
of 80 nm and a size range of 60—100 nm. ZnO has a hexag-
onal symmetry, producing a large number of (overlapped)
lines. Consequently, this specimen requires more complex
size and shape models to be applied in order to extract the
necessary information from the X-ray diffraction data.
Specifically, the anisotropic broadening for various hkl
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provides a direct indication of the crystallite morphology,
while the size distribution reveals the spread in the cylinder
heights and diameters.

The analysis technique essentially involves two steps
[1, 2]. The first step applies MaxEnt/Fuzzy pixel
deconvolution methods simply to remove the instrumental
broadening, and produce the specimen profile. Using this
data, simple microstructural models for the crystallite
size/shape (and if necessary defect content) can be devel-
oped. This data serves as the a priori information for the
full Bayesian/MaxEnt analysis constituting the second
step. Moreover, this approach provides a basis for develop-
ing a series of models from which the most probable model
can be determined using Bayesian model selection theory.
This analysis takes full account of the form of the instru-
mental, background and statistical noise contributions em-
bedded in the diffraction data. As well as providing the
most probable solution, the second step also produces a full
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error analysis of the size distribution— a critical element in
certifying SRM 1979.

The X-ray analysis presented here will be compared
with the results of direct observations of SRM 1979 using
TEM imaging, and a discussion based on this comparison
will be presented.
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The growing interest in nanostructured materials and de-
vices has given new impetus to the research on diffraction
Line Profile Analysis (LPA). Concurrently, the research on
powder diffraction techniques moved toward an increasing
integration of methods, in the attempt at providing struc-
tural and microstructural information from a single, com-
bined refinement procedure.

The Whole Powder Pattern Modelling (WPPM) ap-
proach was devised according to the philosophy of analys-
ing powder diffraction data on the base of physical models
of the real microstructure, without using a priori fixed ana-
lytical peak-profile functions. Main models consider the
effect of (i) crystalline grain shape and size distribution, (ii)
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line defects (dislocations), (iii) structural mistakes (e.g.,
planar defects like twin and deformation faults or
anti-phase domain boundaries) and (iv) grain surface-re-
laxation effects, but in principle any possible source of line
profile effects can be easily included in the general WPPM
algorithm.

The present work addresses recent developments in the
WPPM approach. Besides reviewing the basic theory un-
derlying the WPPM, refinement results for nanocrystalline
and heavily deformed materials are shown and discussed in
comparison with the outcome of traditional line profile
analysis methods. Actual limits and future prospects in
LPA are also discussed.

COHERENCE OF NANOCRYSTALLINE PARTICLES TO X-RAYS
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In the kinematical diffraction theory, individual crystallites
are defined as coherent domains and their coherence to
X-rays is neglected. This assumption is certainly correct
for large crystallites (larger than some tens of nanometers),
which are represented by narrow points in the reciprocal
space. On the contrary, this assumption may be incorrect in
nanocrystalline materials (smaller than 10 nm) with broad

and overlapping reciprocal space points, where a partial
coherence of the adjacent crystallites can be anticipated. In
X-ray diffraction (XRD) experiments, partly coherent
crystallites seem larger because they cannot be distin-
guished from each other. The partial coherence combined
with a slightly different orientation and with a shift of adja-
cent crystallites causes an additional diffraction line broad-
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ening, which is increasing with increasing size of the
diffraction vector. Such a diffraction line broadening is
then misleadingly interpreted as microstrain. The above
phenomena were described theoretically considering that
the overlap of the reciprocal space points from adjacent
crystallites can serve as a measure of their coherence in the
direct space. It was shown that the degree of coherence of
the nanocrystalline particles depends on their size as well
as on their mutual orientation. The experimental evidence
of the coherence of the nanocrystalline particles to X-rays
was provided by the comparison of the crystallite size ob-
tained from XRD and from the transmission electron mi-
croscopy with high resolution (HRTEM). The

S-08

experimental results were obtained on the Ti;  ALN thin
films with different chemical and phase compositions,
which were deposited by the arc sputtering from two tar-
gets (Ti and Al) in working atmosphere containing nitro-
gen. In these samples, HRTEM yielded the crystallite size
of 35— 50 A; the crystallite size obtained from XRD was 35
—200 A depending on the degree of coherence of the neigh-
bouring crystallites. The coherence of the adjacent crystal-
lites varied with the degree of the preferred orientation of
crystallites and with the phase composition of the samples
(cubic ternary solid solution (Ti,Al)N and hexagonal AIN).

