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Abstract

Efficiency of three deconvolution methods used in X-ray
powder diffraction analysis is compared for materials with
concentration gradient. The first deconvolution method
shown in this comparison is a modification of the classical
Stokes method. In two other methods, the re-convoluted in-
tensities are fitted to the measured data using the
least-square procedure. The deconvoluted profile is repre-
sented either by a linear combination of harmonic functions
or by coefficients describing the decomposition of mea-
sured profile into the basis of instrumental functions.

The results of deconvolution methods are further com-
pared with results of an alternative approach, which is a
convolution of the instrumental profile with an analytical
function describing the diffraction on samples with con-
centration gradient. In this case, tuneable parameters of the
analytical function following from the microstructure
model are varied to arrive at the best match between the
measured and re-convoluted intensities.

Analysing diffraction profiles measured on materials
with concentration gradient, the most reliable information
on the concentration profile was obtained using a combina-
tion of the above approaches. The direct deconvolution was
used to get basic information on the shape of concentration
profiles. The final form of the concentration profiles was
adjusted by refining free parameters of the diffusion model.

Keywords: X-ray powder diffraction, convolution,
deconvolution, and concentration gradient.

1. Introduction

Decomposition of diffraction profiles is a typical task in the
diffraction profile analysis. The main problem is to sepa-
rate the instrumental broadening from the measured dif-
fraction pattern in order to obtain the pure physical profile
containing information on microstructure of the material.
This means that the well-known equation for convolution

h)=frg = [ f(ngx=y)dy (1)

has to be solved for f(y), which represents the shape of the
physical profile. Function % (x) describes the measured dif-
fraction profile; g (x-y) is the instrumental function (re-
sponse of the apparatus). The instrumental function covers
usually the line broadening due to the spectral width of ra-
diation, angular resolution of the diffractometer optics as
well as a variety of aberrations. Typical examples for aber-
rations causing the instrumental broadening in the conven-

tional Bragg-Brentano geometry are the sample transpar-
ency and the local sample displacement due to the flat spec-
imen.

There are two different approaches how to treat the ex-
perimental diffraction pattern affected by instrumental
broadening. The first one employs direct deconvolution.
The second one solves Eq. (1) through convolution of
physical and instrumental profiles, assuming that the phys-
ical profile can be approximated by a function of a limited
number of parameters, which follow from the micro-
structure model of the respective material. Although the
latter approach based on convolutions becomes more and
more frequently used in the last time (see, e.g., Refs. [1-4]),
they are still numerous applications, for which the use of a
deconvolution technique is inevitable. The reason is that a
proper microstructure model cannot be built without an ap-
proximate knowledge of the deconvoluted profiles, an ex-
ample of them being materials with concentration gradient.

Regarding the direct deconvolution of diffraction pro-
files, the excellent comprehensive overview of deconvo-
lution methods by M. Certiansky [5] can be recommended
to the reader’s attention. Among the large number of
deconvolution methods discussed in [5], the most popular
methods work with the least-square fitting of re-convoluted
profiles to the measured intensities, see Ref. [6] and the ref-
erences therein. The least-square method is suitable to
solve integral equations of the first kind, which is also the
case of the equation for convolution (1).

In this paper, three procedures used for deconvolution
of powder diffraction patterns are compared. The Stokes
method [7] working with smoothed experimental and in-
strumental data, decomposition of physical profiles into a
Fourier series [6] and decomposition of experimental data
into a linear combination of instrumental profiles. Mate-
rials with concentration gradients were selected for this
comparison, as the presence of concentration profiles im-
plies strongly asymmetrical physical broadening, which is
not favourable for most deconvolution methods. Finally, a
microstructure model was built for samples with concen-
tration gradient, in which the corresponding physical pro-
file was calculated. Free parameters of the microstructure
model were refined to arrive at the best match between the
experimental and the re-convoluted data.

