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Preface

In the movie Shadowiands.' Anthony Hopkins plays the role of the famous
wriler and educator, C. S. Lewis. In one scene, Lewis asks & probing question
of astudent: “Wiy do we read?” (Which could very well be rephrased: Why do.
we study? o Why do we learn?) The answer given is simple and provocative:

“We read to know that we are not alone.” It is comforting to view education

i this light. In our search to know that we are not alone, we connect our
thoughs, ideas, e struggles 1 the thoughts, ideas, and struggles of those
who preceded us. We leave our own thor
S0 that they, too, will know that they are not alore. In developing the subject
matter covered in this book, we (MEM and MDG) were both humbled and
inspired by the achievements of the great philosophers, mathematicians, and
scientists who have contributed to thi L is our fervent hope that this
text will, in some measure, inspire new students to connect their own thoughts
and ideas with those of the great thinkers who have struggled before them
and leave new and improved ideas for those who will struggle afterwards.
“The title of this book (Tie Structure of Materials) reflects our attempt to
examine the atomic strueture of solids in a broader realm than just traditional
stallography, as has been suggested by Alan Mackay, 1975. By combining
visual illustrations of erystal struetures with the mathematical constructs of

s for those who will follow us

erystallography, we find ourselves in a position to undersiand the complex
structures of many modern creiccring nul«.n.\l~. as well as the structures of
nawrally occurring crysta ery
That all important T uy\m\lme
of amorphous metals, ceramics, and polymers. The inclusion of quasicrystals
conveys the recent understanding that materials possessing long-range ori-
cntationsl orde without 3-D tansationl perodicty

‘materials. The discovery of q

e biological and organic materials,

reflected in the discussion

must be included in a

© MEM i gratefl 10 is g fiend Joanne Bassilious for ecommending this inspiatonsl
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Preface

presented in Chapters | through 13, also allow us (0 gain i
structure of quasicrystalline and amorphous material, dis
chapters in the latter part of the fext

I the later chapters, we give examples of crystallographic computations
that make use of the material presented in the earler chapters. We illustrate
the relationship between structures and phases of mater, allowing us (o make.
clemenary contact with the concept of a phase diagran. Phase relations and
phase diagrams combine knowledge of structure with concepts from thermo-
dynamics: typi hermodynamics course is a concurrent or subscquent
part of the curriculum of a materials sientist or enginer, o that the inclusion
of simple phase diagrams in this text strengthens the link (0 thermodynarics.
Prominent among the tools of a materials scientis are those that allow the
examination of structures on the nanoscale. Chapters in the latte half of the
book have numerous illusrations of interesting nanostructures. presented s
extensions 1o the topical discussions.

Chaptes

ight into the
n advanced

4 forms the connection between the two halves of the book: it

DT techniques of the first half o study the structures
of the second hall. We deseribe this conneetion by means of four different
materials, which are introduced at the end of the first Chapter. Chapter 14
also reproduces one of the very first scientific papers on the determiy
erystal structures, the 1913 paper by W.H. Bragg and W.L. Bragg on The
Structure of the Diamond. This seminal paper serves as an illustration of the
long path that scientists have traveled in nearly a century of crystal structure
determinations,

Some topis in his book are more advanced than others, and we have
indicated these sections with an asterisk at the start of the section .
The subjects covered in cach chapter are further amplified by 00 endof.
chapter reader exercises. At the end of each chapter, we have included a short
historical note, highlighting how a given topic evolved., listing who did what
i a particular subfield of crystallography, or giving biographit

 information

on important crystallographers. Important contributors 1o the field form the.
main focus of these historical notes. The selection of contributors s not
ehronological and refleets mostly our own interests.

We have used the text of hi
years for 4 sophomor

book (in course-note form) for the past 13
vel course on the structure of materials. This course

nany of the students have been

‘ow T understand!” Developing the chupmr\ of the
book has also affected other aspects of the Materials Science and Engineer-
urriculum at CMU, including undergraduate laboratory experiments on
amorphous metals, magnetic oxides, and high temperature superconductors.
Beginning in June, 1

opment Program, multimedia modules for undergraduate students studying
erystallography were created. The first module,

in conjunction with the CMU Courseware Devel-

“Minerals and Gemstones




Software used i

Preface

coupled photographic slides generously donated by Marc Wilson, curator of
the Camegie Museum of Natural History's Hillman Hall of Minerals and
Gems (in Pitsburgh, PA), with crystal shm)es and atomic arrangements. T
and subscquent software modul ade available on a CD in the Fall

BT T G B B G
through the book’s web site. This software development work was heavily
supported by our undergraduate students, and helped to shape the focus of
the text. A module on the “History of Crystallography” served as a draft for
the Historical notes scetions of this book:

e text can be used for a one-semester graduate or undergraduate course:
on uymuugmpny. assuming a 14-week semester, with two 90-minute ses-
sions per week, it should be possible to cover Chapters 1 through 14 in the
first 11-12 weeks fcuowm by selected sections from the later chapters i the
o be taught “as i et el e pulled from the
second half and used at various places in the first half of the book. M
5 emda emreo 1 he socond K del it e concei o he frst

the preparation of this book

Some readers might find it interesting o know which software packages were
used for this book. The following fist provides the name of the software pack-
age und the vendor (for commercial puckages) or author web site. Weblinks
o all companies are provided through the book’s web site.

+ Commercial packages:

~ Adobe Iilustrator [hutp:/iwwew.adobe.com/]
= Adobe Photashop [ty adobecomi)
Chpiliww,

« Shareware packages:

- QuasiTiler [http://woww geom uic. Ldn/.lp'l\/qumlu\cr/]
Kaleidorile (Version 1.5) [htipi/geometrygames.org/]

« Free packages:
~ tTEX [hutpifiwww.tug.oref]
~ TeXShop [http/www. texshop.or/]
~ POVray [hutpifiwww.povray.oref]
The web site for this book runs on a dedicated Linux workstation located in
MDG's office. The site can be reached through the publisher's web site, or,
girectly, at the following Uniform Resource Locator:

hup/fsom.web.cmu.eduf
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] Materials and materials properties

“We proceed 1o distribute the figures [solids] we have described benween fire,
earth, water, and air. ... Let us assign the cube to carth for it is the most immobile
of the four bodies and most retentive of shape:; the least mobile of the remaining
figures (icosahedron) o water; the most mobile (1etrahedron) to fir; the interme-
didate (octahedron) 1o air. There stil remained a fifih construction (dodecahedron),
which the god used for embroidering the constellations on the whole heaven.”

Plato, Timaeus, 427-347 BC

1.1 Materials and structure

‘The practice of using organic and inorganic materials is many millennia old
Oxide pigments were used in early cave paintings, flint tools were used in
the Stone Age and precious metal smelting was prevalent in the Nile Valley
as early as 5000 years ago (Klein and Hurlbut, 1985). Extractive metallurgy
led to the use of metals in the Bronze Age and Iron Age. The extraordinary
advances made possible by electronic materials have led some to suggest that
we are in the midst of the Silicon Age. It is clear that the prior materials ages
evolved slowly through the accumulation of empirical knowledge. The present
materials age is evolving at a more rapid pace through the development of
synthesis, structure, properties and performance relationships, the materials
paradign.

In this book, we will introduce many concepts, some of them rather
abstract, that are used to describe solids. Since most materials are ultimately
used in some kind of application, it

seems logical to investigate the link
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Materials and materials properties

between the atomie structure of a solid, and the resulting macroscopic prop-
erties. After all, that is what the materials scientist or engincer is really
interested in: how can we make a material useful for a certain task?
What type of material do we need for a given application? And why can
some materials not be used for particular applications? All these questions
must be answered when a material is considered as part of a design. The
main focus of the book is on the fundamental description of the po
tions and types of the atoms, the ultimate building blocks of solids, and
on the experimental techniques used to determine how these atoms are
arranged.

We now know that many of the materials we use every day are crys-
talline. The concept of crystalline solids and the development of experimental
techniques to characterize crystals are recent developments, although certain
kernels of thought on the basic building blocks of solids can be traced to much
earlier times. For example, the quote beginning this chapter is attributed to
the Greek philosopher Plato (427-348/347 BC); in his dialogue Timaeus, he
discussed his theory of the structure of matter. He postulated that the basic
particles of earth, air, fire, and water had the form of the regular Platonic
solids (Fig. 1.1). Plato believed that it was possible to group these basic
particles into crystal shapes that filled space. In our current understanding of
the structure of solids, the shapes that are combined to fill space are known
as unit cells, and we distinguish seven major shapes, more formally known
as the seven crystal systems

For crystalline solids we will define a standardized way to describe crystal
structures. We will also deseribe experimental methods to determine where the
atoms are in a given crystal structure. We will rely on mathematical techniques
to develop a clear and unambiguous description of crystal structures, including
rules and tools to perform crystallographic computations (e.g., what is the
distance between two atoms, or the bond angle between two bonds, etc.).
‘We will introduce the concept of symmetry, a unifying theme that will allow
us to ereate classifications for crystal structures.
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3 1.2 Organization of the book

1.2 Organization of the book

‘The first half of the book, Chapters 1 through 13, deals with the basics of
crystallography. It covers those aspects of crystallography that are mostly
independent of any actual material, although we will frequently use actual
materials as examples to clarify certain concepts and as illustrations. The
second half of the book, Chapters 15 through 25, looks at the structure of
broad classes of materials. In these chapters, we consider metals, oxides,
and molecular solids. Th

subject matter helps the reader build an under-
standing of atomic structures, from simple to complex. Where possible, we
also illustrate technologically important materials. n these later chapters, we
will introduce many geometrical principles that can be used to understand
the structure of materials. Such principles enrich the material presented in
Chapters 1 through 13, and allow us to gain insight into the structure of
quasicrystalline and amorphous materials discussed in advanced chapers in
the second half of the text.

Chapter 14 forms the connection between the two halves of the book: it
illustrates how techniques of the first half are used 10 study the structures of
the second half, We will discuss this connection by means of four different
‘materials, which will be introduced later in this first chapter. Some topics

are more advanced than others, and we have indicated these sections with an
asterisk at the start of the section title. Each chapter has an extensive problem
set, dealing with the concepts introduced in that chapter. At the end of each
chapter, we have included a short historical note, highlighting how a given
topic evolved, listing who did what in a particular subfield of crystallography,
or giving biographical information on important crystallographers.

In the later chapters, we give examples of crystallographic computations
that make use of the material presented in the earlier chapters. We illustrate
the relationship between structures and phases of matter, allowing us to make

elementary contact with the concept of a phase diagram. Phase relations
and phase diagrams combine knowledge of structures and thermodynamics.'
Prominent among the tools of a materials scientist are those that allow exam-
ination of structures on a nanoscale. Chapters in the latter half of the book
will have further illustrations of interesting nanostructures.

‘Webegin, inthis chapter, witha short discussion of length scales in materials.
Then we introduce the concepts of homogeneity and heterogeneity. We will
talk about material properties and propose a general definition for a material
property. ithadiscussi irecti
properties and introduce the concepts of isorropy and symmen
the chapter with a preview of some of the things this book ha

We conclude
0 offer.

! In a materials science or materials engincering curticulum, phase relations and diagrams arc
typically the subject of the caurse following a siructores course.



4 Materials and materials properties

1.3 About length scales

When we talk about crystals, most of us will think about the beautiful crys-
talline shapes that can be found in nature. Quartz crystals are ubiquitous, and
we can recognize them by their shape and color. Many naturally occurring
crystals have sizes in the range from a few millimeters to a few centimeters.
These are objects that we can typically hold in our hands. When it comes
to describing the structure of a crystal at the atomic level, we must reduce
the length of our measuring stick by many orders of magnitude, so it might
be useful to take a brief look at the relevant length scale. In addition, when
we wish to study, say, the distance between a pair of atoms, we must use an
experimental measuring stick that s capable of measuring such tiny distances.
‘The human eye is obviously not capable of “sceing atoms,” but there are
several aliernative observation methods that are capable of operating at the
atomic length scale.

The size of an atom s of the order of 10~1* meters. This particular distance
is known as the Angstrom, ie.. 1 A= 10" m. It is convenient 10 stick o the
so-called metric system, and the closest standard metric unit is the lengrh unir,
nanometer (nm), which s defined as 1nm = 10-m, so that 1A = 0.1nm
In this book, we will use the nanometer as the standard unit of length, so

that we can express all other distances in terms of this unit, For instance,
1 micrometer (um) equals 10*nm, and one millimeter (mm) is equal to
10°nm. An illustration of the range of object sizes from the atomistic to the
“human” length scale is shown in Fig. 12.* The central vertical axis represents
the size range on a logarithmic scale; going up one tick mark means a factor
of 10 larger. To the right of the figure, there are a few examples of objects
for each size range. In the scientific community, we distinguish between a
few standard size ranges:

« macroscopic: objects that can be seen by the unaided eye belong to the
class of the macroscopic objects. An example is the quartz crystal shown
in the top circle to the right of Fig. 1.2

microscopic: objects that can be observed by means of optical microscopy.
The second circle from the top in Fig. 1.2 shows individual grains in
4 STiO, polyerystalline material. The lines represent the boundaries
between grains, the darker spots are pores in the ceramic material
nanoscale: objects with sizes between 1 nm and 100 nm. The third circle
shows a set of nano-size particles of a MnZn ferrite with composition
Mn,, Zn, 5Fe,0,

 With “human lengthscae” we mean objects (hat can b found i our socites: hais.
ouses, vehieles, and so o, .., abjects with sizes ypically less than 10%m or 10/ nm,
this boak, we will have no need for lrger sizes.




Fig. 12, Schematic llutraion
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« atomistic: the bright dots in this image correspond to the Ba and Ti fons in
a tetragonal BaTiO, crystallite. This is a so-called high resolution image,
obtained by transmission electron microscopy, where one can distinguish
individual columns of atoms with a distance between the atoms of around

20m.

The ability to observe an object of a certain size is closely linked to the
wave length of the radiation used for the observation. Consider circular waves
that travel on a large pond after you toss a rock into the water. If an object,
much smaller than the distance between the crests of the waves (the wave
length), floats on the water nearby, then the waves will pass by the object
without being perturbed by the object; the object will move up and down with
the passing waves. If the object is large compared to the wave length, say, a
Jar or a wall, then the waves will be perturbed, since they have
to travel around the object; often, part of the waves will be reflected by the
object. If waves are not perturbed by an object, then this object is essentially




Fig. 1.3, Schematic lustration
ofthe resoluton ofthe human
eye. The lawer porton shows
the fovea as @ hexagonal array
of cones, the top view shows
the angular resaluion of the
eye in terms of the eye-object
ditance, the angl 6, and the
ditance between individual
object lnes

invisible to those waves. If we use visible light, with a wave length of around
500 nm, to look at viruses (with a typical size between 3 and 300 nm), then the
light waves will not be perturbed significantly by the viruses, and, therefore,
we will not be able to observe viruses using optical microscopy methods.
To determine the smallest thing the human eye can see, we must understand
the structure of the eye. The human eye is a sphere with an approximate
diameter of 25 mm. It has a lens with an opening (pupil) of about 3.5 mm. The
inside back surface of the eye is covered with two types of light receptors
rods and cones. The cones are concentrated in a small area, 0.3 mm diameter,
directly opposite the lens. This area is known as the fovea. There are about
15000 cones in the fovea, leading to a cone density of about 200000 per
mm?, Each cone is about 1.5 jum in diameter, and the average spacing between
cones is 2.5 um. For convenience, we can imagine the cones to be packed in

a hexagonal array, as shown by the small gray disks in Fig. 1.3

If we consider an object at a distance of 250 mm from the eye, then this
object will be imaged by the lens onto the fovea with a magnification factor
of M =0.068 (Walker, 1995). Consider a set of narrowly spaced lines, with
a line density of p lines per millimeter (Ipm). The eye lens will image this
erid of lines onto the fovea, 5o that the line density at the fovea becomes
pr=p/M (since the eye demagnifies the object size, the line density will
become larger). The highest line density that can be “scen” by the fovea
corresponds to each line being projected onto a row of cones, and the next

row does not have a line projected on it. Since the average spacing of the
cones is 2.5 um, the smallest possible distance at which the Tines can still be
resolved by individual rows of cones is 2.5v3 = 4.3 um. A line spacing of
4.3 pm leads to a line density at the fovea of p, = 2301pm, which corresponds
to a line density at the object of 15.61pm. So, at a distance of 250 mm, the
human eye, in the best possible conditions, can see the individual lines in a

grid with about 16 lines per mm.
The discussion in the preceding paragraph describes an idealized case;
in reality, the highest resolvable line density at a distance of 250mm

125

Top view
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7 1.4 Wave-particie dulity and the de Brogle relationship

is about 8 1pm. It is more convenient to express these numbers in terms of
the angle between two lines leaving the eye and reaching two neighboring
lines of the grid, as shown in the top view of Fig. 1.3. Simple trigonometry
shows that 6 =0.125/250, 50 that =5 x 10~ radians, or 0.029°, which is
equivalent to 1.7 arc minutes. Rounding up, we can say that the human eye
has a visual resolution limit of 2 arc minutes per line pair. Similar numbers
are obtained when the object consists of dots or other shapes. It should be
clear to the reader that the human eye is not capable of resolving microscopic
objects, let alone the distance between atoms.*

Returning to Fig. 1.2, the columns on the left hand side of the figure indicate
the range of applicability of a number of important materials characterization
methods. Each method relies on the use of a particular type of particle:
electrons, neutrons, and photons (or electromagnetic radiation). All three of
these methods are capable of producing information about the atomic structure
of matter. In this book, we will discuss mostly the use of X-rays for structure
determination, but we will also describe briefly how neutrons and electrons
can be used to obtain similar information.

1.4 Wave-particle duality and the de Broglie relationship

By the early part of the 20th century it had been established that electromag-
netic (EM) radiation (Tight) has both a wave and particle (photon) character,
the wave-particle duality. James Clerk Maxwell proposed a theory of elec-
tromagnetism (Maxwell's equations) which put the wave nature of light on a
formal mathematical basis by the late nineteenth century. However, the pho-
toelectric effect was explainable only in terms of the particle aspects of light
(Albert Einstein, 1905). Einstein’s formula relates the energy of a photon, £,
to the frequency of radiation. v:

E

ho, n

The wave length of electromagnetic radiation is related to the frequency, v,
of the wave (the number of cycles per second) by means of the following
relation

* i oy e P g, 5 compard 1 il e, s ey igh
pixel density. While the cone and rod densites vary across the eye, on average the
Coespond 0.3 600 megapislcamera for 3 120+ fld o views O coue, th e
produces a continuous stcam of images, more ke  movie than il image. Neverthelss,
he amount of informarion processed by th eye and brn s rly remarkabie




299792458 m/s is the velocity of light in vacuum. A consequence
of Einstein’s explanation of the photoelectric effect was that EM waves could
be thought of as having particle-like momentum.

The wave length, A, of electromagnetic radiation spans many orders of
magnitude, from the long wave length radio waves (see Fig. 1.2) to visible
light to X-rays and gamma rays. Visible light cannot be used to observe the
atomistic length scale, but X-rays have a wave length that is comparable to the
distance between atoms. Hence, X-ray waves will be perturbed by atoms, and

Similar refations

Broglie, using formulae from Einstein’s special theory of relativity, argued
that if electromagnetic waves also have a particle nature, should not particles
such as the electron also have a wave nature? For a particle with mass, m,

moving with velocity v, he proposed an associated wave characterized by the
wave length:

h

(1.3)

m
For electrons accelerated by a voltage, V., the electron wave length is given by:

h

V2mgeV’

(1.4)

where h = 6.626075 x 1075 is Plank’s constant, ¢ = 1.602177 x 107 C
i the electron charge, and iy = 9.109389 x 10" kg is the rest mass of the
electron. In 1927, Davisson and Germer showed experimentally that elec-
trons do indeed have wave character by causing them (o undergo diffract
like X-rays, through a crystal lattice (Davisson and Germer, 1927). This
experiment laid the basis for measuring crystal structures by the method of
low energy electron diffraction (LEED), and, later on, for the invention of
the transmission electron microscope.

In the case of high energy electrons where the accelerating voltage, V.

is large, a relativistic correction is made and the electron wave length
given by:

(1.5)

[2mpev(1+ )

Zmye

Table 1.1 lists a few representative electron wave lengths used in scanning
and transmission electron microscopes.
‘The wave length of neutrons also follows from the de Broglie relation:

h

1.6)
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Table 1.1, Electron wave lengths (in pm) for selected acceleration voltages V for
scanning eleciron microscopes (left two columns) and transmission electron
microscopes (ight two columns),

V (VoI A (pm) v (voly
1000 3876 100000
5000 1730 200000

10000 1220 300000

20000 859 400000

1000000

where m, = 1.674929 x 107 kg is the neutron rest mass and v isits velocity.
However, neutrons are not charged particles and, therefore, they are not
accelerated by a voltage. Neutrons are created in nuclear fi
inside nuclear reactors, as described in more detail in Chapter 13. Typically,
4 wide range of neutron velocities emerges from the reactor, and by selecting
only neutrons within a_certain narrow velocity window, one can select a
particular wave length. For instance, to obtain a neutron with a wave length
of 0.1nm, one would have to select a velocity window at v=3.96 x 10°m/s,
or approximately 4 k. It s also possible to have neutrons reach thermal
equilibrium, so that their kinetic energy is:

g

processes

Ky T, (%)

il g
By = 5,0

3

2

where k, = 1.38 x 10~ J/molecule/K is the Boltzmann constant. The de
Broglie relation then becomes:

(1.8)

1.5 What is a material property?

1.5.1 Definition of a material property
We choose materials to perform well in certain applications. For instance, we
use steel beams and cables in bridges. because they provide the strength and
load-bearing capacity needed. We use plastics in toys because they can be
molded into virtually any shape and they are strong and light weight. When
we use a material in a certain application, we know that it will be subjected

10 particular external conditions, e.g. a constant load, or a high temperature,
or perhaps an electrical current running through the material. In all these
cases, we must make sure that the material responds in the desired way. For a
les to retain their strength

bridge deck held up by steel cables, we want the
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all year round, regardless of the weather and temperature, and regardless of
the number of cars and trucks crossing the bridge. For a computer chip, we
want the semiconductor material to behave predictably for the lifetime of the
computer.

In general, we want a material to have a particular response to a given
external influence. This basic statement can be cast in more formal, math-
ematical terms. We will represent the external influence by the symbol &,
which stands for Field. This could be an electrical or magnetic field, a tem-
perature field, the earth’s gravitational field, etc. The material will respond
nd the Response is described by the symbol ®. For instance,
of a steel beam to an external load (i.e., a weight at the end of
the beam) will be a deflection of the beam. The response of a conductor to
an electrical field applied between its two ends will be an elect
running through the conductor. In the most general sense, the relat
field and response is described by:

the respon:

cal current

n between

R=R(F). (19)

ic.. the material response is a function of the externally applied field. Tt is
one of the tasks of a materials scientist to figure out what that function looks
like.

Once we re

ognize that the behavior of a material under certain external
conditions can be expressed in mathematical terms, we can employ mathe-
matical tools to further describe and analyze the response of this material. We
know from calculus that, for “well-behaved” functions, we can always expand
the function into powers of its argument, i.c., construct a Taylor expansion.*
For equation 1.9 above, the Taylor expansion around =0 is given by:

R 1 PR
= Flo Flho (L10)

where R, describes the “state” of the material at zero field. There are two

(i) R, =0: in the absence of an external field (" = 0), there iis no permanent
(or remanent) material response. For example, if the external field is an

applied stress, and the material response is a strain, then at zero
there is no strain (assuming linear elasticity).

stress

Recall that a Taylor expansion of a function f(x) around

=i+ = 9L

015 given by

1235 ... (n—1) .0 is the factorial of . IF the functlon / depends on
other variables in addition to v, then the derivatives d/dx” must be replaced by partil
derivatives /0.
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(if) R, # 0: in the absence of an external field (5" = 0), there is a permanent
material response. For example, i

a ferromagnetic material, the net
magnetization s in general different from zero, even at zero applied field.
If we truncate the series after the second term (i.e., we ignore all deriva-
tives of  except for the first one). then the expression for % is simplified
dramatically:
iR aR|
+a|, TR tPS wit P 7|

= lr—o

%

L1

This is a linear equation between the applied field and the response. The
quantity P is a material property. Ignoting the higher order derivatives of
R is generally known as linear response theory. This approximation simpli-
fies things considerably and, for many purposes, it is a useful and accurate
approximation.

Let us consider an example. An electrical conductor, say, a copper wire,
is placed between the terminals of a battery. If the wire is 3 meters long,
and the battery is capable of producing a 9V voltage drop, then there is an
electric field, E, of 9 volts per 3 meter, or £ =3V/m. In response to this
field, a current will flow through the wire. The amount of current depends on
the cross section of the wire, 5o it is convenient to work in terms of current
density (current per unit area, or A/m?), j. For most conductors, the relation
between current density and electric field is lin

=0k,

where o is known as the electrical conductivity, and has units of A/Vm
or 1/Qm, where 0 stands for ohm (1 ohm = ). Let us compare this
equation with the Taylor expansion in Eq. 1.10. The exteral field  is equal
t0 E, and the response  is equal to j. First of all, when there is no voltage,
there will be no current, so that &, = j, = 0. There is no dependence on
powers of E, so there is only one term in the series, namely:

o

We conclude that ¢ is equal to the first derivative of the current density with
respect to the electric field. This proportionality factor does not depend on j
or E, therefore we call o a material property. In more general terms,  linear
material property is the proportionality factor between an applied field and
the resulting material response.

1.5.2 Directional dependence of properties

In the previous section, we saw that the current density, /. in a conduetor is
proportional to the applied el

ic field, E. The proportionality factor is the
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conductivity o All three quantities in the previous refation were scalar quan-
tities. However, we can imagine taking a rectangular block of a conducting
material, and applying an electric field between the top and bottom surfaces,
or between the front and back surfaces, or between opposite comers. This
means that the electric field has both a magnitude and a direction, hence it
can be represented by a vector, E.5 The same thing can be said of the current
density, since the current has a magnitude and it runs in a particular direction.
Hence, we have a vector J. The relation between electric field and current
density then reads:

Since o is a scalar (i.c., & number), this means that the current density vector
i always parallel to the electric field vector. Well, not quite. When we defined
the conductivity, we started from the relation:

i
9E

But this relation is only valid for scalar j and E. We must incorporate the fact
that both j and E are vectors into this equation. Both vectors have components
with respect to a standard Cartesian reference frame: § = (j,, j,. j.) and E
(E,. E,. E.). So, instead of having only one single value for o, now we
have a total of nine values! Here's how that works. Consider the following
expression:

(78
GE,

In other words, thisis the derivtive of the x-component of the current density
‘with respect to the x-component of the electric field. This derivative will have
a particular value (a scalar value) which we will represent by o, Similarly,
we can define

and 50 on. There are nine such relations, which can be summarized by writing:

o=
= o,

# In this book, we will always use bold characters o represent vectars.



1.5 What is a material property?

where the subscripts or indices i and J take on the values , )
relation between the curent density vector and the electric field vector i then
given by

Jo= O E o E t o By
Jy=0,E +0,E,+0.E;
.= 0.E +0,E,+0,E,.

This relation expresses the fact that the current density, in response to an
eletric field, need not be parallel to this electric field. Each component of
the current density is written as a linear combination of all the components
of the electric field

What we lear from the above example is that a material property is not
always represented by a simple scalar. If the property connects a vector field
10 a vector response, then the material property has nine elements, which can
be written as a 3 x 3 matrix. Mathematicians call such a matrix a tensor. The
question then arises: Do we need nine numbers for the electrical conductivity
of every material, or is it possible that some materials need fewer numbers?
The answer (o this question will become clear in the next section, where we
introduce the concept of symmetry. Before we do so, let us first con
possibility that a material property varies with location in the material.

It is intuitively clear that an external field can depend on location. For
instance, the temperature at one end of a material can be different from the
temperature at the other end. In mathematical terms, this means that the gra-
dient of the temperature does not vanish. It is possible for a material property
10 show a simi

er the

the material. Consider, for
clear that the chemical composition of
since there is only one chemical element
present. We say that the composition is homogencous, i.e., the composition
does not depend on position. Similarly, the electrical conductivity of pure
silicon is the same everywhere, so that the electrical conductivity is homoge-

instance, a cube of pure silicon. It i
this cube is the same everywhere,

ine, next, that we implant phosphorus atoms on one.

cube, t0 a depth of a few hundred microns. Since the phosphorus concen-
tration is not a constant throughout the cube, we say that the composition i
heterogencous, concentration depends on the location in the mater
Since phosphorus has five electrons in its outer shell, whereas silicon has
only four, we see intuitively that the electrical conductivity in the
contain P must be

de of the

ifferent from that of the other regions. In other words,
the electrical conductivity of P-doped silicon is heterogeneous if the P is not
distributed in a homogeneous way.

© The definition and propeties of ensrs need not concern us here. It s suffcient that the
Feader understands that material properics oficn consist of multple scalars, arranged in
particular form (in this case, a 3 x 3 matix),
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Fig. 1.4 lusration of two
simple 2:D arystal tructures:
(@) based on a squre grid
with one type of atoms, while
(0 s 3 rectangular grid with
two ifferent kinds of atoms
The eectrical conductviies in
the x and  direcions for (3)
are expected 0 be the same,
whereas they are most likely
dierent for the second
siucture

3 Afirst encounter with symmetry

One might ask what the previous section has (o do with crystallography.
That's a very good question, and we will attempt to answer it superficially
in this section. Consider a 2-D material in which the atoms are arranged
as shown schematically in Fig. 1.4(a). All atoms are identical, and they are
Tocated on the nodes of a square grid. If we apply an electric field along
the x-axis, we will generate a certain current density (assuming that our 2-D
material s a conductor). If we apply the same field strength in the y direction,
then there is no reason why the current density along y should be any different
from that along x. After all, the structure looks exactly the same along the
xand y di

e relation between electric field and current density in
this 2-D material can be written as:

0 0 (E,
) = (O o) (B L12
Q-GE2E) o
Since the x and y directions in the crystal are equivalent, we can interchange
them. In other words. we interchange the subscripts in the material property

matrix
T T\, (O O
o, 0, oy 0.
1f we apply the electric field along the same direction as before, we obtain:
o, 0, (E
) = (T %) (7o 113
0-G2E o

‘The response in this case must be equal to the response in (1.12), s
must have:”

that we

E2D)=E2) a5

‘which means that

e (1.15)

7 This procedure is mathematically nat enirely rigorous. An exact derivation requires the use
of the ransformation formul for a sccond rank tensor, which is beyond the scope of his
texthaok. The exact derivation for the case llustraed above would resul n the following.
equalitis:
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So, we have established that, for a crystal with the structure shown in
Fig. 1.4(a), the components of the conductivity matrix are related to one
another by the above relations. The fact that the current densities in the x and
¥ directions must be equal to each other is a reflection of the symmietry of the
underlying crystal structure.® The square character of the grid directly leads
to relations 1.15.

“This is an example of how the symmetry of a structure imposes constraints
on the physical (or material) properties of the structure. This simple observa-
tion provides an immediate motivation for a textbook on crystal structures:
‘many material properties are directly determined by the underlying structure
of the material, ie., the precise distribution of the atoms. To understand
material propertics, and to design materials with new properties, we must,
therefore, understand how the atoms are arranged. This consists of two parts
first, we must learn the proper language to describe crystal structures; then,
we must learn how to determine where the atoms are located. We will learn
both of these aspects in the first half of the book. Then, we will apply what
we have learned to a large variety of crystal structures in the second half.

Before we provide a further illustration of what this book is all about, we
must conclude the example that we started at the beginning of this section.
‘There is more to material properties than just the underlying crystal structure.
Material properties must also satisfy additional laws of physics, in particular,
the laws of thermodynamics. Tn the case of electrical conductivity, one can
show that the matrix representing the conductivity must always be a symmetric
;. 1 we apply this to Equations 1.15, taking into account
the footnote on page 14, we find that @, = —o,. and this can only be true
if 0, = 0. Hence, thermodynamics and symmetry combine to predict that for
the crystal structure shown in Fig. 1.4(a), the relation between current density
and electric field must be

E;
+(%)-

(-G )

al structure is based on a rectangular grid rather than

However, if the cr
4 square grid, it can be shown (reader exercise) that ,, # o, so that the

relation becomes:
Je\ Z (o O (Ee
)=\ 0 ) E,

For the crystal structure shown in Fig. 1.4(b), it is intuitively clear that the
conductivity along the x and y directions must be different, since the sequence
of atoms in cach direction is different.

* Note that we wil define what a erystal sirueture is in Chapter 3
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When a material property does not depend on the dircction of the
applied field, then that property is known as an isotropic property. Prop-
erties that do depend on the direction of the field are anisotropic prop-
erties. The electrical conductivity in the crystal structure of Fig. 1.4(a) is
isotropic, but in Fig. 14(b) the conductivity is anisotropic. Note that it
is possible to have anisotropic properties that are homogeneous or het-
erogencous across a crystal; if a property is heterogencous, it means
that the value of the material constants (e.g., the value of the electrical
conductivity ) varies with location in the erystal, perhaps due to chemical
inhomogeneities.

Note that the above arguments do not say anything at all about the magy
tude of the conductivity parameters. Instead, symmetry and thermodynamics
only state which parameters must vanish, and how cach parameter is related
1o the others. The magnitude of the parameters must follow from a different
branch of physics, known as solid state physics, which would use quantum
mechanics and other tools to express the conductivity in terms of more funda-
mental parameters (i.¢., the charge distribution in the material). Once again,
knowledge of the underlying crystal structure s essential for these kinds of
computations,

There are many mater

I properties. The most important ones are linear
properties, meaning that there is a direct proportionality between the field
and the response. Others are quadratic in the field, or even higher order.
Each material property is represented mathematically by a tensor. Tensors
of rank zero are scalars, rank one results in a vector, rank two in a 3x3
matrix, and so on. Table 1.2 shows some of the more important mate-
rial properties that are represented by tensors. The tensors are grouped by
rank, and are also labeled (in the last column) by E (equilibrium prop-
erty) or T (wransport property). The number following this letter indicates
the maximum number of independent, non-zero elements in the tensor, tak-
ing into account symmetries imposed by thermodynamics. The Field and
Response columns contain the following symbols: AT = temperature diff
ence, AS = entropy change, , = electric field component: magnetic
field components, ¢, = mechanical stain, D, = electric displacement, B, =
magnetic induction, o, = mechanical stress, A, = change of the imper-
meability tensor, j; = electrical current density, ¥, = temperature gradient,
h, = heat flux, V,c = concentration gradient, m, = mass flux, p! = anti-
symmeric part of resistivity tensor, p; = symmetrie part of resistivity tensor,
Ap,; = change in the component i of the resistivity tensor, I, = direction
cosines of electromagnetic wave direction in crystal, and G = optical gyration
constant.

Tt is clear from this table that there are quite a few important material
properties. While the details of this table go far beyond this textbook, it is
instructive to see that the symmetry of the underlying crystal structure of a
material has an influence on all these properties.

A
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Table 1.2. Materials property and transport tensors (adapted from Nowick

(Nowick, 1995)).

Property Symbol Field Response  Typett
Tensors of Rank 0 (Sealars)
Specific heat c AT s En
“Tensors of Rank 1 (Vectors)
Electrocaloric ,7‘ E s 3
Magnetocaloric a H, As B3
Pyroclectric 7 AT D, 3
Pyromagnetic q AT B 3
TR
Thermal expansion ‘, @ 6
P e o, a,, As o
ctric permittivity y E, D, o
M’lgneuc permeability y H 8 Ef6
Opical activi 8 4l G Ef6
Mgt i 1 D, R
polari:
Convense magnelo:]ecn i A B B
Bl ey o) EG) E) 6
(resistivity)
ermal conductivity I wr n ™
Diffusivity D, Vie m ™6
Thenmosec pover 5 v E ™
Hall effe R, 5 o ™
Tensors of Rank 3
Piczoclectricity dy i D, Ens
Converse piezoelectricity i Ee € ENS
Piezomagnetism 0 a 5, s
Converse. Oy H, € EN8
piczomagnetism
Electro-optc effect s A B, ENs
Nernst tensor oo V78, E ™
Tensors of Rank 4
Elasticit S (€) oy (&) € (o)
Elwlmslncuon s EE &
Photaelasticity it Ty ABy,
Kerr P EE, A8,
et e B, &
iezoresistance iy o p,
etothermoelectric Ty VTBB, K
power
Second order Halleffect Pt BB g ™0
Tensors of Rank 6
“Third order clasticity Cimn i i EIS6
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1.5.4 A second encounter with symmetry

Fig 15, Sufce of constant
magnetocystaline anistropy
energy denshy in Crtesian
oordinates or (2) a cubic e
@) and Co () sigle aystal
(courtey o . Ohodeick).

