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Abstract

This paper shows an alternative way of the multilayer
structure refinement to the well established least-squares
method. If calculated for the low-angle x-ray reflectivity,
the residual function (based on squared differences be-
tween the measured and the calculated reflectivity curves)
is oscillating with respect to some parameters. This makes
the refinement by the linearised least-squares method com-
plicated and ineffective. Genetic algorithm can be an effi-
cient substitute or at least a complementary technique to the
linearised least-squares method.
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1. Introduction

X-ray scattering from multilayers involves the specularly
reflected wave and the diffuse scattering [1]. The first au-
thor, who observed the dynamical effects in the diffuse
scattering was Y. Yoneda [2]. Intensity of the specularly re-
flected (coherent) wave approaches the incident wave in-
tensity, therefore the coherent wave has to be treated
dynamically. The technique used to measure the reflec-
tivity is a symmetrical 6/260 scan; the typical 20 angles are
of order of few degrees. In the specular reflectivity, so
called Bragg-like maxima and Kiessig oscillations can be
observed (see Fig. 1). The Kiessig oscillations appear if the
whole multilayer stack has a well-defined thickness and
(relatively to its thickness) a low roughness at the surface
and at the substrate. The Bragg-like maxima (at 1.1, 2.0 and
3.0° in Figure 1) arise in case of periodic multilayers; their
angular positions can be calculated from the Bragg law,
which must be modified to respect the refractive index of
the matter. Instead of the interplanar distance, the thickness
of the repeated motif stands out in the modified Bragg
equation.

Apart from the coherent wave, the diffuse scattering is
also produced, since there are many imperfections in the
multilayer microstructure. The diffusely scattered wave is
at least few orders of magnitude weaker; thus the
kinematical approach is quite justified. Unlike for the
kinematical theory of diffraction, there is not only the
strong incident wave present in the low-angle scattering,
but also the specularly reflected wave has to be considered.
This leads to the well-established semi-kinematical ap-

proach referred to as DWBA (Distorted Wave Born Ap-
proximation) [3].

The imperfections can be generally divided into the
disturbances at the atomic scale, to which the low-angle
x-ray scattering is not sensitive at all, and into the
well-correlated microstructure imperfections. The former
just decreases the specular reflection, the latter too, of
course, but it is also responsible for the diffuse scattering.

The scans used to measure the diffuse scattering are
mainly the ®-scans and the so-called off-scans (this means
0/26 scans with a non-zero ® offset from the symmetric po-
sition). Another type of the asymmetrical scan is the detec-
tor scan (26-scan), but this was not used in our case. In the
specular scan (symmetrical 6/20 scan), there is not only the
specular reflectivity (coherent wave) present, but there is
also a portion of the diffuse scattering, which leans right
into the detector slit direction. We can reduce this portion
by approving the resolution (by narrowing the primary
beam divergence and detector angular resolution), but it
can never reach zero. The specular wave has a finite angu-
lar divergence due to the sample curvature and block-
shaped multilayer structure; thus the intensity ratio be-
tween the coherent wave and the diffuse scattering is finite
in any direction. There is a possibility to neglect the diffuse
scattering in the specular scan for very small angles. How-
ever, as the reflection angles increase, the specular wave di-
minishes and the diffuse scattering in the specular direction
must come into account.

The microstructure parameters of the multilayers,
which can be investigated by measuring the reflectivity and
low-angle diffuse scattering, are as follows:

— Thickness of the whole multilayer system and thickness
of the repeated motif (in case of a periodic multilayer)

— In some cases also the thickness of several layers (if
there are not many)

— Mean electronic density of the layers (relatively to the
reference structure)

— Geometrical roughness and interfacial interdifussion
depth rms values

— Correlation parameters of the geometrical roughness
(lateral correlation length and the degree of vertical rep-
lication)
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2. Motivation

Reflectivity curves contain most of the structural informa-
tion on the multilayer. Those are the period (if we suggest a
periodic multilayer), total roughness of the interfaces (this
includes both the geometric roughness and the interfacial
interdiffusion) and the mean electronic densities in the lay-
ers [4].

If one regards only the case in which all nominally
same layers have the same thickness and electronic density,
then the fit of the calculated curves is not satisfactory.
Moreover, a precious information on the technology im-
perfection is lost. The deposition conditions often change
during the deposition process, and a trend or simply devia-
tions can then be obtained from the multilayer structure pa-
rameters.