2. Competing deconvolution procedures
2.1. Stokes method with Gaussian smoothing

The original Stokes method [7] utilises the well-known
property of the Fourier transformation — the Fourier trans-
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formation of convolution of two functions can be expressed
as multiplication of Fourier transforms of these functions:

FT(h)=FT(f*g)=FT()).FT(g) @)

Thus, the pure physical function f'can be obtained from the
measured profile # and from the instrumental profile g us-
ing the formula:

(FTW)) o (H
SR (FT(g)J_FT (G] ©)

Throughout the text, the symbols FT and FT' denote the
Fourier and the inverse Fourier transformation. The capi-
tals F, G and H denote the Fourier transforms. Due to the
ill-posed nature of deconvolution, which is caused mainly
by the truncation of diffraction profile and by the presence
of noise in both the experimental and instrumental data, the
formula (3) does not yield useful results. The solution is os-
cillating as a rule; the amplitude of the oscillations being
comparable with the maximum of the deconvoluted func-
tion.

In order to overcome problems with truncation of dif-
fraction profiles, the experimental data must be pre-pro-
cessed. In the first step, the background is subtracted and
the missing marginal data are filled by zeros. To avoid
problems with the noise, the input data are often smoothed.
This means that typically the high-frequency noise is re-
moved. Such a filtering of input data was used in the modi-
fied Stokes procedure presented in this contribution.
Fourier transforms of both experimental and instrumental
profiles were multiplied by Gaussian functions:

ol 3ol 3]

This corresponds to the following combination of the Fou-
rier transforms:

FT(h)-FT(s,) _ FT(h*s,)

F’:FT(f'):FT(g)_FT(Sg) FT(g*s,)

(%

The functions s, and s, are the inverse Fourier transforms of
the Gaussian functions multiplying the functions H and G
in Eq. (4). Further, it holds as a consequence of Eq. (5):

FT(h*s,)=FT(f')-FT(g*s,)=FT(f'*g*s,)  (6)

Applying inverse Fourier transformation on Eq. (6), we
will get a similar equation for convolutions:

.f'*g*sg:h*sh:h*sf*sg @)
The right hand of Eq. (7) was rewritten to arrive at formally

same convolutions on the left and right side. The left and
right hands of Eq. (7) are equal if

f=rxs, (8)

Equation (8) specifies the amount of smoothing in the
deconvoluted profile. It can simply be shown that the
deconvoluted profile is smoothed by the Gaussian function
if both g and /4 are smoothed by Gaussian functions.

s, =%, =FT'[FT(s,)-FT(s,)] =

t? t?
=FT'|exp —— |'exp| —— || =
O Og

2 2
G, +0
_ -1 42 g
=FT exp{ t o
S

Therefore, the smoothing parameter c;is given by recipro-
cal difference of the parameters o, and G,:
2 2
G,0)

o’ = (10)

2 2
6,-0,

The smoothing parameter oy describes the filtering of the
Fourier transform of the deconvoluted profile:

’J (11)
6/-

To derive the exact form of the smoothing function for £, we
must perform the inverse Fourier transformation of Eq.

(11):

FT(f')zF':Fexp(—

= fxFT" {exp[—tﬂ frs,, (12)

Oy
where

O t? 1 7 t?
1 x’o}
:ﬁcf exp(— 2 ]

It follows from Eq. (13) that the smoothing function is
Gaussian in form. The area below the function s¢is equal to
unity,

< < xzci
Lsfdx 2\/,_[exp vl o

if the inverse Fourier transformation is defined by the for-
mula:

FT"(F)ZZ—ITC ]OF(t)exp(itx)dt (15)

In such a case, the smoothing has no effect on the total inte-
grated intensity of the deconvoluted profile.
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Equation (10) has several important consequences.
The deconvoluted profile is automatically smoothed if the
experimental data and the instrumental profile are
smoothed. For correct smoothing, ;, must be less than o,
which means that the experimental function 2 must be fil-
tered to lower frequencies than the instrumental function g.
If oy, and o, have approximately the same value, o¢is very
high; thus, the physical function f'is not smoothed at all. If
G, is much larger than 6, the smoothing of fis extreme — it
is the same as the smoothing of /.

The computer code for deconvolution routine based on
the modified Stokes method was written in the MATLAB®
environment. Fourier transforms were calculated using the
internal MATLAB® function for the fast Fourier transfor-
mation and the inverse Fourier transformation.