ANALYTICAL EXPRESSION FOR DIFFRACTION LINE PROFILE FOR
POLYDISPERSIVE POWDERS. NEW METHODS FOR GRAIN SIZE DISTRIBUTION
DETERMINATION

Roman Pielaszek, Witek Lojkowski

High Pressure Research Center, Polish Academy of Sciences

An analytical expression for the diffraction line profile
for polydispersive powders (particularly, nanopowders)
with Gamma Grain Size Distribution is derived. The ex-
pression consists of elementary functions only and can
readily replace standard functions (like Gaussian,
Lorentzian or Pearson) for diffraction peak fitting pur-
poses. This allows for direct Grain Size Distribution deter-
mination using standard fitting software. Well established
Scherrer method allows for determination of the average
grain size of a crystalline powder by measurement of Full
Width at Half Maximum(FWHM) of the diffraction peak
profile. Basing on the expression derived, wepropose an
enhancement of this classical method. Measurement of two

widths ofthe same peak, allows for two parameters to be
distinguished: the average grain size and dispersion of
sizes (sigma). These parameters are sufficient todraw
Grain Size Distribution (GSD) curve, that is much more in-
formative than asingle size parameter.

We propose to measure widths at 1/5 and 4/5 of the peak
maximum (FW1/5M and FW4/5M, respectively). A simple
algebraic formula that converts measured FW1/5Mand
FW4/5M values into and (sigma) is presented. The
FW1/4/5M method proposed in this paper is especially
sensitive in case of a broad diffraction maxima, i.e. for
nano-sized polycrystals.

S-09
TEST OF APPLICABILITY OF SOME POWDER DIFFRACTION TOOLS TO
NANOCRYSTALS
Z. Kaszkur

Institute of Physical Chemistry PAS, Warszawa, 01-224 Poland

Most of the diffraction structure analysis methods devel-
oped for polycrystals meet their application limit when
crystal size decreases below few nanometers. Measurable
effects of nanocrystallinity on the analysis can be noticed
already for 10 nm crystallites. The Bragg law itself ceases
to apply strictly [ 1] what appears to be a direct consequence
of short atom rows and thus of short, truncated Fourier se-
ries in the peak harmonic representation. The surface relax-
ation effect adds only a minor term to the lattice constant
calculated directly from a single peak position. With ad-
vent of nanotechnologies and rising interest in experimen-
tal analysis of nano-sized structures it is increasingly
important to test application limits of the available struc-
tural methods.

The structural methods affected include the full profile
analysis, methods of separation of size and strain (the Wil-
liamson-Hall plot as well as the Warren-Averbach
method), methods of a lattice constant determination,
quantitative analysis (linearity of the peak intensity — num-
ber of atoms dependence) etc.

The tests were performed on the model nanocrystals
having distribution of sizes following the log-normal dis-
tribution of a crystallite volume. The maximum was cen-
tred ~5nm and the model crystallites were cubooctahedral,
closed shell fcc structures having from 561 to 24739 atoms.
The structure was chosen to be that of palladium metal and
the interatomic potentials used for its relaxation followed
the Sutton-Chen N-body scheme [2]. Both non-relaxed and
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energy relaxed models were used to estimate the effects of
relaxation.

The diffraction patterns for the model were calculated
followig the Deby’e formula. The patterns were analysed
using PEAKFIT program [3] via decomposing the profiles

S-010

system pattern.

The Warren-Averbach analysis for the same pattern
(002 peak family) enables reconstruction of the original
column-length distribution and confirms the presence of a
not vanishing stress distribution for the relaxed model. For
the models of bimodal log-normal distribution the same
analysis fails however in reconstructing the column length
distribution in both: maxima positions and their amplitude
ratio [4].