The previous section illustrated how the symmetry of an amangement of
atoms affects a particular material’s property tensor, in this case the elec-
trical conductivity tensor. In the relation between the current density and
the applied electric field, there is no “zeroth-order” term jp, ie., there is no
current density when there is no applied field. In this section we consider
another, pictorial, representation of the role of symmetry in determining the
internal energy of a material. The magnetocrystalline anisotropy energy den-
sity is the internal energy per unit volume associated with the orientation
of the magnetization vector, M, in a crystal. The magnetization is defined
as the magnetic dipole moment per unit volume. In a ferromagnetic mate-
rial, Tike Fe, these dipole moments are aligned to give rise to a permanent
magnetization.®

Magnetocrystalline anisotropy refers to the fact that the magnetization of
4 single crystalline material prefers to be oriented parallel to certain easy
intenal crystallographic directions. For example, a cubic Fe single crys-
tal has a lower intemal magnetocrystalline anisotropy energy density, if lhe
magnetization vector points along a direction with 4-fold as opposed
3-fold or 2-fold symmetry. A cubic Co single crystal has a lower inter-
nal magnetocrystalline anisotropy energy density, if the magnetization vector
points along a direction with 3-fold as opposed to 4-fold or 2-fold symme-
try. Figure 1.5 shows a surface of constant magnetocrystalline anisotropy
energy density in a Cartesian coordinate system for each of these mate-
rials. Note that both of these surfaces reflect all of the symmetries of

@

® Magnetization in a ferromagnct s an example of  material esponse in which there s
remanent response: even in the absence of a magnetic field there is 8 emancnt magnetization
Vector which is oriented in such 2 way 25 to minimize the internal energy density.
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1.6 So, what s this book all about?

the cubic crystal. However, the minimum cnergy for the Fe single crys-
tal corresponds to directions pointing to the center of the faces (4-fold
axes), while for the Co single crystal, the minimum corresponds to direc-
tions pointing to the cube comers (3-fold axes). This example illustrates
that the symmetry of a crystal lattice not only determines what properties

this material can exhibit, it also governs the energetics of various phy:
phenomena.

ook all about?

In the last section of this introductory chapter, we take a brief look at some of

the topics covered in more detail in later chapters. To focus our attention on
a few concrete examples, we have selected four different materials that are
easy to find, in case the reader would like to repeat some of the observations
presented in this section and in Chapter 14:

sugar: regular sugar (sucrose) that you can get in a grocery store;
salt: standard table salt (essentially pure sodium chloride):

ickel: the 5 cent coin in the USA is made of a Cu-Ni alloy;
glass: a simple glass slide for an optical microscope.

Let us assume that we would like to find out what the atomic structure
is of these four materials. OF course, these are rather basic materials, and
their structures have been understood for a long time. Nevertheless, we will
“pretend” that we do not know what the crystal structures of these materials
Took like.

A simple observation with an optical microscope reveals that sugar and
s show clearly developed facets, indicative of the underlying
crystalline character of the material. We know already, from the discussions
o 1.3, that we cannot use optical microscopy to determine the crystal
with a wave length similar to the interatomic

in Seq
structure. We must use X-rays

2 the
in o powder diffraction

spacing. The most s way of oblai
needed to identify the crystal structure is to ob
done.

pattern. Here's

Consider the experimental set up in Fig. 1.6. A beam of electrons is
accelerated by a potential drop in the range of 10-50KY. The beam reaches a
metal target, T, typically made of Cu, Mo, W, Co, or Cr, where the kinetic
energy of the electrons is converted into X-rays and heat. The X-ra
then collimated through a narrow slit and projected onto the material. The
sample, S, is mounted on a stage that can rotate around an axis normal to
the plane of the drawing. The angle between the sample plane and the X-ray
beam direction is usually represented by the symbol 6. Finally, a detector,
D, is placed at some distance, r, from the sample. The detector also rotates
around the same axis, but at twice the angular velocity. In other words,
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when the sample rotates by 10°, the detector rotates 20°. This experimental
2 is known as a 0-20 di and it is one of the basic
tools of modern crystallography.

‘The detector, D, measures the number of X-ray photons, /, that are scattered
by the sample over an angle 20 with respect to the incident beam direction
When we plot the scattered intensity 7 as a function of the angle 26, we obtain
a powder diffraction pattern. We have carried out precisely this observation
on our four basic materials. The resulting powder diffraction patterns are

shown in Fig. 1.7.

‘We note that the four patterns in Fig. 1.7 are distinctly different from each
other. Sugar has a large number of peaks, whereas table salt only has a few
in the angular range shown (10° < 26 < 60°). Glass has only one very broad
peak, and for the nickel coin, only two peaks fall in the selected angular

Diffation angle 2 Diffation angle 20
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Fig 18. (3 G. Agicola

(1494-1555), and

(0) C. Hoyghens (1629-1655)

(icures courte
. Lima-de-Fai).
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1.7 Historical notes

range. Note that there are two characteristic values associated with each peak:
the location of the peak, measured in degrees, and its relative intensity. We
will see in the first part of this book that the position of the peaks is related
10 the shape of the unit cell of the material, whereas the relative intensities
are determined by the positions of the atoms inside that unit cell. In other
words, a given crystal structure produces a particular set of peaks, and these
peaks uniquely identify the structure. This means that we can use powder
diffraction patterns such as the ones shown in Fig. 1.7 as fingerprints for
crystal structures. It is one of the purposes of this book 1o teach the reader how
the powder diffraction pattern of a crystal structure is related to that structure.

‘The final section of each chapter is entitled “Historical notes”, and contains a
few paragraphs describing important events in the history of crystallography
and/or important scientists who have made a significant impact in the field.
‘The authors have attempted o present a wide range of characters, from the
early beginnings of crystallography all the way (o the present day. These
historical sections do not provide a complete history of crystallography, and
they are not even in chronological order. Instead, each section reflects on a
particular episode or person, usually related 1o one of the topics treated in
the corresponding chapter. The main purpose of these sections is 0 provide
the reader with background information that is often not as well known
as the rest of the chapter. Usually, a few citations are provided as well, so that
the interested reader may find out more about a particular person or event,
Obviously, in this day of internet search engines and on-line encyclopedias,
it should not be 100 difficult for the reader to locate additional information;
the names and events in the historical sections will provide the search terms
for such explorations.
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Georgius Agricola (1494-1555) was a German physician and metallurgist.
The science of mineralogy is widely viewed as originating with the works
he authored on mining, geology, and mineralogy. Crystallography is closely
related to the field of mineralogy. Similarly, the roots of modern materials
science are intertwined with early mineralogy. The book De Natura Fossilium
(Agricola, 1546) contains a classification of minerals based on physical prop-
etties such as color, density, transparency, lustre, taste, odor, shape, and tex-
ture. The powers of minerals were attributed to their natural properties instead

of a divine origin. The importance of the geometrical shape of crystals, a pre-
cursor to ideas of geometrical crystallography, was emphasized in this work

Agricola is considered to be the father of the experimental approach to
science. He published an influential book De Re Metallica (Agricola, 1556)
describing metallic minerals. This book was translated into English in 1912
by Herbert Clark Hoover, a mining engineer who went on to become the
United States’ 31t president.

Christian Huyghens (1629-95) was a Dutch astronomer, mathematician,
philosopher, and physicist. Huyghens studied and mastered geometrical optics

and developed techniques for lens grinding which aided his career in astron-
omy. In his Traité de la Lumiére (“Treatise on Light” Huyghens, 1690)
Huyghens deseribed his research in physical opti

ical optics. This work included many
notable achievements in the field of crystallography. Huyghens was the orig-
inator of the wave theory of light and the Huyghen's principle is a useful tool
to understand diffraction. Huyghens was also an accomplished clock designer
and builder, and he published a book on probability theory.

(i) Electron diffraction and the de Broglie wave length: Consider electrons
with Kinetic energies of 1eV; 100eV; and 10keV.

(a) Find the de Broglie wave length in each case, and consider whether
the electron would be appropriate for use in electron diffraction
determinations of crystal structures, (Iznore relativistic corrections.)

(b) Calculate miyc? for an electron and the size of the relativistic correc-
tion for the case of 100keV electrons

(ii) Thermal neutron de Broglie wave length: Consider thermal neutrons at
atemperature, T, of 300K. i.e., neutrons that are in thermal equilibrium
with their surrounding:

(a) Calculate the neutron thermal velocity. Compare this with the thermal
velocity of an electron at 300K

(b) Calculate the de Broglie wave lengths for the neutron and electron
of (a),
(¢) Would cither of these be useful in resolving atomie positions?
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(i) X-ray diffraction: Assuming that the reader has access to a 6§ or
029 diffractometer, collect all four study materials discussed in this
chapter, and obtain powder diffraction patterns for the range 10° < 20 <
120°. For sal, sugar, and nickel, create a spreadshet file containing (in
columns) the values for 26, the raw (experimental) intensity, and the
scaled intensity (scaled such that the highest intensity equals 100). This
data file can be used later in this book (in particular in Chapter 14), to
compare the experimental measurements with theoretical predictions.

(iv) Diffusivity tensor: The defining relationship between field and response
in diffusion is Fick’s first law:

J,=-DVC.
The response vector, J,, the atomie flux, is given by:
R (CARICARICARY

Ithas units of # atoms/m?/s. The field vector is the concentration gradient
which is given by:

ac ac ac
ve=(= = 7)
' dy ez
Here C is the atomic concentration, in units of # atoms/m®. The material
property associated with diffusion s the diffusivity, or diffusion coeffi-
cient, D. For an orthorhombic crystal, Fick’s first law can be written as:

) D, 0 0
U |= 0 b, 0
). 0 0D

(a) What are the units of the diffusion coefficient?

(b) Perform the matrix multiplication to express three equations relating
the three components of the flux vector to the three components of
the concentration gradient.

(c) What do they imply about atomic fluxes in different directions?



CHAPTER

2 The periodic table of the elements
and interatomic bonds

“Where the telescope ends, the microscope begins. Which of these two has the
grander view?”

Victor Hugo, les Miserables. Cosette, bk I1I, ch. 3

‘We begin this chapter with a description of the building blocks of matier, the
atoms. We will discuss the periodic table of the elements, and describe several
trends across the table. Next, we introduce a number of concepts related to
interatomic bonds. We enumerate the most important types of bonds, and
how one can describe the interaction between atoms in terms of interaction
potentials. We conclude this chapter with a brief discussion of the influence
of symmetry on binding energy.

2.1 About atoms

2.1.1 The electros

structure of the atom

‘The structure of the periodic table of the elements can be understood readily
in terms of the structure of the individual atoms. It s, therefore, ironic that the
table of the elements was established long before the discovery of quantum
theory and the structure of the atom by Bohr in 1913 (Bohr, 1913a.b.c). Bohr
ntroduced his atomic model for the hydrogen atom, consisting of a negatively

charged electron orbiting a positively charged nucleus. Nowadays, we take
it for granted that the atomic nucleus consists of protons and neutrons, and
that a cloud of electrons surrounds the nucleus, but in the nineteenth century

and the early part of the twentieth century this was not at all obvious. Let us
briefly review the history of the constituents of the atom:

& The electron was discovered by J. J. Thomson in 1897; the name electron

was coined a few years carlier (1891) by J. Stoney, who first used it to
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indicate the unit of electric charge. The discovery of the electron marks
the beginning of a new era, and it is hard to imagine what our societies
would look like if the electron had not yet been discovered.

The proton was first identified by Wien in 1898 and Thomson in 1919,
and subsequently named by Rutherford in 1920. Tt is a positively charged
particle of mas kg, which is about 1836 times heavier than
the electron. The word proton stems from the Greek and means “the first
one.”

The neutron was discovered by Sir James Chadwick in 1932. It is a neutral
particle with mass nearly equal to that of the proton. It is the strong
interaction force between neutrons and protons that keeps the nuclei of
atoms from flying apart under the intense electrostatic repulsion between

the positively charged protons.

2.1.2 The hydrogenic model

Fig. 2.1. Graphical
representation of spherical
coordinates.

Let us assume that a nucleus of charge Ze, with Z the number of protons,
is fixed in the origin of the reference frame and that the position of the
single electron is described by a position vector r. It is convenient to work in
the so-called spherical coordinate system, where the coordinates of a point
are given by (r, 6, ¢) (see Fig. 2.1). It is easy to show that they are related
to the cartesian coordinates (x, y, 2) in the following way:

x = rsinfcosd r = VTR A T
¥ =rsin0sing 6 = arccosz/r
z=rcosd ¢ = arctany/x

For a review of electron related reseatch during the first century afte s discovery we refer
10 the book Electron: a centenary volume (Springford, 1997). For a detailed aceount of the
early history of elementary particle research we recommend the book nvard Bound: of
Matter and Forces in the Physical World by A. Pais (Pais, 1986). Both books provide the
reader wilh an in-depth view of how scientists' thoughts were forced to fundamentally
ehange when new discoveries were made.
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These coordinates are similar to the commonly used two-dimensional coor-
dinates to locate a position on the globe (longitude and latitude); in that case
r would be equal to the radius of the earth.

For the hydrogenic atom (hydrogenic means that the nuclear charge can
be a multiple of e) the only relevant force is the Coulomb force between the
electron and the nucleus. The electrostatic potential energy V is:

_ze
Ame,r”

(0}

with € = 8.85419 x 10~ F/m the permittivity of vacuum. For a hydrogen
atom Z=1.

In the first quarter of the twentieth century it was established that the atom-
istic world obeys the laws of quantum theory. Quantum theory or quantum
mechanics describes the behavior of particles in terms of a complex-valued
function, W(r), known as the wave function. The probability, %, to find a

article at a certain location r s expressed by the modulus-squared of the

wave function, evaluated at that position
P(r) = W)W (r) = |[¥(r)|*,

where the asterisk * denotes complex conjugation. The wave function W is
the solution to a differential equation, known as the Schriidinger equation
(Schrésdinger, 1926). While the details of the mathematics for the hydrogen
atom are beyond what we need in this book, it is instructive to consider
the formal expression for the wave function of the hydrogen atom. Quantum
theory predicts that the general wave function of this system (see historical
note on page 51) can be written as the product of two functions; one function
depends only on the distance to the origin and is known as the radial part, the
other function depends only on the angular coordinates and is hence known as
the angular part. The standard notation for the hydrogenic wave function is:

ter

Wi (1, 0, ) = Ry (1), (6, ).

‘The numbers #, £, and m are integer numbers, known as quantum numbers;
they follow from the detailed mathematical thery.

‘The integer numbers n. £, and m describe the type of “orbit” the electron
will occupy. Each orbit has an associated energy which, in the simplest
approximation, depends only on the number n. The energy E corresponding
0 the different wave functions is:

The different energy levels are determined by the quantum number n, which
is generally known as the principal quantum mumber.
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Table 2.1. Correspondence of the princpal and
angular momentum quantum numbers and the
spectroscopic letter notations.

One can show that the radial functions R,(r) are defined for values of /
for which

I=n-1

In other words, if n =2 then /=0, 1, if n=4 then /=0,1,2,3, and so

on. The number / is known as the azimuthal or angular momentum quantum

number.
Finally, the functions ,,(, ), called spherical harmonic:
defined for values of it for which

are only

o] < 1.
Hence, for /=1 we have m =~1,0,1, and for [ =3 we have m =
+.,3. The number m is known as the magnetic quantum nuniber.
For every value of { there are 21+ 1 possible values of . Each tiplet of

numbers (nf) defines a possible state for the electron. States with identical
energy (defined by n) but different values of (1) are called degenerate states.

It is convenient to employ the historical notation for the angular momen-
tum quantum number; the different angular momentum states are referred to
by lowercase letters and the principal quantum numbers are referred to by
uppercase letters (see Table 2.1).

2.2 The periodic table

In the previous section, we have described how quantum theory gives rise
to orbitals and quantum numbers for the hydrogenic atom. It turns out that
hydrogen is the only atom for which such an analytical solution can be
obtained: all other atoms are so complex that only numerical methods can be
used to solve their Schrodinger equations! Atoms with atomic number larger
than Z = 1 are more complex because an additional interaction arises which
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Table 2.2. Wavelengths and colors for the most important spetral fins of
hydrogen. The experimentally measured wave length is shown for comparison.

Transition B, (eV) A (om) Exp. (om) Color
251 1020 121552 121566 uv
31 1200 o uv
41 1275 uv
51 1305

32 189

42 255

52 286

43 0.66

53 097

54 031 405173 40500 R

is not present in hydrogen: electron-electron repulsive Coulomb interaction.
One of the consequences of this interaction is that the energy of an orbital
depends not only on the principal quantum number n, but also on the azimuthal
quantum number /.

Using the energy expression for the hydrogen atom,

oo
"

we can readily explain the spectral lines of hydrogen, measured by a spec-
troscopy experiment. The electron is normally in the lowest energy state or
ground state, which is the state with n = 1. When the electron
higher energy shell, e.&., by absorption of thermal or electromagnetic energy,
then it can fall back to a lower energy orbital, emitting a quantum of energy.
According to Planck, the wave length of the emitied photon is given by

he
RE

@1

where AE is the difference in energy between the initial and final levels and
 the velocity of light in vacuum. If we denote by AE the energy difference
between levels j and 7, then we can construct a table that lsts the wave lengths
of the corresponding emitted radiation quanta (Table 2.2). The third column
indicates the theoretical value for the wave length, using Eq. 2.1, and the
fourth column shows the experimentally measured wave length, along with

the part of the electromagnetic spectrum that the wave length belongs to,
The successful prediction of the wave lengths of these spectral lines pro-

vided the first indication that quantum mechanics was indeed the correct

theory, and soon the theory was applied to a large variety of different systems.




Fig.22. Graphical
determination of the filing
order for subshels.

2.2 The periodic table

It remains an extremely su
only very few other theorie:

In 1925, George Eugene Uhlenbeck and Samuel Goudsmit postulated that,
in addition to spinning around the nucleus, an electron might also have an
“internal state of motion,” similar to spinning around its own axis. This is
called the spin, and it is represented by the spin quantum mumber . Like the
energy, spin is quantized and the electron can be in only two possible spin
states, s = +1i/2 or s = — /2. These are often referred to as spin-up and spin-
down, respectively. Each electron in an atom thus has four quantum numbers:

sful theory and its aceuracy is surpassed by

(i) n - principal quantum number, 7 = 1,2,3,
(ii) 1 - angular momentum quantum number, /
(i) m ~ magnetic quantum number, || < I;
(iv) s - spin quantum number, s ==} (in units of A

‘The principal quantum number  indicates the shefl, the azimuthal quantum
number { indicates the subshell. The magnetic quantum number is used to
specify the orbial.

How are the electrons in atoms with Z > | amanged? To answer this
question we must introduce the Pauli exclusion principle. This principle states
that 10 two electrons in a quantum mechanical system can have all identical
quantum numbers, It thus follows that there can only be o electrons per
orbital, one with spin-up and one with spin-down. In addition we find that
the maximum number of electrons in a shell is given by N, = 2n2, or Ny =2,
N, =8, Ny =18, Ny =32, N,

“The order in which the shells must be filled can be remembered easily by
means of the drawing in Fig. 2.2: write down the principal and azimuthal
quantum number combinations, with the principal quantum number changing
between rows. Then draw a vertical line from top to bottom and thread the line

through the list. This defines the order in which the subshells are being filled.
Table 2.3 shows the filling of the orbitals for all atoms in the periodic table.

St

“,w,y 4
33/3p. ,u f
¥ asi Y 44
Vs sp)sd st e
Ve <,,,,M 1o 6x 6h
! i 7070 78
Ea

2 I fact, the most accurate theory currently known s Quantum Electrodynanics: QED has
been used to predict propertis of clementary particles and the agresment between theory
and experiment is ofien beter than 12 significant digits!
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Table 2.3. Filling of the orbitals for all atoms in the periodic table.

Shell

a4

4 4p

3

Subshell

&
e
p
P
p
@




2.2 The periodic table

Table 2.3, Fillng of the orbitals for al atoms in the periodic table (continued; the
K, L, and M shells are completely filed and are not shown in this portion of the
table).

Stell N o »
Subshel R

51 o2 w0 > s

2 T2 6w F

5 Co2 6w > s

5 X 2 6w E—

55 26w F '

E B2 6w E 2

51 L2 6w FR 2

ES 26 w2 2 6 2

5 o2 6 w32 o6 2

w0 N2 o6 w26 2

6l Pmo2 6 w5 o2 6 2

@ Smo2 6 w6 2 6 2

& B2 w126 2

6 G o2 o6 w7 o2 6 1 2

o ™ o2 o6 w0 9 2 6 2

E o2 6 wow 26 2

@ B2 6w ouo2 o6 2

o B2 6 owon o2 o6 2

@ ™ 2 6 W o532 6 2

0 Yo2 o6 owouo2 o6 2

7 W2 o6 wowo2 6 1 2

71 B2 6w ouo2 o6 2 2

7 T2 o6 w0 ow o2 o6 3 2

/4 W2 o6 w2 o6 4 H

75 R 2 6w ow o2 o6 5 2

7 o 2 6 W0 1 2 6 6 H

” o2 o6 wouo2 o6 9

% P26 owowo2 6 9 '

7 MO2o6 s 2 6 0 I

0 B2 o6 oW oLo2 o6 W

s mo2 o6 0w o2 6w 2

0 B2 o6 w2 6 00 12

w B2 6w w2 o6 w0 F

8 P2 6 W0 o2 6 00 FI

us M2 o6 womo2 o6 w0 2 s

86 Reo2 6 wowo2 o6 w0 2 6

51 B2 o6 w2 6 00 F 1
s ROz o6 woBo2 o6 w0 F 2
» A2 6 W olo2 6 00 F A 2
0 o2 o6 w2 o6 W0 12 6 2
9 P2 6w ou 2 w226 2
B U2 6 w2 6 100 3 2 6 2
9 N2 6 W B2 o6 0 4 2 & 2
o Peo2 6w omo2 o6 05 2 6 1 2
95 A2 6 0 1 2 6 100 7 2 6 2
96 m o2 6 W B2 6 0 7 2 & 1 2
9 Be o2 6 W0 o2 6 0 5 2 6 1 2
95 o 26 w2 6 10w o2 6 2
» B2 6 won o2 o6 w00 2o 2
W o2 6 W s 2 6 0o 2 6 2
o M2 6 oW 2 6 0o 26 2
o N 2 o6 W o182 6w ou 2 o6 2
0w 2 W2 6 0 16 2
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‘There are a few elements for which the order defined in Fig. 2.2 is not
followed:; this is mostly due to Coulomb interactions between the electrons in
the various shells. A complete numerical analysis of the electronic structure
of all elements does yield the correct answer for all elements, but this is
beyond the scape of this book.

2.2.1 Layout of the periodic table

Fig, 23 The perodic tabl of
the elements. Th transuranic

We can now use our understanding of the electronic structure of the atom
to construct the periodic table of the elements. Each horizontal row in the
table corresponds to a different principal quantum number . From Table 2,
we find that the K-shell is completely filled after only two elements, H
(hydrogen) and He (helium). This is a consequence of the fact that the 15
orbital can only accommodate two electrons with opposite spin. The electronic
tructure is commonly denoted by a symbol of the type 1s', where the first

nbol indicates the principal quantum number, the second the subshell, and
the superscript how many electrons occupy that particular level. For the He
atom, the symbol is 1.

A completely filled shell is a particularly stable configuration. Elements
with a completely filled shell are non-reactive and are generally known as the
inert gases. We can now construct the periodic table (see Fig. 2.3):

 The last inert gas element in every row has a completely filled shell. The
inert gases are Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon
(Xe), and Radon (Rn),

o In the leftmost column we begin to fill a new shell; these element
Hydrogen (H), Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb),
Cesium (Cs), and Francium (Fr), all have an electronic structure of the.
type [IG]ns', where the principal quantum number » numbers the rows
in the table. The symbol [IG] stands for the electronic structure of the
preceding inert element

Periodic table L2 s as
of the elements slcNTo[F [N

(nstabe) clements are K [case[ ] v e[ s [ 5e [ [ K]

[ e & Se | ¥ | 2] b o] T | Ra] ki Pa [ 5[ ca 1n | 5a [ so] 7| 1 [xe
bers above each column

{efert the filig of the s [ [ [ | e 0] e [ [ st 0 o [ | wo e [ e

difernt lecron orbils; 7 [ R ac] a7 [ [ 55 [0 1 e [ e [ . i ine

these are two columns for the
Seorbals, st for the p-orbitals,
10 for the d-orbials, and 14
for the f-orbtals.

Lanthanides

Actinides




2.2 The periodic table

o The clements in between are inserted according to the filling order shown
in Fig. 2.2. Since the first shell can only contain two electrons, there are
only two elements on the first row, H and He. The configuration ns’p®
is the configuration of the outer orbitals for all inert elements, except
He which is represented by 1%, Since the radius (or more precisely, the
expectation value of the radial distance) for the d and f orbitals is smaller
than that of the s-and p-oritals, the d and f electron levels actually lie
inside the p orbitals: they are known as the inner shells.

In the second row, we fill the 2s level (Li and Berillium (Be)) and then the
2p subshell (Boron (B), Carbon (C), Nitrogen (N), Oxygen (0), Fluorine
(F), and Ne).

The filling order diagram then imposes the order 35, 3p, s0 we fill in
another eight elements (Na, Magnesium (Mg), Aluminum (Al), Silicon
(Si), Phosphorus (P), Sulfur (S), Chlorine (CI), and Ar).

In the fourth row, the filling order is 45, 3d, and 4p, so there are 18 elements
in this row. The row starts with K and Calcium (Ca).
pletely filled iner shells are known as transition elements. The fourth row
transition elements (known as the first transition series) go from Scandium
(Se, [Arl4s?3d") to Zine (Zn, [Ar}4*3d™): Se, Titanium (Ti), Vanadium
(V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel
Copper (Cu). and Zn. These elements all have the same outer shell s
ture (except for Cr and Cu), and they all look very similar from a chem-
ical point of view. The electron distribution is spherical (because of the
outer s level). The fourth row is completed with the elements Gallium (Ga),
Germanium (Ge), Arsenic (As), Selenium (Se), Bromium (Br), and Kr.

In the fifth row, the filling order is 55, 4d. and 5p, so again there are 18
elements in the row. The row starts with Rb and Strontium (Sr). The overall
structure is similar to that of the fourth row, with the second transition
series going from Yttrium (Y, [Kr]55°4d") to Cadmium (Cd., [K]554d");
Y, Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Technetium (Tc),
Ruthenium (Ru), Palladium (Pd), Silver (Ag), and Cd. The fifth row is
concluded by the six elements Indium (In), Tin (Sn), Antimony (Sb),
Tellurium (Te), Todine (1), and Xe.

On the sixth row, the filling order is 6s, 4/, 5d, and 6p. There are 32
elements in the row. To avoid drawing a very wide diagram, the filling
of the 47 subshell is drawn in a separate row below the main diagram.
The row starts with Cs and Barium (Ba). The 14 extra clements after
Lanthanum (La) are known as the lanthanide series or the rare earth
elements. The radius of the 4f subshell is smaller than that of the 4d
shell, so the Lanthanides all have similar chemical properties. The rare
carth elements are Cerium (Ce), Pracsodymium (Pr), Neodymium (Nd),
Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd),
Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium
(Tm). Ytterbium (Yb), and Lutetium (Lu). The elements La ([Xe]6s5d")

lements with incom-

«

ruc-
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through Mercury (Hg, [Xe]6s*54"%) form the third transition series: La.,
Hafnium (HF), Tantalum (Ta), Tungsten (W), Rhenium (Re), Osmium
(0s), Irridium (Ir), Platinum (Pt), Gold (Au), and Hg. The sixth row is
completed with the elements: Thallium (T1), Lead (Pb), Bismuth (Bi),
Pollonium (Po), Attinium (At), and Rn.

On the seventh row, the filling order is 7, 5f, 6d, and Tp. Again there
are 32 elements, with the 14-member actinide series drawn at the bot-
tom of the diagram. The actinides also have similar chemical properties.
The row starts with Fr and Radium (Ra). The series from Actinium (A
[Rn]756d") until the end of the table is known as the fourth transition
series. The actinides are Thorium (Th), Proactinium (Pa), Uranium (U),
Neptunium (Np), Plutonium (Pu), Americium (Am), Curium (Cm), Berke-
lium (BK), Californium (C), Einsteinium (Es), Fermium (Fm), Mendele-
vium (Md), Nobelium (No), and Lawrencium (Lr). Elements beyond U
(the transuranic elements) have unstable nuclei and short lifetimes; they
are indicated in italic font in Fig. 2.3. The remaining elements in the fourth
transition seiessre Rutherfordium (RO). Dubaiom (Db), Seaborgiom (S2).
Bohrium (Bh), Hassium (Hs), Meitnerium (M), Dar
Roentgenium (Rg). The elements with atomic number larger than 111 have
not (yet) been named.*

One can draw an imaginary diagonal line (0 the left of B, Si, As, Te, and
At. This is the so-called Zint! line. The Zintl line separates metals on its
left from non-metals on its right.

« Finally, some of the vertical columns in the table have speci

~ Column 1: Alkali metals (s')

~ Column 2: Alkaline carth metals (s*)

~ Column 3: Rare earth-like metals (ds*)

~ Column 11: Noble metals (closed d-shell)

~ Column 17: Halogens (s*p°)

~ Column 18: Inert gases (outer shell filled)
This concludes the construction of the periodic table. The familiar appearance
of the table finds its roots in the underlying quantum mechanical nature of
the interaction between electrons and nucleonic particles.

2.2.2 Trends across the table

222.1 Atom size

We have seen in Chapter 1 that the nucleus of an atom has a diameter
of about 10" m; the electron cloud around the nucleus has a diameter of

3 It took a research group at the Gesellshaft fir Schwerionenforschung in Darmstads
Germuny, 11 oy 10 prodc ane stom o cleme 109 And he  iimegrated s ony
a few millisceonds.




about 10" m, which means that the atom is relatively empty. Despite this
emptiness, it is the outer shell of the electron cloud that determines almost
all chemical properties of the atom. To a first approximation, an atom can be
regarded as a sphere, with a relatively constant radius; as we will sce later
on, this radius may change, depending on the environment

The atomic radius increases whenever a shell is added to the atom. Thus,

the radius increases from top to bottom across the periodic table. For the alkali
metals, the radii are i, = 0.157 nm, 7y, = 0.192nm, r = 0.238nm, ry,,
0.251nm, and r, = 0.270nm. For the inert gases we have ry, = 0.05nm,
e = 0.1600m, r,, = 0.192nm, ry, = 0.197, and ry, = 0218 nm.
Across a row, more electrons are added and an identical number of protons
added to the nucleus. The forces between the nucleus and the electron cloud
thus increase from left to right across the table, which means that the atomic
radii on average deerease from left to right. For row 4 we find r = 0.238 nm,
7e, = 0.197nm, 7, = 0.160nm, ry, = 0.147 am, r, = 0.136, and so on.
Irregularities in this sequence are usually due to irregularities in the filling
order of the orbitals.

The atomic size is an important parameter when considering the stability
of crystal structures. If an atom is too large to fit into a crystal lattice, then
the Tattice will either be distorted or the erysial structure will change to
accommodate the larger atom.

2222 Electronegativity and related quantities

Electronegativity scales measure the relative abilities of atomic species to (1)
attract more electrons to themselves or (2) give up electrons to neighboring
atoms in molecules or solids. If we have two atoms, A and B, then their
relative electronegativities should predict whether A is more likely to rob an
electron from B or vice versa. With this description in mind, the larger the
electronegativity, the “hungrier” is the atom for more electrons. Atoms like
CI, F, ete. are more electronegative than Li, Na, etc. On the other hand,
electronegativity is not defined so that it has a precise quantitative meaning.
There are many electronegativity scales (Pauling (Pauling, 1932), Mulliken
(Mulliken, 1949), ... ) and they are largely empirical. The absolute values are
not important in comparing electronegativity scales, only the relative values.

Perhaps one of the most precise and physically significant electronegativity
scales is the so-called Mulliken electronegativity scale named after Robert S.
Mulliken. The Mulliken electronegativity, represented by the symbol x, is
defined as:

1
x=50+4),

where the ionization potential, I, is a measure of an atom’s proclivity for
giving up an electron, and the electron affinity, A, is a measure of an atom’s
ability o attract an additional electron.
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define the Muliken
electronegatity scale
(WicHenry et al, 1987)
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The ionization potential, /. is the energy required to pull away the most
Toosely bound electron from the atom 5o as to leave behind a singly charged
positive ion. It is the energy required to drive the reaction:

CoChie,

whete C represents the atom. The lowest ionization potential
by the alkali metals. This can readily be understood
electron from an alkali metal leaves an ion with a completely filled shell,
a very stable state. When we move across a row in the periodic table, I

are displayed
ince removal of one

increases in a somewhat irregular fashion until we reach the inert gas column.
Some examples: /(Na) = 0.82 x 10~ I (or 0.82 al, where a stands for atto
10-1%), I(Ar) = 2.53 al. The ionization potential decreases going down a
column because the average diameter of the atom increases and the outer
electron is more loosely bound.
The electron affinity, A, is the energy gained when an electron is brought

from infinity up to a neutral atom; in other words, it is the energy required
to drive the reactior

CHe —C

It is hence a measure for the stability of a negatively charged ion. There
once again a systematic variation across the periodic table.
‘The Mulliken electronegativity is the average of 7 and A. The true meaning

of the Mulliken electronegativity can be made clear by the following thought
experiment (Fig. 2.4): imagine that the total electron charge Q of an atom
is not a discrete quantity, measured in multiples of the electron charge, but
instead can take on any real value. The atom in its neutral state has 1
electrons, with a total charge of Q = —ne and a total energy E(x). One can
then imagine a smoothly varying atomic energy E(r) as a function of the

electronic oceupation . Positively fonized states have less electronic charge
and fall to the left of the neutral atom in Fig. 2.4, with the fonic state C*
corresponding to Q = —(n— 1)e. Negatively charged states fall to the right of
the neutral atom, and correspond to 0 = —(n+ 1)e for the ionic state C~. The
four points on the curve in Fig. 2.4 correspond to actual quantum mechanical
caleulations for the sulfur atom S. From this figure we can now derive the
significance of the Mulliken electronegativity. The cord connecting E(n — 1)
with E(n+ 1) obviously has a slope (/+ A4)/2, given the prior definitions of
1 and A, and their graphical representation on the figure. This cord is also

seen 10 be parallel to a line tangent to E(n) at the neutral atom position. It is,
therefore, clear that:
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Table 2.4. Experimentally determined Mullken
electronegativities (in eV).

Atom - Ao x
B 8296 028
@ 11254 1263
o 13,614 146
F 340
Al 044
si 139
s 2077
al 362
Li 0618
N o

Na 138 0.548
P 1055 0.746

* (Moore. 1970)
 (Radsiz and S, 1955)
(Ebbing. 1984)

‘The derivative of total energy with respect to the electron occupation number
is generally known as the chemical potential for electrons. Th
that the Mulliken electronegativity represents a chemical potential for elec-
trons. Table 2.4 summarizes experimental ionization potentials and el
affinities for some light atoms and values of the Mulliken electronegativity
derived from these values.

The el
metals,

ronegativity also allows us 1o define elements as metals and non-

o metals

(i) have few electrons in the outer shell (three or less)
(i) form cations by losing electrons
(iii) have low electronegativity

o non-metals

(i) have four or more electrons in the outer shell
(i) form anions by gaining electrons
(iii) have high electronegativity

As mentioned before, the Zint! line delincates the boundary between metals
and non-metals.

Valence is a measure of the number of other atoms with which the atom of
a given element tends to combine. It is also known as the oxidation number.
Let us consider two examples
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(i) Sodium chloride (NaCl): The ionization energies and electron affinities
of both elements are:

From these numbers we see that Na is more likely than C1 10 give up an
electron, whereas Cl is more likely than Na to accept one. Upon doing
50, both elements acquire an inert gas configuration: Na* has the [Ne]

configuration and CI has the [Ar] configuration. The resulting molecule
of NaCl is hence very stable. We conclude that sodium likes to bond
with another atom and form a positive ion; the valence of sodium is hence
+1, that of chlorine is —1

Magnesium chloride (MgCl): Magnesium has the [Ne]3s* electronic
structure and thus likes to donate two electrons to obtain the [Ne]

valence is 1, as derived above. Therefore, Mg prefers to bond 1o two
negative ions and hence has a valence of +2,

This procedure can be continued unil valences are self-consistently assigned
to all elements. Many elements can have multiple valence states. In many
compounds, the valence of one or more of the elements helps determine the

resulting crystal structure.

2.3 Interatomic bonds

2.3.1 Quantum chemistry

The wave model of the atom proposed by Schridinger provided the math-
ematical basis for quantun chemistry. Quantum chemistry is the branch of

chemistry that applies quantum mechanics to problems such as chemical
energy and the reactivity of atoms and molecules. While solutions to the
Schrodinger equation are required to address these problems in quantitative
detil, it is possible (o illustrate the key results of quanwm chemistry in a
simpler, more intuitive manner, as will be done in the following sections.
‘The first calculation in quantum chemistry was that of the chemical binding
energy in the H, molecule performed by Waler Heitler and Fritz London
(Heitler and London, 1927). The results of this model are often used (as below)
to motivate the description of a covalent chemical bond. The Heitler-London
theory was followed by the valence bond theory proposed by American
entists John C. Slater and Linus Carl Pauling and the molecular orbital theory
proposed by Mulliken. In recent years these techniques have been supplanted

by density functional theory. While the details of quantum chemistry are
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beyond the scope of this book, we do illustrate relevant examples of its results
throughout the text.

