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Abstract

With the resolution becoming sufficient to reveal individ-
ual atoms, high-resolution electron microscopy (HREM)
can now compete with X-ray and neutron methods to deter-
mine quantitatively atomic structures of materials, with the
advantage of being applicable to non-periodic objects such
as crystal defects. An introduction to the theory and practi-
cal aspects of HREM is given. Principles of other lattice
imaging techniques in transmission electron microscopy –
electron holography and Z-contrast imaging are also de-
scribed.

Keywords:

High-resolution electron microscopy, electron-specimen
interactions, electron diffraction, phase contrast, contrast
transfer, electron holography, Z-contrast imaging

1. Introduction

The last decades are characterized by an evolution from
macro- to micro- and more recently to nanotechnology. Ex-
amples are numerous, such as nanoparticles, nanotubes,
quantum transistors, layered superconducting and mag-
netic materials, etc. Since many material properties are
strongly connected to the electronic structure, which in turn
is considerably dependent on the atomic positions, it is of-
ten essential for the materials science to determine atom
positions down to a very high precision. Classical X-ray
and neutron techniques fail for this task, because of a
non-periodic character of nanostructures. Only fast elec-
trons are scattered sufficiently strongly with matter to pro-
vide local information at the atomic scale.

One of the most commonly used high-resolution tech-
niques in transmission electron microscopy (TEM) is that
of (bright-field) phase-contrast imaging. This relies on the
interference between beams scattered by a specimen and is
usually performed under parallel beam illumination condi-
tions. The main and significant disadvantage of this lattice
imaging method is in the difficulty of image interpretation
in terms of the atomic structure of the specimen. The inter-
pretation is carried out using computer simulations requir-
ing input of a specimen structure model, specimen
thickness and microscope parameters.

Unfortunately, even the best electron microscopes are
hampered by the fact that only the intensity (i.e. the square
of the amplitude), of the electron wave can be recorded on
the photographic film or CCD-camera and an essential part
of the electron wave, the phase information, is lost. Holo-
graphic recording overcome this problem. The (aberrated)
image wave is superimposed with an unscattered plane ref-
erence wave resulting in an interference pattern - electron
hologram. After acquisition and transfer to a computer sys-
tem, amplitude and phase of the electron wave are recon-

structed using the laws of Fourier optics by sophisticated
image processing. Electron – specimen interaction is then
simulated in the same manner as in the case of conventional
phase-contrast imaging.

On the other hand the Z-contrast technique provides
directly interpretable images - maps of scattering power of
the specimen. Allowing incoherent imaging of materials, it
represents a new approach to high-resolution electron mi-
croscopy. The Z-contrast image is obtained by scanning an
electron probe of atomic dimensions across the specimen
and collecting electrons scattered to high angles. Simulta-
neously, spectroscopic techniques can also be used to sup-
plement the image, giving information on atomic-
resolution chemical analysis and/or local electronic band
structure. The resolution of the technique is determined by
the size of the electron probe.

This paper gives an introduction to the theory and prac-
tical aspects of high-resolution electron microscopy. Prin-
ciples of electron holography and Z-contrast imaging are
also described.

2. Electron – crystal interactions

In a transmission electron microscope, a sample in the form
of a thin foil is irradiated by electrons having energy of the
order of hundreds of keV. In the interior of the crystal the
electrons are either undeviated, scattered, or reflected
(Fig. 1).

Electron scattering may be either elastic or inelastic. In
the case of elastic scattering the electrons interact with the
electrostatic potential of atomic nuclei. This potential devi-
ates the trajectory of incident electrons without any appre-
ciable energy loss. In fact a small loss occurs since there is a
change in momentum. However, because of the disparity in
mass of the scattered electron and the atom the loss is too
small (�E/E ~ 10-9 at aperture angles used in TEM) to affect
the coherency of the beam.
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Fig. 1. Interaction of an electron beam with a thin foil
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In the inelastic case energy of the incident electron
may be transferred to internal degrees of freedom in the
atom or specimen in several ways. This transfer may cause
excitation or ionization of the bound electrons, excitations
of free electrons, lattice vibrations and possibly heating or
radiation damage of the specimen. The most common in-
teractions are those with the electrons in the crystal. In this
case the energy loss �E is important, because the interact-
ing particles have the same mass m. The fraction of energy
�E is small as compared to the incident energy E. It is this
primary process of excitation which is used for the Electron
Energy Loss Spectrometry (EELS). This kind of spectrom-
etry as well as different secondary processes of subsequent
desexcitations of the target – X-ray emission, Auger elec-
trons emission, cathodoluminiscence etc. – permit to link
the structural aspect of the specimen with the information
about its chemical nature, if the microscope is equipped
with appropriate detectors.