2.2. Decomposition of experimental profiles using
Fourier expansion

The second procedure tested in this paper is the decomposi-
tion of diffraction profiles using expansion of the physical
functions into the Fourier series. This approach is espe-
cially advantageous if the subsequent method of data re-
duction works with the Fourier coefficients, for instance if
the Warren-Averbach analysis is applied. The computing
routine used in the test is completely based on the tech-
nique, published by Sanches-Bajo and Cumbrera [6]. The
only exception is that we took the instrumental profile in its
measured form, instead of approximating it by an expan-
sion into the Hermite polynomials like in [6]. Employing
the expansion of the pure physical profile into a Fourier se-
ries, function ftakes the form:

fx)= ZC coS(j(Dox)+ZS cos(jm,x) with o, :ZKT[

Jj=1
(16)
The symbol A in Eq. (16) defines the interval, in which the
experimental profile was measured. Regarding the equa-

tion for convolution (1), the experimental profile can be
written as

h(x)= jg(x | 2C, costo, y)+ 3. S, sinCjo, ) |dy =

Jj=0 J=1

=3¢, [ glr—y)eos(jo, y)dy+
7=0

- Z S| glx=y)sin(joo, y)dy
(17)

Equation (17) represents convolutions of the instrumental
function g with the basis of harmonic functions:

h(x)=3C,[g*cos(jo, 1+ S [g*sin(jo, )] (18)

Jj=0 Jj=1

Within the deconvolution procedure, Eq. (18) is solved for
coefficients Cj and Sj in the least-square sense. Application

of this deconvolution routine implies also an automatic
smoothing of deconvoluted data. The amount of smoothing
is determined by a number of harmonic functions (m in Eq.
(16)-(18)). The lower m, the higher is the degree of smooth-
ing.

The related computer code was written in the
MATLAB® environment. The convolutions in Eq. (18)
were calculated with the aid of the fast Fourier transforma-
tion and the inverse fast Fourier transformation (see Eq.
(2)). The least-square refinement of the coefficients Cj and
S; is performed successively for increasing number of har-
monic functions, m. Because of the large expected asym-
metry of the deconvoluted profiles in samples with
concentration gradient, the harmonic functions up to the
40" order were tested. The best set of C; and S; was selected
according to the lowest sum of residuals between the origi-
nal data / and the re-convoluted data /2’ obtained from the
back convolution:

S = Z[h(x) h(x)]? =i [f+g—h]> =min (19)

The deconvoluted profile is calculated from Eq. (16). The
summation in Eq. (19) is performed over all experimental
data.

2.3. Experimental profile regarded as a linear
combination of instrumental profiles

The last deconvolution procedure compared here solves the

equation for convolution (1), rewritten into the form used
for discrete data:

(20)

=Z -

In the matrix representation, Eq. (20) takes the form:

g &. &, &5 (A h

g& & &, &, | N h,

g, & &¢ & S5 |=| by (21)
h

g & & & |

e S

Consequently, the Dirac 5-function corresponds to an iden-
tity matrix for the instrumental profile and to a single “one”
embedded in a zero matrix for the physical profile. How-
ever, Eq. (20) represents an infinite system of linear equa-
tions. Moreover, the system of equations is under-
estimated, as the data contain noise (random errors). There-
fore, an assumption must be done to reduce the number of
equations (the number of parameters) in the linear combi-
nation (20).

In contrast to the deconvolution procedures employing
the Fourier analysis, we can assume here that the
deconvoluted intensities are equal to zero outside a certain
range. This assumption reduces substantially the number of
columns in the G matrix in Eq. (21). It means that the sys-
tem of linear equations (20) becomes overestimated. Thus,
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it can be solved using the least-square method. However, it
is still necessary to filter the noise in the deconvoluted data.
For filtering, the Fourier smoothing or the Golay-Savitzky
method [8] were alternatively applied. The Fourier
smoothing means a convolution of the deconvoluted pro-
file with a Gaussian function like in the modified Stokes
method described above. The Golay-Savitzky method rep-
resents the direct smoothing in the reciprocal space.