If we assume that all parameters are independent, we
have to treat another problem: many partially correlating
parameters. Saying “partially correlating” we mean that the
residual function minima are enlarged in a general direc-
tion. A minimum with respect to one parameter then shifts
with a change of another parameter, i.e. when looking for a
minimum, there is a need to change more parameters at
once, not just one after another. Let us suggest a change of
the thickness of a single layer by the value of about the pe-
riod (period is the thickness of the repeated motif). Then
the main Bragg-like maxima do not move at all (Fig. 1). If
we replace the corresponding increase of the total
multilayer thickness by decreasing (formally) the thickness
ofthe next two layers, the calculated reflectivity curve is al-
most the same. Not exactly, sure, but we have modified one
of the top-most layers, to which the reflectivity is most sen-
sitive. The difference can be observed, but if both the origi-
nal and the theoretic reflectivity curves of the modified
model were compared with the measured curve, no one
could know, which one would be better.

Simulated reflectivity curves
3 the same total
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Figure 1. Simulated reflectivity curves for different thickness of
a single layer. Original structure is [20 A Fe /25A Au]x10 on Si
with 100 A Au cap (solid line). Then: second Fe layer from top
modified to 65 A (dotted line), and finally all neighbouring Au
layers thinned to 2.5 A (solid line with circles in calculated
points). One curve is divided by 100 and the other is multiplied by
100 for better recognition.

Thus, applying the non-linear least-squares method on
the initial not-very-perfect model, the structural parameters
can leave the rational limits. Consequently, any other step
of the algorithm needn’t find better model describing the
real structure more reliably.

This is caused by the oscillatory behaviour of the resid-
ual function. The least squares method simply slides
straight into the nearest minimum of the residual function
and won’t leave it any more.

3.  Solution of the problem

The problem described in the previous part can be treated
by means of the genetic algorithm, especially when this is
combined with the least-squares method.

Usually, if the least-squares method fails as described
above, it can be mended by starting the refining process
with a little different initial parameters. This may produce
better but also a worse solution. If one has a lot of patience,
finally the best solution can be obtained.

Another approach is to use the genetic algorithm for
random creation of the initial parameter sets. It could be
used just to produce random parameters spread around the
original model, which are refined over and over again,
storing every better solution than the previous best one can
yield. This technique does work but it is quite exaggerating
to call it genetic algorithm.

The real genetic algorithm’s power insists not only in
producing the random initial parameters for the
least-squares method, but also in capability to refine them.

Indeed the term “refine” is not accurate, when we are
talking about the genetic algorithm. Genetic algorithm
cannot improve the parameters by modifying them in the
direction of better solution like the derivative-methods do.
However, we are going to use the term “refinement” in a
figurative sense to denominate its capability to find better
solutions by applying itself repeatedly.

4. Mathematical background

Upon the least-squares method one minimises the weighted
sum of squared differences between calculated and mea-
sured intensities:

S=2 Wi = 2w (i =y ), 1

where i stands for experimental points. In case of reflec-
tivity curves, the intensity (y) varies by several orders. The
weight w; has to be adjusted to the fact:

w, =1y ), @

which corresponds to logarithmic scale refinement with a
constant weight (for small differences):

f=X 0= 2w s ye)
6
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In order to make the genetic algorithm co-operating
with the least-squares method (note we are attempting to
combine both methods, not just to apply them one after the
other), it has to look for the best solution by the same rules,
i.e., genetic algorithm has to minimise the same function
(3) by changing the free parameters.

In terms of the genetic algorithm [5], one parameter is
equivalent to a gene. Genetic algorithm works not only
with one set of the parameters (the individual), but it stores
several different sets — the population. The population is
developed by means of genetic operators.

If we represent the individual by a vector a, its classifi-
cation (also referred to as fitness function) f(a) is a scalar,
then the whole population forms the matrix 4 and a classi-
fication vector f{4). We are actually minimising the classi-
fication function (3) instead of maximising the fitness
capability of the individuals.