2. 1. Schrödinger equation and the crystal
potential

It seems obvious that the problem of the diffraction of fast
electrons should require the Dirac equation. However, the
role of the spin in the interaction is negligible (about one
percent [1,2]) and it is therefore sufficient to use the
Schrödinger equation:
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where E is the total energy of the electron and V r( )
�

its po-
tential energy inside the crystal. For fast electrons (E 
 50
keV), it is necessary to take into account the relativistic ef-
fects associated with their motion. The solution of the
Schrödinger equation in the crystal, where the moving
electron is subjected to the action of a variable potential, is
in general very complicated. In case of transmission elec-
tron microscopy it is the very high energy of incident elec-
trons (~ 105 eV) with respect to the crystal potential (~ 10
eV), which enables to simplify the problem. Due to the
very high energy of the incident beam the isotropy of the
space is broken: the majority of electrons propagate in the
direction of the z axis. The space can be divided into the ax-
ial direction (z) and two radial directions (x, y). After this
separation of variables it is possible to modify the equation
(1) by introducing:

i) forward (small angle) scattering approximation
ii) Glauber (projected potential) approximation

The solution of the Schrödinger equation by the multislice
method is based on these two approximations. Another ap-
proach, often used in the TEM for the solution of the
Schrödinger equation is the Bloch wave method, intro-
duced by Bethe in 1928 [3]. Unfortunately, this method can
only be used for perfect crystals but not for the crystals con-
taining grain boundaries, precipitates or other faults. The
Bloch waves theory is described in detail in [4].

i) Forward scattering approximation

By introducing the relation between the wave vector
�
k of

the electron beam and corresponding accelerating potential
E k m
 �

2 2 2/ to the equation (1) we obtain:
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Owing to the high energy of incident electrons it is possible
to consider the action of the crystal potential as a small per-
turbation resulting only in a modulation �( )

�
r of the primary

electron wave. We are seeking a wave function �( )
�
r in the

form:
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Supposing the expression for the modulation �( )
�
r , it is pos-

sible to write:
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changes only slowly

with z. In other words it is possible to neglect backscattered
electrons. The equation (1) thus acquires the form of the
forward scattering approximation:
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Two terms in the square brackets may be considered as in-
dependent. The first term:
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represents the propagation of the electron wave, while the
second one represents the action of the crystal potential.
Therefore:
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The physical meaning of these two terms becomes obvious
from the following: if in the equation (4) we neglect the
term V r( )

�
and if we put kx = ky = 0 and k = kz (projection

of k to the directions x a y is very small), we obtain:
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This is a 2D equation of heat conduction. Its solution in the
point (x, y,z) has a form:
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In Fig. 2 A and B there are two point sources of the waves
(Huyghens principle) at the level of the plane 1. To find the
result of the interference in the point A' at the level of the
plane 2 in the distance z, it is necessary to integrate contri-
butions of A, B and all other point sources in the plane 1,
represented by the function �( , , )X Y 0 . Thus we obtain an
expression:

� �

�

�
�

( , , )

( , , )exp ( ) ( )

x y z

k

z
X Y

ik

z
x X y Y d





 � � ��

��
�

�	�4
0

2
2 2 XdY�

having the form of the convolution integral. Then it is pos-
sible to write:
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where the term in the complex brackets is the Fresnel prop-
agator, describing the propagation of the waves from the
plane 1. The result of their interference in the plane 2 is
given by the convolution.

ii) Glauber aproximation

Neglecting the term A, equation (4) simplifies to the ex-
pression:
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from where we obtain (k kz $ ):
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where the constant before the integral was derived from the
de Broglie relation & %
 h m/ (% is the velocity of elec-
trons) and relation k 
 2� &/ . For �( )
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r we obtain Glauber

approximation [5]:
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and taking �0 = 1 before the interaction of electrons with
the crystal, the original expression (3) becomes:

� '�( ) exp( )[exp( ]
� � �
r ik r i$ (

from which it follows that action of the crystal potential re-
sults in a phase shift of the incident electron wave. As the
potential energy of electron in the interior of the crystal is
negative, the sign of the phase shift is positive.

2. 2. Multislice method

Even in the forward scattering approximation represented
by the expression (4), the Schrödinger equation is difficult
to be solved. In 1957, Cowley and Moodie [6] proposed an
elegant solution, which became much appreciated namely
after appearance of computers. Their method consists in
separating the equation (4) into two expressions (5) and (7)
and in the alternate application of them in thin slices as far
as the electron wave pass the whole thickness of the crystal.

Figure 3 represents the crystal in the multislice
appproximation. The crystal is cut in the direction perpen-
dicular to the incident electron beam into slices of the
thickness of the order of one atomic layer. For each of the
slices the crystal potential is projected to a plane. The elec-
trons propagate in the “layers” of vacuum on very small

distances and under very small angles. Subsequently they
are diffracted on the planes of the potential projected on
very small distances and influencing the wavefunction only
slightly.