2.4. Refinement of free parameters of the
diffusion model

A simple diffusion model was used to describe the concen-
tration profiles in the samples. One-dimensional diffusion
with concentration-independent diffusion coefficients in
crystallites having the same size was assumed. In that case,
the concentration profile takes the form of the error func-
tion (see, e.g. [9]),

c =erfc(x/+/Dt),

where x means the distance in individual crystallites (in in-
dividual diffusion couples), D the diffusion coefficient and
t the diffusion time. The dominant factor modifying the
shape of concentration profiles and therefore the shape of
the corresponding diffraction profiles is the ratio of the to-
tal length of diffusion couples to the square root of Dz. For
the concentration ranges investigated here, all particular
components (TiN, TiC, Ti (C, N), (Ti, Mo) C, (Ti, Mo)(C,
N) and MoC, ) crystallise with the face-centred cubic
structure. Their lattice parameters follow the Vegard rule
quite well [10]. Thus, the dependence of the interplanar
spacing on the concentration is represented by the linear
function:

(22)

d=d,+d.c (23)
In Eq. (23), d, represents the interplanar spacing for ¢ = 0,
d, the change in interplanar spacing with the concentration
of in-diffusing or out-diffusing species. Neglecting the
macroscopic concentration depth profile in the sample, the
influence of absorption of radiation on the shape of diffrac-
tion profiles can be omitted. Then the diffracted intensities
depend linearly on the differential volume of material hav-
ing a certain concentration:

dx dx
d(sin®) d(\/2d)

I(sin @) ocV = (24)

The last part of Eq. (24) follows from the Bragg equation.
In a further step, additional line broadening due to the small
size of crystallites must be taken into account. Thus, the
diffraction profiles calculated according to Eq. (24) were
convoluted with the Cauchy function:

- v 25
4 n(x +w?) ()

Its area is normalised to unity. The Cauchy function should
be exchanged by the Gaussian function if the additional

physical broadening is caused by micro-stress rather than
by the small size of crystallites. In Eq. (25), diffraction an-
gle, x, is calculated in the units sin 0; the same units are
used also for the width of the Cauchy function, w. The
above model is characterised by five free parameters (K =
\/(Dt), dy, di, w and a scale factor normalising the calcu-
lated intensities to the experimental ones). Note, that a
physically true model should include two parameters more:
the minimum and the maximum concentration of the in-dif-
fusing species. However, the minimum and the maximum
concentrations would strongly correlate with the parameter
of the diffusion model, K, and with the parameters d,, and
d,. Therefore, the parameters related to the interplanar
spacing should not be refined in a true model. They should
be taken from an independent experiment. On the contrary,
it can be shown that variation in the minimum and maxi-
mum concentrations has a similar influence on the shape of
the resulting diffraction profile like the changes in d, and
d,.

Upon refinement, the linear least-squares method was
iteratively applied to the first-order Taylor expansion of the
calculated diffraction profile:

2
cale
s=> {1”’ —(13‘”“ +Y o Ap, J] =min (26)
n J

p;

The increments to the refined parameters, Apj, follows
from the solution of the matrix equation:

meas calc 81 calc
DA I ) ——
P op

z a[ cale 61 cale
— Op, Op,

i J

4,

i

27

All convolutions were calculated numerically using the fast
Fourier transformation and the inverse fast Fourier trans-
formation (according to Eq. (2)).

3. Experimental details

X-ray diffraction experiments were performed with a con-
ventional Bragg-Brentano diffractometer (XRD-7, Seifert/
Freiberger Prizisionsmechanik). The nickel-filtered radia-
tion of copper anode with a divergence of 1° was transmit-
ted by a Soller collimator in primary beam and diffracted
on the sample. The optics of the diffracted beam consisted
of a secondary Soller collimator and the receiving slit of
0.15 mm. The selected angular range was scanned repeat-
edly with the step size of 0.01° in 26. The total counting
time exceeded 60 seconds per step. To arrive at a good ex-
perimental resolution, reflections in the high-angle region
were selected for the measurement.

The instrumental broadening was measured on the
standard sample of cubic LaBs offered by NIST. The in-
strumental profile measured on the diffraction line (332) is
shown in Fig. 1. The measurement was carried out in the
same diffraction geometry and with the same instrumental
parameters, which were used for samples with concentra-
tion gradient. For the standard, the counting time was 20
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Figure 1. Instrumental broadening measured on the reflection
(332) of cubic LaBs.

seconds per step. To avoid problems with different angular
separation of spectral lines in the Ka,;/Ka, doublet due to
different diffraction angles of the respective materials, the
data were first converted into the equidistant scale in sin 0.