2.3.2 Interactions between atoms

Fig. 25, Atiaciive and
repuisive componerts of the
potenta energy curve for the

interaction between two atoms

A completely filled shell is a particularly stable electronic configuration.
Atoms that are only a few electrons short of such a configuration have a
strong tendency to form bonds with other atoms, such that the shells of both
atoms become completely filled. There is thus a driving force for atoms to
form bonds. The energy of the pair of atoms after they have formed a bond
is lower than the energy of the atoms separated from each other at infinity

This energy difference is generally known as the binding energy.

If we take the infinite separation state as the zero energy state — we
are always free to choose the zero of the energy scale — then we can plot
the interaction energy (or potential encrgy) of the two atoms versus their
internuclear spacing, r. Figure 2.5 shows a typical plot of the potential energy
V(r) versus the distance r. As the atoms approach each other, the energy
is lowered, indicating that bond formation will oceur. The curve then goes
n. For

through a minimum for a particular spacing r,, and begins to ris
much smaller spacings, the curve rises steeply since the atoms repel each
other. This reflects the Pauli exclusion principle: no two electrons can occupy
the same volume in space and have all identical quantum numbers. This is
valid regardless of the origin of those electrons, i.e., regardless of whether
the electrons belong to atom A or atom B,

The potential energy curve, V(r), is often known as the interatomiic poten-
ial. Regardless of the types of atoms involved in the bond, the interaction
potential always has a shape similar to that shown in Fig. 2.5; repulsive at
short distances, and attractive at larger distance, with an equilibrium spacing
, somewhere in between. The exact form of the potential must be determined
either from first principles quantum mechanical computations, or it can be
ke the heat of formation,

fitted to experimental measurements of quanti

Tnternuclear distance r

=y,

 Auton
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the spacing between the atoms, and so on. The interatomic potential is not
only assumed to be valid for a single pair of atoms, each pair in a solid inter-
0 the same potential function; the strength of the interaction
depends on the distance between the atoms.

The simplest type of interatomic potential depends only on the distance
between atoms, and not on the direction. Itis thus a radial or central potential

acts accordi

Only two atoms interact with cach other and therefore it is a pair or nwo-body
potential. Many-body interactions can be taken into account in more advanced
potential models, as can directional effects. For instance, we will see later on
that in the diamond crystal structure the bonds are strongly directional, i.e.,
they point in certain directions in space. Therefore, the interaction between
two neighboring carbon atoms can not be described by a simple radial pair
potent rection dependent terms must be included. There are several
ways in which many-body interactions can be included and one of the more
popular formalisms is known as the embedded atom method.

From classical mechanics, we know that there is a standard relation between
4 potential energy function and the resulting force. The force experienced at
a distance = 7, is given by the negative gradient of the potential energy,
evaluated at that distance r,

and di

— W, =~ ]

F(r) hn ==

where the vector e, is a unit vector along the line connecting the two atoms.
An atom is said to be in equilibrium in a crystal when the total sum of all
forces exerted on the atom averages 1o zero over a sufficiently long time
interval. Since atoms vibrate around their lattice positions, the instantaneous
force is nearly always different from zero, but, on average, over a large
number of vibrations (or equivalently, a sufficiently long time), the total foree
vanishes and the average position of the atom remains constant.

Electronegativity differences between two elements are important in deter-
mining the bond character between them. Let us consider the alkali-halide
LiF. It consists of a strongly electronegative element (fluorine), and a strongly
“electropositive” element (lithium). The electronic structure and electronega-
tiviies are:

Element  config. Pauling  Mulliken
Li [He2s' Lo 3.004
F [He[2s*2p*  3.98 10.410

The E\-difference between these elements is about 3 on the Pauling scale, and
7.4 on the Mulliken scale. Lithium will, as an electropo

ive element, give up
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an electron easily to acquire the [He] configuration. and F will accept one to
acquire the [Ne] configuration. Both of these configurations are spherical and
stable and the two ions will be bonded by a strong Coulombic or electrostatic
force. This is known as an ionic bond.

We know from the discussion of the variation of atomic radii across the
periodic table that the addition or removal of an electron changes the radius
of the atom. In particular, since the nuclear charge does not change upon
formation of an ion, the addition of an electron will increase the radius of
the atom because of the increased repulsive interaction between the orbital
electrons. Removal of the outer electron will decrease the size, because now
the attraction of the nucleus becomes stronger. We can illustrate this with the
NaCl compound:

Na cl Na* ar
[Nel3s' [Nel3s'3p*| [Ne]  [Ar]
0.192nm [ry,. = 0.0950m
0.099nm |rg- = 0.181nm

T

o=

The interaction energy between the two ions
terms:

s expressed by the sum of two

Coulombic attraction: the electrostatic potential energy of two charged
particles at a distance r from each other is given by

72,¢

dmeor

V()

where Z, is the number of electrons moved for the formation of fon i. Note
that Z, is positive if the electrons were added to the ion, and negative if
they were removed. In the case of LiF, the product Z,Z, is equal to ~1.
Repulsion due 10 exclusion principle: i there were no repulsive interaction
between the two charged particles, their distance would decrease to zero,
since the force between oppositely charged particles is atiractive. The
repulsive force due to the Pauli exclusion principle is described by
empirical expression:

b

vi(r

where b > 0 and 1 are adjustable parameters; n usually ranges between 7
and 9. For sufficiently small distances, this term dominates the interaction
energy and the slope of the curve becomes negative, indicating a repulsive
force.
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From the potential energy expression, we can derive an expression for the
force by taking the negative radial gradient:

F() (Z‘Z“’ +i)e,v 3

Tme T P

Schematic energy versus distance curves are shown in Fig. 2.5. The upper
dashed curve is the repulsive potential energy, the lower dashed curve rep-
resents the atiractive potential energy. The sum of the two energies has a
minimum at the distance 7,, and a value of V,y,. This distance is equal to
the sum of the radii of the two ions. One can compute analytically the value
for r,, by requiring that the force must be zero for 7= ry,. T is left as an
exercise for the reader to show that for the particles of Fig. 2.5, using Eq. 2.3
as the expression for the interaction force, the minimum energy occurs for a

separation of
. FERNC
= \Tmenb

The equilibrium distance can also be derived graphically by drawing the total
force versus distance and determining where it becomes equal to zero. This
is shown schematically in Fig. 2.6, which shows the energy and force for the
so-called Lennard-Jones potential

(@) 2%)]

stal structures formed by ionic compounds are determined by the

s of the participating ons. One could intuitively compare this to

Nommalized distance
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the problem of packing two sets of marbles with different diameters in such
a way that each type is surrounded by the largest possible number of the
other type. In Chapter 22 we will return to this type of bond and discuss its

implications for the crystal structure,

2.3.4 The covalent bond

Fig. 2.7, Formation o bonding

model fo the covaent bond.

When the electronegativity difference between two atoms is small, then there
is no reason for either of the atoms to become an fon. In that case, atoms will
attempt to acquire a noble gas electron configuration by sharing electrons
neighboring atoms, rather than transferring them completely. Consider the
hydrogen molecule H, as an example. Each hydrogen atom has a configuration
of 15", If we bring the two atoms together from infinity, then there are two
possibilities for the combination of electron spins, as shown in Fig. 2.7: the
spins are anti-parallel, in which case the electrons will share a bonding state
with lower energy than the separated atoms. If the spins are parallel, then
according to the Pauli exclusion principle there will be a repulsive interaction

preventing the two electrons from oceupying the same location in space. This
leads to an increase in energy and the corresponding state is called an anfi-
bonding state. The covalent bond is also a directional bond, i.c.. it s located
between the atomic nuclei. Since there s an electrostatic repulsion between

two electrons with opposite spin, and also an attractive force because of the
tendency to form an inert gas configuration, there is again an equilibrium
distance between the atom cores. This distance can be used to define the

covalent radius of the atom.

There is another factor that stabilizes this type of bond: electrons are
identical particles and if we label the electron on H, by the number 1 and
the electron on Hy by the number 2, then we cannot distinguish between the
following configurations:

H\+H]  Hi+H

Both of these states have identical energy, and, therefore, the molecule can
resonate between them. The fact that the molecule can choose between two

G-

I

' o

Enerey

Separation distance
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states with identical energy

called resonance. Resonance will in general
lower the energy of a system of interacting particles, and it accounts for the
very existence of the covalent bond.

Resonance also leads to the concept of electron promotion or hybridization.
Consider the carbon atom, with electronic structure [He]25°2p”. One would
normally expect the electrons to occupy the following orbitals: 252p! 2}
However, by promoting an electron from the 25 level to the 2p, orbital, the
atom can create four new energy states with identical energy: 2s' 2p} 2p) 2p!.
There are then many ways (24 to be exact) in which the four electrons can be

distributed into the four available states and the atom can resonate between
them. In general, the more degenerate states are available to a system, the
more likely it becomes that the system will actually be in one of those states.*
This leads in the case of the carbon atom to the formation of the sp* hybridized
orbital, which can accommadate four electrons with parallel spins. The four
orbitals extend into space with mutual angles of 109.5° and form a retrahedral
shape. Each electron can form a covalent bond with another atom, and in

the case of carbon this leads to the formation of diamond. The mathematical
description of covalent bonds is complicated by the fact that the bonds have
a directional character; this usually leads to rather complex expressions for
the potential energy and forces. Covalent bonds
chemistry, as they lie at the basis of life itself.

are very important in organic

2.3.5 The metallic bond

Electropositive atoms will readily give up their weakly bound outer elec-
tron(s) and become positive fons in a “sea” of electrons. The valence electrons
are not closely

associated with any particular atom and they can move freely
throughout the structure, rendering metals excellent conductors. Other prop-
erties which distinguish metals from other forms of solid matter are the
high thermal conductivity and the optical opacity. About three-quarters of all
elements are metallic.

‘The bonds from any one atom must be regarded as spherically distributed
around that atom. The crystal structures formed rely on the concept of closest
packing. This can be understood intuitively by considering a set of identical
size marbles; if one throws the marbles in a box and shakes it, then they
will tend to occupy positions in which every marble is surrounded by 12
neighbors. This type of structure i

a close-packed structure.
In a close-packed structure, each atom is surrounded by six other atoms
n the same plane, as shown in Fig. 2.8(a). There are also three neighbors

4 We will see in later chapters tha the higher the symery of a system, the more equivalent
ot posions rs vl o . T sane s for he number of posits sy sies:
the more degenerate states that are available (o w the lower the cnergy of the system
Natre tends 10 e sics ith Hgh symrnry.
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above and three below the plane, bringing the total to twelve. There are two
possibiliies for the atoms above and below the plane. In Fig. 2.8(b), the three
atoms above the central plane occupy positions that are different from the
atoms below the plane. This is known as the cubic closest packing or ccp.
‘When the atoms above and below the central plane occupy identical positions
(Fig. 2.8(c)). then the envi is known as the h ! closest packing
or hep. Both of these arrangements are important in the study of the structure
of metals, and we will come back to them in detail in Chapter 17.

2.3.6 The van der Waals bond

When large, neutral molecules come close together, there is a tendency for
them to attract each other. This is due to small instantaneous charge redis-
tributions which cause an effective polarization of the molecule. Polarization
refers to the fact that the centers of gravity of positive and negative charges
do not coincide. One can show that the energy associated with this type of
interaction can be written as:

:
v/(r)—-z%.

where ¥, is the frequency of the zero-point motion of the atom, a is the
polarizability, and 7 the distance between the centers of the molecules or
atoms. The important thing about this interaction is that it is attractive, and
that it falls off as 1/7°.

‘There is thus an attractive force between any two molecules or atoms, even
in the absence of ionic, covalent, or metallic bonding between them. This
force is caused by instantaneous polarization and is known as the van der
Waals force. It is mostly spherical in nature (for spherical molecules) and
does not have a strong directional component. It is a weak force, which is
why it is only observed clearly in materials where none of the other bonding
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types are present. A typical example of such a material would be a solid inert
element, say solid He or Ar. Another more recent example of van der Waals
bonding is solid Cqy, or Buckminsterfullerene. The “molecules” bonded by
van der Waals forces can also be two-dimensional, and graphite is a prime
example of such a situation. The carbon atoms within the layers are in an sp*
hybridized state with planar covalent bonds: the remaining electron occupies
an orbital perpendicular to the plane. Neighboring planes are weakly bonded
together through van der Waals forces between those electron orbitals. The
van der Waals bond is hence responsible for the softness of graphite, and for
the fact that it is a very good lubricant.

Real bonds are rarely of one particular pure type; usually, there is some mixing
between fonic and covalent bond character. Linus Carl Pauling suggested the
following formula to compute the percentage ionic character, , of a bond
from the electronegativities (according to the Pauling scale):

1= e HE 7Y (100%)

c character P =

The percentage ionic character hence depends in an exponential way on the
electronegativity difference between the elements. As an example, let us
determine which of the two compounds ZnSe and Ga As is the more ionic.
The electronegativities for the elements are given by:

EY

EF =20
The percentage ionic character  is given by

—(1-ete

(100%) = 14.78%

= (1- e HO9) (100%) = 3.92%

and we find that ZnSe is more ionic than GaAs. A similar scale can be
defined for the Mulliken electronegativity.

2.3.8 Electronic states and symmetry

The symmetry of erystalline eleciric fields can be important in determining

in a variety of system:

properties such as the optical and magnetic properti
most importantly in ionic solids with rare earth or transition metal cations.
Although a complete discussion of crystal field theory is beyond the scope
of this book, we can use a simple illustration of this theory to show how
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the symmetry of an interact
quantum mechanical system.

Much of the energetics of the electron(s) localized on an ion i
depends on the Coulomb interaction between nearest neighbors. Coulomb
interactions between electrons on the site of interest and charges external to
the ion are described by the electrostatic potential. For transition metals, the
outermost d electrons are most strongly perturbed by this crystalline potential.
For rare earth elements, the crystalline potential influences the energy levels
of the f electrons but not as noticeably because of shielding by the outermost
s and p electrons,

The perturbing potential of the central ion partially ifts the (2/-+ 1) degen-
eracy of the ground state energies of the ion. The symmetry derived splittings
are illustrated for a transition metal in Fig. 2.9, which illustrates the orientation
of various d orbitals with respect to ons in a cubic environment. Symmetry
dictates that the d., d,. and d,. orbitals have the same energy (hence, they
are equivalent) but that this energy is different from that of the d,.
s pair of orbitals. Note that the energies must be different because the first
three orbitals are oriented towards nearest neighbor ion sites and the second
set towards second nearest neighbor sites. In the octahedral arrangement of
the nearest neighbors, the triplet of arbitals acquires a lower energy than the
doublet, whereas for cubic symmetry the situation is reversed. The notations
E and 7, refer to group theoretical labels for the various energy levels.

n potential influences the energy levels of a

an ionic solid

and
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Table 2.5. Physical and structural properties associated with the four interatomic
bond types (based on Table .03 in (Evans, 1966)).

Property  lonic Covalent

Structural  Non.

rected, giving structores  Spatially directed and numerically

of high coordination limited, giving structures of low
coordination and low density
Mechanical  Strong, giving hard crystals Strang, giving hard crystals
Thermal  Fairly high melting point, low  High melting point, low expansion
expansion cocfficient, jons in  coefficient, molecules in melt
melt
Electrical  Moderate insulators, conduction  Insulators in solid and melt
3 fon transport in melt
Opical and  Abs: High refractive index. Absorption
‘magnetic profoundly different in sol
Property  Metallic van der Waals
Structural iving structures  Formally analogous to metallic
of very high coordination and  bond
high density
Mechanical  Variable strength, gliding Weak, giving soft crystals
Thermal  Variable melting point, long  Low melting point, large
liquid interval expansion cocflicient
Electrical  Conduction by electron transport — Insulators
Optical and  Opaque, properties similar in  Properties those of individual
‘magnetic  liquid ‘molecules

2.3.9 Overview of bond types and material properties

2.4 Historical notes

‘We conclude this chapter with  brief account of the relation between bonding
types and material properties. The different bond types are idealized bonds,
and “real” materials usually show some form of mixing between two or
more types. Semiconductors are mostly covalent, metals are mostly metallic,
ceramics have both covalent and ionic character, and most polymers lic
between covalent and “secondary” bond types (which includes the weaker
van der Waals bonds). The bond types can also be correlated to properties
which span many different materials, as shown in Table 2.5 (Evans, 1966).

‘The atom is the building unit of all matter, in the solid, liquid, and gaseous
state. The Greek philosopher Leucippus and his student Democritos are
among the first to speculate about the structure of matter; around 400 BC, they
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Table 2.6, Comparison between Mendeleev's predictions for the element Ge and
the currently accepted values.

Property Prediction Current value
color dark gray grayish-white
atomic weight 7 7259
density (glom’) ss 535

atomic volume (cm'/g-atom) 13 135

specific heat (cal/g/"C) 0073 0.074

oxide stoichiometry X0, GeO,

y (glem’) 47 4703
chloride stoichiometry Xcl, GeCl,
chloride boiling point <100°C 86°C
ehloride density 19 1844

proposed that all matter is built from indivisible minute particles w

alled atoms. It took nearly 2000 years before substantial further advances
were made. Robert Boyle coined the concept of elements in 1661 to classify
the various elements, or pure substances, he determined their color when
burnt in a flame, a technique that is now known as spectroscopy. Based on his
own experiments and those of his colleagues, Antoine Lavoisier and Joseph
Priestley, John Dalton put forward the idea that the defining characteri
of an element is the weight (actually, the mass) of one of its atoms.

By the year 1870, researchers had isolated about 65 different elements
and began to notice certain trends and similarities between the chemical
properties of certain clements. John Newlands discovered in 1865 that, if

the elements were ranked according to their atomic weight, certain prop-
erties repeated themselves with a periodicity of eight elements. His ideas
were ot accepled in the scientific community until Dmitri Mendeleev
in 1869 suggested a similar amangement of the elements, which is now
known as the periodic table of the elements. Mendeleey noticed that there
were gaps table, presumably with unds
tance of his clas

covered clements. The impor-
ification scheme becomes clear when we consider the fact
that he predicted the existence of eka-silicon (now known as Germanium,
Ge). He predicted several of the properties of Ge, as listed in Table 2.6;
note how close his predictions are to the currently accepted values for
pure Ge!

1t wasn't until the famous experiments of Joseph John Thomson that the
existence of the internal structure of the atom was shown. Thomson discovered
negatively charged particles, called electrons. Robert Millikan determined
the ratio of charge to mass for the electron and showed that the mass was
about 2000 times smaller than that of the hydrogen atom. Henry Moseley
then showed that the number of electrons in a particular atom is equal to the
atomic number of that element. The presence of negative particles in a neutral
atom requires the existence of other, positively charged particles. In 1904,




Fig. 210, 3) E Rutherord
(1871-1937) Gicure courtesy
ofthe Nobel Museu) and
0) it James Chadwick
(picure courtesy of the Nobel
Bluseun).

Hantaro Nagaoka conjectured that the atom must look like a miniature solar
system. This implies a relatively open structure, which was experimentally
confirmed by Ernest Rutherford (Fig. 2.10a) and his co-workers.

Rutherford fired so-called alpha particles (essentially the nucleus of a
helium atom) onto a sheet of gold and found that most particles went right
through the foil. Only a few were bounced back. This means that (1) the
atom is fairly empty, and (2) that the mass of the atom must be located in a
dense, small nucleus. The positive charge (two units) of the alpha particles
showed that the nucleus must consist of positively charged particles, profons,
which are held together by “glue”, made up of neutral particles or neutrons.
Protons were first proposed by Rutherford in 1913 (Rutherford coined the
name “proton” in 1920). Sir James Chadwick discovered the neutron in
1932. Table 2.7 lists several important events related to our understanding of
the structure of the atom. For the interested reader we recommend the book.
by Abraham Pais (Pais, 1986) listed in the References. Pais describes the
evolution of our understanding of the structure of the atom since 1815.

To make a long story short, it was soon recognized that the structure of
the atom is fundamentally different from that of the solar system. In fact,
classical mechanics (or Newtonian mechanics) predicts that the atom must be.
unstable.

A radically new theory was nceded 1o explain the structure of the atom.
Such a theory was constructed in the first part of the twentieth century and

5 From electrodynamics we know that an clectric charge must rdiate cnergy when it is

accelerated or decelerated. Since the clectron s on a curved orbit around the rucleus, it is
ration and must hence continuously radite energy. Therefore,
the electron must spral down (owards the ucleus and the atom must cease (0 exist (at least,
thatis what classical mechanics predicts)

subjected t0 4 constant ac
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Table 2.7, Brief lst of some of the more important discoveries
and events around the end of the nineteenth and early twentieth
century

Year Event
1853 Fist bservaion of ydrogen speeru

1864 Maxwells theory of electromagnetis

1869 Yt
1874 First estimate of fundamental charge ¢

1895 Discovery of X-rays (Rontgen)

1896 Discovery of radioactivity (Bequerel)

1897 First speculations about existence of electrons
1898 Identification of a and frays

1899 Measurement of ¢; discovery of electron
1900 Discovery of y-rays

1900 Planck discovers the quantum theory

1905 Einstein postulates the photon

1906 Rutherford discovers a-partice scatering
1911 Rutherford coins the term “nucleus”

1913 Emergence of the proton-electron model
1921 Discovery of strong nuclear force

1925 Foundation of quantum theory

1932 Discovery of neutron

is known as quantum theory. This theory is based upon two fundamental
conceps.

Max Planck (1858-1947) stated in 1900 that particles moving in an
atomistic world can only occupy certain energy states or energy levels. They
can only change state by jumping up or down to another energy level. Since
energy is conserved, this must happen by emission or absorption of a well
defined amount of energy. Such an amount is called a guantu, and we say
that the energy levels of an atom are guantized.

Planck also determined the magnitude of such an energy quantum (we now
call these emitted or absorbed quanta photons) and established that it was
equal to the frequency of the radiation multiplied by a new universal constant,
Planck’s constant b = 6.626 x

Second, Louis de Broglie postulated in 1923 that every particle must
have a dual character. Depending on the externally imposed conditions, a
particle may behave as a particle or as a wave (hence the concept of particle—
wave duality). de Broglie also described how to compute the wave length
corresponding to a particle: A = h/p, where h is Planck’s constant and p the
particle momentum.

If matter can be considered 1o have both particle and wave properties
then one can ask the question: what is the size of the particle, or, what is
the wave length of the wave? To measure the wave length accurately, one

Fir

e E=hy

needs to measure the distance between many consecutive wavecrests and then
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divide by the number of crests. If a particle is very small, then the number of
wave crests that will “fit” in the particle is rather small, hence the accuracy
with which the wave length can be determined is rather poor. On the other
hand, if a particle is described by a wave with many crests, then it becomes
difficult to determine the exact location of the particle. There is, hence, an
atrinsic uncertainty related to the wave ~ particle aspect of matter. Werner
Heisenberg was the first to recognize the importance of this uncertainty and
he stated what is now known as the Heisenberg Uncertainty Principle: it is
mpossible to simultaneously determine, w rary accuracy, the position
and the wave length (and hence the momentum, through de Broglie’s relation)
of a particle. In mathematical terms this is usually stated as:

arbi

h
Axdp, zh=om
2

where the symbol A refers to the uncertainty in the measurement of either the
position component ., or the x component of the momentum, p,.

Max Born then suggested in the late 1920 that the wave representation
of a particle tells us what the probability is of finding the particle at a certain
position: if the wave amplitude is high, then it is highly probable that the
particle will be located at or near the maximum. If the wave amplitude is
Tow, then it is unlikely that the particle will be found there. This brings us
to an important observation: in the world of atoms and subatomic particles,
the particle waves represent probabilities of finding the particles at a certain
location. We cannot say anything with complete certainty, but we can make
Statements such as: there is a 40% probability of finding the particle at this
location. During the 19205 and 1930s, both Werner Heisenberg and Erwin
Schrédinger derived mathematical techniques to compute these probabilities.
Since the wave nature of particles is essential to these descriptions, the central
quantity in quantum theory is the wave fiction; it is usually represented by
the symbol W(r). The wave function is the solution of a differential equation,
commonly known as the Schrodinger equation.

(i) fonization energy: Calculate the energy required to ionize a hydrogen
atom, i.e., the energy required to remove the electron and convert the
atom into a positive fon H*

(ii) Quantum mumbers I: Write out explicitly the 4 quantum numbers for
each of the 17 electrons in a chlorine (CI) atom.

(iii) Quantum mumbers 11: Write out explicitly the 4 quantum numbers for
each of the 14 electrons in a silicon (Si) atom.

(iv) Muli-electron atoms and X-rays: Tn Hydrogenic atoms, each shell is
labeled by the spectroscopic symbols: K, L, M, N, O, etc. corresponding
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tothe n=1,2,3,4,5, etc. quantum states, with energy levels predicted
by the Bohr model. The Bohr model applies to a single electron bound
10 a nucleus of charge +Ze (Z is the atomic number). This model is
modified in Hartree theory for multi-clectron atoms. An approximate
result of the Hartree theory is that electrons in different shells experience
a sereened nuclear potential which can be parameterized in terms of an
effective charge +Z, ¢ where for the K-shell Z, = Z-2; for the L-shell
2, =210, and 5o on,
Caleulate for a Cu atom (.

29):

(a) the energy required to pull an electron from the K-shell;

(b) the energy required to pull an electron from the L-shell;

(¢) what would be the minimum accelerating voltage required for an
Xeray tube to strip a K electron from a *Cu anode?

(d) what would be the wavelength of an X-ray emitted for a K,, tran-
sition in which an electron from the L-shell fell into the empty
state in the K-shell after stripping the K electron? How does this
wavelength compare with a typical atomic radius?

(¥) Systematic property variation: Consider the series of elements in the
row of the periodic table running from rubidium (Z=37) to indium

9). Is there any evidence of a systematic variation of the melting
temperature with electronic structure ? If so, explain this variation.

(vi) Atomic computations I Calculate the approximate number of atoms in
a sphere with diameter 1 ¢m. Assume that the sphere is made of pure
titanium and that there are no gaps between the spherical atoms.

(vii) Atomic computations 1I: Knowing that the mass of one mole of SiC
(silicon carbide) is equal 1o the combined atomic mass of the elements
Si and C, compute the density of SIC if one mole occupies a cubic
volume with an edge length of 2.32.cm

(viii) Atomic computations 11 A steel nail with a total surface area of 5 cm®

is coated with a Zinc layer to prevent corrosion. If the Zinc laer is
501 in thickness, caleulate the total number of atoms in the zinc layer,
and the total mass of the coating

(ix) Mulliken electronegarivity: Using data from the literature (e.g., Radzig
and Smimov (1985), McHenry et al. (1987)), caleulate the Mulliken
electronegativities for the third row transition metal element

(x) Interatomiic bonds: Compute the equilibrium distance, r,,, for the inter-
action force given in Eq. 2.3 on page 2. Then, repeat the computation
for the Lennard-Jones potential given on page 42.

(xi) Bonding types: Consider the following three materials as prototypes of
various classes of electronic materials:

(@) Al metal
(b) Si semiconductor
(©) Si0; insulator
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Sketch or otherwise depict the bonding in each of these three materials.
(xii) Pair potential: Consider an interatomic pair potential of the form:

Vo) _[(d)"_n (d\"
€« m

where m and n are exponents with m < .

() Identify the attractive and repulsive terms in the expression.

(b) Differentiate the potential to determine the equilibrium spacing of
the atoms. What is the equilibrium spacing for a Lennard-Jones
potential?

() Determine the value of the minimum of the V(r) curve for the
general potential and for the specific Lennard-Jones potential,




What is a crystal structure?

“In mathematics, if a pattern occurs, we can go on 10 ask, Why does it occur?
Wiha does it signify? And we can find answers to these questions. In fact, for every
pattern that appears, a mathematician feels he ought 10 know why it appears.”

W.W. Sawyer, mathematician

3.1 Introduction

In this chapter, we will analyze the varior
structure. We will proceed
“definition” of a crystal s

-omponents that make up a crystal
a rather pragmatic way, and begin with a loose
tructure that most of us could agree on:

A erystal structure is a regular arrangement of atoms or molecule:

We have some idea of what atoms and molecules are — at least, we
think we do. .. And we also have some understanding of the words “regular
armangement.” The word “regular” could imply the existence of something
that repeats itself, whereas “arrangement” would imply the presence of a
pattern. But, there are many possible patierns: the words on this page form a
pattern of lines; migrating birds often fly in V-shaped formations; musicians
in a marching band walk in an orderly way; the kernels on a piece of com
are arranged in neatly parallel rows; and so on. All of these words, regular
arrangement, pattern, orderly, repeats irself, are commonly used words in
our everyday language, but they are not sufficiently precise for a scientific
description of what a crystal structure really is.
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So, we will need to define more rigorously what we mean by a regular
armangement. We can understand this concept intuitively by considering the
drawing in Fig. 3.1. Figure 3.1(a) shows a periodic drawing; although this
is clearly not a drawing of a crystal structure, the drawing does illustrate
some of the more fundamental aspects of crystals. The drawing consists
of & motif, shown in Fig. 3.1(c), which is repeated by translating it from
one point, chosen as the origin in Fig. 3.1(b), to other points aranged in a
two-dimensional pattern. The set of points constitutes what we will call a
net in two dimensions (2-D) and a fattice in three dimensions (3-D). The
motif represents the decoration of that nevlattice. In exactly the same way,
a crystal structure can be described as a 3-D lattice, decorated with atoms
or molecules. Hence, our “regular amrangement” is now restricted to be a
“lattice.” In the next section, we will describe in a more rigorous way what a
lattice is.

Before we do 5o, let us return 1o one of the examples of patiers given
in the previous paragraph: the marching band. Consider a marching band in
which the members oceupy positions on 10 rows of 3 musicians each. When
the band assembles itself into this formation, the rows and columns are well
defined, and all musicians are nicely lined up, with the nearest musicians in
front, behind, and to left and right at, say, 1.5 meters from each other. Once
the band starts marching, however, it becomes much harder for the musicians

to maintain this formation with great accuracy; as a spectator, we expect them
to keep their formation as best they can, and, not infrequently, the band which
does this best may also end up being more popular (assuming their music
iscipline and/or motivation of the band

sounds good, 100!). Depending on the
members, the formation may remain nearly perfect throughout the march (as
would be expected for a military marching band), or it may be more loosely
related to the original formation, with each musician staying within, say, half
a meter of his/her supposed position. At any moment in time, only a few
of the musicians will be precisely at their nominal position, but on average,
over the duration of the march, all of them will have been where they were
supposed to be. This is illustrated in Fig. 3.2: (a) shows the initial positions
on a regular square grid. At an instant of time, each musician may deviate
ian during

somewhat from these positions. In (b), the trajectory of each mus
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the entire march is drawn with respect to that musician’s initial position. It is
clear that, on average, the musicians did keep to the initial formation. The size
of the “trajectory cloud” around each site is an indication of how much each
musician deviated on average from the formation. For a military marching
band, we would expect the diameter of these clouds o be very small, as
shown in (c).

Now we can abandon the marching band and replace each band member by
an atom.! The atoms are positioned on a grid and, as a function of time, they
‘move around their own grid site in a somewhat random way. The surrounding
atoms prevent them from moving too far from their initial positions, so that, on
average, over a relatively long time, each atom appears to occupy the perfect
grid position. The magnitude of the instantancous deviations is determined,
not by motivation or discipline, but by the remperature of the atom assembly.
A high temperature means that the atoms have a high kinetic energy, so
their excursions from the average position can become quite large; whereas
at a low temperature, there is insufficient kinetic energy available for large
and the vibration amplitude will remain small. This kind of atom
‘motion is known as thermal motion or thermal vibration. It s present in every
crystal structure and it is convenient to ignore it in a structural description
of crystals The thermal motion of atoms only becomes important in the
determination of the crystal structure by means of a suitable form of radiation
(X-rays, electrons, neutrons) and can be adequately described by means of the
so-called Debye-Waller factor, which will be introduced in Chapter 11. From
here on, we will always consider the average position to be the “real” position
of the atom; this is an approximation, but it turns out to be a very convenient

excursions,

1 The reader who also happens to be 3 meanber of & marchi

12 band may rest assured: there.

‘ases, where there is no periodic structre. The vibrations are relted to the
curvature of the interatomic interaction potential introduced in the previous chapter. A sl
curvature around the equilibrium distance indicates a small estoring force for excursion
away from this positian; hence, the vibrarion frequeney wil be low. For 4 large
the restoring force is arge, and therefor the vibration frequency i high.

ivature,
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one because most mathematical relations to be derived in the remainder of
this book become independent of time.

The average position of an atom in a crystal structure does not change
with time, so we can slightly revise our initial loose definition of a crystal
structure to:

A crystal structure s a time-invariant, three-dimensional arrangement of
atoms or molecules on a lattice,

We will take this statement as a starting point for this chapter. First, we nced
to define more precisely what we mean by the term “lattice.

3.2 The space lattice

3.2.1 Basis vectors and translation vectors

The historical comments in Box 3.1 show how René-Just Haidy built models
of crystals by stacking rectangular blocks in such a way that the assembly
resembled the external shape (or form) of macroscopic crystals. By assuming
the existence of a single shape, he was able t0 construct many different forms,
thereby explaining the large variety of crystal forms (or shapes) observed
in nature. We will take Haiy's block model as the starting point for the
introduction of the space latice. First of all, we consider the most general
block shape, an outline of which is shown in Fig. 3.3. If we take one of the
corners of the block as the origin, then we can define three vectors along the
three edges of the block. We shall call them a, b, and c. Note that the angles
between these vectors need not be 90°, and that the lengths of these vectors
need not be the same.

‘The main advantage of defining these basis vectors is that we can easily
identify the coordinates of all of the corners of the block. For instance, the
comner opposite the origin has position vector a+b-+¢. Alieratively, we
can write the coordinates of this point as (1,1, 1), since the position vector
corresponds to 1 a+ 1 x b+ 1 ¢. Note that we will always write coordinates
between parentheses, with commas separating the individual component
models. Since each block

Fig. 5.3, lustration o Next, we consider a stack of blocks, as in Haily
sencral buiding block (aunit s identical 10 every other block, and they are stacked edge 1o edge and face
el withthe thee basis to face, it is easy to see that we can jump from the origin to any comer of
e  Seus) any block in the stack, by taking infeger linear combinations of the three

basis vectors, The coordinates of each block comer can therefore be written

Comentional Transmission 45 triplets of integers, which we will denote by (u, v, w). Note that these

Hectron Micrascopy, ntegers can take on all possible values, including negative ones, since we
ref, 2003, Cambridge can take the origin at any point in the stack.

University Press)

reproduced from Fig. 1.1 in
Itroduction to




3.2 The space lttice

Box 3.1 Haiiy’s crystal models

René-Just Haily (1743-1822) was a French priest and mineralogi
building block theory of crystal structures led directly to the lattice model
(Haiiy, 1784, 1801, 1822). He suggested that crystals are composed of
arrays of subdivisible blocks, called integral molecules, with shapes spe-
cific to the crystal. Haily showed how, replicating the same blocks in
different ways, he could construct different external shapes. This was
taken as an explanation as to why the same substance could have crystals
with different external forms. Haiiy showed further that the building block
theory implied that the overall symmetry of a crystal must be the same as
that of its constituent parts. Nowadays, we no longer talk about “integral
molecules,” but, instead, we use the name “unit cell.” The figure below,
taken from Vol. 5 of Haiiy (1801), shows how the thombic dodecahedron
shape (on the left) can be obtained by starting from a cubic crystal shape
(on the right), and adding laers of cubic building blocks, with each new
layer one unit cell smaller on all sides than the previous one.
[

Instead of considering blocks, we will forget about the outline of the blocks,
and only consider the corner points. We can then jump from the origin to
the point with coordinates (v, w) by using the translation vector (or lattice
vector) 1, defined as

t=ua+ub+ue. [ERN)

All comer points can be reached by integer linear combinations of the three
basis vectors. We shall call the collection of comer points the space lattice,
and cach individual comer a node or latrice point. A space lattice is thus a
set of nodes, related to one another by the translation vectors t. Tn 2-D, there
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are only two basis vector

and b, and the inte;

these vectors make up the nodes of the net.

ger linear com

nations of

A space lattice (net) is the geometrical image of the operation of the
translation operators on the node at the origin.

3.2.2 Some remarks about notation
Ateh

point, it is useful o introduce a shorthand notation for the transl

n

vector t. In addition (o writing its components as the integer triplet (x, v, w),

we will also write them as (u;, s, 1)), or as u; (i

1...3). Si

ilarly, we

will often write a, for the basis vectors, where a, =2, a, =b, and a, =c.