If we adopt Fresnel approximation in which a spherical
wavefront is approximated by a parabolic one, we obtain
for the wavefunction emerging from the n-th slice:
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This is the basic formula of the multislice method.
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Fig. 2. Propagation of an electron wave

Fig. 3. Representation of the crystal in the multislice approxima-
tion



During calculation of the wavefunction two effects al-
ternate. Firstly the phase of the incident electron wave at
the entrance to the given slice is shifted due to the action of
the projected potential. The phase shift is given by the inte-
gral over the thickness ). Subsequent convolution repre-
sents the propagation of the wave in a slice of the vacuum
of the same thickness ). If ) tends to zero, the result of the
multislice simulation tends to the exact solution of the
Schrödinger equation. As we are dealing with the slices of
the finite thickness, it is necessary to determine the largest
thickness for which the solution of the Schrödinger equa-
tion is still acceptable. Ishizuka and Uyeda [7] give the fol-
lowing condition: ) , kd 2 , where k is the wave vector of the
electrons and d is the distance on which the potential does
not change significantly. As follows from this equation, if
k is of the order of 2.5 1012 m-1 and d ~ 10-11 m, � should be
lower or equal to 2,5 Å! In fact this condition is stronger
than shows the practice.

The chart of the simulation corresponding to the EMS
code written by Stadelmann [8] is shown in Fig. 4. The in-
cident wave is firstly multiplied by the phase grating, repre-
senting the action of the projected potential Vp(x,y).
Subsequently a fast Fourier transform (FFT) of this product
is performed, in order to calculate easily the product of con-

volution (multiplication in the Fourier space) with the Fres-
nel propagator. After the inverse FFT the calculation either
continues or ends and we obtain a wavefunction for a given
thickness of the crystal.

3. Formation and transfer of the contrast by
TEM

A schematic configuration of a TEM column is in Fig. 5.
Electrons, emitted by an electron gun pass through acceler-
ator to the illumination system composed of two or more
condenser magnetic lenses. After the interaction with the
specimen the electrons enter the imaging system of the mi-

croscope, composed of the objective, intermediate and pro-
jector magnetic lenses. The image is visualized on a fluo-
rescent screen and recorded on a photographic film or on a
CCD-camera.

Objective lens is the most important lens of TEM, be-
cause its aberrations limit the resolution of the microscope.
An electron diffraction pattern is formed in its back focal
plane. A removable aperture situated in this plane is used to
select different electron beams to form different images,
thus manipulating the image contrast. In the “classical” dif-
fraction contrast imaging (Fig. 6a) we use a small objective
aperture to select only one beam – transmitted (T) or dif-
fracted (D) – to obtain the well-known bright-field or

dark-field images of the specimen microstructure. The im-
age is carried only by one beam through the whole imaging
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Fig. 4. Multislice simulation calculation chart

Fig. 5. TEM column

Fig. 6. The size and the position of the objective aperture for dif-
fraction contrast (a) and phase interference contrast (b)



system of the microscope. On the other hand phase-
contrast lattice imaging relies on the interference between
the transmitted and several diffracted beams and so we use
a much larger objective aperture (Fig. 6b).

3.1. Transfer of the contrast by the optical system

In order to understand the relation between the wave-
function at the exit face of the crystal and its image, it is
necessary to remind the basic principles of the image for-
mation under coherent illumination [9-11].

Impulse response and transfer function

A system S assigns to the object defined by a function E r( )
�

an image I r S E r( ' ) ( ( ))
� �


 . If the system is linear, it is possi-
ble to decompose the object E r( )

�
to a sum of elementary

contributions e ri ( )
�

E r c e ri i( ) ( )
� �


-
having a weight ci and to leave the system to act on each of
these elements separately. The image I r( ' )

�
of the object is

then given by a sum of images of the elementary contribu-
tions S e ri( ( ))
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1 , the image of the point .( )
� �
r r� 1 , is the im-

pulse response function.
In consequence a linear optical system is fully charac-

terized by point sources in the object plane and by the im-
pulse response function, which describes how the image of
any point is influenced by the system. Furthermore, if the
system is invariant in the space (isoplanar), its impulse re-
sponse function h r r( ' , )

� �
1 depends only on distances ( ' )

� �
r r� 1 .

In other words, the image of a point source (impulse re-
sponse to the Dirac function . ) change only its position and
does not change either its shape or its intensity, if this point
is moved in the object plane. Then it is possible to put
h r r( ' , )

� �
1 = h( ' )

� �
r r� 1 and simplify the preceding expression,

which takes the form of a convolution integral:

I r E r h r r E r h r( ' ) ( ) ( ' ) ( ) ( ' )
� � � � � �


 � 
 �
�/

/

� 1 1 (9)

If we apply a Fourier transform on this expression, we ob-
tain a simple equation which links the spectra
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and object E r( )
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Fourier transform of the impulse response function in this
equation,

~
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is the transfer function of the system which acts in the do-
main of spatial frequencies

�
q .