The discussed effects are not negligible in a full profile
analysis of nanocrystals and are more significant the grater
stress is induced to the nanocrystal structure.
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MICROSTRUCTURE OF SEVERELY DEFORMED METALS FROM X-RAY PEAK
PROFILE ANALYSIS

J. Gubicza® N. H. Nam®and V. V. Stolyarov®

@Department of Solid State Physics, Eétvés University, Budapest, Hungary
®Institute of Physics of Perspective Materials, Ufa State Aviation Technical University, Ufa, Russia
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Severe plastic deformation (SPD) is an effective tool for
producing bulk ultrafine grained (submicron grain sized or
nanostructured) metals. One of the most common SPD
methods is equal channel angular pressing (ECAP) — a
technique that results in a homogeneous sub-micron grain
structure of the workpiece [1]. The ultrafine grained mate-
rials produced by ECAP have an attractive combination of
high strength and good ductility due to their low contami-
nation and unique structures. For understanding the me-
chanical behavior of materials produced by ECAP, it is
necessary to characterize their microstructure. In this work
the microstructure of cubic TiNi and hexagonal Mg(Al) al-

loy produced by ECAP is studied by X-ray diffraction peak
profile analysis. The high resolution X-ray diffraction ex-
periments are performed using a special double-crystal
diffractometer (Nonius FR591) with rotating Cu anode [2].
The peak profiles are evaluated by the Multiple Whole Pro-
file (MWP) fitting procedure described in detail in Ref. [3].
In this method, the Fourier coefficients of the experimental
profiles are fitted by the theoretical Fourier transforms cal-
culated on the basis of a model of the microstructure [3].
The crystallite size distribution and some characteristic pa-
rameters of the dislocation structure (e.g. density and ar-
rangement of dislocations) are obtained from the fitting.
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Additionally, the procedure enables the determination of
the prevailing dislocation slip systems in the sample [4].
The eleven dislocation slip systems in a hexagonal Mg al-
loy can be classified into three groups based on their Bur-
gers vectors: <a> type, <c> type and <c+a> type [5]. X-ray
diffraction peak profile analysis reveals the abundance of
<a>-type dislocations besides the <c>- and <c+a>-type dis-
locations in the as-received Mg alloy. During high temper-
ature ECA pressing (at 270 °C) the fraction of <c+a>-type
dislocations increases. The correlation between the
microstructure and the room and high temperature mechan-
ical behavior is also studied and discussed.
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COMPOSITION VARIATIONS IN LINE BROADENING ANALYSIS

A. Leineweber, E. J. Mittemeijer

Max Planck Institute for Metals Research, HeisenbergstraBe 3, 70569 Stuttgart, Germany

In the course of an analysis of broadened powder diffrac-
tion-line profiles the separation of different contributions
to the overall physical line broadening is required. E. g.
several methods exist to separate size and microstrain
broadening due to their different dependencies on the re-
flection order.

The most prominent source of microstrain broadening
are microstresses around extended defects like disloca-
tions. Another, less frequently considered origin of
microstrain broadening is local variation in composition
[1] which leads to local variations in the lattice parameters.
In the simplest case composition varies only between dif-
ferent coherently diffracting domains, i.e. each domain has
its own characteristic lattice parameters which are them-
selves a usually monotonous function of composition. In
such cases the diffraction patterns are simple
superpositions of the diffraction patterns originating from
the different compositions.

In general the probability density function of composi-
tion is expressed in the diffraction line profile of each re-
flection Akl, according to the dependence of the d-spacing
dy on composition. This compositional contribution to the
line broadening can be very complicated and has to be con-
voluted with other occurring sources of line broadening
and the instrumental resolution.

For relatively narrow and symmetrical unimodal com-
position distributions around an average composition the
widths By, of the reflections on the diffraction angle 26,
scale vary for a certain direction of the diffraction vector
like

B,, =A(hkl)xtan 6, 1)
with A(hkl) being an anisotropy factor which varies with
the direction of the diffraction vector but not with its length
(i.e. with 20,y,). A(hkl) can be expressed as

Akl =djy x| Y Dy W™ k51 | )

H+K+L=2
The parameters Dy, can be calculated from the de-
pendencies of the reciprocal metrical matrix components
on composition and the width of the composition distribu-

tion function. The symmetry restrictions for the dependen-
cies of the reciprocal metrical matrix components on
composition reflect the crystal system and thus impose
symmetry restrictions on Dyg;, since the influence of the
composition distribution on the line width is the same for
all reflections. This leads to one parameter Dy, for the cu-
bic system (i.¢. the line broadening is isotropic) and six pa-
rameters Dy, for the triclinic system. For sufficiently
(pseudo-)Voigt-like composition distributions anisotropic
line broadening according to Egs. 1-2 can conveniently be
incorporated into a Thompson-Cox-Hastings pseudo-
Voigt function profile function [2] in the course of a
Rietveld refinement.