There are two main ways of developing the population
— mutation and crossing-over. The mutation is a random
process, which is basically responsible for a population
gene range spreading. A simple mutation insists in a ran-
dom change of a randomly selected parameter a;, which be-
longs to a randomly chosen individual @. The change, in
our case, happens around the initial value (so called bound-
ary mutation [5]) with normal (Gaussian) distribution with
a width defined as a function of the initial parameters:

b, =a; +md(mute, (a));.

b, =a, k#j

“)

Function mute; determines the mutation range depend-
ing on the starting values of the free parameters and may be
considered as a constant for instance; rnd(x) represents a
random number with normal distribution around zero:

rnd(x)]

w(rnd (x)) =exp[— o (5)

The new created individual b is either added to the pop-
ulation or it replaces any other individual (e.g. the worst
one), that is killed. The only need to keep the genetic algo-
rithm working is to preserve the best individual from kill-
ing.

The cross-over operator works upon two different ran-
domly or even systematically selected individuals @ and b.
The new individual is a linear combination of those origi-
nal ones with a weight inversely proportional to their clas-
sifications:

. _a[(b)+b- f(a) ©
" fla)+ f(b)

If the initial individuals lie in opposite direction with
respect to the global minimum, this process can approach
the minimum, otherwise not. That is why it is useful to
combine this process with a random mutation in all param-
eters around this “centre of gravity” with a normal distribu-
tion widths equal to parameter differences of the original
individuals:

c=c, +rnd(a—b), (7

where rnd(x) is a vector of rnd(x). Thereby, the parameters
can also leave the initial range in the better individual’s di-
rection.

In the matrix formalism presented above, each genetic
operator represents a matrix multiplication of a population
matrix 4 by the evolution matrix D and an addition of the
mutation matrix M. Let us suggest that the matrix 4 con-
tains the individuals in rows. Then:

A =D-A" + M. ®)

Matrix D is of the size n x n if the new individual re-
places another or n x (n+1) if the new one is added to a for-
mer n-member population. In our case (only one new
individual is produced), the evolution matrix is almost the
identity one, except a single row (index j, where j is the in-
dividual to be killed or j = n + 1). Anyway, all rows have
sum of the components equal to unity. The D-matrix of the
mutation operator is equal to the unity matrix. The
cross-over operator has two non-zero components in j-th
row: Dy = fil(itf1) and Dj; = fi/(fif;) (k and [ are different
random indices 1 to n). Let us remind that f{4) is a classifi-
cation column vector. The other rows are the same as in the
unity matrix. Mutation matrix M has only one non-zero
row, namely the j-th one. Its values have been discussed
above.

Now, any application of genetic operators produces
so-called new generation with just a single different indi-
vidual. However, there is still a need to calculate the new
individual’s classification, i.e. the j-th component of the
classification vector f. This means the calculation of the
simulated scattered intensity in all experimental points and
then the differences according to Eq. (3). Since most of the
computational time is consumed by the evaluation of the
new individuals’ classification, there is no progress in pro-
ducing more than one new individual in every generation,
i.e. more complicated expression for evolution and muta-
tion matrices D and M.

5. New individuals generation combined
with the least-squares method

Since the genetic algorithm cannot treat the partially corre-
lating parameters, e.g. the root mean square roughness of
several interfaces, this method cannot be satisfactory itself.
A change of a parameter (even the right way) may produce
worse solution than the original one. Genetic algorithm is
unable to recognise any correlation of parameters and that
is why the combination with the least-squares method is
useful.

The process insists in refining every new created indi-
vidual immediately after it arises. After a certain number of
refining cycles the new individual is classified for the last
time and the next generation is completed. Then the new in-
dividual should lie in a local minimum of the residual func-
tion, at least with respect to the parameters refined by the
least squares method.

The choice of parameters to be refined by the one or the
other (or even by both) methods depends on their defini-
tion. In case of our program, the real multilayer structure
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parameters are arbitrary “user-defined” functions of the re-
fined parameters. Refined parameters are then just vari-
ables without physical meaning. Using this approach, some
kind of correlation can be reduced. For example, if one de-
fines a mean period (thickness of repeated motive), period
perturbations (for several layers) and a fractional part of ev-
ery layer thickness in the repeated motif instead of defining
several layers’ thickness as independent parameters, the
correlation is partially reduced.