Scherzer theory [12] permits to describe the transmis-
sion electron microscope as a linear, space invariant system
without noise, which is characterized by a transfer func-
tion:

T q z i q z q z i q z( , ) exp( ( , )) cos ( , ) sin ( , )� � � �
 
 �' ' '
� � �

(11)

where �z is the defocus of the objective lens. The real term
describes the transfer of the amplitude, while the imaginary
term describes the transfer of the phase contrast (this term
is often abbreviated as CTF: "Contrast Transfer Function").
Here '( , )

�
q z� represents the phase shift of the wave as a

function of the defocus �z and the spatial frequency
�
q. Spa-

tial frequency in the argument of the transfer function is of-
ten replaced by the angle of deviation from the optical axis,
which is linked with the spatial frequency by the relation:
0 &
 | |

�
q , where 0 0
 2 Bragg .

3. 2. Image forming by a lens without aberrations

Image formation in a high-resolution electron microscope
is an interference phenomenon. A parallel, coherent inci-
dent beam is diffracted by a thin crystal placed in the object
plane of the objective lens (Fig. 7). The lens forms in its im-
age plane a magnified and inverted image �( ' )

�
r of the

wavefunction �( )
�
r emerging from the crystal. In the back

focal plane the electron beams converge and form a Fraun-
hofer diffraction pattern (Fig. 6), representing a Fourier
transform ~( )�

�
q of the wave �( )

�
r . The path from the focal
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Fig. 7. Image forming by a lens without aberrations



plane to the image plane may be described as an inverse
Fourier transform. Thus, for the overall relation between
the object and the image we obtain:

� � �( ' ) {~( )} { { ( )}}
� � �
r q r
 
F F F

-1 -1 (12)

As the illumination of the object is coherent, the image A'
of each of the points A results from an interference of sev-
eral (spherical) waves admitted by the opening of the con-
trast aperture (Fig. 6b).

The effect of aberrations intervenes at the level of the
focal plane through the action of the transfer function of the
microscope T q z( , )

�
� (11). The relation (16) takes a more

precise form:

� �( ' ) { ( ) ( , ) { ( )}}
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r D q T q z r
 ( (F F

-1 � (13)

Where D q( )
�

is an aperture function (equal to unity in the
opening of the aperture and zero in the rest of the plane),
which describes the limitations due to the insertion of the
objective aperture [13, 14].

3. 3. Real lenses and their aberrations

The aberrations of real lenses deform the electron waves
and decrease the resolution of the microscope. Fortunately,
in the transmission electron microscopy the electron beams
propagate close to the optical axis and under small angles.
Thus we can neglect higher order aberrations, common in
the photon optics. Nevertheless we have to take into ac-
count these “axial” aberrations: defocus, spherical aberra-
tion, chromatic aberration, astigmatism and coma. The last
two aberrations – astigmatism and coma - can be corrected.

3. 3. 1. Spherical aberration

The effect of the spherical aberration (defined by a spheri-
cal aberration constant Cs) is to draw the marginal elec-
trons (electrons more distant from the optical axis) more to
the optical axis than other ones. Consequently the phase
shift of the beams propagating under a different angle �

with respect to the optical axis is given [12] by:

' 0
�
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0
1

42

4
( ) 
 � Cs (14)

3. 3. 2. Defocus

The focal distance of the electron lenses depends on the ex-
citation current. The variation of the focal distance results
in another phase shift

' 0
�
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2

22

2
( , )� �z z
 � (15)

which can in certain manner compensate the phase shift
due to the spherical aberration, if �z is negative (lower cur-
rent = weaker lens).

3. 3. 3. Coherent transfer function

If we consider illumination conditions as perfectly coher-
ent, the incident beam is:

- monochromatic (temporal coherence) and
- parallel (spatial coherence)

there are both phase shifts ' 01( , )�z (14) and ' 02 ( , )�z

(15) in the argument of the coherent transfer function Tc:
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Scherzer [12] has shown that there is a particular defocus
(Scherzer defocus)

�z Cs
 �12. & (17)

for which the microscope transfers a wide band of the spa-
tial frequencies. The imaginary part of the transfer function
is plotted in Fig. 8. The first zero is considered to be the
limit of the point resolution of the microscope. However it
is possible, taking into account some precautions, to use
also spatial frequencies higher than this Scherzer limit.

3. 4. Partially coherent illumination

The real incident electron beam is only partially coherent.
The effect of the temporary coherence is linked with the
dispersion of electron energy and the chromatic aberration
of the objective lens. The spatial coherence is the imperfec-
tion in the parallelism of the incident beam.

3. 4. 1. Chromatic aberration

The focal length of an electron lens depends on the energy
of electrons. The total dispersion of the energy of electrons
is given by a combination of several contributions: the ini-
tial dispersion �E when the electrons leave the cathode,
variations of the accelerating voltage �V, fluctuation of the
lens current �I and the energy loss resulting from the inter-
actions of the electron with the specimen.