“This appears (o be a superfluous

ation of 1

the notation, bu

will tum

ompl
out to be extremely useful for all kinds of crystallographic computations, as

we will see in the following !

hapter

The ser (or collection) of translation vectors of any space lattice necessarily

conty
calligraphic

mbol 7

T = {t |t=ua+vb+we, (i, v,w) integers).

This expres

ns an infinite number of elements; we will denote this set by the

(32)

jon reads as follows: 7 is the set of all vectors ¢ that can be

written as linear combinations of the type ua+ v+ we, with u, v, and w

restricted to be integers.

Before we continue with a description of space lattices, it is worthwhile
taking a brief “notational excursion.” In crystallographic computations, it is
often useful to be as economic as possible with

expre:

as the Einstein summation convention, and it is

st

needed to describe a concept, the less likely that errors will be mad
this point we will introduce a device which will allow us to shorten all the
jons that we have discussed so far. This device is commonly known

ated as follows:

ymbols: the fewer symbols

So, at

A summat
same side of an equation.

n is implied over every subscript which appears twice on the

Here is how it works. We start from the expression for the translation

vector, and rewrite it in a few
are already familiar with:

di

ways, u

ua+ub+we;
A+ 18, +

Yua.

¢ various notats

ns that we
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This last expression uses the summa
expre

on sign . It is obvious that this last
on s shorter in length than the other two, but now it has grown in
the vertical direction . ... We all know that we are living and working in a

three-dimensional (3-D) space, 5o it is rather clear that the sum goes from
1t0 i =3. So, why don’t we simply drop the summation sign altogether
and write:

63

and we remind ourselves that there s an implied summation over the index i
We know that there is a summation, since the index i appears twice on
the same side of the equation, once on the w, and once on the a,. This
notation convention (dropping the summation signs) is the Einstein summation
convention, which we will use profusely throughout this text.” Since this
looks a litdle confusing, let’s practice this convention on a few examples,
First of all, consider the expression
t=upa,
Is there an implied summation? Yes, there is, since the subscript ; is repeated
twice on the same side of the equation! So, this equation really reads as:

3
T,

“This also illustrates an important point: it does not matter which letter of the
alphabet we use for the subscript, as long as we use the same letter twice
‘The subscript is therefore known as a dummy subseript or 2 dummy index.

Let's look at a slightly more complicated expression:

7 = by,

First we deal with the right hand side. The index i occurs twice, so there is
a summation implied over i. The index j occurs only once, so there is no

summation over j. So, the equa

n really reads as:

=5, Y ua,

But what would we have on the left hand side? That's a good question! If we
use the relation t = ;a,, then we would have

bt=bua;

* “The reader may find  comment on the notaton used in this book in Box 3.2
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Box 3.2 Alternative notation

There exists an alternative notation, frequently used in the physics litera-
ture. This notation employs both subscripts and superscripts. The compo-
nents of a vector are denoted with superscripts, as in:

Tl

The Einstein summation convention then reads: A sunimation is implied
over every index which appears twice on the same side of an equation, once
as a subscript and once as a superscript. While there are some advantages
of this notation over the one used in this book. in particular when we start
describing reciprocal space in Chapter 6, the authors decided to simplify
the notation, and to only consider subscripts for both vector components
and basis vectors.

‘This illustrates another important rule when working with subscripts: sub-
scripts must be balanced on both sides of the equation. This means that,
if a subscript is present on one side of the equation, and no summation is
implied over this subscript, then it must also be present on the other side of
the equation.

Finally, let's look at a more complicated example, which we will encounter
in a later chapter:

F=eppan

Leaving aside for now the exact meaning of the symbol €, simply note that

is possible for symbols to have more than one subscript We see that there
are three different subscripts, and each of them o st
be three summations:

s twice, 5o there m

Since all indices are used up in the summations, there can be no index on
the left-hand side of the equation. This concludes some simple examples. We
will make extensive use of the summation convention in this text, 5o it is

4 Think about matrices! A 3 x 3 matrix A has three rows and three columns, and cach eniry of
the maix s labeled by to subscripts, as in A.,. This stands for the entry on row 7 and
column /. The symbol € is acwally n 3 3 % 3 maix, so we need thee indices o describe
each of ts enries,
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important for the reader to be familiar with this notation. There are a few
at the end of this chapter.

more exerc

3.2.3 More about lattices

Having defined what a lattice

. we can take a closer look at the consequences
of this definition. If we translate the lattice by any of the lattice vectors t, then
we obtain the same lattice again. In other words, if you were to look at an
infinite lattice, then look away while someone else translates this lattice by t,
then you would not be able to see the difference between the lattices hefore

and after translation; they would coincide. I the translation vector was not a
attice vector, then you would be able to see the difference, since the translated
lattice would not coincide with the original one. This means that the latice is
invariant under any translation by a lattice vector t. As a consequence of this
invariance, all lattice points are identical. This is illustrated in Fig. 3.4: we
can choose any lattice point as the origin, and the surroundings of all lattice
points are identical, as indicated by the thin lines around points 0, 1, and 2.

The space lattice is a purely mathematical abstraction and does not contain
any atoms or molecules at all. However, we can take a molecule and attach
it t0 each lattice point to obtain a crystal structure., We thus find that

A crystal structure consists of a 3-D space lattice which is decorated with

one or more atoms.

The lattice is a 3-D assembly of mathematical points, which reflect the
sranslational symmery of the complete crystal. In general, any 3-D lattice can
be fully described by stating the lengths of the 3 basis vectors and their mutual
angles. According (o the International Tables for Crystallography (Hahn,
1989) the following notation should be used to describe the dimensions of a
3D lattice:

Tength of a;

b =length of b; (34

¢ =length of ¢;

Fig.3.4. Al atice poits have
idential surtoundings and
every point an be selected as
the orign ofthelaice
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a = angle between b and ¢;

B=angle between a and ¢;

y=angle between a and b.

It is casy to remember the angle designations: for any pair of vectors, say,
aand ¢, take the missing letter (in this case b) and wm it into a greek
letter (in this case ). These six quantities fully specify the space lattice (see
Fig. 3.3). The choice of the shortest lattice vector as either a, b, or ¢ will
depend on the symmetry of the lattice. We will often write the six numbers
as {a, b, ¢, @, B, y); they are known as the lattice parameters. For a 2-D net,
the net parameters are usually written as (a, b, ).

The volume defined by the three basis vectors (shown by the dotted lines in
Fig. 3.3) is known as the unit cell of the space lattice. It is customary to define
the vectors in such a way that the reference frame is right-handed. If the mixed
vector product (a x b) ¢ is positive, then the reference frame is right-handed;
f the product is negative, then the reference frame is left-handed. We will
define the dot and cross products in the following chapters. Next, we will
attempt to answer the question: how many different space latticeshets are
there? We will consider 2-D nets before describing the 3-D lattices.

3.3 The four 2-D crystal systems

Consider the net parameters {a. b. v). If we take arbitrary values for all three
parameters, then we end up with a net similar to that shown in Fig. 3.5. This
is known as an oblique net. There are o spe

al conditions on any of the net
parameters. The oblique net has a low symmetry:® if we place a line normal
to the drawing in Fig. 3.5(a), through one of the nodes of the net, then it is
easy 10 see that, if we rotate the net by 180° around this line, all the nodes
of the rotated net will coincide with the original nodes. A node at a position
ua+vb will end up at position —ua — vb after the rotation, and this is again
 linear combination of the basis vectors. This means that the new
rotated node coincides with one of the original nodes, so that the original and
rotated nets are indistinguishable,

There is one special value for the angle 7. When = 90°, the unit cell
of the net becomes a rectangle, and the resulting net is the reciangular

% We will define and discuss the concept of symmetry exiensively in Chapter 8. For now it is
Sufficient for the reader 1o understand what a otation s,
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net, illustrated in Fig. 3.5(b). The rectangular net has the same rotational
symmetry (a 180° rotation axis normal to the plane of the drawing). In addi-
tion, it also has mirror symmetry. This is easily verified by holding this
book in front of a mirror and looking at Fig. 3.5(b); there is no difference
between the original and its mirror image. For the oblique net, we see that
the image in the mirror leans over 1o the left, whereas the original leans
over towards the right. Therefore, the oblique net does not have mirror sym-
metry, and we say that the rectangular net has a higher symmetry than the
oblique net. The net parameters of the rectangular net are usually written as
{a,b.7/2}.

Next, we again start from the oblique net, but this time we take the two
basis vectors to have equal length, so that the net parameters are {a. a. ).
In this case, there are two special angles y, for which the resulting net has
4 higher symmetry than the oblique net. If v = 90°. then the net is based
on 4 square unit cell, and is called the square net, as shown in Fig. 3.5(c).
‘The higher symmetry is easy to spot, since a rotation of 90" around any axis
going through a node (perpendicular to the plane of the drawing) leaves the

g

net invariant.

Finally, the last 2-D net is obtained by setting y = 120°. This is the
hexagonal nets it is easy (0 see that this net is invariant under a rotation
of 60°, hence the name hexagonal. Note that we could also have selected
= 60°; the resulting net would have been indistinguishable from the one
shown in Fig. 3.5(d). The international convention is 1o select = 120°
for the hexagonal net. These four nets are the only pos
be generated with only two basis vectors a and b. We say that, in 2-D,
there are only four possible crystal systems: oblique, rectangular, hexagonal,
and square. Table 3.1 summarizes the net parameter symbols, the crystal
system name and an example of a unit cell for each of the 2-D crystal
systems
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Table 3.1. The four 2-D crystal systems.

Condition/symbol

Crystal system

Drawing

no condition,
{a,h,m)

a=by=120°,
{a.a,120°)

a=by=90
{a.0.90°)

OBLIQUE

RECTANGULAR

HEXAGONAL

SQUARE

4

=

3.4 The seven 3-D crystal systems

There are seven fundamentally different combinations of basis vectors in 3-D.
In the most general case, we select arbitrary numbers for the set of six lattice
parameters {a, b, ¢, @ B, ). This generates the trielinic or anorthic lattice.*

Figure 3.3 shows an example of a triclinic

cell. When we

slate this

unit cell by integer linear combinations of its basis vectors, we obtain the
triclinic lattice. No matter how we rotate this lattice, there are no rotation

axes for which the lattice is
Next, we can assign special values to some or all of the lattice parameter

as we did for the 2-D case. We look for combinations of laitice parame-

ters for which we can i
It wrns out that we can have a

© The name riliic can be split into o parts: i which sands for “the.
comes rom the Greek word Alinein for “to bend or slope

In other

rotational symmetry in the
ngle 180° rotation axis when two of the

 word:

sulting latic

A cliic, which
necd th

angles 0 describe this unic cell. The second name, anorhic, is a combination of an, which
means “not,” and orho, which stands for “perpendicolar,” meaning that none of the e

angles is 4 right angle.
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three angles @, B, and y are equal to 90°." It is customary 1o select § 1o be
the angle that is not equal to 907, so that we arrive at the lattice parameters
{a,b,c, m/2, B, m/2). This is known as the monoclinic lattice.* Table 3.2
shows the lattice parameters and conditions for each of the 3-D crystal sys
tems, along with simple sketches of the corresponding unit cells.

If we select two of the lattice parameters, a and b, to be equal to each
other then we can create another 3-D lattice by putting the angles equal to
90°,90°, 120°, or {a, a ¢, w/2, m/2, 27/3). This is similar to the hexagonal
2D net (a,a, 27/3), but now there is a third dimension to the unit cell,
perpendicular to the 2-D drawing of Fig. 3.5(d). This is known as the 3-D
hexagonal lattice. Similar to its 2-D analogue, the 3-D hexagonal lattice has
60° rotation axis along the ¢ direction.

If all three lengths a, b, and c are equal to each other, then we find that
there is in general no new lattice unless the three angles are also equal to each
other: {a. a,a, @, a, a). The resulting lattice is known as the rhombohedral
latice. Along the direction corresponding to the body diagonal of this unit
cell, a rotation of 120° leaves the lattice invariant. An alternative name for this
system s trigonal, indicating that the three angles are equal to each other.”

A special case of the rhombohedral lattice is found when the angle @ is set
equal to 90°. In that case, {a, a, @, /2, m/2, 7/2), we have a cubic lattice.
Note that there are now several rotation axes that will leave the unit cell
invariant. We can rotate the cube by 90° around any axis normal through
one of the faces and going through the center of the cube, by 120° around
the body diagonals, and by 180° around any axis going through the centers
of two edges of opposite sides of the cube. It s also clear that, when we
look at a cube in a mirror, we will see the same cube, so that the cube
also has mirror symmetry. We will describe all these symmetry proper
in a much more systematic way later on in this book. For now, it suffices
that the reader obtain just a simple intitive understanding of what symmetry
means,

Starting from the monoclinic unit cell, we can put the angle § equal to
90°, 50 that we obtain a lattice for which all three angles are equal, but the
lengths of the basis vectors are not equal: {a, b, ¢, /2, /2, m/2). This is
the orthorhombic lattice, with a unit cell which is shaped like a right-angled
shombus. This shape will be familiar to the reader, since most packaging
boxes have this shape. It is easy 1o convince yourself that this shape has three
180° rotation axes, going through the centers of opposite faces.

Finally, we can put two of the three parameters of the orthorhombic lattice
equal to each other, as in {a,a, ¢, /2, /2, m/2). This is the tetragonal

7 e pospone a e oo oo fhe xbtece of e v D oyl sl
e 8, where we will dein all symietry perators
n thot one of the three angles is not u right-angle.

+ Mo
* The Greek word gonia means “ngle.”
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Table 3.2. The 7 three-dimensional crysta systems.

Condition/symbol

Crystal system

Drawing

no conditions
{a.b.c.a. B )

a=y=o0
{a.b.¢.90. 8,90}

a=b,
a=p=90
200

y =121
[ .¢.90,90,120)

a= 0
{a. b, ¢.90,90,90)

@ 0
{a.a, c,90,90,90)

a=B=y=90
{a.a.a.90,90,90}

TRICLINIC
(ANORTHIC)

MONOCLINIC

HEXAGONAL

RHOMBOHEDRAL
(TRIGONAL)

ORTHORHOMBIC

cuBIC

* The angle 5 wsally chosen 1o be lrge than 90
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Fig 3.6, Theseven aystal Cubie
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drawing, the higher it
symme! Trigonal
i Orthorhombic
Monodlnic
Trchnic

lattice, which has a single rotation axis of 90" going through the centers of
the opposite square faces, and 180° rotation angles through the center of the
opposite non-square faces. This concludes the enumeration of the seven 3-D
1 systems (Table 3

The 3-D crystal systems can be ranked by their symmetry (for a more
complete description of symmetry, see Chapter 8). This ranking is shown in
Fig. 3.6. Starting from the cubic symmetry, we can, by successive distortions,
create a triclinic lattic

3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices

Consider the 2-D lattice in Fig. 3.7. We can define a unit cell for this lattice
in an infinite number of ways: a few possibilities are shown in the figure.
The unit cells numbered 1, 2, and 3 are so-called priniitive unit cells, because
they contain only one lattice point. The number of nodes in a cell can be
computed in two different ways:

(i) Displace the outline of the unit cell, so that the comers of the cell no
longer coincide with lattice sites. Now count the number of sites inside
the displaced unit cell. This is illustrated by the dashed cell outlines
in Fig. 3.7,

Fig.3.7. A few possile unit
celsin a 2:D square net
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(i) In 2-D, count the number of sites inside the unit cell (N;,): add to that
1/2 of the number of sites on the unit cell boundaries (N,y,,), and add to
that 1/4 of the sites on the unit cell comers (N,q,). In other words:

Nop =N,y '\'.m +3 N,

In 3-D, the total number of sites

a unit cell is given by:

Nip

»‘(mw .

1
it 5 Im s

where N is the number of sites in the faces of the unit cell

For all three of the cells 1, 2, and 3, we find that there are 4 sites located at
the corners and none inside or on the edges, hence the number of sites in the
unit cell is 1

The unit cells numbered 4 and 5 in Fig. 3.7 are non-primitive unit cells,
because they contain more than one lattice site. From the displaced unit cell
outlines (indicated with a dashed line) we find that there are Ny, = 2 for cell
4, and Ny =4 for cell 5. Although these cells could be used to describe

this 2-D net, they are not as convenient as cell 1. In general, one describes
a lattice with the simplest (not necessarily the smallest) possible unit cell, in
this case cell 1. Note also that cell 1 is the only cell of the five shown that

From the defini 3D erystal systems, we know that there
are seven primitive unit cells. They are denoted by a two-letter symbol: the
first letter (lowercase) indicates the crystal system (a for anorthic or triclinic,
o for orthorhombic,  for tetragonal, J for hexagonal, c for
enough, no letter for trigonal or thombohedral)
second letter (uppercase) indicates the type of cell, which in this case
prinitive or P. The exception o this rul is the thombohedral or trigonal
system, which is indicated by the symbol R. The primitive cubic unit cell is
hence represented by the symbol ¢P, the primitive tetragonal cell by 1P, etc
We can then ask: can we add additional lattice points to the primitive
lattices or nets, in such a way that we still have a latice (net) belonging (o
the same crystal system? We will first illustrate this for the 2-D nets. We
know that, in order for a collection of nodes to form a net, the surroundings
of each node must be identical. If we consider a rectangular net with lattice
parameters {a, b, 7/2}. and add a node at the position a/3+b/2, as shown
in Fig. 3.8(a), then it is clear that the surroundings of the point A are not the
same as those of the point B. While A has as a neighbor the point located
at r, = a/3~b/2 from A, this point B does not have a point located at
a/3. 2 from sl (this location is indicated by a gray circle). Therefore,
the surroundings of A and B are not identical, so this is not a net. Ther
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3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices
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is. however, a special position B inside the rectangular unit cell, for which the
surroundings are identical to those of A. This is the point at the center of the
cell, as shown in Fig. 3.8(b). If ry, = (a-+b) /2, then there is a point located at
this position relative to B, namely the point C. Hence, the surroundings of A,
B, and C are identical ~ in fact, all of the nodes have identical surroundings
50 that this is a new net

The attentive reader might say: “Wait a minute! This is not a new net,
because I can select a smaller, primitive unit cell (in gray in Fig. 3.8(b)
which flly defines this net. Furthermore, this primitive cell indicates that this
net is an oblique net, not a rectangular one!” This is absolutely correct. We
could indeed use the primitive cell 1o describe the complete net. However,
this primitive oblique cell does not reveal that the net actually has a higher
mmetry! Indeed, looking at the primitive unit cell in a mirror, we see that
The mirror image of

the mirror image is not the same as the original
the rectangular cell with a node at its center is the same as the original, s0
it makes sense o use this non-primitive cell to describe the net. This simple
example illustrates two important idk

o Itis always possible to define a primitive unit cell, for every possible net
(this is also true for 3-D lattices).
If a non-primitive cell can be found, that describes the symmetry of the net
(lattice), then that cell should be used to describe the net (lattice). Since
the surroundings of every node must be identical, we can only add new.
nodes at locations that are centered in the middle between the original

lattice sites.

The 2-D net shown in Fig. 3.8(b) is, therefore, a new net, known as the
centered rectangular net. If we try 1o do the same thing with the other 2-D
nets, we find (this is left as an exercise for the reader) that there are no new
nets to be found. We conclude that in 2-D, there are only five possible nets:
four of them are primitive (oblique, rectangular, hexagonal, and square) and
ane s centered (centered rectangular). We call these five nets the 2-D Bravais
nets. The five 2-D Bravais nets are shown in Fig 3.9.

We can repeat this procedure in three dimensions. In this case, there are
three possible ways 10 add nodes at the center in between existing nodes.
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Body centering: we add a lattice site in the center of the unit cell, at
the location (172, 1/2, 1/2). For every site t, there is then an additional
site ¢+ (a+b-+¢)/2. The vector 1= (a-+b-+¢)/2 is known as the body
centering vector. Note that this vector is not a translation vector of the
lattice since its components arc not integer numbers. The symbol for

4 body centered lattice is 1, from the German word for body centered:
“Innenzentriert”

Face centering: we add a lattice site to the center of all faces of the unit cell,
at the locations (1/2,1/2,0), (1/2,0,1/2), and (0, 1/2,1/2). For every
site t there are then three additional sites t+(a+b)/2, t+(a+¢)/2, and
-+ (b+6)/2. The veetors C= (a-+b)/2, B= (a-+¢)/2, and A= (b+¢)/2
are known as the face centering vectors. The symbol for a face centered
lattice is F.

Base centering: we add a lattice site to the center of only one
face of the unit cell, at the location (1/2,1/2,0) or (1/2,0,1/2) or
(0.1/2,1/2). The base centering vectors are identical to the face cen-
tering vectors, except that only one of them is present. If the plane
formed by the basis vectors a and b is centered, then the lattice
known as a C-centered lattice. If the a~c plane is centered, the la
tice is B-centered and if the b-c plane is centered then the lattice is

A-centered.

One can show that for two-face centering not all lattice points have the same

surroundings, and hence two-

We can now apply these five forms of centering (A, B, C, I, and F) to
all seven primitive unit cells. In several cases we do generate a new lattice,
in other cases we can redefine the unit cell and reduce the cell 10 another
type. Consider the following example. The primitive tetragonal unit cell 1P
shown in Figure 3.10(a) is C-centered in Fig. 3.10(b). This is not a new cell,
however, since we can redefine the unit cell by the thick lines in Fig. 3.10(c),

ace centering cannot give rise to a new lattic

which form a new, smaller primitive tetragonal unit cell with latice parameter
a,= av/2/2. We find that a C-centered tetragonal cell ¢C is equivalent to tP.
and hence does not form a new lattice. Repeating this exercise for all possible
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Fig. 3.11. The fourteen 3-D
ot g @

Triclinic (a) Monoclnic (n) Monaclinic (nC)
Orthorhombic (o) Orthorhombic (oC)  Orthorhombic (of)  Orthorhombic (oF)
Tewgonal (P)  Tetwgonal (1) Hexagonsl (bP)  Rhombohedral (F)

Cubic (cP) Cubic (el) Cubic (¢F)

types of lattice centering (there are 5 x 7= 35 possibilities!) we end up with
seven additional lattice types that cannot be reduced to primitive ones of the
same crystal system: mC, oC, ol, oF, t, cI, and cF. All fourteen 3-D Bravais
lattices are shown in Fig. 3.11.

3.6 Other ways to define a unit cell

Itis always possible to describe a lattice with a primitive unit cell. Hence, all
14 Bravais lattices can be described by primitive cells, even when they are
centered. As an example, consider the cF lattice in Fig. 3.12a. By selecting
shorter vectors a,. b,. and ¢, we can define a primitive thombohedral unit
cell with angle e = 60°. This cell does not reflect the cubic symmetry of the
¢F lattice, but is has the advantage that it contains only one lattice site. In
solid state physics, it is often convenient to work with the primitive unit cells
of all the Bravais lattices, rather than with their non-primitive (and higher
symmetry) versions.
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There is yet another useful way to define a unit cell: the Wigner—Seirz
cell. The Wigner-Seitz (WS) cell corresponding to a particular lattice point
is the region of space which is closer to that particular lattice point than
10 any other lattice point. It is straightforward to construct the WS cell (see
Fig. 3.13): construct the vector between the origin and one of the neigh-
boring lattice points. Draw the perpendicular plane through the midpoint of
this vector. This plane separates space into two regions, each of which con-
tains all of the points closer to one of the endpoints of the vector than to
the other endpoint. Repeat this construction for all other lattice points. The
smallest volume around the selected point enclosed by all these planes is
the Wigner—Seitz cell. Note that the WS cell can have more than six sides
in 3-D, or more than 4 in 2-D. All WS cells are primitive by construction
and they do display the true symmetry of the underlying latiice. In 3-D, it
can be shown that there are 24 topologically different WignerSeitz cells
for the 14 Bravais lattices (Burns and Glazer, 1990). These cells have di
ferent shapes, depending on the actual values of the lattice parameters. An
example of the WS cell for the cf Bravais lattice is shown in Fig. 3.14.
The WS cell is also known as the Voronoi domain, the Dirichlet domain,
or the domain of influence of a given lattice point. It can be shown on
theoretical grounds that the number of faces of a 3-D WS cell is always
between 6 and 14 (inclusive). In 2-D, the number of edges of the WS cell
lies between 4 and 6. Inspection of Fig. 3.14 reveals that the WS cell has the




Fig.3.14. The Wigner-Seitz
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same symmetry as the Bravais lattice. This is true for the general WS cell
as well.

In spite of the possibly complicated shape of the Wigner-Seitz cell, it
is often very easy to compute its volume. The difficult way would be to
actually use geometry to determine the volume. However, there is a much
casier method. We know that the ¢f Bravais lattice is a cubic lattice, 5o that
the volume of the nit cell is *, where a is the edge length. We also know
that there are 2 nodes in the unit cell (the one in the center counts as a whole,
whereas the § at the corners count for 1/8 each). So, the volume per node
is equal to a?/2. If we take the WS cell for this Bravais lattice, then two of
those WS cells must still be equal to the volume a; the shape is different, but
the available volume must be the same. Therefore, in spite of its complicated
shape, the volume of the WS cell for the ¢f Bravais lattice is simply a*/2.

In summary, there are fourteen Bravais lattices and we can define three
types of unit cells to describe them: the conventional unit cell, the primitive
unit cell, and the Wigner-Seitz cell. OF these three, only the conventional
cell and the Wigner-Seitz cell display the true symmetry of the underlying
lattice.

Moritz Frankenheim (1801-69) was a German crystallographer who was the
first o enumerate the 32 erystal classes. He was also the first to enumerate the
14 three-dimensional lattices, but his list contained an error. In 1850, August

Bravais (1811-63), a French naval officer and scientist, showed that two of
Frankenheim's lattices were identical, and he subsequently correctly derived
the 14 lattices that now carry his name (Bravais, 1850). After the classifi-
cation of erystals into seven axial systems, the question of which symmetry
aperations were compatible with these crystal systems was addressed and
first solved correctly by Frankenheim. In 1830, J. F. C. Hessel (1796-1872,
Fig. 9.15(b) on page 228) independently solved the problem of the symmetries
compatible with the seven axial systems, i.c., he found that only 2-, 3-, 4-, and




Fig3.15. (3) A Bravais
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6-fold rotation axes were compatible with the translational latice symmetry.
Neither his work nor the work by Frankenheim were noticed by scientists at
the time.

Eugene Paul Wigner (1902-95) was a Hungarian scientist. While at the
Technische Hochschule in Berlin, he leamed about the role of symmetry
in crystallography. At about the same time, the new quantum mechanics
was being developed, and Wigner immediately realized the importance of
symmetry principles in quantum mechanics. His work in this area earned
him the 1963 Nobel prize in physics. After a short stay at the University of
Gtingen, he moved to Princeton, where he worked on solid state physics,
along with his first graduate student, Frederick Seitz. The Wigner-Seitz cell,
as introduced in this chapter, results from their joint rescarch. Wigner applied
the mathematics of irreducible representations of groups to a variety of physics
problems; he became especially well known for his ground-breaking paper
on the relativistic Lorentz transformation and for his work on the algebra
of angular momentum coupling in quantum mechanics. Wigner's interest in
nuclear physics and his knowledge of chemistry were instrumental in his
design of a full scale nuclear reactor, which was to become the basis for the
commercial Dupont reactors in the post World War I years. In his later years,
‘Wigner founded the quantum theory of chaos.

(i) Bravais lartices I: Show that a face centered tetragonal lattice (F) can
be reduced to one of the 14 Bravais lattices. Write the basis vectors of
this Bravais latiice in terms of those of the tF lattice.
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)

(iv)

(]

(vi)

(vii)

(viif)
(ix)

(x)

D)

Bravais lattices Ii: Consider the cubic Bravais latices cP, cf, and cF,
each with lattice parameter a. Make a table showing for each lattice the
number of first nearest neighbour lattice sites N, the distance to those
neighbours d, the number of second nearest neighbour lattice sites Ny,
and the distance to those neighbours d

Bravais lattices I11: Describe the consecutive deformations that need
to be applied to a cubic unit cell to tum it into a monoclinic unit
cell; repeat the question for the deformation of a tetragonal cell into a
triclinic cell,

Bravais lattices IV: Show, using a graphical example, that is not possible
10 create a new Bravais lattice which has two centered faces (e.g., both
Aand B centering),

Other it cells: Determine graphically the 3-D primitive unit cell
corresponding to the ¢/ Bravais lattice and express its lattice parameters

in terms of the cubic ones.
Wigner-Seitz cells I: Make a drawing of the Wigner-Seitz unit cell for
the kP lattice and compute the volume of this cell. (Hint: this does not
require any actual computations. The volume can be derived simply by
thinking about the definition of the WS cell.)

Wigner-Seitz cells 11: Compute the volume of the largest sphere that
an be inscribed in the Wigner-Seitz cell of the cf lattice. (Hint: As
in the previous question, this does not really require any significant
computations.)

Jfec Wigner-Seitz cell: Construct the Wigner-Seitz cell for the fec lattice.
bee Wigner-Seitz cell: Show that the fractional coordinates of the ver-
tices of the Wigner-Seitz cell of the bec lattice in the x = 0 plane are
(0,1/2,1/4), (0.1/2,3/4), (0, 1/4,1/2), and (0,3/4,1/2).

Jfec molecular solid: Fullerites (discussed in more detail in Chapter
25) have Buckminsterfillerene C, molecules decorating the sites of
an fec Bravais lattice. The reported low temperature lattice constant,
= 1404(1) nm for fee Cyq

(a) Calculate the number of C atoms contained in the cubic cell.
(b) Calculate the touching molecular sphere radius of Cg, in the struc-

ture,
(c) What is the coordination number, CN of C, molecules about
another in this structure.

Cubic lattices packing fractions: Determine directions in which hard
spheres touch, and the volume fractions occupied by them in three cubi
structures:

73 e

s
so g b D= feo =




Fig. 316, Monodinic unit cell,
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o0
(0, b.¢,90, 3,90}

MONOCLINIC

Monoclinic crystal system: Consider the monoclinic unit cell illustrated
in Fig. 3.16. Give an example of a 2-fold rotational symmetry and
mirror plane that leaves this lattice invariant. (i.., show an axis about
which you can rotate the cell and a plane through which you can reflect
the cell and not tell it apart.)




4 Crystallographic computations

“We are told such a mumber as the square root of two worried Pythagoras and
his school almost 10 exhaustion. Being used to such queer numbers from early
childhood, we must be careful not 1o form a low idea of the mashematical intuition
of these ancient sages; their worry was highly credible.”

Erwin Schrdinger

In this chapter, we introduce the mefric tensor, a computational ool that
simplifies calculations related to distances, directions, and angles between
directions. First, we illustrate the importance of the metric tensor with a 2-D
example. Then, we introduce the 3-D metric tensor and discuss how it can be
used for simple lattice calculations in all crystal systems. We end this chapter
with a few worked examples.

4.1 Directions in the crystal lattice

We know that a vector has two atributes: a length and a direction. By select-
ing a translation vector t in the space lattice, we are effectively selecting a
direction in the crystal lattice, namely the direction of the line segment con-
necting the origin (0 the endpoint of the vector t. Directions in crystal lattices
are used so frequently that a special symbol has been developed to describe
them. The direction parallel to the vector t is described by the symbol [,
where (i, v, u) are the smallest integers proportional to the components of
the vector t. Note the square brackets and the absence of commas between the
components. If a component is negative, then the minus sign is always writ-
ten above the corresponding integer, e.g. [112] = [1—12]. If one or more of
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the integer components is larger than 9, then one usually introduces a narrow
pace between the numbers, e.g.. [112 ‘The symbol
may be pronounced in two different ways: bar-u (as in negative-u or minus-u)
or u-bar (which would correspond to the order in which most people would
write down this symbol, first the u, then the minus sign on top). Both are
commonly used and one must be careful not o confuse them, in particular
when there are multiple negative numbers. For instance, the direction [112]
can be pronounced as bar-one, one, bar-two, or as one-bar, one, two-bar. It
is good practice 1o leave a short audible space between the numbers o avoid
incorrect interpretations.

Figure 4.1 shows a few examples of directions in lattices. Directions are
always defined with respect to the crystallographic basis vectors a;. Note that
the [100] direction is ahways parallel to the a axis, regardless of the crysial
system. Similarly, the [111] direction is always parallel to the body diagonal
of the unit cell. Since the indices [wvw] are always integers, we find that
every direction vector is also a lattice translation vector. However, while the
directions [123] and [246] are identical, the corresponding lattice translation
vectors are not the same.

In the following sections, we will introduce a computational tool that will
allow us to compute the following quantities for an asbitrary Bravais lattice:

o the distance between two arbitrary points (e.g., a bond length);
o the angle between two dircctions (e.g.. a bond angle);
o the volume of the unit cell.

4.2 Distances and angles in a 3-D lattice

4.2.1 Distance between two points

Consider the following problem: What is the distance D between the origin
and the lattice point with coordinates (1, 1, 1) in an asbitrary Bravais lattice
(see Fig. 4.2)? In a Cartesian (orthonormal) reference frame this would be




Fig.42. The distance between
(0,0,0)and (1,1,1) s readity
computed in a Cartesian
reference frame (a), but is a
bit more complicated in an
arbitrary eference frame ()

Fig.43. Schematic of the
Cartesian and non-Cartsian
reference frames used for the
example inthe text.

4.2 Distances and angles in a 3-D lattice

an easy question to answer: simply use Pythagoras’s theorem to find that
D =T+ 1+ I = /3. For a cubic lattice with lattice parameter a, shown
in Fig. 4.2(a), the distance is simply multiplied by a. ie., D = av/3. For a
triclinic lattice, however, the computation becomes a bit more complicated
One way to solve the problem would be to transform all triclinic coordinates
into Cartesian coordinates, and then use the standard formula. This is possible
but it can be quite cumbersome to find the actual coordinate transformation.
and one would have to o this over and over again for different sets of lattice
parameters. In this section, we will derive an alternative method which uses
only the lattice parameters of the Bravais lattice, and does not rely on any other
reference frames. For simplicity, we will first work out the answer for a two
dimensional net, and then generalize the solution to three dimensional lattices.
‘The unit vectors {e,. ¢,} form a Cartesian reference frame' (see Fig. 4.3)
and the components of two arbitrary vectors p and q are given by (p,. p,)
and (g, ). respectively. The distance between the points P and Q is given
by the length of the vector PQ. or D = |q—p|. In a Cartes
we know that we can us

an reference frame,

the Pythagorean equation:

D=\(g.~p)+(q, =) @1

which for the points P = (0, 1/2) and @ = (1/2,0) reduces to D= 1/v/2.
IF the reference frame s not orthogonal, then equation (4.1) for D is no

longer correct. Let us consider the second reference frame (indicated by

primes) (€], ;). Note that these vectors do not have unit length, and they

e wil
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are not orthogonal 1o each other. The coordinates in the primed reference
frame are given by P = (1/v/Z, 1) and Q = (0, — 1), which would lead to the
ncorrect distance D' = 3v/2/2 if the Cartesian equation were used. To get
the correct answer, we must express the old basis vectors in terms of the new
ones: we can see from the drawing that

L= -2
e, = V2 +2e

It is also easy to show, and we leave this as an exercise for the reader, that
the vector components in the primed reference frame are given by:

Po=2p;
P=2p.+2p,
From elementary vector calculus we know that the length of a vector is

also equal to the square root of the dot-product of that vector with itself (see
Box 4.1):

Jal=va-a
S0 we find that the distance D can be expressed quite generally as:

D=lg—pl=+{g-p) (a—p)

Box 4.1 The vector dot-product

‘The vector dot-product, a- b, also known as the scalar product, is defined
‘geometrically as the projection of the vector a onto the direction of b,
multiplied by the length of b. Mathematically, this means that

a-b=|al b] cos .

Wess B

The length of a vector a is then equal to the square root of the dot-product
a-a

al ] cos0— |a| = v/a7a.




4.2 Distances and angles in a 3-D lattice

We can write this expression explicitly in terms of the vector components
and the basis vectors for both the Cartesian and the primed reference frames:

tesian

D

Y@= p) e et (g, - pYe e +2(g,— p)a, —pec-e

Primed reference frame

D' = Jlg = P+ (g, = Ve, €+ 20— ) (d, = el

We thus find that the expressions for the distance between two points require
calculation of the dot-products between the basis vectors. For the Cartesian
reference frame, the dot-products are e, ¢, = 1, e, Oande, e =1,
so that the equation for the distance reduces to the standard Pythagorean

expression:
iy . :
p=\fg.— )+~ p)

For the primed reference frame, we find from inspection of Fig. 4.3 that

€ e =1, ¢ ¢ =cos2/2=—1/2v3 and ¢, -¢, = 1/4 and, hence, the
distance is expressed by

_—
D=y lg-ry+ ; 4, =P\ = 5 (g = P (g, = )

Inserting the coordinates of the primed reference frame we find that D = D' =
1//2, as it should be.

We conclude that, to measure or compute distances in a non-orthonormal
reference frame, we need to know the dot-products between the basis vectors.
In 3-D, this is still the case. For the three basis vectors a, b, and e, there are
six terms, and in the following section we introduce a convenient shorthand
notation for these products.