In our implementation, the population has the maxi-
mum number of individuals given by the user. Coming up
from the initial model, the new individuals are added until
the number reaches the limit. Then, the new created indi-
vidual always replaces the worst one. This has proven not
to be the best choice, because when all the individuals fall
into one local minimum, the only way to reach the next one
is through a single mutation. That is to say that any individ-
ual with values of the parameters between these minima is
classified much worse and the new individual is killed in
the next step. There is still a chance for it to mutate right in
the next step, but the probability is very low.

The function “mute” (mentioned in chapter ) is set by
the user in accordance with the definition of refined param-
eters. It has to enable reaching the nearest minima in classi-
fication function through the one step, as we have
discussed before.

There is also a possibility to choose, which scans (ex-
perimental data) are used for evaluation of the classifica-
tion function. Such an approach is necessary if the refined
set of parameters does not involve any, to which some
scans are highly sensitive. These scans then have to be ex-
cluded from the refinement, because they could undesir-
ably influence the values of refined parameters. This effect
comes up from the fact that the omitted scans are usually
less sensitive to some of the refined parameters. If they
were used, they would force them to change the wrong way
in order to compensate wrong values of the non-refined pa-
rameters.

6. Refining process

Now we start to present the refining process on the struc-
ture parameters of two different specimens. The first one is
(nominally) the molybdenum monolayer on Si substrate.

The substrate was first polished by ion beam. The
cleaning process was responsible for deposing a thin tung-
sten layer, which originated from the tungsten cathode.

We tried this simple example to prove the ability of the
genetic algorithm to find a reliable model of the structure,
even if the first model is completely wrong. As we wrote
before, one of the parameters most complicated to be re-
fined by the least-squares method is the layer thickness. It
is connected with oscillations in the reflectivity curve, and
their period is inversely proportional to the thickness of the
layer. If we initially set the thickness to be much less than it
really is, the theoretic curve is at the whole different (Fig.
2). A slight change of it even the right way will produce an
inestimable change of the residual function. Thus, the
least-squares method is unusable for the case.

Using a genetic algorithm with an adequately large
mutation range for thickness, the new created individuals
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Figure 2. Reflectivity curve of a molybdenum and tungsten
bilayer on silicon (open circles). Theoretic curve (solid line) is
calculated for dy, =20 A and dw = 18 A.

spread their thickness in a large scale of values, as the pop-
ulation grows. The limit number of individuals was set to
100. Then the crossing-over process and also the mutations
vary the thickness until the good agreement with the real
curve is gained. Such an individual is necessarily the best
one and won’t leave the population until there is some
better one.

Now it pays to change the mutation range to quite a
smaller value, not exceeding the period. This can be also
satisfied by setting the thickness’ “mute” function to be
proportional to the thickness and by starting the refinement
with the large value of thickness. After a certain amount of
time, the individuals with very different thickness dispose,
as they are replaced by the new created better ones, which
are closer to the right model.

Finally, there are many individuals with only a little
different parameters. The best one is considered to be the
“best fit” model of the structure (Figure 3); its parameters
are shown in Table 1. Note that the real thickness of the
layer is one order different from the initial model.

10" 5
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Figure 3. Reflectivity curve of a molybdenum and tungsten
bilayer on silicon (open circles) and refined theoretic reflectivity
curve (solid line).
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Table 1. Molybdenum and tungsten bilayer refined parameters

p d[A] Getr [A]
Mo 0.88 265 8.6
W 0.81 7.0 9.0
Si 1.00 6.5

Together with the thickness, all the other parameters
were refined. Those were the relative electronic density
(with respect to the bulk material) and effective interface
roughness (of the upper interface). There were also some
non-structural parameters refined, such as sample length,
curvature, primary beam intensity and background.

The second specimen is a multilayer with the follow-
ing nominal parameters: On the silicon substrate a
multilayer system is deposited. It consists of 8 Fe/Gd
bilayers (Fe is first at the substrate). On the top there is an
Al cap layer.

Thickness of several layers was first examined by
means of High Resolution Electron Microscopy (HREM ),
thus the first approach was rather good. The initial shape of
the theoretical curves is compared with that of the experi-
mental ones in Figure 4.

Intensity [a.u]
Intensity [a.u]

Intensity [a.u]
=3

0
Anglew[’]

Figure 4. Measured curves (open circles) in comparison with the
curves calculated accordingly to the initial model (solid lines).
a) specular scan (reflectivity), b) off-scan with the offset from
specular position ® = 300", ¢,d) omega-scans with 6 = 3240" and
6000".