The anisotropic line broadening as given by Eq. 1-2 consti-
tutes a physically founded special case of a previously pro-
posed phenomenological model for anisotropic microstrain
broadening [3, 4] having an anisotropy factor of

A(hkl)=d}, % J Y Sy h K (3)
H+K+L=4

which is to be combined with Eq. 1. In order that Eq. 3
is identical with Eq. 2, additional symmetry restrictions on
Suk: have to be introduced, only then Eq. 3 could be used to
describe the anisotropic line broadening due to composi-
tion variations as well.

Different examples of diffraction line broadening from
more or less inhomogeneous solid solution samples will be
presented. Possibilities to distinguish compositional
microstrain broadening from other types of line broaden-
ing, as well as problems encountered in such analyses will

be presented.
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SIZE ANISOTROPY AND LOGNORMAL SIZE DISTRIBUTION IN THE POWDER
DIFFRACTION WHOLE PATTERN FITTING

N. C. Popa®® and D. Balzar® ¢

@Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region,
Russia; °National Institute for Materials Physics, P.O. Box MG-7, Bucharest, Romania; “Department of
Physics and Astronomy, University of Denver, Denver, CO 80208, USA; INational Institute of Standards and
Technology, Boulder, CO 80305, USA.

The approach developed by Popa and Balzar [1] to
model the size broadening in powder diffraction patterns
by samples with lognormal size distribution of spherical
crystallites can be easily extended to include size aniso-
tropy if the crystallite shape is approximated by an ellip-
soid.

In comparison with the existing approaches using ellip-
soids to describe the size anisotropy, this approach uses a
peak breadth symmetrized according to the crystal Laue
class.

S-013

The proposed model was tested on a zinc oxide diffrac-
tion pattern measured in a Bragg — Brentano geometry. The
model is compared with the previously proposed model us-
ing spherical harmonics to describe the size anisotropy [2].

[1] Popa, N. C. & Balzar, D. (2002). J. Appl. Cryst. 35,
338-346.

[2] Popa, N. C. (1998). J. Appl. Cryst. 31, 176-180.

SIMPLIFIED MICROSTRUCTURAL MODELS TO ANALYZE ANISOTROPIC SIZE AND
STRAIN

Juan Rodriguez-Carvajal
Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif sur Yvette Cedex, France.

A summary of the different approaches to extract and inter-
pret microstructural parameters from powder diffraction
techniques will be presented. Special emphasis will be de-
voted to the so-called Voigt model for both the instrumen-
tal and the intrinsic diffraction peak shape. Under this last
assumption many kinds of microstructural effects can be
studied in a simplified manner. This quite general model is
fully implemented and ready to be used in the computer
program FULLPROF together with the Rietveld method.
Complex anisotropic peak broadening may be due to size
and strain effects, a complementary electron microscopy
study is often needed to disentangle and evaluate the main
(size or strain) contribution to broadening.

To treat anisotropic size effects it is extremely useful, in
many cases, to use linear combinations of spherical har-
monics to model the Lorentzian part of the peak broaden-
ing. The apparent sizes along different directions can be
reconstructed from the refined coefficients and an average
“apparent shape” of the coherent domains of the sample
can be obtained. Some examples taken from battery posi-
tive electrode materials and catalysis will be presented, one
of them is shown in Figure 1.

In case of dominant anisotropic broadening due to
microstrains (high number of dislocations, vacancies, twin
faults, solid solution effects, etc.) a phenomenological ap-

proach introduced 13 years ago [1] and based in the as-
sumption that all the defects responsible of the broadening
can be reduced to fluctuations and correlations of cell pa-
rameters, or any combination of them, has proven to be ex-
tremely useful. A convenient formulation derived from [1]
when the metric parameters are the coefficients of the qua-
dratic form in (%k]) constituting the square of a reciprocal
lattice vector was proposed by Stephens [2] and a similar
one, based in elasticity theory, was previously proposed by
Popa [3]. We will show that there are many equivalent
ways to treat anisotropic strain broadening, using the as-
sumptions first published in [1], that can help to construct
physical models for the origin of the anisotropic
microstrain broadening. Some examples taken from differ-
ent kind of materials (intermetallics, oxides) in different
contexts (phase transitions, reducing synthesis conditions,
etc.) will be presented.