4.2.2 The metric tensor

For the 2-D example of the previous section, we can rewrite the equation for
now valid in every non-orthonormal

the distance between two points, which
reference frame, in terms of 2 x 2 matrices and column and row vectors:

o ee ece Jfa-n

el 53 52 )50

‘The 2 x 2 matrix in this expression contains the dot products and s symmet-
tic with respect to the main diagonal. It is straightforward to work out all

D=[g—
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ions for the two reference frames

matrix multiplications. The explicit expres
considered above are given by:

3 10 1[a—p,
D=[g.- q*n][u qu*/’?
and
i 4Py
4, =P,
Note that the ponents from itis involv-

g the basis vectors. The 2 x 2 matrix defines the geometrical characteristics
of the reference frame and is important for all computations that involve
the distance between two points. Since this matrix defines how distances are
measured, it is known as the merric matrix, or, more commonly, the metric
tensor. At this point in the book it is not necessary to understand exactly
what a tensor is. For now, simply think of a tensor as a mathematical object,
the components of which can be represented by a matrix, just as vector com-
ponents can be represented by a row or column matrix. We will use square
brackets to surround the components of the matrix whenever this matrix rep-
resents a tensor or a vector. Regular matrices will be surrounded by round
brackets.

Next, we extend our discussion to the three-dimensional case. For a crystal-
Tographic reference frame with basis vectors a,, the metric tensor is represented
by a3 % 3 matrix. It is defined by:

aa ab ac abeosy  accosf
boa beb bec|=|bacosy B  becosa
ca eb cc] [eacosp cheosa &

The metric tensor contains the same information about the lattice as the lattice
parameters, but in a form that is directly suited for geometric computations

‘We can rewrite the expression for the distance squared between two points
in a somewhat more compact notation:

D=3 (a—p)g,a—p)

where N is the dimensionality of the vector space (the cases N =2 and N
are sufficient for most of this book). In many situations it is not necessary to
write the summation sign explicitly (since it is clear that a summation must
be carried out) and we will drop the summation sign. In other words, we will




4.2.3 The dot-product in a crystallograpl

4.2 Distances and angles in a 3-D lattice

use the Einstein summation convention, introduced in the previous chapter.
‘The shorthand notation for the distance squared then becomes:

D

(a-pigi(a-p);-

Note that  is the row index of the matrix representation of g, therefore the
veetor components (g — p), must be written as a row when carying out
the matrix multiplication. Similarly, since j is the column index, the vector
—p); must be written as a column. In the 3-D case, we have

components (q
for the dimensions of the matrices in the expression above: 1x 3,3 x 3, and
3 1. The result of the product is a 1 x 1 matrix, k., a scalar.

At this point, we can answer the question posed at the beginning of the
previous section (page 80): given three basis vectors, what is the distance
between the origin and the point with coordinates (1, 1, 1)? We can take the
origin to be point p and q = (1, 1, 1), 50 that g —p = (1, 1, 1); this leads to

@ abcosy accosp 1
U 1| bacosy B becosal |1
cacosp  cheose 2 1

2abcosy+2accos B+ 2bccosa. “2)

‘The metric tensor thus provides us with a general way to measure the distance
between two points in an arbitrary crystal lattice.

reference frame

We can also use the metric tensor to describe the dot-product between two
arbitrary vectors. Fora crystal, it is not always advisable to work in a Cartesian
reference frame, and we need to use the full definition of the dot-product

Box 4.2 About the metric tensor

The metric tensor is an important concept: it allows for the deseription
of the metric properties (i.c., how distances are measured) of any kind
of space with any kind of coordinate system (orthogonal, curvilinear)
in N dimensions and it simplifies vector and tensor operations in the
most general coordinate frames. An important part of Einstein's General
Theory of Relativiry is concerned with the derivation of the metric tensor
for a space containing a distribution of masses; the presence of mass is
incorporated in the definition of the basis vectors, thereby introducing the
concept of curved space. The crystallographic use of the metric tensor is
restricted to use as a computational tool.
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with the appropriate metric tensor for the crystallographic reference frame.
The dot-product of two vectors is then defined as:

va= 5 pa)a) = T naa = e @3

‘where N s the dimension of the space in which the vectors are defined; in the
last equalit

two important uses of the metric tensor: the Cartesian reference frame, and
the crystallographic reference frames.

Tn a Cartesian reference frame the dot-product reduces to a very simple
expression, because the metric tensor is equal to the identity matrix, i.c.,
a matrix with Is along the diagonal and all other entries equal to 0. We

mbol for the idenity matrix: 3. This symbol is

(@.4)

‘The dot-product in a Cartesian reference frame is therefore:

Pa=pieied; = Pidyd; = P = P FPagat “5)

Note that the summation 8,,; = g;. is easily verified by explicitly writing
down the individual terms. Only the term with j = contibutes to the sum

Since we know the general expres

ns for the lattice parameters of the
seven crystal systems, we can readily write down the explicit expressions for
the metric tensors of all crystal systems:

abeosy  accosp
bacosy B becosa|. G
cacos  cheosa

a 0 accosp’ @ 0 0
St [N 0 & 0
accosp 0 & 00 &
0 0 0
paw— ol @ ol
0 0 ¢ 0 2
@ deosa dcosd
8 atcosar

@
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If the lattice parameters are known, then a simple substitution in one of these
expressions results in the explicit metric tensor for that particular lattice. Tn
the following section, we will use the metric tensor to compute the distance

between two atoms and the angle between two directions in an arbitrary refer-
ence frame. All these quantities can be computed directly from Equation (4.3).

4.3 Worked examples

4.3.1 Computation of the length of a vector

Compute, for a crystal with Jattice parameters {3,4,6,90, 120,90} (i..
‘monoclinic crystal), the length of the main body diagonal

An

ver The main body diagonal is the line connecting the origin to the point

(1, 1,1). The length of the vector t = a+b-+c is computed via the metric
tensor:
&' abeosy accosf 9 0 9
gy=|abcosy b becosa|=| 0 16 0
accosp becosa ¢ 9 0 36

Using Equation (4.3) we find

432 Computation of the distance between two atoms
A crystal with lattice parameters 2, 2, 3,90, 90, 90) contains, among others,
atoms at the positions (1/2,1/3,1/4) and (1/3,1/2,3/4). Compute the dis-
tance between these two atoms.

Answer First we compute the metric tensor for this tetragonal crystal system:
@ 0 0 0
=10 » 0|=|0 4 0
0 0 & 0 0 9

The distance between any two points in a crystal equals the length of the
vector connecting those two points; in this case r = (1/3—1/2,1/2—1/3,
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3/4~1/4) = (~1/6,1/6,1/2). The length of a vector is equal to the square
root of the dot-product of that vector with itself, so that:

el = VFT = T
n
11 1
55 3|°
N o0
11
5 &

The lattice parameters have units (usually nanometers or Angstroms; 1nm =
1A), so if @, b, and ¢ are given in nanometers, then the distance is also
expre:
distances in crystals.

4.3.3 Computation of the angle between atomic bonds

nt at the
position (0,0, 0): this atom is bonded to two titanium atoms, located at the

In a cubic erystal with lattice parameter a, an oxygen atom is p

positions (1/2,1/2.0) and (1/2,0, 1/2). Compute the angle between these
two bonds.

Answer The angle between two bonds corresponds to the angle between the
two direction vectors parallel to those bonds: in this case, the direction vectors
are s=(1/2,1/2,0) and t = (1/2,0,1/2). Since the crystal is cubic, the
metric tensor s given by:

@ 0 0 100
0 & 0 % |0 1 0|=d,
00 & 001

The cosine of the angle between two directions is computed via the normalized
dot-product:

set=1s|[t]cos0,
or

sty @sidy; st

NN T SN T SN Nt
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‘This leads 1o:

cost

and hence 6= 60°.

434 Computation

the angle between lattice

ctions
Consider a monaclinic crystal with lattice parameters a = 4nm, b= 6nm,

c=5nm and B = 120°. What is the angle between the [101] and [301]
directions ?

wer First we derive the metric tensor for this crystal system:

0 accosg] 16 0 -10
» 0 |=|0 3 of.
acesp 0 ¢ | [0 0 25

The dot product s then obtained from the product p,g,;q; or,

16 u 40‘“' —42
o gy =101 0 o =poi| o|=3
10 o sz 4s

The dot-product of two vectors is also equal to the product of the lengths of
the vectors times the cosine of the angle between them:

Boonr~baon) = fron fzon €030

The length of a vector is the square root of the dot-product of a vector with
itself, hence we can use the metric tensor again to compute the lengths of
fon 04 bz

16 0-1071 6
/,1,‘”,:[101][ 0 36 o}{u}:[mu]{
0 o0 251 1
16 ofm
w=[-201]| ©
' Lo 0 ’5J[ }

oo
[}
]




5 An alternative method for the computat
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‘The angle between the two vectors is therefore:

0= cos-! [ 1
=cos
Toonpor)

n of angles

The angle between two direct space vectors can be computed in a single
operation, instead of using the three individual dot products described in the
previous example. In this section, we present an alternative procedure for the
computation of the angle 6 based on a 2 x 3 matrix containing the two vectors
pandq

Consider the following formal relation:

@ea-G2 29

ing 2x 2 matrix contains all three dot-products needed for the

The res
computation of the angle @, and only one set of matrix multiplications is
needed. We can apply this shortcut to the previous example:

pon [ 16 0-10) 12 gy
ao1)| 03 0qto 1)=(5 )
o o a5\ ;

from which we find the same angle of 6= 86.69°.

4.3.6 Further comments

‘We have seen that we can use the metric tensor to compute distances between
lattice points and angles between latiice vectors. It is important that you
familiarize yourself with this kind of computation; many computer programs
use the melric tensor concept for erystallographic computations and, with a
minor effort and some knowledge of computer programming, you should be
able to implement these equations yourself.

Many textbooks on crystallography do ot mention the metric tensor at all
Itis possible to do all crystallographic computations without the metric tensor,
but then one needs to have the explicit equations for the length of a vector
and the angles between vectors for all crystal systems. It is sometimes useful
to do this in order to appreciate the geometry, but for purely computational
efficiency, the metric tensor is the preferred tool. For completeness, we list
all the relevant equations for the length of a vector (Table 4.1) and the
angles between two vectors (Table 4.2) for the seven crystal systems
values for the length of a vector are denoted by the symbol */ where s stas
for the crystal system. Use the appropriate values from Table 4.1 for the
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4.4 Historical notes

Table 4.1. Expressions for the length / of a vector [u] in the seven arystal
systerms.

System i Expression

Cubic “ a(ie+v2 )

Tetragonal u (@ + 7))

Orthorhombic o (@t b0t 4 2u?)

Hexagonal u (@40~ )
Rhombohedral " a1+ 0+ + 2eos e uv+ -+ va])
Monoclinic =y (@20 4+ 50+ 0 + 2acuwcos )
Triclinic 1 (@ + b0 + w4 2bcuwcos a

+2acuweos B+ 2abuveos y)

Table 4.2, Expressions for the cosine of the angle 9 between two vectors [u,v,;]
and [u;v;u5] in the seven arystal systems. The quantiies , and J; should be taken
from Table 4.1 for the appropriate crysta system, with [u] substituted by
[vyw] or [uvm,].

System 1% 1y x cos O
Cubic 1+, +,105)
Tetragonal it +1102) + i
Orthorhombic iy + B+ Gy
Hexagonal @yt + 0y — v 0y )) + Py
Rhombohedral @i+ vy gy

08 e (u 1) + vy ) 2y (o + 1))
Monoclinic @yt + 60y + Cuy + ac(uy e+ w) c0s B
Triclinic @ttty + 50y + gy + be(vyuy + vy, cosa

—ac(unw + i3y} os B+ bl vy + 11,0, cos Y

denominators of the expressions in Table 4.2. It should be noted, however,
that it is much more effici

fent to implement the metric tensor equations in a
computer program, because in that case there s only one equation instead of
1w sets of seven rather complicated relations.

In the seventeenth century, the work of Nicolaus Steno (1638-86, Fig. 4.4(a))
represented an important early contribution to the field of crymnngmphy
(Steno, 1669). Nicolaus St was Latinized f

was a Danish scientist and physician (and later a priest) born in Copsnhz\gcn,
Denmark, in 1638, He argued that crystals were formed by the accretion
of congruent units. Steno studied quartz crystals and noted that, despite




Fig.44. 2) Nicolaus Steno
(1638-1686), and (b) Jean
Bapliste Louis Romé de sie
(1736-1790) (picures courtesy
of ). Lima-de-Fari),

Crystallographic computations

differences in size, origin, or habit, the angles between corresponding faces
were constant. Domenico Guglielmini (1655-1710), an ltalian physician and
mathematician, restated Steno’s law of the constancy of interfacial angles and
applied it to other crystals. such as potassium nitrate (nitre), sodium chloride
(common salt), alum, and blue vitriol (Guglielmini, 1688, 1705). He proposed
four basic forms for salt particles (cube, hexagonal prism, thombohedron, and
octahedron) and his work can be considered to be the first geometrical theory
of erystal structure.

The law of constancy of interfacial angles was later restated by Jean
Baptiste Louis Romé de IIsle (1736-90, Fig. 4.4(b) after studying a variety
of crystals and became the important central tenet in geometrical crystal-
Tography. Steno proposed that crystals were built by aggregation of very
small particles and that crystals grew from solution by successive addition
of particle layers. He opposed the carly view of vegetative growth of crys-
tals. Romé de I'Isle was a French scienist who made important contributions
0 the field of crystallography (Romé de 1.'Isle, 1772, 1783). In 1783, he
used a contact goniometer developed by his student Arnould Carangeot
(1742-1806). to make angular measurements on crystals (Carangeot, 1783),
confirming Steno’s earlier work on quartz. He formulated the law of con-
stancy of interfacial angles, now known as the first law of crystal habit.
He taught the first course in crystallography in Paris in about 1783, which
formally defined crystallography as a new science. Romé de I'Tsle was the
first to describe the geometric importance of twins. He also determined six
primitive crystal forms and showed that they could be modified to produce
secondary forms. His work was very influential in the shaping of the field of
crystallography

Ruggero Giuseppe Boscovich (1711-87), an ltalian scientist, proposed the
extraordinarily perceptive notion that crystals were formed of points linked
by attractive and repulsive forces (Boscovich, 1758). This new concept of
point charges was well ahead of its time. He viewed atoms as being replaced
by a e set of points (poles) whose positions were determined by a
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45 Problems

balance of attractive and repulsive forces. Space could be partitioned into
regions that surrounded the discrete points. Tobers Olof Bergman (1735-84),
a Swedish chemist and mineralogist, deduced the shape of crystal faces using
‘geometrical constructions which were later stated mathematically by Haiy in
his law of simple rational intercepts (Bergman, 1784, 1773). He published
construction of a scalenohedron built from a thombohedral nucleus by
superposition of lamellae (thombuses)

Johannes Carl Gehler (1732-96) was a German crystallographer and a
proponent of the importance of the external characteristics of erystals as tenets
of geometrical crystallography (Gehler, 1757). Abraham Gottlob Werner
(1750-1817) wrote Von den Ausserlichen Kennzeichen der Fossilien (“On
the External Character of Minerals” Werner, 1774) which was translated into
several languages. This was essentially a translation of the work of Gehler,
but with his own new ideas added in. He based his classification on practical
considerations such as color, cohesion, external shape, luster, fracture, trans
parency, hardness, specific weight, ete. Many of these classifications are used
in geological field books today. His initial work in mineralogy evolved into
his seminal efforts in founding the modern field of geology. Werner stated
that the morphology of erystals was based on seven (rather than the pervasive
four) primary forms: regular dodecahedron, icosahedron, hexahedron, prism,
pyramid, plate, and lens. He organized one of the first courses on mineralogy
at Freiberg, in about 1775 (Werner, 1775). Several of his students, includ-
ing Christian Samuel Weiss and Friedrich Mohs, also made significant
contributions (Mohs, 1822)

(i) Directions: Draw the following direction vectors in a cubic unit cell
[110], [112] and [321]. Then repeat the question for an orthorhombic
lattice with lattice parameters (2,3, 4,90, 90, 90}.

(ii) Lattice geometry I: Consider vectors q = (q;. 4. g5) and p= (p,. pa. p3)
each pointing to an atom. Show that in the triclinic crystal system the
square distance between the atoms is given by

D =(qy = p)’d + (g = p2) B + (g = i)'
+2(g,— p)(4s — p2)abeos y+2(q, - py)(g; — py)aceos B

+2(q:— p2)(g; — ps)becosa.

Show what this reduces to in the monoclinic system.
(ifi) Lattice geometry II: Compute, for a erystal with lattice parameters
{2.2,6,90,90, 120} (i.¢.. a hexagonal crystal)

() The length of the main body diagonal;
(b) The length of the basal plane diagonal.
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(iv) Lattice geometry HI: Show that for a hexagonal lattice, the length of a
vector with components («, v, w) is given by:

(@ + 0 — wv) + )

v) Lattice geometry IV: Show, using the metric tensor, that for a rhombo-
hedral lattice, the angle between two vectors [uyv,w,] and [uyvsw,] is
given by the inverse cosine of the following expression:

Gyt 0+ w05 @ [y (0 + ) + 0,0y + ) + w3 iy +0)])
hxh

where

1= (16 4+ v+ w? + 2cos iy, + uw, +vaw])

(vi) Lattice geometry V: Write down the metric tensor for a tetragonal lattice
with lattice parameters a = 0.2 nm and ¢/a

(a) Compute, using the metric tensor, the distance between the origin
and the body center, (1/2,1/2,1/2),

(b) Compute, again using the metric tensor, the angle between the
directions [100] and [111].

Lattice geometry VI: What is the angle between the a axis and
the direction [221] in a monoclinic lattice with lattice parameters
(1,3,2,90,45,90}2
Lattice geometry VII: A wiclinic
{1,2,3,45,60,90}

lattice has lattice parameters

(2) What is the distance between the center of the cell
with coordinates (1, 1,1)?
(b) What is the angle between the b axis and the [112] direction?

nd the point

(ix) Lattice geometry VII: A monoclinic lattice has lattice parameters
(1,3,2,90,45,90}

(a) What is the distance between the origin and the point with coordi-
nates

(b) What is the angle between the a axis and the direction [221]?
(¢) There are three atoms in this unit cell, with fractional coordinates
£, = (0, 1/2,0), 1, = (1/2,0,0), and r, = (1/2, 1/2, 1/2). What is

the angle between the bonds 1, < 1, and r, <> 1,7

(x) Lattice geomerry IX: A primitive orthorhombic crystal has {2,b =
3.4,90, 90, 90} as lattice parameters. Compute the following quantities,
using the metric tensor formalism:

(1) The distance between the origin and the point with fractional coor-
dinates (1, 1,0);
(b) The angle between the [110] and [101] directions;
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(¢) For which value of the lattice parameter b above, is the angle
between [100] and [111] equal to 60°?

(xi) Lattice geometry X: For this problem consider a thombohedral crystal
for which the angle between the a and b axes is 27/6.

(a) Write an expression for the lattice constants of a rhombohedral
al

ve the general form of the metric tensor for a thombohedral
crystal.

(c) Determine the general length of the [wvw] vector in this crystal
system.

(d) Determine the projection of a [110] vector onto a [111] vector (as
a function of the lattice parameters).

(¢) Determine the bond angle between aton
(1,1,0) and (1,1, 1),

in the positions (0,0,0),

(xii) Diamond cubic structure: The diamond cubic structure is a crystal
structure adopted by C and many semiconducting materials such as
Si, Ge, etc. It is illustrated in Chapter 17. The diamond structure
has the cF Bravais lattice with C atoms at the origin (0.0,0) and at
(1/4,1/4,1/4), the diamond site. All the C atoms in the structure are
4-fold tetrahedrally coordinated by other C atoms.

(a) Express the dir
the diamond site.

(b) Express the direction of a bond between a C atom at the origin and
the C face center.

(c) Use the metric tensor to calculate the bond angle between the
previous two bonds.

tion of a bond between a C atom a the origin and

(xiii) B-Sn : B-Sn is the high-temperature polymorph of tin, stable at temper-
atures above 286.4 K. It assumes the t (body centered tetragonal) Bra-
vais lattice with lattice constants a = 0.58315 nm and ¢ = 0.31814 nm.
Because of its tetragonal structure, as opposed to the diamond cubic
structure of other group IV elements, 8-S is & semi-metal (near metal)
rather than a semiconductor.

(a) Compute, using the metric tensor, the distance between the origin
and the body center, (1/2,1/2,1/2).
(b) Determine the angle between the directions [100] and [111].

(xiv) Crystallographic computations: Write Mathematica or MATLAB scripts
(functions) for the following operations (all in an arbitrary Bravais
lattice):

o compute the metric tensor, with as input the six lattice parameters;
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o write a function for the vector dot-product (the function should take
two vectors and the metric tensor as input, and return the scalar
product);

write a similar function to compute the length of a vector (i.c., the
distance between two points);

o write a function to compute the angle between two vectors.




Lattice planes

“The description of right lines and circles, upon which geometry is founded,
belongs to mechanics. Geomerry does nof teach us 1o draw these lines, but requires
them 10 be drawn.

Newton

5.1 Miller indices

In the previous chapters, we have seen how directions in a crystal lattice
can be labeled, and how we can compute the distance between points, and
the angle between lattice directions. What about planes? Figure 5.1 shows
222 unit cells of the ¢F* Bravais lattice. In (a), the central horizontal plane
of lattice sites is highlighted in gray. In (b), a different plane is highlighted.
We can take any three non-collinear lattice points, and create a plane through
those points. Such a plane is known as a latice plane.

One way 10 identify a laiice plane would be to write down its algebraic
equation. This is relatively straightforward in a Cartesian reference frame but
it becomes tedious in other systems, when the coordinate axes are ot at right
angles. We must, therefore, look for a method which is valid for all Bravais
attces, regardless of the lattice parameters.

Consider the drawing in Fig. 5.2. This is a portion of a crystal described
by the basis vectors a, b, and c. Several faces of the crystal are outlined by
solid lines in (x). The reference frame

a general Bravais reference frame,
In (b), the largest face is extended in its plane, until the plane intersects the

three ref e intersection points are indicated by solid circles.




Fig.5.1. 2x 2 x 2 unit cells of
the cF Bravas latice: 2) and
(6 show two difrent ltice
planes (n gray).

Fig. 5.2 lustration of the
Iabeling of individual crystal
facs: (a) shows the orginal
aystal while (), (0, and
(d)show the determinaton of
the ntersection of a plane with
the three bass direcions.

Lattice planes

oé|e

‘The distance between each intersection point and the ori
We can take these three numbers, (2a,2b,2c), and construct a symbolic
representation of the plan 2b:2c. Similarly, when the plane is parallel
to one (d) or more (c) of the axes, we determine the intersections o be
osa: cob e for (¢) and Ta/4 : Th/4 : ooc for (d).

“This is still a rather cumbersome way to label the planes, 5o let us try to
simplify the notation a litle. First of all, we will measure the intercepts in
units of the corresponding basis vector length. This means that we divide
the first intercept by a, the second by b, and the third by c. The resulting
symbols are then: 2:2:2, oo 200t 1, and 7/4 2 7/4 : oo, respecively. Next,
we attempt (o get rid of the factors of infinity. We know that 1/20 =0, 50 we
can take the inverse of all the numbers, resulting in: 1/2:1/2:1/2,0:0: 1,
and 4/7:4/7: 0, respectively. Finally, it would be nice if we could have
integers 1o describe planes, just like we have the integers [uuu] for directions.




Three examples of
planes in diferent atices,
discussd in the text.

5.1 Miller indices

So, we reduce all the fractions above to the smallest integers. This leads to
1 . tespectively. These triplets of integers are known
as the Millr indices of the corresponding planes. They are written between
parentheses without commas, as in (111), (001), and (110), respectively. If
an intercept is negative, then we write the minus sign above the corresponding
index, just as we did for direction indices. The general notation is typically
written as (Jkl).

Let us now summarize the procedure for obtaining the Miller indices of a
lattice plane:

L0

(i) If the plane goes through the origin, then displace it parallel to itself so
that it no longer contains the origin.

(ii) Determine the intercepts of the plane with the three basis vectors. Call
those intercepts s,. 5, and . The intercepts must be measured in units
of the basis vector length. If a plane is parallel to one or more of the basis
vectors, then the corresponding intercept value(s) must be taken as oo.

(iii) Tnvert all three intercepts. If one of the intercepts is oo, then the corre-
sponding number is zero.

(iv) Reduce the three numbers to the smallest possible integers (relative
primes).
(¥) Write the three numbers surrounded by round parentheses, i.e., (123).

Figure 5.3 shows three different examples of planes in three different Bravais
lattices. Note that the Miller indices of the plane parallel to both the a and b
axes are always given by (001), regardless of the Bravais lattice type. This
independence of the reference frame turns Miller indic
numbers,

The indices of the planes in Fig. 5.3 are derived as follows:

into very useful

() The intercepts are given by (1, 1, 1): the reciprocal values are obviously
1, 1, and 1 5o that the Miller indices of this plane are (111).
(b) This plane intercepis the a axis at 1, the b axis at —1/2 and the ¢ axis at

~1/2. The reciprocal values are 1,
indices (122

(¢) This plane is parallel to the a and b axes and intercepts the ¢ axis at 1.
The reciprocals of the intercept values are (1/ec, 1/e, 1) = (0.0, 1) and
hence the Miller indices are (001).

and 2 which leads to the Miller
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Note that i a plane is translated parallel t0 itself, the three intercept values
are increased or decreased proportionally. Hence, a plane with Miller indices
(nhnkn) with n ineger is parallel to the plane (kkf). This will become
important when we talk about X-ray diffraction in Chapter 11.

5.2 Families of planes and directions

The Miller indices can be used to describe planes in all seven crystal system:
Let us take a closer look at the (110) plane in a cubic unit cell. Fi )
is a drawing of this plane. From (b) it is clear that the (110) plane is a similar
plane, ie., it also cuts diagonally through opposite edges of the cube. As
4 matter of fact, by permuting the indices 1, 1, and 0 and their negatives
in the Miller symbol (110) we can generate five other planes (110), (101),
(101), (011), and (01T), as shown in Figure 5.4(c). Each of those planes
cuts diagonally through the cube and hence they are equivalent. We will see
later on, in Chapter 8, that they are related to each other by a symmetry
operator. Planes that are related to each other by symmetry form a fumily
of planes. A family of planes is denoted by curly braces, i.e., the family of
planes equivalent to (110) is denoted by {110}. In general, the family of the
plane (k1) is {kI}. The external shape of a crystal ofien consists of planes
belonging to one or more families; families that make up the external shape
of a crystal are known as forms. In Section 5.4, we will introduce the possible
erystal forms.

It is important to realize that the number of planes belonging to a certain
family is determined by the crystal system (or, more precisely, by the sym-
metry). In the cubic unit cell shown in Figure 5.4(a)-(c), all planes of the
type (110) (including permutations and negative values of the indices) are

o iy

o)
Fig. 5.4, Equialence of the

{110} planes in  cubic cystal
in (0 the laice s teragonally
distorted, and the (110) and
(101) planes are no fonger
equivlent.




Fig.55. The eight (111)
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5.3 Special case: the hexagonal system
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equivalent and hence belong to the family {110}, However, if the unit cell is
distorted along the ¢ axis (in other words, the unit cell becomes tetragonal)
then the (110) and (011) planes are no longer equivalent, since the angles
of the plane with respect to the three basis vectors are different. In this case,
there are two families, {110}, consisting of (110), and (110). and {011},
consisting of (011), (071), (101), and (101). When talking about a family of
planes one must therefore mention the crystal system. The number of planes
in a family {Aki) is called the multiplicity of the plane (ki) and is usually
denoted by . Multiplicities are integer numbers and can vary from 1 10 48
(in 3-D). We will return to the concept of multiplicity in Chapter 8.

Directions also belong to families. The example in Figure 5.5 shows the
directions of the type [111] in a cubic unit cell. All eight directions are
equivalent (i.c., the cube looks exactly the same when viewed from any
one of those directions) and, hence, they belong to the funiily of directions
{111} Tn general, a family of directions is denoted by (wvw); the number of
directions in a family, its multiplicity, again depends on the latiice type and
symmetry and can vary from 1 to 48,

5.3 Special case: the hexagonal system

We have seen in the previous section that, for a cubic system, we can list all
the members of a family {Ak[} by writing down all the permutations of the
three numbers , k, and ! and their negatives. If the symmetry of the system is
lower than cubic, then the members of a family are still given by permutations,
but not all permutations belong to the same family. For instance, in the rhom-
bohedral system we have {100} = {(100), (100), (010), (010), (001), (00T)}
as a family. In the orthorhombic system {100} = [(100), (100)} contains just
two elements. The only exception to this rule of index permutations is the
hexagonal crystal sysiem.
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Fig. 56 (2) Schematic
representation o the four

basis vecors used to descibe:

‘the hexagonal crystal system;
(b) outline of the (112) or
(132) plane.

Lattice planes

0}

‘The hexagonal system is conveniently described by four basis vectors, three
of which are coplanar. In other words, those three vectors are not linearly
independent. The vectors are chosen as a,. a,, and a, shown in Figure 5.6(a).
The angle between any two vectors is 120°. One defines the Miller—Bravais
indices of a plane as the relative primes corresponding to the reciprocals
of the intercepts of that plane with all four axes. For the plane shown in
Figure 5.6(b), the intercepts on the four axes are (1, 1,~1/2, 1/2). Inverting
these numbers we find the indices (1132). Since three indices are sufficient
to identify any plane in 3-D space, there must be a relation between the four
indices. If we denote the general Miller-Bravais index as (hkif), with i the
extra index corresponding 1o the vector a. then it is easy to show (reader
exercise) that the following relation must hold:

i=—(h+k) (5.1)

Since the third index is not really necessary to unambiguously determine the
plane, it is often not written explicitly, but represented by a period (dot),
iie., (hkil) = (ik.0). The third index is useful to determine the members of
4 family in the hexagonal system. The members of the family {1120) can
be derived by permuting the first three indices including negative values and
results in {1120} = {(1130), (1210), (2110), (1120), (1310), (2110)}. If we
had used the standard three-index notation, then the family members would
be: {110} = {(110). (120). (310), (110). (120), (210)}.. It is not a-priori clear
how one could write down these members without the four-index system,
since they are clearly not permutations of (110}

For directions, the situation becomes even more complicated. Direction
indices in the Miller-Bravais notation are described by the symbol [uvru],
‘where 7 is an additional index corresponding to the vector a,. Since a direction
is described by a linear combination of the basis vectors of the erystal lattice,
we find that, in the hexagonal system, we need four successive displacements
parallel to each of the four basis vectors to describe a direction vector.
According to the international conventions the translation along a, must be
equal 1o —(u-+v), similar o the expression for i above. Additionally, we
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7. ustaton of the use
e
fourndex systems for
direction (projecion along
(001D inthe hesagonalcystal
system (gure reproduced
o Fig. 1.7 in ntroduction
o Coventona Transmision
Hecton Microscopy,

M. De Graef, 2005, Canbridge
Universiy Press)

5.3 Special case: the hexagonal system

have a, = —(a, +4;), as is obvious from Figure 5.6(a). We can now derive
the relation between the threc-index and four-index systems for dircetions,

If a direction is described by the indices [vr], then the corresponding
three-index symbol [u'v/u] is derived as follows:

way +va, + 12y +we = u'a, +0'a, +w'e;

o+ vm + (e 0) 8y + a) +we = Ay e, +

from which follows:

W =2utv;

o =2vtu

Figure 5.7 illustrates how um conversion works. The  thre
direction s equivalent to - If we include the extra index, then
we must take la, — la, or muo]  [01.0]. Table 5.1 ists some examples
of equivalent directions in the Miller and Miller-Bravais indexing systems
Remember that all indices must be reduced 10 relative primes! Note tha
directions, one cannot just leave out the third index to convert from four-index
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Lattice planes

Table 5.1. Equivalent indices i the Miller and Miler-Bravais indexing systems for
hexagonal directions.

Miller Miller-Bravais Miller Miller-Bravais
[100] 2o 1010] (izio]

[110] [1130] {i10] [1100)

[001] [0001] [101] [

o] [i2i3] o 133

[210] [10i0] [120] [0110]

211 [10i1] [112] [1136]

to three-index notation; for planes the third index can always be left out

without causing any ambiguities

The concept of a family of planes is important when it comes to deseribing
the external shape of a crystal. In this context, we usually refer to the form
instead of the family. A form is a group of crystal faces that belong to the
same family; in other words, a form is the collection of erystal faces that are
equivalent to each other. In particular, this means that all the faces in a form
have precisely the same shape. We have already seen that the {100} family
i crystal system consists of six planes. Similarly, the {111} family
consists of eight planes. Consider next an object with as external faces the
planes from the {100} family. It is obvious that such an object is a cube. In
that case, we say that an object bounded by the planes of the {100} family
has the cube crysial form. An object bounded by the {111} family of planes
has the octahedron crystal form. Both of these objects have an underlying
crystal latrice that belongs to the cubic crystal system.

‘The International Tables for Crystallography identify 47 different possible
forms for crystals belonging to one of the 7 crystal systems. Each form has
a specific name, listed in Table 5.2. The table lists the official name, an
alternative name (following the Groth-Rogers naming convention (Hurlbut
and Klein, 1977)), and the number of faces in the form (i.c., the multiplicity
of the family). Note that, in most cases, the names of the two naming schemes
are identical, but there are quite a few differences for the forms belonging
to the cubic crystal class (forms 33 through 47). From this table, we leam,
for instance, that a cubic crystal with (100} planes as faces is known as a
hexahedron, whereas a cubic crystal with {111} faces is an octahedron.

r to visualize the crystal forms: Fig. 5.8 shows all 47 crystal
s as wireframe drawings. The numbers correspond to the entries in

Table 5.2. For the monohedron (form 1), there is only one plane, with no



Table 5.2. The names, multpliites, and point group symmetries of the 47 different arystal forms. The second
number in the first column is the sequential number according to the International Tables for Crystallography;
the first number corresponds to the Roth-Rogers nomenclature.

i International name Roth-Rogers name Muliplicity Point group

Monohedcon Pedio '

Paralclohedron Pinacoid 2

Dihecron DomefSphenoid 2

Rhombie prism Rhombic prism 4

Trigonal prism Trigonal prism 3

rigonal prism Ditcigonal prism 6

Tetragonal prism Teteagonal prism 4

onal prism Ditetragonal p ]

Hexagonal prism Hexagonal prism 6

Dihexagonl prism agonsl prism 2

Rhombic pyramid Rhombic pyramid 4

Trigonal pyramid Trigonal pyramid 3

Ditrigonal pyramid Ditrigoral pyramid 6

Tetragonal pyramid Tetrugonal pyramid 4

Ditetraganal pyramid Ditctragonal pyramid 8

Hexagonl pyramid Hexagonal pyramid 6

Dihexagonal pyramid Dihexagonal pyramid 2

Rhombic dipyramid Rhombic dipyramid 8

Trigonal dipyramid Trigonal dipyramid 6

Ditrigonal dipyramid Ditrigonal dipyramid 2

Tetragonal dipyramid Tetragonal dipyramid 8

Ditetragonal dipyramid Ditetragonal dipyramid 16

Hoxagonal dipyramid Hexagonal dipyramid 2

Dihexagonal dipyramid Dihexaganal dipyramid 2

Trigonal trapezohedran Trigoal rapezohedron 6

Tetragonal wapezohedton Tetragonal trapezohedion 8

Hexagonal trapezohedron Hexagonal trapezohedron 5]

28 13) Tetragonal scalenohedron Tetragonal scalenohedron 8
29 (26) wigonal scalenohedron Hexazonal scalenohedron ¢
Eeny Rhombohedson Rhombohedror 6
31 @) Rhombic tetsahedron Rhombic disphenoid 4
320 Teuagonal tesshedron Tetragonal disphenoid 4
3 (39) Hoxahedron e 6
34(35) Octbecon Octab 8
35 (40) Rhomb-dodecahedron Dodaraion (coniie) 2
36 (46) Tetsahexahedron Tetrahexahedror 24
37 @3) Tetsagon-troctahedron Taperoedion 2
3 @) Trigon-trioctahedron Trisoctahedron u
39 (47) Hexaoctahedron Hexoctahedron -
40 (33) Tetsahedron 4
4139 Trstershedron 2
208 Deltcid dodecahed 2
43 (45) Hextetrahedron u
44 (49) Gyroid 24
4507 Pyritohedron 2
46 (1) 24
4706 Tetartoid 2




Fig. 5. Graphical
representation o the 47 cystal
forms.

Lattice planes

equivalent planes. In other words, the family consists of only one plane. This
can only happen in the triclinic crystal system. The parallelohedron has two.
parallel faces, whereas the dihedron consists of two intersecting faces. Forms,
41hrough 10 consist of planes that have one direction in common. The top and

» \
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Fig. 5. (o).