This energy dispersion causes a difference in the focal
length �f, and therefore a point in the object plane is im-
aged as a disc of the radius �r. If we neglect the energy loss
in the observed sample, in the first approximation we can
write:
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where Cc is the coefficient of chromatic aberration. Fejes
[15] has shown that a Gaussian distribution of this enlarge-
ment of the focal length (18) gives an envelope function of
the temporal coherence:

E fT 
 �
�
�
 

!
"
#

exp ( )
�

&
0

2

2

2 4� (19)

(Fig. 8b). This envelope function is damping the transfer of
higher spatial frequencies and limiting the resolution of the
microscope.
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3. 4. 2. Convergence of the incident beam

The convergence of the incident beam (spatial coherence)
limits the resolution of the microscope in a similar manner
as the chromatic aberration does [16]. The envelope func-
tion of the spatial coherence 1 for a semi-angle of conver-
gence is given by the expression:

E
J x

x
S 


2 1( )
(20)

where J1(x) is the Bessel function of the first order and the
first kind, and x is given by :

� �x z C i fs
 � �
�
�
 

!
"
#

2 2
3

2
�1

0
&

& �
0

&
� �( ) (21)

The spatial coherence envelope is plotted in Fig. 8c.

3. 4. 3. Real transfer function

Real transfer function is given by the product of the expres-
sions (16) (19) and (20):

T T E ER C T S
 ( ( (22)

Its imaginary part is plotted in Fig. 8d. The parameters: Cs

= 0.5 mm, �f = 10 nm and 1 = 1 mrad correspond to the mi-
croscope Philips CM20 UltraTwin with a thermoemission
LaB6 gun.

3. 4. 4. Amplitude and intensity transfer

Let us consider a wavefunction � E r( )
�

at the exit of the
crystal and its Fourier transform ~ ( )� E q

�
. The influence of

the microscope is given by the transfer function:

~ ( ) ( , )� E q T q z
� �

� .

In order to obtain the amplitude of the image � IM r( ' )
�

, it is
necessary to perform an inverse Fourier transform:

2 3� �IM Er q T q z( ' ) ~ ( ) ( , )
� � �


 (�
F

1 �

Owing to the fact that Fourier transform of a product is a
convolution of Fourier transforms of individual functions,
it is possible to write (using the relation
F

� 
1{ ( , )} ( ' )T q z h r
� �
� ):

� �IM Er r h r( ' ) ( ) ( ' )
� � �


 � � (23)

It is the same linear relation as the expression (9), and
therefore the amplitude transfer by the microscope is lin-

ear. However, since the quantity that we detect on the pho-
tographic film or on a camera is intensity, we have to study
the intensity transfer.

The intensity of the wave emerging from the crystal is
I r rE E( ) | ( )|

� �

 � 2 , the intensity of its image I rIM ( ' )

�
can be

expressed with the aid of the relation (23):

I r r r h rIM IM E( ' ) | ( ' )| | ( ) ( ' )|
� � � �


 
 � �� �2 2

Since the functions � E r( )
�

and h r( ' )
�

are generally com-
plex, the relation between the intensity of the object I rE ( )

�

and the intensity of the image I rIM ( ' )
�

is not simple.
The intensity transfer under the coherent illumination

is not linear. The relation between the object and its image
can be established only by the calculation.

However, in special cases the non-linearity of the
transfer in intensity is overbalanced by the nature of the ob-
ject. This is true for isolated atoms or "weak phase objects"
- objects of several nanometers thick only [17]. For a de-
tailed analysis of these special cases see [13, 17-19].

If the imaging is incoherent, we obtain an expression
I r I r h rIM E( ' ) ( ) | ( ' )|

� � �

 � 2which is similar to (23). Therefore

the intensity transfer in this case is linear and thus the
Z-contrast imaging gives directly interpretable images (see
§ 8).

4. Interpretation of the interference image

The interpretation of interference images with an atomic
resolution consists in the exact determination of the posi-
tions of atomic columns with respect to the black and white
contrast on the micrograph. A direct interpretation is possi-
ble only in very special cases of "weak-phase objects",
where the final image corresponds to the projected poten-
tial of the whole specimen.

Real crystals are "strong-phase objects". Neither their
interaction with the incident electron beam, nor the transfer
of the intensity of the image are linear. It is not possible to
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Fig. 8. Contrast transfer function and its envelopes (Scherzer
defocus) for a 200 kV microscope with LaB6 gun, Cs = 0.5 mm.
(a) contrast transfer function, (b) spatial coherence envelope, (c)
temporal coherence envelope, (d) product (a)*(b)*(c) – amplitude
transfer function, (e) intensity transfer function with the positions
of spatial frequencies corresponding to hkl planes of aluminium.



assign intuitively a crystal structure that diffracted the elec-
trons to an experimental image.