[1] J. Rodriguez-Carvajal, M. T. Fernandez-Diaz, J. L.
Martinez, J. Phys. Cond. Matter 3, 3215 (1991).

[2] P.W. Stephens, J. Appl. Cryst. 32, 281 (1999).
[3] N.C.Popa,J. Appl. Cryst. 31, 176 (1998).
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Figure 1: Example of conventional X-ray (Cu-K,,) Rietveld refinement of a Ni(OH), sample (P-3m/,a~3.13 A, cx 4.61 A), witha
strong anisotropic peak broadening, using spherical harmonics for size effects. The insets show the “average apparent shape” of the

crystallite coherence domains in different directions.
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EVALUATION OF SIZE AND STRAIN PARAMETERS FROM X-RAY PEAKS BY THE

MOMENTUM METHOD

A. Borbély, A. Révész, |. Groma

Eétvés University, Department of General Physics, H-1518, POB. 32, Budapest, Hungary.

Determination of meaningful and reliable size and strain
parameters from X-ray peaks is a challenging task for now-
adays  evaluation techniques. In this respect
microstructurally based models are welcome since they
predict the shape of X-ray peaks, which can be directly
compared with experiment. This is especially true for
nanomaterials when due to the small particle size a nearly
Lorentzian peak shape is expected. If the particles contain
lattice defects, then the resulting profile is given the convo-
lution of the transform of the size profile and the transform
of the profile characteristic for the relevant lattice defect. It
is known that in case of dislocations (the most frequently
encountered lattice defect) the tail of the profile varies as
g, where ¢ is the deviation from the reciprocal lattice
point. According to the general theory of dislocation in-
duced X-ray peak broadening [1,2] only this asymptotic
behaviour can be anticipated, the shape of the whole profile
being unknown. Exception from this is the special case of
restrictedly random distribution of dislocations, a model
developed by Wilkens, who has calculated the entire peak
shape [3]. It is however, questionable if this special dislo-
cation distribution is valid in any practical situation. If not,
it is safer to consider only the asymptotic behaviour of the
X-ray peaks. This doesn’t mean however, that the Wilkens
model and its incorporation in multi-profile fitting pro-
grams [4], to replace less physically justified peak-func-

tions, is not applicable. We only want to stress that in such
cases a microstructural justification of the selected evalua-
tion method should be given. If the selected method cannot
be justified, then only the general model is reliable.

Since a general peak-function applicable to each inves-
tigated case has not been found yet, we will discuss the as-
ymptotic method. The kinematic theory of X-ray scattering
predicts at large ¢ values a ¢ and ¢~ dependence of the
scattered intensity, for the cases of small crstallite size [5]
and dislocation [2] produced broadening, respectively.
Commonly the measurements contain statistical errors,
which may be reduced if an integral evaluation method is
selected. Extending the variance method of Wilson [5], the
authors have proposed recently a momentum method for
the evaluation of the average particle size and dislocation
density [6], when both sources of broadening are present.
According to the ¢ dependencies mentioned above the dif-
ferent order moments of the scattered intensity have typical
behaviours. For example the fourth order moment divided
by ¢° is constant when broadening in produced by disloca-
tions and shows linear ¢ dependence for particle type
broadening. The great advantage of the momentum method
is that one can readily see the type of broadening present in
the experiment and verify if the assumptions of small parti-
cle size or presence of dislocations applies. The method is
exemplified on measurements done on ball-milled and
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heat-treated aluminium powder samples. An error analysis
of the evaluated parameters is presented also.
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X-RAY DIFFRACTION FROM EPITAXIAL THIN FILMS : AN ANALYTICAL
EXPRESSION OF THE LINE PROFILES ACCOUNTING FOR MICROSTRUCTURE
A. Boulle, R. Guinebretiere, A. Dauger

Science des Procédés Céramiques et de Traitements de Surface — CNRS UMR 6638, ENSCI, 47 7 73
avenue Albert Thomas 87065 Limoges Cedex