5.4 Crystal forms

bottom planes in each of these figures do not correspond to planes of the form.
The shape of the cross section of the form is shown in the upper right-hand
comer of each of the forms. Forms 11 through 17 consist of planes meeting
in a single point (the top of the pyramid). The horizontal bottom plane does
not belong (o the form. This means that forms 1 through 17 do not enclose a
finite volume. Crystals that display one of these forms, must have additional
forms in their description, in order for the description to be complete.

Itis not uncommon for crystals o oceur in shapes that correspond to mul-
tiple forms. For instance, consider the hexahedron form and the octahedron
form. Fig 5.9(a) shows a regular octahedron. Imagine now that this octahedron
sits completely inside a hexahedron (cube), and that the size of the hexahe-
dron decreases. At some point, the hexahedron will begin to cut through the
octahedron at all six vertices. When the hexahedron shrinks even more, the
intersections will be small square planes, as shown in Fig. 5.9(b). This is hence
knownasa When hrinks even more, the

@

Fig.5.9. Example of the truncatin of a form. An octahedral form () is radualy truncated by a
shrinking hexahedron (b, untilthe square secion touch (c)in what s known as @ cuboctahedron.



Fig.5.10. Bample of an
adahedron orm, truncted by
botha heahedron,abeled by
the {100}ype faces, and a
homb-dodechedron abeled
by the (1101 acs.

5.5 Historical notes

i Took il inFig.5.9(c),
touch each other, leaving small triangles where the original full octahedron
faces were. ‘The resulting shape is known as a cuboctahedron; it consists of
the hexahedron and octahedron forms. There is a complex nomenclature for
such compound shapes, but this would lead s 00 far from the main topic.
‘The interested reader is referred to Rogers (1935) for further information.
When more than two forms are present, the shape of the crystal can
become even more complex. Figure 5.10 shows the resulting shape, when an
octahedron form (indicated by the triangular {111)-type faces) is truncated by
both a hexahedron ({100)-faces) and a rhomb-dodecahedron ({110}-faces). It
is clear that a very large variety of crystal shapes can be obtained by combin-
ing two or more of the 47 crystal forms. On the other hand, the identification
of a crystal shape is helped by the fact that there are only 47 different forms.
hape identification requires a careful measurement of the interfacial angles.
In addition, not all crystals have perfect shapes; there may be distorted faces,
for instance, when a face that should be square is not perfectly square. We
say that the crystal is malformed. However, the angle between the malformed
face and its neighbors is the same as for the perfect crystal shape. This is
known as the law of constancy of interfacial angle, which is one of the basic
ules of the description and classification of crystal shapes. Since the angles
between planes are so important, we will need  tool to graphically represent
them in a two-dimensional drawing (i.c., on a sheet of paper). Most people,
the authors included, are not very good at drawing 3-D shapes by hand on a
picce of paper, in such a way that the perspective is correct, and those parts
of the shape that should be hidden from the observer are indeed hidden. To
alleviate this problem, William H. Miller (yes, the same Miller as the one
who proposed the Miller indices) proposed a technique which is now known
as the stereographic projection. We will discuss this technique in Section 7.1.

Carolus Linnaeus (1707-78, Fig. 5.11(x)) was a Swedish naturalist best
known for his classification of plants. His classification of crystals was less



Fig.5.11. (2) Carous Linnaeus
(1707-78), and (b) Willam H.
Miler (1801-80) (ictures
courtesy of ). Limarde-Fara).

5.6 Problems

5.6 Problems

successful, in that he was a proponent of a vegetative growth model in which
he classified crystals (like plants) into classes, orders, and genera. However, he
was the first to emphasize the importance of the shape of crystals. In his third
volume of Systema Naturae (Linnacus, 1768), he proposed a classification
of minerals based on their thermal behavior. He also categorized crystals by
their morphological features using four categories: (1) nitre-type hexagonal
prisms, (2) alum-type octahedra, (3) blue-vitriol rhombic dodecahedra, and
(4) common salt cubes, in agreement with previous ideas of Guglietmi
He drew many accurate pictures of the geometrical forms of crystals. This
insight into geometrical form was later used by René-Just Haiiy, and Romé
de I'Isle, who both credited Linnacus as being the father of the science of
erystallography.

‘William Hallowes Miller (1801-80, Fig. 5.11(b)) was a British mineralo-
gistand crystallographer. Although the so-called Miller indices were proposed
earlier by other crystallographers, they were attributed o him because of his
use of them in his book and educational efforts. The Miller indices are the
inverse of the so-called Weiss indices. Miller developed the familiar hkl nota-
tion for referring to these indices. Miller also developed the first two-circle
‘goniometer (Miller, 1839).

(i) Miller indices I: Make a 3D sketch of an orthorhombic reference frame
with lattice parameters {2,3,4,90,90,90}. On this sket draw the
outline of the following planes: (110), (032), (111), and (063).

(ii) Miller indices II: Show that the third index in the Miller—Bravais system
of indexing for hexagonal crystals equals i = —(h +&

(iii) Family of planes I: Show graphically that the {110} and {011} families
of planes are not equivalent in a tetragonal unit cell (see Fig. 5.4(d). If
the unit cell were to become orthorhombic, what would be the families




Lattice planes

corresponding to the cubic family (110}? List the members of each
family.

(iv) Family of planes I1: An attribute of a family of planes in a given crystal
system is that the spacing between planes in a family must be the
same. Consider a tetragonal crystal system having the lattice constants
(normalized by the a-lattice constant) (1, 1, ¢/a, 90, 90, 90}

(1) Determine the distance between (110) planes as a function of c/a.
(b) Determine the distance between (101) planes as a function of ¢/a
() Are (110) and (101) planes in the same family?

(v) Miller indices and forms I: Make a 2-D drawing of a possible cross
section in the (001) plane of a crystal belonging to the cubic crystal
system. The external planes all belong to the (120} family of planes.
Note that there are many different solutions, depending on the relative
sizes of all the planes. (Hint: first, draw the intersections with the (001)
plane of all the planes of the family. Then, rearrange these intersection
lines to form a closed polyhedral figure.)

(vi) Miller indices and forms I1: Repeat the previous exercise for the case
where the crystal system is the hexagonal system, and the cross section
is made in the (00.1) plane. Use the (120} = (12.0} family of planes,

(vii) Miller-Bravais direction indices: Assuming that equivalent directions in
the Miller-Bravais four-index notation can be obtained by permutations
of the first three indices, make a 2-D drawing in the (00.1) plane of the
direction families (120) (three-index) and (1010) (four-index). (Hi
to determine the family members of the first family, first convert the

indices to four-index notation. Then, superimpose on that drawing the

{120} planes and the {100} planes.)

(viii) Make a sketch of a tetragonal dipyramid and write down the general
Miller indices of its faces,

(ix) Make a sketch of a rhomb-dodecahedron and write down the general
Miller indices of its faces. Which family/families do these faces belong
©?

(x) Find an expression for the ratio of the surface area of the {100 planes
o the mr!‘.n.;. area of the {111 planes for the truncated octahedron of
Fig. 5.
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6.1 Introduction

Reciprocal space

“The scientist describes what is; the engineer creates what never was.”

Theodore von Karman, quoted in A. L. Mackay, Dictionary of Scientific
Ouorations (London 1994)

In the previous chapter, we introduced a compact notation for an arbitrary
plane in an arbitrary crystal system. The Miller indices (k/) form a triplet
of integer numbers and fully characterize the plane. It is tempting t0 interpret
s as the components of a vector, similar to the components
of a lattice vector t. This raises a few questions: if Ak, and I are
ed the components of a vector, then how does this vector relate (o the
plane (ki)? Furthermore, since vector components are always taken with
respect to a set of basis vectors, we must ask which are the relevant b
vectors for the components (k, &, /)? In this chapter, we will introduce the
concept of reciprocal space. We will show that reciprocal space allows us
to interpret the Miller indices 4. k, and I as the components of a vector; not
just any vector, but the normal o the plane (ki) We will also show that
the length of this vector is related to the spacing between consecutive (ki)
planes.
Atfirst, you will probably find this whole reciprocal space husiness a bit
abstract and difficult to understand. This is normal. Tt will take a while for
you to really understand what is meant by reciprocal space. So, b

atient;
reciprocal space is probably one of the most complicated topics in this book,
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which means that an understanding will not come immediately. It is important,
however, that you persist in trying to understand this topic, because it is
of fundamental importance for everyt has to do with diffraction
experiments,

Itis interesting to note that these abstract physical concepts find widespread
use in many areas of physics and engineering. The originators of some of
the early reciprocal space ideas were able to move around successfully in
seemingly disparate areas of science, applied mathematics, and engineering.

6.2 The reciprocal basis vectors

A unit cell is defined by the crystallogeaphic basis vectors a;. We know from
our discussions in previous chapters, that the choice of basis vectors is really
an arbitrary one. There are an infinite number of possible choices for the b
vectors. Usually, we select those that reflect the symmetry of the underlying
crystal system, and that is a very convenient choice. However, let us now s
what happens when we select a different set of basis vectors.

Let us define three new vectors, denoted by the symbol a; (the asterisk is
used to indicate that we are talking about a different set of basis vectors), and
defined such that

1

where & is the Kronecker delta (i, equal to 1 for i = j and 0 for i # j)
This is basically a fancy name for the unit matrix. Let us rewrite this equation

explicitly:
a-a; a0 100
aap e ={oro0}. (62)
a8 e 001

From the definition 6.1 (or the first column in the matrix above), we find
that the vector aj must be perpendicular to the vectors a, and a,, since both
dot-products vanish. If a vector is normal (o two other vectors, then it must
be parallel to the cross-product of those two vectors. Hence, we can write;

=Kayxa,

where K is a proportionality factor. Similarly, we find that
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Equation 6.1 also tells us that the dot-products -} must be equal (o unity,
or:

a,a) = Ka,(a,xa,) = 1;

aea) = Lay-(ayxm,)

(6.3)
a,-a5 = May- (2, xay) = |
Since the mixed product of three vectors does not depend on the cyclic order

of the three vectors (i.c.. a- (bx c) = b- (¢ x ) = - (a x b)), we find that

K=L=y=—1 _
a-(ay <)
The scalar a, - (a, x a,) is the volume of the cell created by the three vectors,
., the volume V of the unit cell
We conclude that, if we define the new basis vectors as

a, %8

(64)

then Equation 6.1 is satisfied. The b
the vectors a are known as the reciprocal basis vectors. In many textbooks on
crystallography, the reciprocal basis vectors are denoted by special symbols
aj=a',ai=b" andaj = c"

s vectors a; are the direct basis vectors,

The new vectors form a new basis for the crystal lattice. An arbitrary vector
P can be expressed in terms of these new basis vectors as follows:
P=pia; (6:5)

A vector is a quantity that exists independent of the reference frame; therefore,
the vector p must also have components with respect to the regular by
veetors a;:

P=ra,. (6.6)
Since this is the same vector, we find:

©7)

We could, in principle, select any three linearly independent vectors to form
4 basis set. The definition above (Equation 6.1) imposes special conditions on
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the reciprocal basis vectors. In other words, out of the infinite set of possible
basis vector selections, we have picked the one that satisfies equation 6.1. We
will see in the following sections that this choice has important (and useful)
consequences.

Before we do so, let us first examine the reciprocal basis vectors by
means of an example. Consider a monoclinic Jattice with lattice parameters
{1,1,1,90,45,90}, shown in Fig. 6.1(a). This is not a realistic set of lattice
parameters, but it is perfectly suited to illustrate the reciprocal basis vectors.
First of all, we compute the volume, V, of the unit cell: if e, is the unit
vector normal to the plane of the drawing going into the drawing, then we
have b= be, since b= 1. In order to have a right-handed reference
frame, b must be normal to the plane of the drawing, going into the drawing.
Therefore,

—a-(bxo)

(exay

(le][al sin %c,):

First, we determine the reciprocal ba
have:

vector a*. From the definition, w

= 2ol [e]sin Ty,

= Ve,

where e, is a unit vector normal to both b and ¢, and we use the fact that
V-!'= V2. This vector is indicated in Fig. 6.1(b). as well as the reciprocal
vector a°.

Next, we determine ¢ in a similar fashion

axh
5
V2la] bl sin e

Ve,



Fig.6.1. Schemaicllustration

90,45,90). In () the vectr p.
Hhas components vith respect
o both et of bass vecors.
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b sL
@

Ca

©

Fig. 6.1(c) shows the location of these vectors. This completes the construction
of the reciprocal basis vectors for this particular latrice.'

If we take a vector p = a/4-+¢/2, as shown in Fig. 6.1(d), then it is clear
that p also has components with respect to the reciprocal basis vectors:

a+5e=pla’+pic (68)

We could measure both parameters p; and p? from the drawing (doing so
results in p; % 0.6 and p ~0.7). is not the most aceurate way, so
we anticipate that there should be a way to compute them directly. We will
consider a general method later on in this book: for now, we can proceed
from the drawing itself.

It is easy to see that the direct basis vectors can be expressed as linear
combinations of the reciprocal basis vectors. We find:

' Weleave it 10 the reader (o determine the location of b
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.604a° +0.677¢";

=pla+ple
Before we look at more general (and easier) methods to perform these compu-
tations, we must first consider a few more properties and uses of the reciprocal

b

vectors.

6.3 Reciprocal space and lattice planes

Now that we have defined the three reciprocal basis vectors, let us take a
Took at the properties of an arbitrary vector, expressed in this reference frame.
Consider the vector g, with components g/, i.c.,

g=ga;

If we restrict the values of g to be integers, as we did when we introduced
ctors, then we find that the set of all vectors g expressed
ttice based on the reciprocal bas
vectors. This lattice is called the reciprocal lattice. It is customary to write
the individual components of the reciprocal lattice vector g as (k. k, ) (..,
K, and g5 =1),

lattice translation v

= haj +ka; + a3 = ha" + kb" -+ Ic”.

Next, we must ask the question: what do these vectors g represent? What
can we do with them? To answer these questions, we proceed as follow.
we will look for all the vectors r (with components 7; = (x, y, 2)) which
are perpendicular to the vector g. We already know that two vectors are
perpendicular to each other if their dot-product vanishes; in this case, we find:

reg=(ra)- (gja)) = rgj (a-a}) = 0.

We know from Equation 6.1, that the last dot-product is equal 10 8, so:

rg=rg;d, =rg =ngl+ng+ng=hitky+iz (6.9)

‘The last equality represents the equation of a plane through the origin in the
. If a plane intersccts the basis veetors at intercepts s,
given by:

direet crystal la
along the vectors a,, then the equation of the plane

ENES
JE )

(6.10)

where (x, v,z
equation changes to different valu

an arbitrary point in the plane. The right-hand side of this

when we translate the plane perpendicular
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63 Reciprocal space and lattice planes

to itself, and in particular is equal to zero when the plane goes through the
origin. Comparing;

with:

o

we find that the integers 4, k, and  are reciprocals of the intercepts of a plane
‘with the direct lattice basis vectors. This is exactly the definition of the Miller

indices of a plane! We thus find the important result

The reciprocal lattice vector g, with components (h, &, 1), is perpendicular
to the plane with Miller indices (k).

For this reason, a reciprocal lattice vector is often denoted with the Miller
indices as subscripts, e.g., g

To illustrate this fact, we rewm o the i lattice of Figure 6.1.
Figure 6.2(a) shows how the reciprocal lattice vector gy, is related to the
(102) plane. This plane intersects the direct basis vectors at 1a and ¢/2. The
normal to the plane is given by the vector:

g = 8" +2¢"

This vector is also shown on the figure. The larger black filled circles indicate
the locations of the reciprocal latiice points or nodes. The g-vectors in recip-
rocal space are reciprocal lattice vectors, in the same way that the translation
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vectors t are direct lattice vectors. A similar illustration is shown in Fig. 6.2(b)
for the (203) plane. From these illustrations we learn that each point or node
of the reciprocal lattice s the end-point of  vector that is normal to the plane
with the corresponding Miller indices. Therefore, the reciprocal lattice is a
useful tool, since it allows us to describe the plane normals with simple inte-
gers, even in a triclinic crystal system. We note also that the reciprocal lattice
VECtors g,q, and gy, have different lengths. To interpret what this means, we
must introduce the reciprocal metric tensor

6.4 The reciprocal metric tensor

A vector is characterized by a direction and a magnitude; the direction of the
reciprocal lattice vectors is given by the normals to the lattice planes. What
about the magnitude [g]? We know that the length of a vector is given by the
square oot of the dot-product of the vector with itself. Thus, the length of g
is given by:

Jgtg;(a; -ap).

lel=vEE=/(g1a))-(g7a})

We find, once again, that the dot-product involves knowledge of the dot-
products of the basis vectors, in this case the reciprocal basis vectors. Note
that the equation above is identical in form to the equations for the distance
between two lattice points that we have seen in Chapter 4. The only difference
i that all the quantities now have an asterisk on them, indicating that we are
working with respect to different basis vectors. At this point, we introduce
the reciprocal metric tensor

6.11)

We will often denote this tensor by the symbol * = g. Explicitly, the

reciprocal metric tensor is given by:
@ ah oac
bat bbb
et e e

a? a'breosy atccos
batcosy b becosat |, (6.12)
catcosp b oosa 2

where {a*, b*,¢*, @, B, y°) are the reciprocal lattice parameters; in other
words, a" s the length of the reciprocal basis vector a’, a® is the angle
between b* and ¢, and so on. In the following chapter, we will introduce a

simple procedure to determine these parameers.



6.4 The reciprocal metric tensor

Using the reciprocal metric tensor, we can rewrite the length of the recip-
rocal lattice vector g as:
gl = Ve B=\/g/gg)

Note that there should not be any confusion between the vector components
(one subscript) and the tensor components (iwo subscripts). The reciprocal
metric tensors for the seven crystal systems are given by:

0 0 L0
Cu=| 0 & 0 [ [ ”
0 0 4 0 0

0 0
0 ko0 |, R
o o
| [ Veosa —cosa —cosar
G —cosa  1+cose —cosa |,
—cose  —cosa 1+cosa

with

W2 = a*(1+cosa - 2cos’ ),

0 =%
L
g .
s O T

7 Psinta ab*T(@,By)  abcF (v, p)
= | ablF(a.B.v) ¢ sin’ @beF (B, ¥, @)
ab’cF (y.a. B)  a*beF (B.y. ) apsin’y

-

with:

Fla.B.y)

s rcos f—cosy

and:

= @ (1 —cos” a—cos’ B—cos’ y+ 2eos acos Beos ).

One can show (reader exer

se; see also Chapter 7) that the matrices repre-
senting the direct and reciprocal metric tensors are each other's inverse.
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6.4.2 Computation of the length of the re

et

Fig.6.3. The ditance, d, of
plane to the origin equals the
projecion anto the unit plane
normal,n, of any vector ¢ fom
the latice paint in the origin to
a point n tis plane.

Reciprocal space

1 Computation of the angle between planes

‘The angle between two planes can now also be computed in the standard
way: this angle must be equal to the angle a between the two plane normals

gand h, or
&g,
Vereis Viihe;

amens (£

Note that this equation is identical to the one for the angle between two
directions, except that now we are using the reciprocal bas
reference frame.

vectors as the

rocal lattice vectors

We know that the vector g
indices g

g/} is perpendicular to the plane with Miller
(Jk0). Therefore, the unit normal, n, to the plane is given by:

B

&l

‘The perpendicular distance from the plane intersecting the direct basis vectors
at the points 1/4, 17k and 1/1 10 the origin is given by the projection of any
vector t from the origin to a point in the plane onto the plane normal n (see
Figure 6.3). This distance is also, by definition, the interplanar spacing dy,.
Thus,

B

t
gl

i

We can arbitrarily select t = a/h, which leads to:

/3 (ha* +kb* +1e%) = dyglgyel
3

a
2t = d,
7 Bl

= el

from which we find that:

©.13)

The length of a reciprocal lattice vector is equal to the inverse of the
interplanar spacing of the corresponding lattice planes.




6.4 The reciprocal metric tensor

“This result can be rewritien in subseript notation:

sige (6.14)

As an example we work out the interplanar spacing for the monoclinic cr
tal system. The expression on the lefi-hand side can be writien in matrix

notation as:

&8558

(6.16)

2hlcos B
acsin’ B

Let us now apply these equations to the example that we started in Fig. 6.1
and continued in Fig. 6.2. We have already determined that the recipro-
cal lattice parameters of the monoclinic lattice with direet lattice parame-
ters {1,1,1,90,45,90) are given by (v2, 1, v/2,90, 135, 90}. The distance
between the reciprocal lattice point (102) and the origin is given by the length
of the vector g,;;. To compute this length, we can use the previous equation:

2hlcosp

Alternatively (and more efficiently), we could have used the reciprocal metric

tensor directly:

20 =V2[1
lgwl =102 0 1 0 ||o
-VZ 0 2 2
2-2V7
=pozf o }
4-v2
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Table 6.1. Expressions for the length || = 1/ds of a reciprocal latice vecor gy
in the seven crystal systems.

System & Expression
Cubic Lk E)
Tetragonal g (bR )+ 40"
Orthorhombic O Y T
Hexagonal e R )+ AP

[T S )‘r!

Monaclinic mg [k oty - et

Triclinie e BRRCi a Cacsint fr P sinty

iikabeiF (a. B.y) + 2KlabeT (B, v, )

+2mu/m'f£% a, /3)) with
cos? a — cos? B —cos’ y

+2cn~acmﬂcnww]”'

50 that |g,| = v/10—4v/2 = 2.084. If we measure the distance between

(102) and the origin in Fig. 6.2(a) (in units of the length of a). we find
good agreement. Furthermore, since dyy, = ||~ we also have dyg,

1/2.084 = 0.488, which is the shortest (hsl.mu, between the plane (102)
and the origin. We leave it to the reader to repeat this computation for the
(203) plane. What we leam from this exercise is that the reciprocal lat-
tice description allows us 10 compute the closest distance between a plane
and the origin by computing the length of a vector that is normal to that
plane. The mathematics involved in the computation is not all that dift

cult, since the plane is described by integers, and the reciprocal metric te
sor components can be derived from the direct space lattice parameters. In
the next chapter, we will see an easy method to compute the components
of g".

To conclude this section on the reciprocal lattice we list all relevant
equations for the seven crystal systems in Table 6.1 (reciprocal of the
interplanar spacings) and Table 6.2 (cosine of the angle between plane
normals). The same remarks about the ease of implementation of the
(see page 90) hold for the reciprocal metric

metric tensor formalism

tensor.
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7 Reciprocal space

6.5 Worked examples

(i) Compute, for a crystal with lattice parameters (2,2,
cubic), the distance between the (110) planes.

2,90,90,90} (i.e.,

Answer The distance between subsequent (110) planes is the inverse of
the length of the reciprocal lattice vector gy, The length of the vector
g0 5 computed via the reciprocal metric tensor for the cubic crystal
system (which is the inverse of the direct metric tensor):

L
=5, = 35,

& o = (8

The length of the vector g,,, is given by

from which the distance dyyo = 1/g 1l

(if) Compute, for a crystal with lattice parameters (3, 4, 6,90, 90, 120}, the
distance between the (111) planes.
Answer The distance between subsequent (111) planes is the inverse of
the length of the reciprocal lattice vector g,. The length of the vector
g1y can be computed via the general (triclinic) reciprocal metric tensor:

Pésinfa  ablF(a.B.y) abicF(y.a.B)
T (@ By) @SS abeF(B.y.q)
abeF (.. f) abcF(B.y.a)

(e B.y) = cosacos f—cosy,

V2= a'Bc(1 - cos” a— cos® B cos” y + 2cos cos Bcos )

Filling in the values of the lat

‘e parameters we find that

9x16x36x (1-0~0

;+U]:27><36><4,
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and;

0
i
0
Tx36x4 s
5% 0
=& 5 o0
00 %
‘The length of the vector is computed from
® l[Fo
lgl= |11 1 1| & o [f1]s
[

10
=55 = 0.6085.

ince between the (111) planes is thus given by d,;, = 1/|g, | =

(iii) Let us consider a monoclinic crystal with lattice parameters a = 4nm,
b=6nm, c=5nm and § = 120°. What is the angle between the normals
© the (101) and (201) planes?

Answer: First we derive the reciprocal metric tensor for this crystal
system
0 =25 0 %
& = L0
s . . s
w0 TwE ENU 1

“The dot-product is then obtained from the product g g5; or, explicitly:

s 0 [-=2
i e "
B 101 = =—
aoy8aoy =[101]} 0 0 0 =
® 0 % 1 -L
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6.6 Historical notes

Reciprocal space

“The dot-product of two vectors is also equal to the product of the lengths
of the vectors multiplied by the cosine of the angle between them:

B B3

1018301 €05 6.

“The length of a vector is the square root of the dot-product of a vector with
itself, hence we can use the reciprocal metric tensor again to compute
the lengths of g, and g;

= 0 5 |[! z
to=ton| o & o |[o]=pon| o [=Z
o = 00 = e
Lo & W
0%
0 0 b
s

The angle between the two vectors is therefore given by:

-2

30.25°

" ‘(ﬁ):‘“ ‘(m)

Paul Peter Ewald (1888-1985) was a German crystallographer. He stud-
ied under Amnold Sommerfeld at the University of Munich. He received his
doctorate in 1912. Ewald contributed importantly in the development and
the application of the concept of the reciprocal lattice to the field of X-ray
erystallography. He developed this concept in 1913 and applied it t0 the geo-
metrical interpretation of Bragg’s law in 1921. Iis widespread use came about
after the 1926 development of Bernal for the interpretation of X-ray diffrac-

n pictures. The Ewald construction and the Ewald sphere are both named
after him.

Paul Ewald served until 1960 as the editor of Acta Crystallographica and

awarded the Max Planck medal in 1978, He was the father-
famous physici
of s

-law of the
Hans Bethe. Ewald wrote several books on the mechanics
olids and liquids, including one with Ludwig Prandtl.

Theodore Von Karman (1881-1963) wa

4 mathematical prodigy who
tal dynamics, fluid mechanics, and
aerodynamics. Von Karman was born in Budapest in 1881, He graduated
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Fig.64. (2) P.P. Enald
(1883-1985),and (b T. Von
Kerman (1881-1963) (pictures.
courtesy ofJ. Lima-de-Fara).

6.6 Historical notes

in 1902, with a degree in mechanical engineering, from the Palatine Joseph
Polytechnic. In 1906 he received a two year fellowship from the Hungarian
Academy of Sciences. This was used to study at Gottingen, where he was
influenced by scientists and mathematicians such as Klein, Hilbert and Prandtl.
Von Karman’s interest in fluid dynamics and acrodynamics was evident
in early work modeling effects in a wind tunnel for the Zeppelin airship
company. Karman's vortex street is a fluid flow concept derived from that
work. It describes the alternating double row of vortices behind a flat body in
luid flow.

In 1913, Von Karman was named director of the Aeronautical Tnstitute
a Aachen, Germany. He also served as the chair of aeronautics and
‘mechanics at the technical university in Aachen. In 1930, after serving
in the Austro-Hungarian army and subsequent years at Aachen, Von Kar-
man took the position of full-time director of the Acronautical Labo-
ratory at Califonia Institute of Technology. In 1933 he founded the
US Institute of Aeronautical Sciences. During World War 1L Von
Karman made important contributions 1o the United States’ efforts to
develop rockets. Von Karman was awarded the United States Medal for
Merit in 1946. He was the first recipient of the National Medal for
Science in 1963

Von Karman also made significant contributions to the field of crys-
tal physics. Max Born (1882-1970), a German physicist, Von Kar-
man expressed the famous periodic boundary conditions for the solution of
Schridinger’s equation in a periodic crystalline lattice. In this work. they
developed three-dimensional Fourier analysis and periodic boundary con-
ditions (0 treat the problem of lattice dynamics and the normal modes of
vibration of a crystal.




6.7 Problems

Reciprocal space

(i) Reciprocal metric tensor: Show that the product of the direct and recip-
rocal metic tensors for the triclinic crystal system results in the unit
matrix

(il) Reciprocal unit celt: Show that the volume of the reciprocal unit cell is
the inverse of the volume of the direct space unit cell (for an arbitrary
erystal system).

(iii) Reciprocal basis vectors: For a monoclinic unit cell with lattice parame-
ters {2, 3,4, 90,75, 90}, work out explicit expressions for the reciprocal
lattice vectors aj, a3, and a3, using E,qn.\nm\\ (6.4,

(iv) Reciprocal lattice: Repeat the drawings and 6.2 for a hexag-
onal lattice with lattice parameters (2. z 1 vn 90, 120). Make all your
drawings in the plane formed by a and b,

(2) Determine the reciprocal lattice vectors and place them in your
drawing.

(b) Draw the reciprocal lattice points for the range —2
k<2

(€) Draw the (11.0) and (12.0) lattice planes and show graphically that
these planes are perpendicular to the corresponding gy, vectors.

(d) Compute the direct and reciprocal metric tensors.

() Compute the interplanar spacing for the (11.0) and (12.0) lattice
planes, using the reciprocal metric tensor. Confirm graphically the
inverse relation between interplanar spacing and length of the recip-
rocal lattice vectors.

() Compute the angle between the (11.0) and (12.0) lattice planes,
and verify graphically that this angle is correct

h=2, -2

lattice with

(v) Angles and interplanar spacings: Consider a monocli
lattice parameters (1,3, 2, 90,45, 90

() What is the distance between the (111) planes

(b) What is the angle between the a* axis and the normal to the (221)
plane?

(c) What is the angle between the plane normals (101) and (101)?

(d) What is the volume of the reciprocal unit cell?

(vi) C-graphite: reciprocal metric iensor: Graphite is an important solid
lubricant and catalyst. s structure, discussed in Chapter 17, consists of
hexagonal networks of C atoms stacked along the c-axis; atoms in one
layer are located above the center of the hexagons in the surrounding lay-
ers. Graphite has the lattice constants: {0.246,0.246, 0,67, 90, 90, 120}
(with @ and ¢ in nm),




6.7 Problems

(a) Determine the reciprocal metric tensor for graphite.
(b) Determine the angle between (111) and (100) planes for graphite
using the reciprocal metric tensor.

(vii) Density of solid benzene: Benzene, C¢H, is a molecular hydrocarbon
discussed in Chapter 25. Benzene is a liquid at standard atmospheric
pressure and temperature, The lowest pressure allotrope of solid benzene
crystallizes at 0.7 kbar at room temperature and is orthorhombic with
four formula units per unit cell. Given X-ray diffraction determined lit-
erature values for the spacing between the (020), (200) and (111) planes
of 0.478, 0.372, and 0.448 nm, respectively, determine the following:

(a) The values of the a, b, and ¢ lattice constants.
(b) The volume of the unit cell.
(€) The density of solid benzene.



Additional crystallographic
computations

“Nature is an infinite sphere of which the center is everywhere and the circun-
Jerence nowhere.”

Blaise Pascal

In this chapter, we introduce a few important tools for crystallography. We
begin with the stereographic projection, an important graphical tool for the
description of 3-D crystals. Then, we discuss briefly the vector cross product,
which we used in Chapter 6 to define the reciprocal lattice. We introduce
general relations between different lattices (coordinate transformations), a
‘method to convert crystal coordinates to Cartesian coordinates, and we con-
clude the chapter with examples of stereographic projections for cubic and
monoclinic crystals.

7.1 The stereographic projection

130

In Chapter 5. we defined the Miller indices as a convenient tool to describe
lattice planes. We also defined the concept of a family. Since real crystals are
3-D objects, we should, in principle, make 3-D drawings (o represent planes
and plane normals. This s tedious, in particular for the lower symmetry
crystal systems, such as the triclinic and monoclinic systems. W. H. Miller
devised a graphical tool to simplify the representation of 3-D objects such as
crystals. The tool is known as the stereographic projection.

‘A stereographic projection is 2 2-D representation of a 3-D object located
at the center of a sphere. Figure 7.1 shows a sphere of radius R; to obtain
the stereographic projection (SP) of a point on the sphere, one connects the
point with the south pole of the sphere and then determines the intersection
of this connection line with the equatorial plane. The resulting point is the
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R ic
prjecion ofthe normals on
aystal acs (igure
reproduced rom Fig, 19 in
Introduction o
ConventionalTransmission

M. e rael, 2005, Cambridge
University Press).

7.1 The stereographic projection

SP of the original point. The point on the sphere could represent the normal
10 a crystal plane, as shown in the figure. The stercographic projection itself
i then only the equatorial plane of Fig. 7.1. The projection is represented by
a circle, representing the equatorial circle. Inside the circle, the projections
from points in the Northern hemisphere are represented by smal solid circles.

If a point lies above the equator plane (¢.g., the point P in Fig. 7.1), then
its SP will be a point inside the great circle in the equator plane. If a point lies
below the equator planc (c.g., point Q), then the projection will fall outside
the circle in the equatorial plane. In Fig. 7.1, the SP of Q s represented by
an open circle. To avoid projection points being 100 far from the circle, it is
customary to project points that lie in the southern hemisphere from the north
pole instead of from the south pole. To distinguish between those points, a
point projected from the north pole is represented by an open circle, whereas
2 point projected from the south pole is represented by a closed circle. This
is represented in the 2-D drawing of Fig. 7.

‘The location of the SP of a point is most easily expressed using spherical
coordinates. If the original point has coordinates (R, , 6), with ¢ measured
from a fixed axis in the equatorial plane and § measured from the north
pole (see Fig. 7.1), then the stereographic coordinates are easily shown to
be (¢, p) = (&, Rian(6/2)). From this, we see that a point on the equatorial
circle, i.e. with coordinates (R, b, /2), will have an SP on the equatorial
circle with coordinates (¢, R).

One can show mathematically that stereographic projections conserve
angles, i.e., measurement of an angle on the projection will always correspond
10 the real 3-D angle. It is this property that renders SP an extremely useful
technique for crystallography. In the following paragraphs, we will discuss
several basic SP operations, using the so-called Wulff net, shown in Fig. 7.3.
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Fig. 7. Projecton of a point
belowthe equatorial plane is

usuall done from the north

Fig. 7.5, Wl net used for
stercogaphic projecions. The
siz of the ne i sized down to
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Fig 7.4, llustation of the
origi ofthe arcs o the Wl
et (a) shows how great
irls through the poins 4
and #” give ise o arcs in the
projecton plene. In (b), the
projecion sphere is ut by a
plane normal to the A ~#1"

indicated in the drawing, a5
wel as in the stereographic
the lower porion
of the draving.

7.2 About zones and zone axes
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A standard Wulff net has a diameter of 20 cm. The net shows two sets of
arcs : the first set intersects the points M’ and M” and represents the projec-
tions of grear circles, i.c., circles with the same diameter as the projection
sphere. Figure 7.4(a) shows how these arcs are related to the great circles. If
the line M'-M" is taken as the origin for measurement of ¢, then one can read
the value of § from the line A~B for each of these great circles. There is a great
circle per degree, and every tenth circle is drawn with a slightly thicker line.

The second set of ares on the net corresponds to the projection of a set

of parallel planes, intersecting the projection sphere in circles. These planes
are perpendicular to the equatorial plane and to the M-M” axis, as shown in
. 7.4(b). If the projection sphere is rotated around this axis, then a point
on the surface will trace a circular path; the projection of this path is given
by the second set of arcs, which, on the standard Wulff net, are again spaced
by one degree,

Before we illustrate the uses of the stereographic projection, we must first
introduce a number of additional concepts. We will retum to the stereographic

projection with a set of examples in Section 7.5.

7.2 About zones and zone axes

In this section, we will define how to compute the vector cross product in an
arbitrary crystal system. This will then lead to the concepts of zone and zone
axis.
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Additional crystallographic computations

1 The vector cross product

The vector product, also known as the cross product, of two vectors p and
q, is a third vector z. This vector is perpendicular to both p and g, with
magnitude:

lzl=Ipxal=Ipllq| sina.

with  the angle between the two vectors. This ds dependent
of the particular reference frame in which these vectors are deseribed (see

below).

The cross product between two vectors p and q expressed in a Carte-
sian reference frame can be determined by means of a simple determinant
equation:

PX A= (P& +pae;t pie) X (i€, + a6, + gae);

P25 = Psdr)es + (3 — Pias)ea + (110 = Pag)esi

@1

e e e
=P p2ps
@ 4 4

Tn a nor
complicated. We need to define the so-called permutation symbol to generalize
the definition of the cross product to an arbitrary reference frame.