The main problem is that the positions of maxima and
minima of interference with respect to atomic columns de-
pend at the same time on the crystal thickness and on the
defocus of the objective lens. Furthermore, it is often very
difficult to determine the values of both these experimental
parameters. Fig. 9 shows distribution of minima and max-
ima of interference with respect to the positions of atomic
columns for a wave emerging from a perfect crystal. Inde-
pendently on the transfer of the contrast by the microscope,
the maxima are placed at the position of atomic columns
(z1) or at the "tunnels" between them (z3). However there
are certain thicknesses (z2) for which the emerging wave
has an intermediate form and another series of "supplemen-
tary" maxima appears. These three forms of the waves re-
peat periodically with the crystal thickness.

Let us consider an electron wave (wavefunction)
emerging from the crystal and this wavefunction having its
maxima at the position of the atomic columns (Fig. 10).
The objective lens creates in its image plane an inverted
and magnified image of this wavefunction. The particular-
ity of the interference (coherent) imaging is that we obtain
a series of images (called Fourier images) spread around
the image plane of the objective lens - Fig. 10. These im-
ages are all "sharp". This is an important difference in com-
parison to the incoherent imaging, giving only one sharp
image, under the conditions of exact focus (Gauss focus).
Fourier images repeat with a period �z which depends on
the lateral periodicity of the object, represented here by the
interplanar spacing dhkl and on the wavelength & of the elec-
trons:

�z
d hkl


2 2

&
For imaging of {111} crystal planes of aluminium with 200
keV electrons we obtain �z = 43 nm.

From Figure 10 it is obvious, that depending on the fo-
cus of the objective lens we obtain so called "structure im-
ages" on which the atoms appear as "white" or "black" dots.
Unfortunately there is also a third possibility that the max-
ima of intensity at the positions of atoms and at the position
of "tunnels" between them have approximately the same
intensity. In this case the interference image does not corre-
spond to the geometry of the crystal.

For the interpretation of the atomic resolution micro-
graphs it is therefore necessary to create a model of the cor-
responding crystal and to simulate first its interaction with
the electrons and to obtain the wavefunction emerging

from the crystal. The next step is to calculate the image of
this wavefunction and to compare the result with the exper-
imental micrograph. If the simulation does not correspond
to the experimental image, it is necessary to change the
model and to repeat the simulation until a reasonable agree-
ment is reached.

This method is rather cumbersome, in particular if we
do not know the exact values of certain experimental pa-
rameters, like defocus or specimen thickness. In this case it
is necessary to calculate several series of simulations for
different ranges of parameters.

5. Practical aspects of HREM

In order to obtain good quality interference images, several
conditions should be fulfilled. Firstly it is necessary to have
a suitable, well aligned, electron microscope. Secondly the
sample should be as thin as possible and tilted to a crystal
zone axis to align the atomic columns parallel to the elec-
tron beam.

Let us comment the choice of the microscope. As the
resolution of a TEM depends on the electron wavelength
(acceleration voltage) and the quality of the objective lens
(Cs) :

. &+ 3 4 1 4/ /Cs ,

we have two possibilities: either to use the lowest & (high-
est acceleration voltage), or a very low Cs. However,
high-voltage TEMs are not always available, and further-
more there is a problem of higher specimen damage due to
electron irradiation. For a medium-voltage TEMs (200-300
kV), the lowest commercially available values of Cs are ~
0.5 mm. (Nevertheless, a special corrector allowing to de-
crease the Cs value down to zero has been recently devel-
oped [20]). The lowest Cs is the best, allowing largest
passband at Scherzer defocus (17). On the other hand a
very low Cs means also low angle tilting possibilities of the
specimen (typical values are about ± 15° at maximum).
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Fig. 9. Maxima and minima of the electron wave emerging from
the crystal

Fig. 10. Fourier images



The choice of the microscope depends also on the
interplanar spacing of the studied specimen. If we want to
image crystals having large lattice parameters, a higher Cs

could be sufficient. Fig. 11 shows a CTF of a 200 kV and a
400kV TEM with an objective lens having Cs = 1.2 mm. It
is clearly seen that a 200 kV microscope with this objective
lens is not sufficient to image atomic columns of alu-
minium, however it is sufficient for silicon, having much
larger interplanar spacing.

Electron guns

Another factor, which influences the contrast in an impor-
tant manner, is the electron gun. In general, two kinds of
electron guns are available - a thermoemission one (with
tungsten or LaB6 emitter) and a field-emission gun. Table 1
compares parameters of these guns. In HREM, thermo-
emission guns with a LaB6 emitter are used, because LaB6

has a much lower work function than tungsten and there-
fore the density of electrons is higher, allowing to reduce
exposure times.

A very expensive field-emission gun (FEG) [4] differs
from the thermoemission one by a much smaller size of the
source providing much higher spatial coherence (parallel-
ism) of the beam. Also its temporal coherence (energy
spread) is better. In consequence, the transfer function of a
field-emission gun TEM (FEG TEM) shows many oscilla-
tions beyond its first zero (Scherzer limit) - Fig. 12. The mi-
croscope is able to transfer information with higher spatial
frequencies (lower distances in the direct space). However,
due to oscillations in the CTF, this information could be
difficult to interpret. This higher information limit is appre-
ciated mainly in electron holography, allowing to "deblurr"
the wave transfer in the microscope (see § 7).