The effect of finite crystal size on the X-ray diffraction line
profiles is known since the experiment of Friedrich,
Knipping and Laue [1] who first derived the formula
known as the Laue function : sin (Q#/2)/sin (Qd/2), where
0, t and d are the length of the scattering vector, the crystal
thickness and the interplanar spacing in the direction of the
scattering vector. Since that time a large amount of work
has been devoted to the extraction of information concern-
ing ‘size’ and ‘strain’ from the XRD line profiles [2,3],
with particular emphasis being laid on polycrystalline ma-
terials. In such systems the kinematical theory of diffrac-
tion was shown to apply very well. Concerning epitaxial
thin films, the high crystalline quality layers that are
achievable using molecular beam epitaxy or chemical va-
por deposition strongly promoted the use of the more rigor-
ous dynamical theory of diffraction [4]. Up to recently
these studies mainly focused on semiconductor materials.

In the recent years much attention has been paid on ox-
ide epitaxial thin films, but real structure effects (e.g. ran-
dom lattice spacing fluctuations, thickness fluctuations,
roughness...) remain difficult to incorporate into the dy-
namical scattering theory. Moreover, the relative imperfec-
tion of oxide thin films (as compared to semiconductors)
enables to use the kinematical theory. However, the pres-
ence of defects strongly alters the shape of the intensity dis-
tribution predicted by Laue. Several authors modified this
expression in order to account for the effect of one of the
above-mentioned defect [5,6], but up to now the combined
effects of different defects are in general handled using a
numerical integration of the expression of the intensity dis-
tribution.

In this communication we derive an analytical interfer-
ence function able to describe the XRD line profiles of an
epitaxial thin film with a microstructure made of different
type of defects: film thickness fluctuation, roughness, cu-
mulative and non-cumulative random lattice spacing fluc-
tuations. The derivation is carried-out within the
framework of the kinematical scattering theory. For brev-

ity, in this abstract we focus on the coherently scattered in-
tensity, / = <E><E>. The effect of diffuse scattering will
be discussed at the conference. The scattered amplitude
distribution, <E>, of a thin film with a rough interface and a
fluctuating thickness can be written [7]:

(E(q.) =F, [ [ [ dtdz,dz-p(t)p(z, X3z 2, 1 exp(—ig.z)

q. is the z-component of the reduced scattering vector q =
Q — h, h being the reciprocal lattice vector of the reflection
(the z axis is chosen parallel to the outwards film surface
normal). z, z; QQ and F), are the film thickness, the coordinate
of the interface, the film shape factor (1 inside, 0 outside
the film)and the structure factor, respectively. p(x) is the
probability density function of the variable x. It can further
be shown that cumulative random lattice spacing fluctua-
tions can be accounted for by making the substitution:

2 (02
.O°c .
q, < q, —IQT“ where 6, is the root mean squared

(rms) cumulative lattice displacement. Making the assump-
tion that all p(x) are given by normal distributions it turns
out that:

F ne,
10)=— I o026 420t
2 (02
q2 + Q Gu
: 2d

X {1+exp{—q§cf -Q°c'? <t>}

|2

d

_ZeXp[qfcf +0%c'? i}} cos(q.(t) )}

with
2 _ 2 2
G; =0; +0, —2r5,0,

where Gu(c), Gy, Os, and r are the rms lattice displacements,
the rms interface roughness, the rms surface roughness and

© Krystalograficka spole¢nost



Materials Structure, vol. 11, no. 1a (2004)

13

interface-surface roughness correlation coefficient (r = 1
correlated, r = 0 uncorrelated, r = -1 anti-correlated). The
effects of these microstructural parameters (computed with
the above equation) are shown in fig.1 and fig. 2. and will
be further discussed at the conference together with the as-
sumptions made.
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Fig.1 (left) : effect of o) and o5 on the line profile of 100nm-thick film. (a) 6; = 65=0; (b) 6; =0, 05 =5nm; (c) o
=5nm, 6s=5nm ; (¢) o;=>5nm, os=10 nm (r =1 bold black line, r = 0 black line, r =-1 gray line).

Fig.2 (right): effect of cumulative lattice spacing fluctuations. (a) 6,=0 ; (b) 6,”=0.05 A ; (c) 6,=0.1 A; (d)

6.2 =02A.
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