15 follows:

tesian reference frame this equation becomes somewhat more

We define the permutation symbol €,

€u=+V even permutations of 123; a2
€y ==V odd permutations of 123, 1.3)

where V is the volume of the unit cell. We define the reciprocal permutation
symbol €}, as follows:
even permutations of 123; 14

odd permutations of 123, @s)

where V* is the volume of the reciprocal unit cell. Note that one sometimes
d permutation symbol e,;, which is defined by:

.
=
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7.2 About zones and zone axes

An even permutation is one of the following combinations of indices
123, 231, or 312. An 0dd permutation is one of 132, 213, or 321. For all
other combinations (such as the ones where two or more indices are equal
10 each other) the permutation symbol is equal to zero. The meaning of the
permutation symbol can best be illustrated with an example; consider the
following expression:

F=cuparn

We know that the summation convention is used, so this expression is equal
to:

F= % eupdri

there are  total of 27 terms in the summation, The permutation symbol
only different from zero for 6 combinations of the indices, so we find:

F=V(p1ayrs+ padsty + Padi iy = Do 13 = Prdsha = P3ar)

‘We can regroup these terms by separating the components of r:

F 1l

VI(p2as = Psaa)ri + (s = 1)1+ (Prda =

Comparing this expression with the one in Equation 7.1, we find that the

s are identical. This means that the permutation symbol

terms in parenthes
can be used to rewrite the expression for the cross product of two vectors. For
the Cartesian system above, we have = 1. Replacing the components r, by
the Cartesian basis vectors e, we find for the cross product in a Cartesian
reference frame:

P X U= €058 7.6)

Itis easy to show that Equation 7.6 is identical to Equation 7.1.
quation to non-Cartesian reference frames,

We can now generali
We begin by noting that the vector cross product results in a vector that is
normal to the plane formed by the two original vectors, p and g. We know
that the normal to a plane can be described by a vector in reciprocal space.
So, we conclude that the vector cross product of two vectors in real space
vector in reciprocal space! The general definition of the vector cross product
is then:

&)
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For the Cartesian reference frame, the direct and reciprocal basis vectors are
identical, so the distinction between reciprocal and direct basis vectors is not
necessary.

The cross product is now written in determinant notation as:

lai a ag
pxa=Vip p py (7.8)
@ e a

Let us now look at a few examples. First of all, consider the cross product
between a, and a,. Since a, = [100] and a, = [010], we have:

ai ajl
0 0|=Va;=vg,,. (19)
10

In fact, we already knew this from the definition of the reciprocal basis
ectors, but it s nice to see that our efinition of the general cross product is
consistent with the definition of the reciprocal space basis vectors.

Another example: consider the vectors p=[120] and q = [011]. Their cross
product is given by:

o aa
pxq:Vll 2 nl V(2a; —a;+a}) = Vg, (1.10)

o 1 1
In other words, the cross product between the lattice translation vectors [120]
and [011] is normal to the (211) plane. In most cases, we are only interested
in the direction of the eross product vector, not its length, o it is common
practice to drop the volume factor. The reader should realize that the true
length of the cross product vector always involves the volume of the unit
cell!

Next, let us try to answer the question: what is the cross product between
two plane normals? Thi equivalent to asking: which direction is common
10 two planes? We can start from the general definition of the vector cross
product, and simply replace all quantities by their starred (i.e.. reciprocal)
counterparts:

gxh=eghap @)

Since the reciprocal of the reciprocal basis vector is the direct space basis
vector, a" =ay (reader exercise), this relation reduces to:

gxh=¢,gha. (1.12)
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‘We find that the cross product of two plane normals is parallel 10 the dircction
normal to the plane formed by the two plane normals, ie., the direction
common to the two planes. Tn determinant form we have:

a, a8, a
exh=V'|s & o @.13)
e by hy

As an example: what is the direction common to the (111) and (120) planes?

(SR
BxB =V 1 11| =V baba) = Vi, (.14
1 2 0

At this point, we introduce a shorthand notation for the computation of cross
products. Write down the indices of the two vectors twice in horizontal rows,
as follows (for two plane normals (i k,/,) and hyk,l

T T A T A
by ok Loy kb

Then, remove the first and the last column, i.e.,
ook Lok ke h
hok Lo khT
Next, compute the three 2 x 2 determinants formed by the 8 numbers above,
asin:
Wk L b koA

X xx .
Mk b h ko h

This leads (o the following components for the direction vector [uvu],
consistent with the definition of the general cross product:

u=kiby =kl
v="lh by (7.15)
w= hyky = gk,

ently dropped the volume of the
ed in directions,

Note that, in these equations, we have cor
unit cell (or the reciprocal volume), since we are only interes
not actual veetor lengths.
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‘What is the direction common to the (231) and (111) planes, using the
shorthand notation? Write down the rows of components and remove the first
and last columns;

Then compute the determi

Therefore, the common direction is the [211] direction.

Before we end this section with another example of the use of the vector
cross product, we should point out that the general equation of the vector
cross product is independent of the crystal system that is being used. In
other words, the [001] direction is normal to the plane formed by the (100)
and (010) plane normals in every crystal system! Similarly, the (100) plane
normal is perpendicular (o the [010] and [001] directions in every crystal
system. This is a direct consequence of the way we have defined the reciprocal
basis vectors in the previous chapter. Any other definition would have led
1o a much more complicated relation between direet and reciprocal spi
quantitis,

As a final example of the use of the veetor cross product, let us show that
the volume of the unit cell is given by:

(1.16)

‘This equation can be derived as follows:

a-(bxe)=a,-(a xa;);
=a,- e, a;]

= €dydyan )

SR

=ens
=

In this derivation we have used the fact that the i-th component of the ba
vector a, with respect to the direct basis vecto
used the definition of the reciprocal basis vectors. One can show (reader
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exercise) that the volume of the unit cell is also given by the square root of
the determinant of the metric tensor:

V= etlg] (and V* = det|g']). @.17)

7.2.2 About zones and the zone equation

Fig.75. Schemaiclutration
of a zone.

Itis frequently useful to talk about crystallographic directions that are common
10 two or more planes. As we have seen in the previous section, the direction
common to two planes can be written as the cross product of the two normals
t0 the planes. Sometimes we will need to determine al/ the planes that contain
a given direction [uvw]. Such a set of planes is known as a zone (see Fig. 7.5).
‘The direction [wvw] is then the zone axis. Zones play an important role in the
discussion of symmetry (see Chapter 8).

Itis easy to see that a plane belongs to a zone only when the plane normal
is perpendicular to the zone axis. This means that the dot-product g-t, with
= [uvw] must vanish

= (ga) ;.

48y = it

where we have used the definition of the reciprocal basis vectors. We find that
the condition for a plane (/) to belong to a zone with zone axis [uvw]

Bt ko+ I (1.18)

fume]



Fig, 7.6, Schematic lustration
ofthe relation betves

d zone axis and their
stereographic projecions.
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‘This equation is again valid for all crystal systems. The equation is known as
the zone equation

Consider the direction [101] in an arbitrary crystal. Inserting these values
into the zone equation we find

htl=0.

AIl planes (hkl) satisfying this equation contain the [101] direction. Some-
times one inserts the zone equation explicitly into the Miller indices, which
i this case would lead to planes of the form (#kh), since = ~h.

Alternatively, we can ask for all the directions [uvu] that are contained
within a plane (/). The zone equation can
the (111) plane all satisfy the equation:

n be used. The dire

ons in

utv+w=0.

To conclude this section, we need to establish the relation between a zone
and its stereographic projection. If we select a zone axis, say [001] in a cubi
erystal, then all the planes that belong 1o this zone will have their normals
in the plane normal to [001], in this case the (001) plane. The stercographic
projection of the [001] direction is a point in the equatorial plane. The (001)
plane intersects the stereographic projection sphere in a great circle. We
have seen in Section 7.1 that the projection of a great circle is again the
are of a circle, similar to the arcs between the points M’ and

This arc

corresponds to the projection of all the plane normals that are normal o the
[001] zone axis. In other words, the SP of a zone axis is a point, the SP
of a zone is a great circle in the equatorial plane (see Fig. 7.6). The angle

between the projection of the zone axis and the projection of the great circle
is 90

w
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7.2.3 The reciprocal laf

e and zone equation in the hexagonal system

For the hexagonal erystal system, one can use the four-index notation

o
derive the following zone equation (Okamoto and Thomas, 1968):

It k-t =0, (7.19)

Itis important to point out that this relation can only be valid if the reciprocal
latice vectors for the hexagonal crystal system are defined in a way which
differs from the standard definition for the other crystal systems. If a plane in
a hexagonal crystal is represented by the three indices (A1), then the normal
10 that plane would be given in the usual way by:

ha + ka4l

When we use the four-index notation, then we must define new reciprocal

lattice vectors, A7 with i=1,2,3 and C*, such that the following relation is
valid:

1" = hAT+ kAL +iA]+ICT. (720)

jon of the reciprocal lattice vectors we find:

L 22a+ay)
8 3@
oy M2

3a

Substituting these relations into Equation 7.20, we find that the new reciprocal
lattice vectors are given by:




w2 Additional crystallographic computations

The zone equation for the hexagonal system can now be derived by taking the
dot-product between a direction [uvrw] and a plane normal (ki) expressed
n the new reciprocal lattice:

tog = (ua, +va, + 1a, + we) - (hA] + KA +iA3 +1C7);

(v ) (e, + oy +
= (o vy g ) (o gzt 3z
2110 "

! 1210 k
=swvrw)| 5 1 5 o |li];
00 0 3 1

= hut kvt i+ hw,

the zone equation in the hexagonal crystal system.

7.3 Relations between direct space and reciprocal space

‘We know that a vector is a mathematical object that exists independent of the

reference frame. This means that every vector defined in the direct lattice must

also have components with respect to the reciprocal basis vectors and vice

versa. In this section, we will devise a tool that will permit us to transform

vector quantities back and forth between direct and reciprocal space.
Consider the vector p:

p=pa=pjaj,

where pj are the reciprocal space components of p. Multiplying both sides
by the direct basis vector a,,, we have:

P, = pia)a,.
Pilin = P8 = Pus @21
or
P = Piin @22)
It is easily shown that the inverse relation is given by:
Pi= P8 23

We thus find that post-multiplication by the metric tensor transforms vector

components from direct space 1o reciprocal space, and post-mulsiplication by
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the reciprocal metric tensor transforms vector components from reciprocal o
direct space. These relations are useful because they permit us to determine
the components of a direction vector t,,,,, with respect to the reciprocal basis
vectors, or the components of a plane normal g,,, with respect to the direct

basis vectors.
Now we have all the tools we need to expre:
in terms of the direct basis vectors. Consider

the reciprocal basis vectors
in the vector p:

P=pa;

If we replace p; by p},g;, then we have:

a;

P=pLgi =
from which we find:
a, =g, (124)

and the inverse relation:

(725)

In other words, the rows of the metric tensor contain the components of the
direct basis vectors in terms of the reciprocal basis vectors, whereas the rows
of the reciprocal metric tensor contain the components of the reciprocal basis
s vectors

vectors with respect to the direct bas
Finally, from Equation 7.25 we find after multiplication by the vector aj:
a,-af = g, af,
B = 8ui8c (7.26)
In other words, the matrices representing the direct and reciprocal metric

tensors are each other’s inverse. This leads to a simple procedure to determine
tors of a crystal:

the reciprocal basis v

(i) compute the direct metric tensor;
invert it to find the reciprocal metric tensor;
(i) apply Equation 7.24 to find the reciprocal b

sis vectors

s illustrate this procedure using an example based on the monoclinic unit
cell {1,1,1,90,45, 90} that we used before in Chapter 6. The dircct metric
tensor of this cell is given by:
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“The inverse of this matrix is equal to the reciprocal metric tensor:

0 —VZ
10
0 2

Therefore, the reciprocal basis vectors can be written as:

at 20 —V7)/a 2a—vZe
b o 1 o0 |[bv]= b
< —Z 0 2 © —VZa+2¢

in agreement with our findings in Chapter 6,

7.4 Coordinate transformations

The mathematical relations derived in the preceding chapters allow us to
compute any geometrical quantity in any of the seven erystal
may now ask the question: how do these relati

tems. One
ns change when we change
the reference frame? The need to change from one reference frame to another
frequently arises in the study of solid state phase transformations, when
the crystal structure changes with temperature or applied field (electric or
magnetic). In this section, we will describe in detail how one can convert
vectors and the metric tensors from one reference frame to another

1 Transformation rules

Let us consider two crystallographic reference frames, (a,,a,,a;} and
(af. a3, a3). In general, the relation between the two sets of basis
be written as:

vectors can

a) = @3 +apa, + a5

al = aya,+a

+aag @27

= @y, g, e

This is a linear relation, known as a coordinate transformation. The nine
numbers a; can be grouped as a square matrix

@ @
ay=la ap . 2.28)
ay @
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:an be rewritten in short form a

8 (7.29)

‘The inverse transformation must also exist and is described by the inverse of
the matrix a:

a;'a) (7.30)

Consider the position vector p. This vector is independent of the reference

frame, and has components in both the unprimed and primed reference frames.
We must have the following relation:
P =pa = paj (@31

Using the inverse coordinate transformation we can rewrite the first equal-
ity as:

iy =pea),

and after comparison with the last equality of Equation 731 we find:
P=pa; (1.3

Note the order of the indices of the matrix a; the summation index is the
index i, which means that we must pre-multiply the matrix by the row vector
p,- Similarly, one can readily show that

=i 0.33)

We interpret Equations 7.32 and 7.3 as follows: the vector p is independent
of the chosen reference frame if its components with respect to two different
reference frames are related to each other by Equations 7.32 and 7.33. This
relation obviously also holds for direction vectors [uvw], since they are a
special case of position vectors p (integer components instead of rational).

Itis now straightforward to derive the transformation relation for the direct
metric tensor:

&) = ala

g

iy a,

and hence:

= g (7.34)
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The inverse relation is

ai'ag'g (1.35)

One can use these relations to define a second-rank tensor: any mathematical
quantity f; that satisfies the above transformation rules is a second-rank
tensor. Similarly, any mathematical quantity p,, satisfying the transformation
rules 7.32 and 7.3, is a vector.

Next, we will derive the transformation relations for quantities in reciprocal
space. We have seen in the preceding section that, if the components of a
vector p are known in direct space, then its components in the reciprocal

reference frame are given by:

n
Using Equation 7.33 we have:

»

A (136)

From Equation 7.35 we find, after multiplying both sides of the equation

by a,
8,00 = a7t
and substitution in Equation 7.36 leads to:

P = gl

P

‘where we have once again used the properties of the direct metric tensor. The
components of a vector in reciprocal space thus transform as follows:

7i=a;'pl, 137
and the inverse relation is given by:

P =aup. (7.38)

In particular the:
The reciprocal basis vectors satisfy simi

equations are valid for the reciprocal lattice vectors g.
 transformation relations which are

derived as follows:
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Table 7.1. Overview of all transformation relations for vectors and the metric
tensor in direct and reciprocal space. Pay close attention to the order of the indices!

Quanity 0ld 0 new New 10 old

direct ba:
direet metric tensor
direet spuce vectors

vectors

reciprocal busis vectors
reciprocal metric tensor
reciprocal space vectors

from which we find:

aray (7.39)

‘The corresponding inverse refation is given by:

(7.40)

ally, it is again easy to show that the reciprocal metric tensor transforms
cording to the rules:

g, (7.41)

'8l

The transformation rules derived in this section are summarized in
Table 7.1 Al that is required to carry out any coordinate transformation is
the matrix e, expressing the new basis vectors in terms of the old ones. The
relations in Table 7.1 require, in addition to a, the inverse aj and transpose
) matrices, and the transpose of the inverse matrix (a;')". These transfor-
mation rules scem casy enough, but one must actually pay close atiention to
the indices in order to avoid mistakes. In the following subsection we will
illustrate coordinate transformations by means of a few examples

7.4.2 Example of a coordinate transformation

Consider the face-centered cubic lattice shown in Fig. 7.7; we can define
4 primitive thombohedral unit cell for this structure, as indicated by the
primed basis vectors. Determine the transformation matrix c;;, and express
the reciprocal basis vectors of the new reference frame in terms of those of the




Fig. 7.7, Unit cll draving of
the face-centered cubic ltice,
along ith s primite unit
cell (Figure reproduced from
Fig. 121 in troduction to
Conventional T

Elecron Miroscopy,

M. De Graef, 2003, Cambridge
Uriversy Pres)
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old reference frame. Then compute the direct metric tensor for the primitive
cell using the transformation equations.

‘The transformation matrix a, is ea
Fig. 7.7:

ly derived from a visual inspection of

The reciprocal basis vectors transform according to the inverse of this matrix,
or:

(@ aal

(ajajap)e;'s

a8, or (note that
the matrix a, must be transposed before multiplication since the summation
index [ must be the row index!)

WA G VO
ﬂ.’,;olloalollu.
IOIDO(FJOII
afl U O\ o0
TOlIIIO
1o /o 1 1
2 10
.
“712|
112
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‘The rhombohedral metric tensor is given by (see page 86)

I cosa cosa
cosa 1 cosa
cosa cosa |

&

where b and c are the lattice parameters of the primitive unit cell. From the
drawing one can easily show that 7 and cosa = 1/2 which leads to
the same expression for g,

The [001] direction in the cubic reference frame can be transformed into
the rhombohedral frame as follows:

[wowl, =001\ 1 1 -1

as s easily verified in Fig. 7.7. The (110) cubic plane transforms as follows:

h LI ) 1 1 2
k=510 11 1 ==11
1), Ao o 0 2 1
so that the (110), plane has Miller indices (211) in the hombohedral reference
frame.

7.4.3 Converting vector components into Cartesian coordinates

We have seen in previous sections, that there is a distinct advantage to working

in crystal coordinates (ie...in a non-Cartesian referen
and reciprocal space. Howev, end of a simul
results are almost invariably represented on a computer screen or on 4 piece
of paper, both of which are 2-D media with essentially Cartesian reference
frames. We must, therefore, provide a way to transform direct and reciprocal
crystal coordinates into Cartesian coordinates. It is not difficult to carry out
such a conversion for the crystal systems of high symmetry (cubic. tetragonal,
and orthorhombic) since their coordinate axes are already at right angles to
each other. However, for a monoclinic or triclinic system the conversion to
Cartesian coordinates is a bit more difficult and it becomes important to have

the

an algorithm that will do the conversion, independent of the crystal system.
Such a conversion exists and is derived below. The derivation is somewhat
tedious, but the resulting transformation is quite general and can be used for
both direct and reciprocal space quantities.

The transformation can be carried out by means of the so-called direct and
reciprocal structure marrices. Let us assume a crystal reference frame a,, and
the corresponding reciprocal referen

frame a;. From these two reference



Fig. 7.8 Definton of the

(Figure reproduced from Fig.
1.25 in ntroducton t0
Conventional Transmission
Elecron Micoscopy, M. De
Graef, 2003, Cambridge
Urivershy Press)
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frames, we can construct a Cartesian reference frame €, as follows: e, is the
unit vector along a,, e, is the unit vector along the reciprocal basis vector
a5 (and s, therefore, by construction normal 1o e,), and e, completes the
,right-handed Cartesian reference frame (sce Fig. 7.8)

a
€ —
fail
e =e;xe; (743)
o @ _axa
* 7 Tl T Viasl

We will refer to this reference frame as the siandard Cartesian frame. Now
consider a vector r with components ; with respect (0 the basis vectors a,
‘The components of r in the Cartesian reference frame are given by x, or:

The components r; and ; are related to one another by a linear coordinate
transformation represented by the matrix a

=ayr;.
The clements of the transformation matrix can be determined as follows:
Equations 7.43 are rewritten in terms of the direct and reciprox
tensors as:

I metric

From the definition of aj we derive:

Vi@ xay

(@ xay) xa, 1 (3, % a)

The triple vector product can be si

nplified using the vector identity

W (vxw) = (@ Wy (- v)w,
which leads to:

Via; xa,) =
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and finally:

o
VVensi

The vector £ can now be written as follows:

e

P T T 51 P
Ve Vel

Veugs

V&

Using the fact that the direct and reciprocal metric tensors are each other’s
inverse, we can explicitly write the matrix i as:

&
o TN
Nen
g Vel
e :
0 0
V&
@ beosy  ccosp
_lo bsiny M X (7.44)
0 0

absiny
where:
F (B y) = cosarcos - cos .

The matrix a,; is known as the direct structure matrix and it transforms
crystal coordinates to Cartesian coordinates. Note that its elements depend
both on the direct and reciprocal metric tensors and, thus, on the Jattice
ty in 7.44. The

parameters (a, b, ¢, @, B, ¥}, as shown by the second equa
inverse transformation is given by the inverse matrix:

)

T Vainy
af=|o L «lBrg (7.45)
bsiny Vsiny
0 o absin’y
\4

‘The direct structure matrix is particularly useful if one wants to create a draw-
ucture, and for the computation of stereographic projections,
as demonstrated in the next section,
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As an example, compute the Cartesian coordinates of the lattice point
(2.3.1) in a tetragonal lattice with lattice parameters {4, 1. 1,90, 90, 90).

From the lattice parameters a = 1/2 and ¢ = 1 we find for the direet s
matrix:

ucture

Su- o

Hence the Cartesian components of the vector (2.3, 1) are (1,3/2, 1),

One can use the same formalism to determine the Cartesian coordinates of
a reciprocal lattice point; such coordinates would be used to draw a represen-
tation of reciprocal space. To preserve the relative orientation of crystal and
reciprocal space, we look for a second structure matrix b;; which represents
the transformation from the reciprocal reference frame to the same Cartesian
reference frame. Consider the reciprocal space vector k, with components &
with respect to the reciprocal basis vectors a3 and Cartesian components g

Kk kpa

g,

‘This can be rewritten in terms of the direct bas

vectors a, as

k

ae=kga=ra  wih kit

‘We can now use the direct structure matrix a, to relate g, to 1;
4= agn = augik; = augik; = byk;

The reciprocal structure matrix by is thus defined by:

(1.46)

This matrix converts reciprocal space coordinates into Cartesian coordinates.
The inverse relation is

One can use the fact that the length of a vector must be independent of the
reference frame to show that the transpose of the reciprocal structure matrix
b is equal to the inverse of the direct structure matrix a, or

The reciprocal structure matrix is thus given by the transpose of the matrix
n Equation 7.45. Note that only the lattice parameters are used to com-
pute the structure matrices. In addition, the lattice parameters are used to
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compute the direct and reciprocal metric tensors. In a computer implemen-
tation it is convenient to have a single routine which computes all four
matrices.

For the tetragonal crystal of the previous example, what are the Cartesian
components of the reciprocal lattice point (221)? The Cartesian components
which is the transpose of the

4, require the reciprocal structure mairix b,
inverse of a;:

0 0
by={0 2 o],
01

from which the Cartesian components of (221) follow as (4,4, 1).

7.5 Examples of stereographic projections

In Chapter 5, we introduced the concept of a family of plan
{ki} and {wvw). At this point, we can make use of nearly everything that
we have learned in this and the preceding chapters to create stereographic
projections of arbitrary crystals. We will begin with the simplest case, the
crystal system.

cubi

7.5.1 Stereographic projection of a cubic crystal

Consider a cubic crystal system. We are asked to draw the stereographic
projection containing the (100}, (110), and {111} families of directions. Let
us start with the (100) family, which consists of the directions: [100], [100),
[010], [010], [001], and [001]. We will orient the crystal so that its [001]
direction points from the south pole to the north pole of the projection sphere.
We also know that the angle between the [001] and [100] directions is 90°, so
that the SP of the [100] direction must lie on the equatorial circle. We place
the projection of [100] to lie along the line A-B (Fig. 7.9(a)). The positions
of all other projections are now fixed. [010] lies at 90° from both [100] and
[001]. There are two possibilities: [010] pointing towards M or M”. To create
a right-handed reference frame, we must have [100]- ([010] x [001]) = O,
which means that [010] must point towards M".

The negative directions must lie on the opposite side of the projection
sphere, which means that [100] points towards A and [010] towards M'. Since
[001] points towards the south pole (which lies in the southern hemisphere),
we represent its SP by an open circle at the center of the projection. The full
projection of the (100} family of directions is shown in Fig. 7.9(b).

To draw the other two families, we will keep the crystal in the same ori-
in the (110) family. OF these twelve, we

entation, There are twelve members




Fig. 7.9, Stereographic
projection of the (100) (35,
(10) (cd), and (111) (&)
familes f dectons.

@ shows the most important
zones i the [001] prjection.
The thre projecions are
superimposed into a sigle
one i (1.
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know that four belong to the [001] zone, since the zone equation for the [001]
zone states that / must be zero. These are the [110], [170], [110], and [T10]
directions. We can use the metric tensor formalism to compute the angle
between [110] and [100] (or simply read the angle from a drawing, which
is casy for cubic symmetry), and we find 45°. The stercographic coordinates
are then (45°, R), since 6 = 90°. So, the SP of [110] lies on the projection
circle, halfway between [100] and [010], as shown in Fig. 7.9(d). The other
directions belonging (o the [001] zone result in projections in the other three
quadrants of the projection circle.

‘We can repeat this procedure for the other members of the (110) family.
For instance, we know that there are four family members that belong 1o the
[100] zone, namely those directions with zero as the first index. The zone
[100] corresponds to all directions normal to [100], and on the stereographic
projection this is the great circle between M’ and M. The angle between
[011] and [001] is again equal to 45°, so that the stereographic coordinates
are given by (90°, Rtan(45°/2)), which results in the point labeled [011] in
Fig. 7.9(d). The other members of the family follow in the same way.
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Finally, the (111) family consists of eight members, shown in Fig. 7.9(c).
None of these directions belongs o a zone from the (001) family. However,
if we take the [110] direction and consider its zone, then we know that all the
directions with u-+v = 0 belong to this zone. There are four members of the
{111) family in this zone: [1T1], [1TT], [T11], and [T17]). So, we know that
the projections of these four directions must fie on the [110] zone, indicated
in Fig. 7.9(f). The angle between [111] and [001], which also belongs to
n be computed using the metric tensor formalism, which
results in cos# = 1/+/3, or §=54.74°. The angle between [111] and [110]
s. in similar fashion, 6 = 35.26°. The stereographic coordinates of [111]
are then given by (—45°, Rtan27.37°), which results in the location shown
in Fig. 7.9(). The other members of the (111) family can be treated in the
same way.

Note that the direction [111] belongs o a number of (110)-type zones: it
belongs to the zones [110], [101], and [0T1]. This means that the projection
of [111] must lie at the intersection of three great circles, one corresponding
1o each of these zones. The [170] zone is a straight line in the projection,
because it also contains the [110], [001] and [110] directions. The [0T1]
zone is normal to the [011] direction and contains the [100], [T11], [011],
[111], and [100] dircctions. Therefore, its projection must be an arc of a
circle going from A to B through all these points. Repeating this for all the
members of the [110] family, we arive at the zone drawing of Fig. 7.9(z),
which shows all the zones labeled. At the intersection of zones, we have

the [110] zone, c

zone axes, which are directions in the crystal lattice, and the resulting stere-
ographic projection of the cubic crystal is shown in Fig. 7.9(h). Since the
center of the projection corresponds to [001], this is known as the [001]
stereographic. projection of the cubic crystal. It is left as a reader exer-
cise to obtain the [110] and [111] stereographic projections for the cubic
crystal.

What about the plane normals in this crystal system? What would be the
stereographic projection of the {100), (110}, and {111} families of plane
normals? We have seen in the previous chapter, that the reciprocal basis

veetors are parallel (o the direct space basis veetors:

(7.47)

‘This means that

= ha" Kb 1e”

@

In other words, in the cubic crystal system, the plane normal for the plane (hkl)
is parallel to the direction with indices [Ak/], so that the [001] stereographic
projection of the directions is identical 1o the [001] stereographic projection
of the plane normals. All we need to do is replace the direction symbols




7.5.2 Stereographic projection of a monoclinic crystal
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[uww] by plane normals (wvw). Note that this is only the case for the cubic

erystal sy

case of a monoclinic crystal.

stem: for all other systems, the direct space and reciprocal space
projections will be different from cach other

s we will illustrate next for the

In Chapter 6, we used as an example a monoclinic erystal with lattice param-
eters {1, 1,1,90,45,90}. In this section, we will obtain stereographic projec-

tions for both the directions and the plane normals in th

rystal. Before we

do so, we must first determine how to compute the stereographic projection

coordinates in a more standardized way.

We already know from Section 7.4.3 how to convert crystal or reciprocal
coordinates into Cartesian coordinates. Since the SP represents directions,

the next step is o normalize the Cartesian componen
corresponds 1o a point on the unit sphere. Let us

o that the direct

n

sign the coordinates

(x..2) to this point P, as illustrated in Fig. 7.10. If we connect the point P
with the south pole S, then the triangle PQS is congruent with P'0S, from

which we derive:
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7.5 Examples of stereographic projections

If the projection ci R, then the above equations are simply
multiplied by R to arrive at the proper 2-D coordinates. If 2 is negative, then
we replace z by |<| in the equations above, and we represent the corresponding
point by an apen circle, to indicate that the projection was done from the
north pole instead of the south pole. We will now illustrate this procedure
for both the real space and reciprocal space stereographic projections of a
‘monoclinic crystal with lattice parameters {1, 1, 1,90, 45,90).

752.1 Direct space stereographic projection

First of all, we determine the direct structure matrix a;; from the lattice
parameters and the definition in Equation 7.44:
V2
10
2

ay=[o1 0

It is easy to verify that this vector is already normalized. so that the point
1/+/2.0,1/+/2) lies on the unit projection sphere.
aphic pro-

with Cartesian coordinates
Then we take the ratios introduced above to compute the stereog;
jection coordinates:

R(2-1);

‘This point is shown on the stereographic projection in Fig. 7.11(a)

The same procedure can be followed for all other crystal directions. It is
clear that such a repetitive procedure is perfectly suited for implementation
in a spreadsheet program. The results of such a computation for selected
directions are shown in Table 7.2, and the corresponding projections are
indicated in Fig. 7.11. We leave it to the reader to verify that this projection
i indeed correct.



158 Additional crystallographic computations

Table 7.2. Normalized Cartesian coordinates and stereographic coordinates
for selected directions in @ monoclinic crystal with latice parameters
{1,1,1,90,45,90).

] Normalized Cartesian Stereographic
[100] (1.000,0.000,0.000) R(1.000,0.000)
[010] (0.000, 1.000,0.000) R(0.000, 1.000)
[001] (0.707,0.000,0.707) R(0.414,0.000)
[110] (0.707.0.707.0.000) R(0.707,0.707)
[101] (0.924,0.000,0.383) R0.668,0.000)
[ot1] (0.500,0.707, 0.500) R(0333,

[mj (0.813,0.476,0337) RQ.

7.5.2.2 Reciprocal space stereographic projection
The reciprocal space stereographic projection of the monoclinic crystal can
be derived in exactly the same way, by using the reciprocal structure matrix
b, instead of a,,. We find that:

“The (001) plane normal then has the Cartesian coordinates:

10 0\ (0
=( 01 o) (u)=(n.o.ﬁ).
1042/ \1

Normalized, this becomes the point with coordinates (0.0, 1), and the stere-
ographic projection coordinates are (0,0), i.c., the center of the projection
(Fig. 7.11(b)). This is to be expected, since the (001) plane is formed by
the [100] and [010] directions, which lie in the plane of the stereographic

(ryz

o011, 110l

]

Fig. 711, Stereographic
projections of slected
diections (2) and plane
normals () of a monocinic
aystal with atice parameters
{1,1,1,90,45,90}. (a) [010]

w111

fun
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1.6 Historical notes

Fig. 7.2, (2) uri Vicorovich
Wulf (1863-1925), and

(b) Anton Van Leevienhoek
(1623-1723) (picures couttesy
of 1 Lima-de-Faric),

7.6 Historical notes.

Table 7.3. Normalized Cartesian coordinates and stereographic coordinates for
selected plane normals in a monodinic crystal with lattice parameters
{1,1,1,90, 45,50). Points labeled “north pole projection” are represented by
open circles in the stereographic projection of Fig 7.11.

[ww]  Normalized Cartesian Stereographic

(100) (0.707.0.000,~0.707)  R(0.414,0.000) (north pole projection)
(010)  (0.000,1.000,0.000) R(0.000, 1.000)

(01) (0.000,0.000, 1.000) R(0.000,0.000)

(1) (0.577.057,-0577)  R(0.366,0.366) (north pole projection)
(01)  (0.924,0.000,0.383) R(0.668,0.000)

O1)  (0.000,0577,0.816) R(0.000,0318)

(1) (0.679,0679,0.281) R(0.530,0.530)

projection (see Fig. 7.11(a)). The sterographic coordinates for selected plane
nomals are shown in Table 7.3, and the corresponding projections are indi-
cated in Fig. 7.11(b).

Note that the plane normal (101) and the direction [101] have the same
stercographic coordinates, which indicates that they are paraliel, i.c., the [101]
direction is normal to the (101) plane in this particular crystal system. If this
were a cubic crystal system, then the two tables would show identical entries
for each given direction [uvw] and plane normal (i),

Yuri Victorovich (George) Wulff (1863-1925, Fig. 7.12a) was a Russian
crystallographer known in crystal growth theory for his construction of the.
ideal equilibrium form (Wulf, 1902). So-called Wulff plots are constructions




Additional crystallographic computations

used to predict the equil form of crystals. he const
of the stereographic net as an equivalent to the stereographic projection
(WUlff, 1908). Paul Heinrich Ritter Von Groth (1843-1927) was a German
scientist and a contemporary of Wulff, who devoted his carcer to the study of
In particular, he
of growing crystals and for demonstrating the constancy of interfacial angles
in gypsum. In 1895, he published his Arcana Natura Detecta (Von Groth,
1895) describing his observations of crystal growth.

Tn 1783, Arnould Carangeot (1742-1806) developed the contact goniome-
fer, a device to measure the angle between crystal faces (Carangeot, 1783).
‘This tool was later used by his teacher, Romé de I'Isle (see Historical notes
in Chapter 4) to make angular measurements on crystals, confirming Steno’s
earlier work on quartz

There are several additional important tools in crystallography. Robert
Hooke (1635-1703) was one of the fathers of optical microscopy. This British
scientist and member of the Royal Society wrote the monograph Micro-
graphia (Hooke, 1665) which contains detailed sketches of his observations
with the microscope, including some of erystalline solids. Like Christian
Huyghens, Anton Van Leewenhoek (1623-1723, Fig. 7.12(b)) was also a
Dutch scientist who devoted his career to the pursuit of microscopic obser-
vations of materials (Van Leewenhoek, 1685a,b). As a draper’s apprentice,
he used a simple magnifying glass to count threads in cloth. He later learned
the art of lens grinding which he used to make a succession of hand-held
microscopes (he used these to study biological micro-organisms leading to
his identification as the father of microbiology). Tn his career he built 247
‘microscopes and designed more than 419 lenses, most of which were double
convex lenses.

David Brewster (1781-1868) invented the quartz compensator in 1830; the
compensator is an important tool in physical crystallography and crystal optics
(Brewster, 1830a.b,c). Giovanni Battista Amici (1786-1863) was an Italian
scientist who developed the first polarizing microscope and the tilting stage
(Amici, 1844). His polarizing microscope used lenses in conjunction with a
polarizer and analyzer. The British crystallographer and Cambridge profes-
sor, William Hyde Wollaston (1766-1828), in 1809 invented the reflecting
‘goniometer which permitted accurate and precise measurements of the posi-
tions of crystal faces (Wollaston, 1809, 1813). The reflecting goniometer
allowed extensive measurements on both naturally occurring and artificial
als. Dominique Francois Jean Arago (1786-1853) French sci-
specializing in crystal optics. In 1811, Arago discovered the rotation of
the plane of polarization of light traveling through quartz. This phenomenon
was referred (0 as the optical activity of quartz crystals (Arago, 1811). Moritz
Frankenheim (1801-69) developed a polarizing microscope with a Nicol
prism. Evgraf Stepanovich Federoy (853-1919) was responsible for the
universal stage for the polarizing microscope.
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7.7 Problems

(i) Vector cross product I: Two pairs of directions are given in a cubic

crystal system: [100}—[121] and [011]—{111].

(2) Compute the Miller indi
directions.

(b) What is the direction common to those two planes?

() Repeat the exercise for a triclinic crystal system with lattice param-
eters {1,2, 3,40, 60, 80].

s of the planes formed by each pair of

(i) Vector cross product IT: Consider an orthorhombic crystal with lattice
parameters {3, 4, 5, 90,90, 90}
() Use Equation 7.8 1o compute |m cross product between the vectors
1/2,1/3.1/4) and g = (1,
(h) U Equation 7.12 to compute u.c cross product between the vectors
=(1/2,1/3,1/4) and h= (1,1

Vector crass product HII: Tn a hexagonal crystal system, how would
you compute the normal to the plane formed by two direction vectors,
when these vectors are expressed in four-index notation?

(iv) Unit cell volume: Consider a unit cell with {2, 3,4, 90, 60, 90} as lattice
Show, through explicit computation, that the volume of
¢ Equation 7.16 i identical to that found using

Zone equation I: Given are two zones, described by the sets of planes
of the types (hkh) and (hh0). What is the normal to the plane formed
by the two corresponding zone axes?

(Vi) Zone equation II: List at least four planes that belong to the hexagonal
zone [1131].

(vii) Coordinate transformations I If a vector has direct space components
(1,0, 3) with respeet to the basis veetors of a lattice with lattice param-
eters {2,2,3, 90,90, 90, then what are the components of that vector
with respect to the reciprocal basis vectors?