The following samples were used to test the decon-
volution procedures — cubic TiC,_, hexagonal Mo,C, ter-
nary mixture (Tix Mo; ) C and quaternary mixture (Tix
Mo;) (Cy Niy). According to the chemical analysis,
TiC,_ contained 19.33 weight percent of carbon, this cor-
responds to the stoichiometric ratio TiCy 6. The analysed
composition of the MoC,  powder was MoCys; (5.72
weight percent of carbon). The ternary (Tiggs Moy 5) C was
produced by hot pressing TiCy s, M0Cy 5, and graphite in
argon atmosphere at 2000°C. Afterward, it was annealed
in argon for 16 days at 1450°C. The last three samples with
the nominal composition (Tig75 Mog2s) (Co7s Noos) were
prepared by hot pressing the mixture of 50 mole of (Tigs
Moy 5) C and 50 mole of Ti (Cy s Ny s) in argon atmosphere
at 2000°C. Subsequently, two of these three samples were
annealed for 48 and 192 h, respectively, at 1450°C in one
bar Ar.

4. Results and discussion

4.1. Comparison of deconvolution procedures

All deconvolution procedures outlined above yielded very
similar results for the majority of experimental data. Nev-
ertheless, if we compare only the differences between the
experimental and the re-convoluted data, the most success-
ful deconvolution routine was that based on the linear com-
bination of instrumental profiles (Section 2.3.).
Furthermore, the main difference between individual pro-
cedures follows from the amount of smoothing, which is
automatically included in the respective deconvolution
routine. The quality of deconvoluted patterns (and the
match between the re-convoluted and the experimental in-
tensities) depends on the shape of physical profile. If the
physical broadening is much larger than the instrumental
one, also the deconvolution procedures with high amount
of'smoothing (e.g., the decomposition using Fourier expan-
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N
o
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Figure 2. Experimental data (open circles) and re-convoluted in-
tensities (solid line) measured with the hot-pressed quaternary
(Tip75s Mog2s) (Co7 No3) (Figure at the top). At the bottom: physi-
cal profiles obtained from the experimental data by using the
Stokes method (a), the Fourier expansion (b) and the linear com-
bination of instrumental profiles (c).

sion with a small number of Fourier coefficients) yield ex-
cellent results. This can be illustrated on the hot-pressed
non-annealed quaternary (Tip7s Mogos) (Coz7 Nos). After
deconvolution, three distinct intensity maxima are clearly
visible at 122.49°, 123.09° and 123.75° (Fig. 2). These
peaks indicate the presence of two (Ti, Mo) (C, N) phases,
which are usually denoted as Ti-rich o’—(Ti, Mo) (C, N)
(here with the lattice parameter a = 4.2921 A) and Mo-rich
a”—(Ti, Mo) (C, N) (here with @ = 4.3044 A), and the pres-
ence of non-stoichiometric cubic MoCg 74 (a = 4.2788 A)
[11].

On the other hand, the Stokes deconvolution with
Gaussian smoothing (Section 2.1.) was the most successful
routine in extreme cases, when the shape of the experimen-
tal profile approached the shape of the instrumental profile.
Generally, this method yields the best results if the pure
physical profile is very narrow. Such a diffraction profile
was measured with the TiC powder (Fig. 3). Only two
deconvolution procedures (the Stokes method and the lin-
ear combination of instrumental profiles) are compared
here. The reason is that the decomposition of the diffraction
profile into a series of harmonic functions did not yield a
convergent solution up to the 40™ order of Fourier coeffi-
cients. Linear combination of instrumental profiles yielded
apparently much smoother deconvoluted profile than the
Stokes method. However, the level of smoothing for the
linear combination was too high, which affected the shape
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Figure 3. Figure at the top: experimental data (open circles) and
re-convoluted intensities (solid lines) measured with TiCg .
Figure at the bottom: deconvoluted profiles obtained using the
Stokes method (a) and the linear combination of instrumental
profiles (b). The differences between the re-convoluted profiles
and the experimental data are shown in the inset (solid line is for
the Stokes method, dashed line for the linear combination of in-
strumental efffects).

of the re-convoluted profile. The re-convoluted peak was
broader than from the Stokes method having a lower maxi-
mum (see inset to Fig. 3).