6. Illustrations of HREM

A disadvantage of HREM is that the image is a 2-dimen-
sional projection. It means that crystal defects should be
edge-on and, if possible, extend from the top to the bottom
of the specimen. If there are variations in the z direction,
the interpretation becomes more difficult. The simulations
take also much more time, because it is necessary to calcu-
late the projection of electrostatic potential for many differ-
ent slices.

Fig. 13 shows a cross-section of a Si/SiO2 interface
prepared by a plasma torch. The interface is edge-on, show-
ing several ledges and a crystallite formed in the amor-
phous SiO2. The Si crystal lattice is imaged in the <110>
zone axis, each white dot in the micrograph representing
two atomic columns (dumbbells) in the diamond structure.
In order to separate these columns in the image, a micro-
scope with resolution close to 0.1 nm is required.

A next nearest-neighbour antiphase boundary in the
ordered alloy based on Fe3Al is presented in Fig. 14. The
crystal defect is edge-on, only Al sublattice of the D03

structure is imaged. The arrows indicate parts of the
edge-on imaged defect. The inset in the lower part of the
micrograph shows the simulation of the atomic configura-
tion of the defect. A defocus-thickness map for this alloy is
in Fig. 15. It is clearly seen, that only specific combinations
of crystal thickness and defocus of the objective lens give
structure images. For more details see [21, 22].
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Fig. 11. Contrast transfer function for a 200 kV and a 400 kV mi-
croscope with Cs = 1.2 mm. Positions of hkl planes of aluminium
and silicon are indicated

Fig. 12. Comparison of transfer functions of the same microscope
fitted with LaB6 and field emission gun (FEG)

Fig. 13. Crystallite at the interface Si/SiO2 (courtesy M. Froment,
Université Pierre et Marie Curie, Paris)

W LaB6 FEG

Temperature [K] 2700 1700 300

Energy spread [eV] 3 1.5 0.3

Size [4m] 50 10 <0.01

Brightness [Am-2srad-1] 109 551010 1013

Current density [Am-2] 55104 106 1010

Table 1. Parameters of electron sources, operating at 100 k



Fig. 16 illustrates a strong sensitivity of the contrast of
plate-like Guinier-Preston (GP) zones in an Al-1.84 at.%
Cu alloy on the defocus. The micrograph is interpreted by
simulations with models having different concentration of
copper in GP platelets. The simulations show a weak sensi-
tivity of the contrast to the copper content in the GP plate-
lets. The best fit is obtained for a "classical" model of 100
% Cu in GP zones. Guinier-Preston zones do not extend

from the top to the bottom of the thin foil and their contrast
is very complicated [23, 24].

A Guinier-Preston zone in an Al-1.84 at.% Cu alloy
sheared by a dislocation is shown in Fig. 17. The inset
shows the configuration before and after the interaction.

7. Electron holography

Although electron holography has been developed in the
early 1990s, Gabor [25] had originally proposed this tech-
nique in 1948 as a way to improve the resolution of the
TEM. The delay in its implementation was due to the lack
of sufficiently coherent electron sources - field-emission
guns.

Electron holography is based on wave optics. As we
have seen in the description of the bright-field phase con-
trast imaging, the image recorded on photographic plate or
CCD-camera is intensity (i.e. the square of the amplitude)
of the electron wave. The more essential part of the electron
wave - the phase information - is lost. Holographic record-
ing techniques overcome this problem by allowing subse-
quent reconstruction of the amplitude and phase of the
electron wave by computer processing. There are several
different methods of electron holography [26]. Principles
of one of the most widely used techniques - off-axis elec-
tron holography [27, 28] - are outlined in this paragraph.

In order to record the amplitude and the phase of the
electron wave, the aberrated image wave is superimposed
with an unscattered plane reference wave resulting in an in-
terference pattern - an off-axis electron hologram. In prac-
tice, off-axis electron holography is carried out using a
field-emission gun TEM (FEG TEM) equipped with a
beam splitter, placed below the objective lens. The beam
splitter is made by a metal coated glass fiber < 0.5 4m in di-
ameter, assembled to give electron biprism (Fig. 18). The
voltage applied on the fiber is positive and ranges from 10
to 150 V. It is important to have the possibility to rotate the
biprism or the specimen, in order to align the biprism with
the edge of the specimen. A part of the beam 6G passes
through the specimen while the other one acts as a refer-
ence beam 6R. The amplitude and the phase information
are encoded in the contrast modulation and in the bending
of the interference fringes between image and reference
waves.