In the first step, only the mean bilayer thickness (the
period), mean thickness ratio (of Fe and Gd layer) in each
bilayer and the thickness of the cap layer were refined to-
gether with the roughness of the lowest interface and its
mean interlayer increase (every upper interface was sup-
posed to have a greater rms roughness). Also some
non-structural parameters, such as sample length, curva-
ture, etc., were refined. The only scan used for evaluation
of the classification was the reflectivity curve, because of
its sensitivity to these parameters (Figure 5).

Then the geometrical part of the roughness (caused by
the real rough surface, not by the imperfections at the

10°4
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Figure 5. Simulation of reflectivity curve after first refinement of
main parameters.

atomic scale) and its correlation parameters were refined
together with the layer thickness. The density aberrations
and the roughness of several interfaces were treated inde-
pendently. That time, all types of scans had to be used in
classification, because only the diffuse scattering distin-
guishes the kind of imperfections and is sensitive to their
correlation parameters. The final fit is shown in Figure 6.
The final multilayer parameters were obtained as shown in
Table 2. For the multilayer system, the mean values are
shown together with their mean statistic deviations. The
means are calculated over the whole multilayer stack. Rela-
tive density of the substrate was considered to be equal
unity as a reference value, which needn’t be too accurate,
as is obvious, if we take a look at the Fe and Gd relative
density mean values.

Geometrical roughness decreases from the bottom to
the top, starting at about 5 A at the substrate and ending
with values comparable with the mean thickness deviation
(0.4 A). Geometrical roughness then increases again
through the last 5 layers up to about 10 A at the surface. The
latter effect corresponds probably to the surface oxidation.

Intensity [a.u]

Intensity [a.u.]
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Figure 6. Measured curves (open circles) in comparison with the
final theoretic curves with the maximum of free parameters (solid
lines) — the “best fit”. a/b/c/d — see Figure5 caption.
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Table 2. Refined values of the main multilayer parameters. Devi-
ation is the rms difference from the mean value for several layers
of the same type.

P d[A]
value | deviation | value deviation
Al (oxidised) 0.61 19.4
Al 0.86 13.1
Gd 1.07 0.02 27.5 0.4
Fe 1.16 0.02 25.7 0.4

The other part of the effective roughness (so called the
diffuse one) is nearly the same throughout the system,
greater at the interfaces with Gd below (about 6 A) and less
at the interfaces with the Gd above (about 3 A). It is the
dominant component of the roughness, the evidence of
which is given by the low level of diffuse scattering.

The mean vertical correlation coefficient in Fe layers is
about 0.82, in Gd layers about 0.76. Greater values for iron
layers were expected due to that the Fe layers are thinner
than the Gd ones. The correlation falls down near the sur-
face. Lateral correlation length is about 300 A for all inter-
faces.

7. Conclusions

Genetic algorithm is a powerful method in the refinement
of the multilayer structure parameters. Its main conve-
nience is, in comparison with the least-squares method, in
the stability of calculation. Even in combination with the
least-squares method, when this fails because of the singu-
lar normal matrix, or if the refinement is not convergent,
the genetic algorithm can treat the new individual without
any further refinement. The process can then continue and
no user interference is necessary.

In comparison with our program MUSIX recently used
for the reflectivity curves calculation, which uses only the
least-squares method, the probability that the structure pa-

rameters leave the rational limits is much lower for the ge-
netic algorithm. This is brought on by the fact that the best
individuals are always left unchanged when producing the
new generation. Any non-rational structure in general has
to be worse then some reasonable in terms of the classifica-
tion function and thus may even be disposed from popula-
tion later.

The computational time is, alas, longer, but user’s time
is saved. The more time it is given for calculation, the better
the solution. The new approach insists mainly in the joint
refinement of the reflectivity curves together with the
low-angle diffuse scattering curves, collected in different
types of scans. There is only one set of parameters used for
the calculation of all the curves and only the joint refine-
ment is the pure technique to treat the effects, which cannot
be separated by experimental means.

Authors would like to acknowledge to Doc. Vaclav Holy for
granting us his program DWBAS8S3 for coherent and dif-

fuse scattering calculation.
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