From the point of view of the computer time consump-
tion, the Stokes method is the fastest one, followed by the
Fourier decomposition. The slowest method is the decom-
position of experimental profiles into the linear combina-
tion of instrumental profiles, as large matrix equations are
solved upon this approach. In particular cases, the most ef-
ficient technique is the concentration profile fitting (Sec-
tion 2.4.), which works with convolutions of the physical
profile calculated using equations (22) — (24) with the
Cauchy function (25) and with the instrumental profile. Re-
sults of this method are reported in the next Section.

4.2. Results of the concentration profile fitting

The concentration profile fitting can be regarded as a
method, which yields physically reliable information on
the real composition and the real structure of the sample.
However, its use is limited to the cases, in which an appro-
priate diffusion model can be created. Employing this tech-
nique, it is useful if the concentration profile fitting
succeeds a deconvolution method in order to get funda-
mental characteristics of the diffusion model. In this test,

Figure 4. At the top: diffraction profile measured on the (105) re-
flection of hexagonal MoCys; (open circles) compared with the
re-convoluted profile (dashed line) and with the diffraction pro-
file obtained from the concentration profile fitting (solid line).
Inset: the calculated shape of the concentration profile of carbon.
On the concentration scale, “0” means the minimum carbon con-
centration, “1” the maximum one. At the bottom: physical pro-
files obtained from deconvolution by using linear combination of
instrumental profiles (a), Fourier expansion (b), Stokes method
(c) and concentration profile fitting (d).

this approach was first applied to study the homogeneity of
the hexagonal MoCgys; powder. The shape of the
deconvoluted profile (Fig. 4) is characteristic for a pres-
ence of a steep concentration gradient in the sample. Bulk
of the sample has the lattice parameters a = (3.01028 +
0.00004) A and ¢ = (4.73569 +0.00004) A, which yield the
interplanar spacing of 0.8902 A for the (105) planes. The
above lattice parameters are the result of Rietveld refine-
ment. The profile asymmetry towards smaller diffraction
angles (towards larger interplanar spacing and lattice pa-
rameter) agrees well with the positive slope, which de-
scribes the dependence of lattice parameters in MoC; on
the carbon concentration [11]. The concentration profile
fitting yielded the minimum and the maximum interplanar
spacing (for the minimum and the maximum carbon con-
centration) dpin = 0.8893 A and di. = 0.8903 A.

Another sample with a concentration gradient had the
average composition of (Tipgs Moy 5) C. From the shape of
the diffraction profile, it is evident that the concentration
profile is much broader than in the previous case (with re-
spect to the size of the diffusion couple), which indicates an
approaching diffusion process (Fig. 5). The lattice parame-
ter for the lowest concentration of molybdenum in the sam-
ple is equal to 4.3192 A, which is lower than the lattice
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Figure 5. At the top: the intensity band measured on the (422)
line of (Tip s Moy 15) C (open circles). The re-convoluted profile
is indicated by the dashed line; the diffraction profile obtained
from the concentration profile fitting is indicated by the solid
line. The schematic shape of the concentration profile is shown in
the inset. At the bottom: physical profiles obtained from linear
combination of instrumental profiles (a), from the Fourier expan-

sion (b), from the Stokes method (c) and from the concentration
profile fitting (d).

parameter of TiC (a = 4.3278 A). This confirms that in-
creasing amount of molybdenum in the host structure of
TiC decreases the lattice parameter of the ternary face cen-
tred cubic (Tix, Mo, ) C phase. The lattice parameter cor-
responding to the highest analysed concentration of
molybdenum in the sample is 4.2996 A. As the concentra-
tion profile is related to the concentration of molybdenum,
the change of lattice parameter (change of the interplanar
spacing) with concentration is negative, which implies the
physical line broadening toward higher diffraction angles.