The interpretation of an electron hologram consists in
transferring the micrograph to a computer for numerical
wave-optic processing. This allows to correct the aberra-
tions and to reconstruct the complex object exit wave. After
this "deblurring" of the wave transfer in the microscope, fi-
nal structural fitting, as in the case of conventional
bright-field phase contrast imaging (i.e. electron-specimen
interaction simulation), is carried out. The advantage is that
the number of parameters for the simulations is reduced
and quantitative fitting procedures become feasible. An-
other advantage of electron holography is that it extends
lateral resolution beyond the resolution limit of conven-
tional microscopy, achieving resolution close to 0.1 nm us-
ing medium-voltage (200-300 kV) microscopes.

Formerly, holography was applicable only by special-
ists with special instrumentation. Currently, laboratories
are equipped with modern instruments which can be easily
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Fig. 15. A defocus - thickness map of the Fe3Al intermetallics

Fig. 14. Next nearest neighbour antiphase boundary in the Fe3Al
based intermetallics. The arrows indicate parts of the defect im-
aged edge-on. The inset in the lower part of the micrograph shows
simulation of the atomic configuration of the defect
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Fig. 16. Plate-like Guinier-Preston (GP) zones in the Al-1.84 at.% Cu alloy. The micrograph is interpreted by simulations with models
having different copper concentration in GP platelets



adapted for off-axis holography. Basic requirements are a
highly-coherent field-emission gun and an electron
biprism.

The range of applications is wide. Off-axis electron ho-
lography is used for the analysis of structures with atomic
resolution. However there are more applications with

lower resolution, such as measurements of doping profiles
in pn-junctions, imaging of electric and magnetic fields
with lateral resolution of a few nanometers, doping analy-
sis in interfaces etc. [29].

8. Z-contrast imaging

Allowing incoherent imaging, the Z-contrast technique
represents a new approach to atomic resolution electron
microscopy. It provides directly interpretable images -
maps of scattering power of the specimen [30]. This tech-
nique is most easily implemented in a (dedicated) scanning
transmission electron microscope (STEM) [4]. Many con-
ventional TEMs are also equipped with scanning facilities
and electron detectors and they can be used also in a scan-
ning transmission mode [31]. The STEM image is obtained
by scanning an electron probe of atomic dimensions across
the specimen and collecting electrons by a post-specimen
detector (Fig. 19). Scan coils raster the probe across the
specimen and their current is used to raster simultaneously
the beam of a cathode ray tube (CRT). The signal propor-
tional to intensity of electrons scattered and detected by an
electron detector is then displayed on CRT, each pixel on
the CRT showing intensity of a part of the image. The per-
sistence of the screen phosphor fluorescence, or frame-
store electronics allow the operator to see the whole image.
Digital image acquisition is a natural consequence of this
mode of operation.

Magnification of the image is given by the ratio of the
CRT viewing area dimensions and dimensions of the
scanned area. If the scanned area on the specimen is 1 4m 5
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Fig. 18. Principle of off-axis electron holography

Fig. 17. A Guinier-Preston zone sheared by a dislocation

Fig. 19. Principle of a scanning-transmission electron microscope
(STEM)



1 4m and the resulting image is displayed on a CRT with
the area of 10 cm 5 10 cm, the magnification is 100 000 5.
Resolution of the technique is determined by the size of the
focused electron probe.

For incoherent imaging it is necessary to detect inco-
herent electrons scattered at angles greater than 50 mrad
(~3°). A special high-angle annular dark field (HAADF)
detector was designed to complement standard bright-field
(BF) and annular dark-field (ADF) STEM detectors (Fig.
20). In order to image individual atomic columns, the probe
needs to be smaller than the columnar spacing of the crys-
tal. The probe has a finite size determined by the geometri-
cal size of the electron source and the magnification
settings of the probe-forming lenses. The brightest electron
sources are therefore required to yield probes of the small-
est dimensions that have sufficient current to form an im-
age. When a field emission gun is used, typical values of an
electron probe full-width-half-maximum (FWHM) range
from 0.16 to 0.22 nm, with the probe current around 1 nA.

For each probe position, the scattered intensity be-
tween the inner and outer angles of the annular detector is
summed and displayed on the CRT screen. Each summa-
tion, or integration, has the effect of suppressing the inter-
ference contrast that tends to produce image artifacts in
phase-contrast images. When combined with the channel-
ing effect, this results in an image with an intensity distri-
bution corresponding unambiguously to the location of
atomic columns in the structure. Effects of beam damage,
contamination and the presence of amorphous surface lay-
ers can be minimized.

The method of Z-contrast is attractive whenever the
atomic arrangement of crystals, their interfaces and defects
is to be ascertained with a degree of chemical sensitivity.
Moreover, the detector arrangement allows electrons scat-
tered to low angles to be collected simultaneously by other
detectors. This opens the opportunity to do electron energy
loss spectroscopy (EELS) and energy-dispersive X-ray
spectroscopy (EDS) to gain further compositional data

and/or information on local electronic band structure which
may be correlated to the atomic resolution image.
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Fig. 20. Configuration of STEM electron detectors
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