The last two examples illustrate the influence of in-
creasing diffusion time on the shape of diffraction and con-
centration profiles. The “overall” composition of both
samples was (Tig75 M0g2s) (Co7 No3), the same as for the
first sample presented in Section 4.1. The samples were an-
nealed for 48 or 192 h at 1450°C in one bar Ar. In the first
one, the deconvolution procedures discovered presence of
two (Ti, Mo) (C, N) phases and a MoC, 4 phase (Fig. 6).
The phase composition is similar to that in the non-an-
nealed sample. After annealing the sample for 48 h at
1450°C, the titanium-rich o’—(Ti, Mo) (C, N) had the lat-
tice parameter @ = 4.2897 A, the molybdenum-rich o”~(Ti,
Mo) (C, N) the lattice parameter a = 4.2997 A. The
non-stoichiometric cubic MoC,_ had the lattice parameter
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Figure 6. Diffraction profile measured with quaternary (Tig7s
Moy 2s) (Co.7 No3) annealed for 48 h at 1450°C in argon atmo-
sphere (open circles). The re-convoluted diffraction profile is
plotted by dashed line, the diffraction profile corresponding to the
concentration profile shown in the inset by the solid line. At the
bottom: physical profiles obtained from the concentration profile
fitting (a), from the Stokes method (b), from the Fourier expan-
sion (c) and from the linear combination of instrumental profiles

().

a=4.2790 A, which corresponds to the stoichiometric ratio
x = 0.74 within experimental accuracy. The concentration
profile fitting yielded a similar shape of the physical profile
like the deconvolution routines. However, as a simple dif-
fusion model assuming only presence of a single phase
with a concentration gradient was employed, the re-convo-
luted diffraction profile did not fit the experimental data
properly. The discrepancy can be also seen on the too wide
range of lattice parameters obtained from the concentration
profile fitting. The lattice parameter for the minimum con-
centration of titanium is 4.3018 A, that for the maximum
concentration of Ti 4.2761 A.

The deconvoluted pattern of the latter sample annealed
for 192 h (Fig. 7) indicates presence of the residual MoC,_
with the lattice parameter 4.2770 A. This value corre-
sponds to a slightly lower carbon content in MoC, 4, x =
0.73. The deconvoluted diffraction profiles of the quater-
nary (Ti, Mo) (C, N) build a continuous band starting at the
diffraction angle of 122.80° and ending at 123.26°. The
corresponding limits for the lattice parameters are 4.2980
A for the molybdenum-rich o”<(Ti, Mo) (C, N) and 4.2887
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Figure 7. Diffraction profile measured with the quaternary (Tig 75
Moy 2s) (Co7 No3) annealed for 192 h at 1450°C in argon atmo-
sphere (open circles). The re-convoluted diffraction profile (plot-
ted by dashed line) reconstructs the experimental data quite well.
The difference between the diffraction profile calculated for the
concentration profile shown in the inset (plotted by solid line) and
the experimental data is much larger, which is due to the simplic-
ity of the structure model. Figure at the bottom shows physical
profiles obtained from the concentration profile fitting (a), from
the Stokes method (b), from the Fourier expansion (c) and from
the linear combination of instrumental profiles (d).

A for the titanium-rich a’—(Ti, Mo) (C, N). Typically, the
physical profile takes a form of a continuous band if infini-
tesimal diffracting volumes are the same for all concentra-
tions. This happens if the concentration profile is flat; i.e. if
it can be approximated by a linear function. This is the case
for “saturated” diffusion at longer diffusion times. As in the
previous case, ignoring the presence of the residual MoC,
in the diffusion model increases the range of lattice param-
eters obtained from the concentration profile fitting. The

analysed minimum and maximum concentrations Were dy;,
=4.2829 A and a,,x = 4.3020 A.

5. Concluding remarks

Comparison of three deconvolution procedures has shown
that the deconvoluted physical profiles differ only in ex-
treme cases, when a high degree of smoothing is unfavour-
able. This is the case, for instance, if the pure physical
profile is very narrow (approaching the Dirac 5-distribu-
tion), or if one of the edges of the physical profile is very
steep. Steep edges of physical profiles are particularly
characteristic for materials with concentration profile,

which has a negligible line broadening due to the crystallite
size or microstrain.

Comparison of the deconvolution procedures with
concentration profile fitting illustrated the powerfulness of
the concentration profile fitting. However, the reliability of
results strongly depends on suitability of the microstructure
model. Thus, a combination of both techniques shall be rec-
ommended. A deconvolution method should be applied to
get preliminary data, which are necessary to build an ap-
propriate microstructure model. For the final refinement of
the model, the fitting of calculated diffraction profiles on
the experimental data yields more reliable results than the
deconvolution.
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