(viii) Coordinate transformations 1I: Use the metric tensor formalism to

rocal basis vectors of a cell with lattice parametet

determine the recs
{1,4,2,90, 60,90},

(ix) Coordinate transformations HI: Determine the coordinate transforma-
tion matrix a; that expresses the basis vectors of the primitive unit cell
of the body centered cubic lattice in terms of those of the conventional
unit cell of this lattice. If we denote quantities in the cubic reference
frame by a subscript ¢, and quantities in the primitive reference frame
by a subscript p, then answer the following questions

(a) What are the p components of the direction vectors [110], and
(1.2
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(b) What are the ¢ components of the direction vectors [101], and
[012),?

(¢) What are the p components of the plane normals (112), and (201),?

(d) What are the ¢ components of the plane normals (112), and (201),?

(¢) What are the p components of the position vector (1/3, 1/3,1/3)?

(f) Express the p reciprocal basis vectors in terms of the ¢ direct bas
vectors.

(g) Express the ¢ reciprocal basis vectors in terms of the p direct basis
vectors.

(h) What is the volume of the p unit cell?

(i) Write down the p zone equation for the [121], zone axis.

(j) What are the standard Cartesian coordinates for the point

1,2, —1),. Show that they are identical to the standard Cartesian

coordinates of the corresponding point in the p reference frame.

x) Structure matrices: Show by direct computation that the product a’a
(with T indicating the transpose of the matrix and a the direct structure
matrix) is equal to the direct space metric tensor g.

(xi) Stereographic projections I: Repeat the consiruction of Fig. 7.9, but

this time, place the [110] direction at the center of the projection, and

[170] at the point B,

Stereographic projections II: Consider a unit cell with the following

lattice parameters: (2,2, 3, 90, 90, 120).

(a) Create a table similar to Table 7.2, for all the directions of the types
[10.0], 1.0}, [00.1], and [10.2] (include all appropriate permu
tions and negative signs). Then, create &
with radius 10 cm, and plot all the points.

(b) On this projection, identify as many zones as you can find.

(¢) Repeat the same for the plane normals of the types (10.0), (11.0),
(00.1), and (10.2) (and all permutations and negatives), and plot
these points on a similar stereographic projection

(d) Again, identify

stereographic proj

as many zones as you can find.
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Symmetry in crystallography

“Mathematics possesses not only cold truth bus supreme beauty, a beasy cold and
austere, like that of a sculpture, sublimely pure and capable of stern perfection,
such that only the greatest art can show.”

Bertrand Russell

8.1 Symmetry of an arbitrary object

163

Many objects encountered in nature show some form of symmetry, in many
cases only an approximate symmetry: e.g. the human body shows an approx-
imate mirror symmetry between the left and right halves, many flowers have
five- or seven-fold rotational symmetry, etc. ... In the following paragraphs,
we will discuss the classical theory of symmetry, which is the theory of
symmetry transformations of space into itself

If an object can be (1) rotated, (2) reflected, or (3) displaced. without
changing the distances between its material points and so that it comes
into self-coincidence, then that object is symmeric.

A transformation of the type (1), (2), or (3) or combinations thereof that
preserve distances and bring the object into coincidence is called a symmetry
operation. Tt should be clear that translations can only be symmetry operations
for infinite objects. The word “symmetric” stems from the Greek word for
“commensurate.” Note that the identity operator (i.e.. not doing anything) is
also considered to be a symmetry property: therefore, each object has at least
ane symmetry property.
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sixfold symmetry of th
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Symmetry in crystallography

Throughout this chapter and many of the following chapters, we will need
to write down shorthand notations for all the symmetry operations that we
will introduce. We will follow the Jnternational Tables for Crystallography
(Volume A, Hahn, 1996) for all notational conventions. In particular, there
are two major schools of notation: the international noration (also known
as the Hermann-Mauguin notation) is the standard, which we will follow
throughout this text. An alternative notational convention, used primarily by

hysicists and chemists, is the Schonflies notation. Since this latter notation
is widely used in the scientific literature, we will, whenever possible, always
give both notations. The Hermann-Mauguin notation will always be used
first, followed by the Schonflies notation in parenthesis; for instance, the
identity operator mentioned in the previous paragraph will be denoted by the
symbol 1 (), where 1 is the Hermann-Mauguin symbol and E the Schonflies
symbol. Note that we use a sans serif font for all operator symbols. While
this dual notation is longer than either one used individually, the advantage
is that the reader will become familiar with both notational schemes. Most
symmetry operations can also be represented by a graphical symbol, and we
will introduce those symbols at the appropriate locations throughout the text.

Before we begin a detailed overview of symmetry operations, let us first
approach the problem with some simple two-dimensional considerations.
Consider a hexagon with an edge length a, centered in the origin of a
Cartesian reference frame, as shown in Fig. 8.1(2). The hexagon has six
vertices (comers), labeled 1 through 6. It is obvious that a rotation of 60°
around the origin, or any multiple of 60°, will generate a new hexagon that
coincides with the first one (i.c., it cannot be distinguished from the first one)
According to our definition of symmetry, this means that the hexagon has
rotational symmetry around an axis normal to the hexagon, passing through
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the origin. If we consider one of the vertices, say point 1, then we can ask
the question: what will be the location of this point after we carry out a
(counterclockwise) rotation of 60°?' From the drawing, it is clear that point 1
will move to point 2, 2 will move to 3 and so on; the final point 6 will move
to 1. The coordinates of each point can be read from the drawing, but what
we really need is a mathematical method to compute the coordinates, starting
from the initial coordinates. In the mathematical lterature this can be written
4 a permutation matrix of the vertices: (123456) — (612345).

Consider the two-dimensional Cartesian reference frame shown in
. 8.1(b). A general point P has coordinates (v, ). and is represented by
the position vector r. We apply a counterclockwise rotation around an axis
perpendicular to the plane of the drawing and going through the origin O.
The rotation angle is . The point P is now rotated to the position P',
position vector ¢’ and components (x','). The angle between the original
position vector r and the e, axis is @. From the drawing, we find that the
components of the new position vector are given by:

X' =1 cos(0+a);

¥ =r'sin(0+a),

where 1 = || = |r| =
functions we find:

Applying the addition theorems for trigonometric

¥ = r(cos fcos — sin sin a);

¥ = r(sinfcos v+ cos sin ).

From the drawing, we also find that x = r cos c and y = rsin a, which leads to;

xcos0—ysinf;

¥ = xsin0+ ycos,

‘which can be rewritten in matrix form as:
X" ‘costl  —sinfl X
O- =0 e

! It important o note that a counterclockwise rotation i the common and International

sallographic convention for defining a rotation operation. In literature from other felds,
hosen s the convetion. I reading the literature it
s, thercfore, important to identify the convention being used.




Symmetry in crystallography

We find that a rotation around an a
D.(6). In two dimens

an be represented by a rotation matrix

ns, we have:

Dy(6) = (CU#H famﬂ)

g cosé,

In 3-D, the rotation matrix will become a 3 3 matrix. The easiest case is
the one that we already worked out, since the third dimension e, can be
chosen along the rotation axis. The rotation axis itself does not change during
the rotation, and we say that the rotation axis is invariant. The 3-D rotation
matrix is therefore given by:

cosf  —sing 0
Di(@)=|sind  cos0 0 (82)
0 01

For simplicity, we will, throughout this book, drop the subscript 3 on D,
D =D, The coordinate transformation in 3-D is explicitly given by

x cosB  —sing 0\ (x
¥ cosf 0 8.3)
z 01

or, altematively:

xcos - ysind;

¥ =xsinf+ycosd;

As expected, we find that the third component z does not change during the
rotation.

Now that we have an expression for the coordinate transform:

n matrix
D, (6), we can determine the coordinates of the rotated points in Fig. 8.1(x)
for 6= /3. The matrix is given by:

So that the point 1 with coordinates (a,0) is rotated into the point with
coordinates a(1/2, v/3/2), which corresponds to point 2 (Fig. 8.1(a)).
Rotation matri

s have a number of spec

al properties:

(i) the inverse of a rotation matrix is equal 1o the transpose of that matrix.
This property makes it extremely easy to compute the inverse of any
rotation matrix. Any matrix whose inverse is equal to its transpose is
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‘generally known as an orthonormal matrix. As an example, consider the
2 % 2 rotation matrix D, (7/4}

‘The transpose of this matrix is:

o1 (3)

Upon multiplication of D, (/4) with its transpose we find:

L =1\ 1 D\_1/1 1\l -1y_(1 0
2(1 1) (—1 1) E(-l 1) (l 1) (o l)
which proves that D,(m/4) is an orthonormal matrix.

(i) For an orthonormal matrix, the sum of the squares of all elements on any
70w or column is equal 10 1. This can easily be seen from Equation 8.1,
since cos? 6+ sin

(i) The determinant of a rotation matrix is always equal to +1. Tt s casy to
show that det(Dy(6)) = det(D(8)) = cos® § +sin” 0 = |

Atthis point it is useful to connect what we have just derived with the theory
of coordinate transformations presented in the previous chapter (Section 7.4
on page 144). In that section, we defined a transformation matrix, a, that
transforms the old basis vectors, a, into the new ones, a/, as follows:

For the components of vectors, we found, in Table 7.1, that the transformation
relation is given by:
Pi=peagt

in other words, (o transform the coordinates, p,, of a point, we must post-
multiply by the transpose of the inverse of a;. In the present section, Equa-
tion (8.3) can be rewritten as:

P=Dyp;.

These two relations describe the same coordinate transformation, so that we
‘must have:

D=a. (84)
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tions for the coordinate

This means that we have two equivalent descrip
transformation (in this case a counterclockwise rotation by 7r/3): the descrip-
tion with the matrix D(0) operates directly on the coordinates p,, whereas
the description with the matrix « operates on the basis vectors a;. Both
descriptions describe the same transformation, and we will return to them in
Section 8.2 on page 170.

In all examples above, we have worked with the Cartesian reference frame
(¢,-¢,) defined in Fig. 8.1(b). As a consequence of this choice, the entries
of the rotation matrices are typically non-integer numbers, such as 1/2 or
/3/2. 1 we select a different reference frame, for instance (¢, ;) as shown
in Fig. 8.1(c), then the rotation matrix changes to a much simpler form, which
we will now derive for the 3-D case.

To determine the entries of the rotation matrix D(/3) with respect to the
primed basis vectors, all we need to do is figure out what happens to the basis
vectors themselves, For instance, the vector ¢, is rotated to €, +¢|, and ¢ is
rotated to —€|. The vector €] remains unchanged. These three relations are
sufficient to determine the entire matrix, since we can write:

110
100
0 01

‘The matrix on the right-hand side is the rotation matrix, D, with respect to
the primed reference frame. We see that it contains only the integers 0, —1
and +1. The standard procedure for the determination of a transformation
matrix is then described in Box 8.1. It is straightforward 1o show that the
points 2 through 6 of Fig. 8.1(a) can be obtained by repeated application of
the matrix D on the initial point 1

Let us consider another example: a mirror plane containing the Cartesian
e, and e, basis vectors (dashed line in Fig. 8.1(d)). This mirror plane leaves

n of a coordinate transformation matrix

Box 8.1 Determinat

Here is how to determine a coordinate transformation matrix based on a
drawing:

(i) determine from a drawing how each of the basis vectors transforms
under the symmetry operation, and write the transformed basis vector
as a linear combination of the untransformed basis vector
take the coefficients of this linear combination and write them as the
columns of the matrix D. The coefficients of the first transformed
basis vector go in the first column, and 0 on.
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the vectors in the plane unchanged, and replaces e, by —e,. Therefore, the
transformation matrix is given by:

where the argument m of the matrix represents the mirror plane. We will
n in a later section. Note that this matrix

introduce a more complete not
has a negative determinant, equal to —1. This indicates that this symmetry
operation results in a reversal of handedness, which we will discuss in detail
in Section 8.2.5. The entries in the above matrix are simple integers, because
the mirror plane contains two of the basis directions. It s left as an exercise
for the reader to determine what the matrix would look like if the mirror plane
were rotated clockwise by 30°

If we describe the mirror planes of the hexagon (all six of them are shown
in Fig. 8.1(c)) with respect 1o the primed basis vectors, then once again all

mirror planes can be represented by matrices which contain only the entries
0, ~1 and +1. The matrices for the mirrors 1, 3, and 5 are given by:

1 00

Dm)={1 -1 0

0 01

-1 10
pmy=( 0 1 of;

0 01

-1 0 O

Dm)={-1 1 0

0 0 1

We leave it to the reader to determine the remaining three matrices D(rr, ).
In the remainder of this book, we will nearly always use symmetry trans-
formation matrices that are defined with respect to the basis vectors of the
Bravais unit cell, so that the entries of those matrices will be the integers 0,
. and -+1. This will allow us to simplify the description of the symme-
try of all crystals. In the following section, we will discuss in more detail
the nare of symmetry operations, in particular those that are relevant to
crystallography.

* The eniris in this new matrix will na longer be simple iniegers.
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8.2 Symmetry operations

Fig. 8.2, lustration of an
active and a pasive operator.

There are two ways to view the action of a symmetry operator on an object:
one can either interpret the symmetry operator as acting on the object, leaving
the reference frame unchanged in space or, equivalently, one can let the

operator act on the reference frame, leaving the object unchanged in space. If
we represent the object by the symbol , and the vector r represents a point
of the object, then this relation can be expressed mathematically as follows:

F(ol) 17 (x)] ®5)

where O represents the symmetry operator and O~ its inverse. This can be
understood easily when the operator is a simple rotation: rotation of an object
through ~+60° is the same as rotating the reference frame through an angle

of —60° (see Fig. 8.2). If the object is moved in space, leaving the reference
frame constant, then the operator is said to be an active operator. If the
reference frame is moved in space, leaving the object unchanged, then the
operator is said to be a passive operator. In this text, we will always consider
a symmetry operator s acting on the coordinates of the material points, rather
than on the reference frame. In other words, we will always take the active
interpretation of a symmetry opera

We saw in the previous section, that there are two equivalent matrix
descriptions for the coordinate transformation corresponding to the symmetry
‘operation: the matrix D(0) represents the transformation of the coordinates, p,.

on.

and is, hence, a representation of the acfive interpretation. The other matrix,
@, transforms the basis vectors, and is, hence, a representation of the passive
interpretation.

Any physical property of the object/crystal will be invariant under the
symmetry operator

F

FOI) =7 @) (86)

y Passive operstor

‘Active operator
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‘This implies that the inverse transformation, from 1 to r exists and is also
a symmetry operation. If several symmetry properties exist, then it can be
shown that any combination of them will also be a symmetry property. We

will study such combinations of symmetry operators in the next chapter, when
we introduce the concept of point group.

Symmetry is an inherent attribute of an object; without a certain exter-
nal measure, symmeric orientations of an object are indistinguishable. Note
that such an external measure would destroy the symmetry because it would
require the attachment of a reference point to the object. Hence, symme-
try can be a very subtle aspect of an object; the more intricate symmetry
properties, such as time reversal symmetry in magnetic materials, can be
difficult to detect and understand. For now, we will restrict ourselves to
study basic symmetry operati
an object

ns, namely the isometric transformations of

8.2.1 Basic isometric transformations

An isometric transformation is a transformation that leaves the metric

properties of space unaltered, i.e., no stretching, twisting, or bending is
involved.

Obviously, empty space is invariant under any kind of symmetry operator,
even the non-isometric ones. In order to distinguish between isometric and
non-isometric operators, we have to provide a gauge by which distances and
coordinates can be measured. In 3-D-space, this can be done by providing
three basis vectors or four non-coplanar points, i.e., an asymmetric tetrahe-
dron. The four points are the origin and the three endpoints of the basis
vectors. Any fifth point can then be located with respect to this tetrahedron
and, hence, any object can be fully and unambiguously defined, except for
its symmetric variants.

1t can be shown that any isometric transformation can be reduced to either
a translation, a rotation, or a reflection, or a combination of these. The
mathematical proof uses the concept of the Chasles-center but this is beyond
the scope of this text. The proof involves consideration of two identical
asymmetric tetrahedra in different orientations on different locations and
determination of the ways to bring them into self-coincidence.

There are two different correspondences between an object and its sym-
metric variant(s):

o coincidental or congruent equaity = a transformation of the first kind

o mirror equality = a transformation of the second
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Transformations of the first kind are also known as proper motions, s
they can be physically realized." The mirror operation is not a proper motion,
because it is physically impossible to change the handedness of an object
without actually deforming it. Therefore, this type of operation is distinguished
from the proper motions. Any transformation of the first kind is either a
sranslation or a rotation or a combination of both. A transformation of the
second kind is either a reflection or an inversion. Before discussing the
various fundamental symmetry operations in more detail, we will first derive
some important constraints on the crystallographically permitted rotational
symmetri

8.2.2 Compatibility of rotational symmetries with crystalline translational periodicity

In this section, we address the question of compatibility (or incompatibility)
of rotational symmetry axes with the translational symmetry of crystalline
solids. As an example, consider the hexagonal tiling of the 2-D plane in
Fig. 8.3(a). There are no gaps in between the tiles, so that no area is lefl
uncovered. If we attempt to repeat this with a five-fold tile, then we quickly
find (Fig. 8.3(b)) that we cannot tile the 2-D plane with tiles of five-fold
symmetry. The same is true of higher order polygons, such as the heptagon,
the octagon, and so on. Figure 8.3(c) shows an example of what may be a
molecular solid in which pentagonal molecules decorate the sites of a square
latiice. Although the local units are pentagons, the five-fold symmetry axi
is lost since it is inconsistent with the square lattice. Furthermore, the four-

fold symmetry, which would exist when spherical atoms decorate the square
lattice, is lost by virtue of the lack of four-fold symmery in the pentagonal

JoooN
flg

A
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Fig.8.3. () Ting of the 2.0 plane withhesagons istating the compatbily f  sxfold symmetry
s and aystaline perioicty (3 lutaion o the fact ot the 2:D plon cannot be e with
pentagons; () square ltce decorated with pentagons; and (¢) - Penrose ing which presenves
e fold rotaionalsymmety

We all know from experience that we can translate and rotate arbitrary objects, but e
‘canno change their handedness without temporarly changing their shape. For instance, to
turn 4 left handed glove into 4 right handed love, we must wr it inside-out, which is ot
an isometric operation
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basis. Figure 8.3(d) shows an example of what may be called a 2-D quasi-
erystal, in which two different hombuses are used to fill the plane, in a such
a way that five-fold rotational symmetry is preserved. In Chapter 16, we will
discuss in more detail quasi-periodic motifs which tile the plane and preserve
five-fold rotational symmetries but do not involve tilings with pentagons. This
notion can be generalized to include quasi-periodic tilings preserving other
symmetries, either non-crystallographic or crystallographic.

The fact that only 1-, 2-, 3-, 4-, and 6-fold axes are compatible with crys-
talline axes was elegantly demonstrated using the rule of rational indices
(Haily, 1784, 1801, 1822). The rule of rational indices is illustrated geometri-
cally in Fig. 8.4. Consider the two lattice points A and A" which are separated
by a unit translation vector, t. Consider also a rotation operator, D, with an
axis normal to the plane containing the vector AX’ and passing through the
point A. If D represents a counterclockwise rotation by the angle , it takes
lattice point A" into a symmetrically equivalent lattice point B. Since every
rotational symmetry operation has an inverse operation, we may also consider
a rotation by —a about the point A’ which yields the lattice point B' starting
from A. Finally, if the rotations are consistent with the translational symmetry
of the lattice, then the distance ¢ (the length of t') between B and B’ must be
an integral number of unit translations  (the length of 1), i..

£ =m, ®7)

where pn is an integer. From exar
it is also clear that

nation of the geometry shown in Fig. 8.4,

¢ =1+2rcosa (8:8)

Combining the previous equations, we conclude that:

cosa

8.9)

IF m is an integer, then s0 is (1~ r). Furthermore, we know that |cos ] < 1,
and, therefore, |1~ m| < 2. This, in tarn, means that 1 —m =~2,~1,0,1,2

Fig. 8. Latice ranslaion vctor, , connecting poinis A and A'. The latice point B and 8" are
generated by a rotational symmetry axis (otation by a) normalto the plane and passin through sites
Ao A, respectively
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and, hence, a =, 27/3, 7/2, /3, or 0, respectively. Thus, the only rota-
tions that are consistent with the translational symmetry found in periodic
crystals are the 1-fold (a = 27), 2-fold (a = ), 3-fold (= 27/3), 4-fold
(a=/2). and 6-fold (a = /3) rotations. Note in particular the absence
of five-fold rotations; in Chapter 16, we will describe in detail how crys-
tals with five-fold rotational symmetry but no translational symmetry can be
constructed.

The derivation of the compatible rotational symmetries can be repeated
more elegantly by considering the trace of the rotation matrices, as explored
in a problem at the end of this chapter.

8.2.3 Operations of the first kind: pure rotations

Fig. 8.5, Rendered 30
dravings o (3) three-fod,
0) four-fod, and (0 sixfold
otatonal symmetry, along
with 2.D drawings of the
symmetry operaor (second
1ow), and the comresponding
stereographic pojections.

A pure rotation is characterized by a rotation axis and a rotation angle that is
chosen to be positive for a counterclockwise rotation. The rotation axis can
be described by a direction vector [uvw], or by the equation of the line that
represents the rotation axis. It is customary to write the rotation angle as a
fraction of 277, ie., @ = 27/n. The number n s the order of the rotation and
we say that a rotation is n-fold if its angle is given by 27/n. The order
can take any integer value from n = 1 (the identity operator, 1 (B), o n =

for a circle. Examples of rotation axes of orders 3, 4, and 6 are shown n
Fig. 8.5. Note that the object that is used to illustrate the rotational symmetry,

® ) ®
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in this case a distorted helical string of spheres, should always be taken to
be an object which itself does not have any symmetry other than the identity
operator. If we had used a sphere as object, we would not have discovered
that the orientation of the object changes while it is rotated.

A pure rotation is denoted by the symbol n (C,), with  the order of the
rotation.’ Tn many cases, the rotation axis will be parallel to the third basis
di iie., parallel (0 the crystallographic ¢ axis. In those cases, we do
not need to state explicitly the orientation of the rotation axis. For all other
cases, however, the rotation symbol must be augmented by information about
the orientation of the rotation axis. This can be done in two ways: we can use
the direction indices [uvw] of the rotation axis, or we can use the equation
of the line coinciding with the axis. Hence, a three-fold rotation axis aligned
along the [111] direction of a cubic reference frame can be represented as 3
(C;) [111]. The equation of the line along this direction s given by
so that an alternative notation would be 3 (C,) x. x. x. This latter notation is
the one used in the International Tables for Crystallography (Hahn, 1996);
the former notation is used in many textbooks, e.g., Bums and Glazer (1990).
Another example can be found in Box 8.2.

In drawings, we use a standard symbol to indicate an n-fold rotation a
‘The symbol is a filled regular polygon with 1 sides. A six-fold rotation axis
perpendicular to the drawing plane is then indicated by the @ symbol, a
three-fold axis by A, and a two-fold axis by |. The use of these symbols
is illustrated in Fig. 8.5(d) through (i): the center row shows the graphical
symbol surrounded by open circles with a plus sign next to them. The rotation
operator takes any one of these points and rotates it onto the next one (in
4 counterclockwise sense). During the rotation, the elevation of the point

g

Box 8.2 Determination of a rotation symbol

A two-fold rotation axis is oriented so that it is normal to the ¢ axis of
a cubic reference frame, and it biscets the angle between the a and b
directions. What are the two full symbols for this rotation operator?

Answer: The two-fold rotation axis is represented by the symbol 2 (C). but
since it is not oriented along the ¢ axis, we must add information about the
orientation. It is easy 10 verify that the axis lies along the [110] direction,
5o that the symbol is writien as 2 (C,) [110]. The equation for the line
along this direction is given by x = y and z = 0, so that the international
symbol is given by 2 (C,) x,.x,0.

4 Recallthat we statc the Hermann-Mauguin symbol first, followed by the Scheaflis symbol

between parenthescs.
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Fig. 86, (2) fourold

) twoold, and (9 three-old
otations used as examples in
the txt.
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does not change, so that if one point is at some positive distance above the
plane of the drawing, indicated by the + sign, then all of them are. This i
consistent with the fact that rotations occur in a plane normal to the rotation

axis. The bottom row of Fig. 8.5 shows a commonly used representation of
ymmetry operations by means of stereographic projections. The rotation axi
s aligned along the north-south center line, which is normal to the plane
of the drawing, and a point in the northern hemisphere, represented by a
filled circle, is rotated to its equivalent positions, all of them in the northern
hemisphere. In the remainder of this book, we will make frequent use of both

graphical representation schemes.
In Section 8.1, we have scen that rotations can be represented by orthogonal
matrices D(0), and we considered examples of rotations around the

xis of

the reference frame. Additionl examples are shown in Fig. 8.6. Fig. 8.6(2)
shows a four-fold rotation around the x axis of a cubic reference frame. The
vector is obviously invariant, whereas e, is rotated onto e,, and e,

i rotated to —e,. Using the method described in Box 8.1, we find for the
transformation matrix:

1o o
p={0 0 -1 (8.10)
01 o
For a two-fold rotation 2 (C;) ¥, x,0 (or 2 (C;) [110]), shown in Fig. 8.6(b),
we find:
0 1 0

1o o], ®.11)
0 0 -1

and for a3 (C,) x..x, x rotation (3 (C;) [111], Fig. 8.6(c)) we have:
0 0 1
D={1 0 0 ®.12)
0 1 0,

8.2.4 Operations of the first kind: pure translations

A pure translation is characterized by a translation vector t. We have already
discussed tra

ations in Chapter 4. In erystals, a translation vector is limited
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10 the lattice vectors and,
later that certain fractions of lattice translation vectors may also be allowed.
In drawings, translation vectors are indicated by arrowed lines, ie., —>.
The international symbol for a translation is t(u, v, w), as in t(1/2,0,1/2);
alternatively, one could also use t[uuuw], since a translation implies a direction,
which is described by a direction symbol. We remind the reader that a
translation is only a true symmetry operation in an infinite solid.

In the preceding sections, we have seen that rotations can be represented
mathematically by matrices. Tn the remainder of this section, we will explore

f present, the lattice centering vectors. We will see

the possibility of representing translations also by means of matrices. This
may seem a bit odd, since a translation is usually represented as a vector
addition, e.g., translation by a vector t is described by the equation:

et (8.13)

Itis clear from this refation that we cannot simply multiply © by a matrix
1o get the same result. It would be useful to have a matrix representation
for a translation, since then we could represent all symmetry operations by
matrices. It turns out that we can do this by working with four-dimensional
(4-D) vectors instead of the regular three-dimensional vectors. This sounds
iple: 10 each triplet of vector compo-

complicated but it is really very si
nents (x,,x;,.3,) we simply add the number 1 as fourth component, i.c..
(X1, %, x;, 1). These types of coordinates are called normal coordinates or
homogeneous coordinates (see Box 8.3). The fourth component st always

be equal 1o 1, and is denoted by x,,

Box 8.3 About normal or homogencous coordinates

Four-dimensional coordinates are often used in the world of computer
graphics (e.g., Salmon and Slater (chapter 13, 1987)) and make it relatively
easy to carry out a large number of different coordinate transformations,
such as rotations and translations (which we discuss in more detail in the
main text), but also scaling, orthogonal, and perspective projections from
3D to 2-D. In particular, viewing transformations, which convert 3-D
objects into 2-D representations on a computer screen, are conveniently
expressed in normal coordinates. A general homogeneous coordinate cor-
responding to a Cartesian point (x,, ed by (w, wy, ws, w),
with w 2 0. Equivalently, the 4-D coordinate (x, y, z, ) corresponds to the
v/w,z/w). In all cases of impor-
1, 50 that conversion between
nply a matter of dropping

point with Cartesian coordinates (x/w,
tance for crystallography, we may take w
conventional and homogeneous coordinates

(or adding) the fourth component x, = 1
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Consider the component notation for Equation 8.13 above:

X =k,

whete the components of t are denoted by u;. This relation is valid when the
index i takes on the values 1,2, and 3. If we assume that it is also valid when

the index, i, goes from 1 to 4, then we can write out the following explicit
relations (recall that x, = u, = 1):

1 +0% 3 +0x 3+ iy X x5

Xy =05+ X 00X 33+ 1y X 33

H=0x 00X X+ 1 Xyt X X3

Xy = 0% +0X 0y +0 X X, 41ty X 3,

The last equation is trivial, since it simply states that 1= 1. We can rewrite
this set of equations in matrix form, as follows:

(8.14)

Tt is clear that this equation is completely equivalent to ¥ = r+1, because
when we write it out in components, we recover the correct relation. By going
to 4-D vectors instead of 3-D, we have been able to include the translation
components u as part of a 4 x 4 matrix. We don’t have to pay any attention
to the last equation of this set of four, since it is a trivial one (1

We will introduce the symbol W for the 4 x 4 matrix defined above. In
other words

where the tilde  indicates that normal coordinates are being used. The indices
i and j both take on values from 1 to 4. Note that W consists of three

5 It is good practice to always cary out all computations including this fourth row: o the end
of a computation s row should always consist of three zeros and a one. When this is not
the case, then there must have heen a computational error somerher!
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parts: @ 3x 3 matrix in the upper left comer, a 3 1 column in the top
rightmost column, and a 1 x 4 row at the bottor

1o o |u
01 0| |u
w 00 1| |u
000 1

Since the bottom row does not contain any information, we can define a new
notation, which is equivalent to the matrix W. This notation is known as the
Seitz symbol, written as (D|t). The symbol D
and ¢ represents the translation. For a translation, D is the identity matrix,
which we can represent by the symbol E. Therefore, the Seitz symbol for
a translation is given by (EJt). It is always straightforward to construct the
matrix W when the Seitz symbol is known.

We can also use this notation for rotations. In that case, there is no trans-
lation, so that t = 0, and the Seitz symbol for a pure rotation becomes (D[0).
‘The 9 matrix for a rotation is then given by:

Dy Dy Dy O
D, D, Dy 0
W=loy by Dy 0
0 0 01

(8.15)

The Seitz symbol for the identity operator is simply (E|0).

8.2.5 Operations of the second kind: pure reflections

In Fig. 8.7 the two different types of operation of the second kind are depicted:
a pure reflection, and an inversion. A pure reflection, also known as a mirror,
is characterized by a plane, indicated in a drawing by a thick solid fine
if the plane is at an angle with respect to the plane of the drawing. If the
mirror plane lies in the plane of the drawing, then the symbol is . Examples

are shown in Fig. 8.7(c) and (d). The open cirele with a plus sign is copied
into the second circle, which now has opposite handedness. This is indicated
by means of a comma inside the circle. When the two circles coincide in the
drawing, as in (d), then a vertical line divides the circle into two halves, each
with its own + or ~ sign, and the appropriate comma. The stereographic
projections for these two cases are shown in Fig. 8.7(f) and (g). Note that in

stereographic projections, one does not usually distinguish between points of
opposite handedness
‘The Hermann-Mauguin symbol for a mirror plane is m, while the Schonflies

symbol is the Greek letter o, resulting in the notation m (). Sometimes,
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the Schonflies symbol has a subscript which indicates the orientation of the
mirror plane. The symbol m () refers to a mirror plane that is normal © a
given direction (typically a rotation axis), whereas M (a,) represents a mirror
plane which contains that direction. An additional symbol. m (). is also
used as a variant of m (@.).

The intemational notation for a mirror plane is sometimes extended by
providing information on the orientation of the plane. This can again be done
in two possible ways, either by specifying the direction of the normal to the,
mirror plane, or by writing down the equation of the plane. A mirror plane
parallel to the (110) plane in a cubic system would be written as either m (o)
[110] or m (o) x, —

We have already seen how we can represent a mirror operation by a matrix
of the type D(m) (see page 169). Tt is then straightforward to write down the
Seitz symbol for a mirror operation: (D(m)[0).

d: inversions

takesall the object
and projects them into the new points given by . The operation is denoted
by the symbols T (). The inversion operation is illustrated in Fig. 8.7(b): the

® ® )
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helix in the front of the image is inverted to the back. Note that this changes the
handedness of the helix. In drawings, such as Fig. 8.7(¢), the inversion center
is denoted by the symbol o (i.c., a small open circle). Tt

mpossible to bring
into coincidence with the original object by rotations and
translations alone. Inversion symmetry only exists in three dimensions, and is
equivalent to a 180° rotation in two dimensions (proof left for the reader). Tn
the inversion is represented as shown in Fig. 8.7(h).

Itis easy to see that the matrix representing the inversion operator is simply
—E, i.e., a matrix with —1 along the diagonal and zero elsewhere. The Seitz
symbol for the inversion aperation is then (—E[0).

an inverted obj

8.2.7 Symmetry operations that do not pass through the origin

Fig.8.8. Decomposiion of

All of the operators introduced so far always passed through the origin of
the reference frame. Obviously, it is possible for a symmetry operator to be
Tocated at some other point (this will become important when we talk about
space groups in Chapter 10). We must then ask the question: how do we
compute the matrix W for a symmetry element that is not located at the
origin? As an example, consider the six-fold axis @ located at the point
(1/2.1/2.0) and parallel to the ¢ direction of the reference frame shown
in Fig. 8.8. Rotation of point 1 over an angle of 60° can be decomposed
into three elementary steps (elementary in the sense that the decomposition
consists only of pure operations, as introduced in the preceding sections). If
we call the position vector of the rotation axis 7, then the following three
steps are equivalent to the original rotation:

(i) translate the point 1 by a vector 7 t0 the point 2;

tate counterclockwise by an angle of 60° around an axis through the
origin to the point 3;

(iii) translate by a vector 7 to the point 4.

(172,1/2,0) into two,
ranslaions and a roation
about a sixfold ais through
the orign
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This is the same as going directly from 1 10 4 by application of the rotation
axis at 7. We already know that a translation is described by a matrix W, of
the form:

00 7
10 5
[
00 1

50 that the complete transformation is given by the ordered matrix product:

W=w,wgW.,

1 ~1 0 0y /1 0 0
o1 0 1o olfo 1o
“lo o 0 1 offo o1 ’
0 0 0 00 1/\o 0o
0 -1 0
oo
“lo o
o 00 1

1f we multiply this matrix by a general position veetor (x,y. z. 1), then the
result is (1= y,x+y-+1/2,2,1). For the point 1 in Fig. 8.8, with normal
coordinates (3/4,1/4,0, 1), we find the new coordinates (3/4,1/2.0, 1),
which is in agreement with the graphical result, This decomposition technigue

is generally valid for any symmetry operation which does not pass through
the origin.

8.3 Combinations of symmetry operations

8.3.1 Coml

Fig 8. Regulr three-fold
rotaton axs, peration of
three-fold roto-nversion and

oloinversion 3.

ation of rotations with the inversion center

‘The combination of a rot
on that a

jon axis with an
s is called a roto-inversion opera

wersion center located Somewhere
n. As an example, we Zombine
a three-fold rotation 3 (C,) with an inversion center 1 (i), as shown in the
Stereographic projections of Fig. 8.9. On the lefi-hand side, we show the
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Fig.8.10. Stereographic
projections for the
roto-inversions 1,3, 4, and 6.

8.3 Combinations of symmetry operations

projection of the standard three-fold rotation. On the right-hand side, we show
the roto-inversion. The roto-inversion rotates a point over an angle 277/3
and inverts the resulting point through the inversion center, as shown in the
‘middle projection.

‘The standard notation for a roto-inversion axis of order # is the symbol i,
e.g.. 3 (the Schinflies notation will be introduced in the following subsection)
The roto-inversions relevant to crystallography are 1, 2, 3, 4, and 6. The
corresponding stereographic projections are shown in Fig. 8.10. Note that for
all values of n which can be writien as # = 4&+2, the inversion actually
‘generates a mirror plane perpendicular to the rotation axis and the effective
order of the rotation axis is only n/2. In other words, the roto-inversion 6 is
equivalent to the rotation 3 (C;) with a perpendicular mirror plane m (). Note:
also that the two-fold roto-inversion 2 is equivalent to a simple mirror plane
m (g). On drawings, the roto-inversions are represented by special symbols
o for 1. § for 2, A for 3, ¢ for 4, and @ for 6.

The transformation matrix associated with a roto-inversion is obtained
by simply multiplying the rotation matrix with the matrix representing the
inversion operator. As an example, consider the four-fold roto-inversion 4
ariented along the z-axis of a Cartesian reference frame:

Wep=W.ig
~1 0 0 0N/ -1 0 0
o -1 o offt o000
“lo o -1 offo o1 0
o 0o o 1/\o o0 0 1
100
-1 0 00
=% o -1 o (8.16)
00 01

A point with coordinates (x,y,2)

8.3.2 Combination of rotations and mirrors

A mirror-rotation is the combination of a rotation axis with a perpendicular

‘mirror plane. Each point is first rotated over an angle 277/, and the resulting
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point is then mirrored through the plane. We have already encountered an
example in the previous section. Mirror-rotations of order n are usually ind
cated with the symbol . Note that for odd values of . the symmetry element
fi is actually equivalent to 2n; for values of n = 4N, with N an integer, there
is no difference between the symbol f and 7, as is easily verified with a
stereographic projection (reader exercise). Several mirror-rotations relevant to
crystallography are shown in Fig. 8.11. For historical reasons, the Schonflies
notation makes use of mirror-rotations, while the Hermann-Mauguin notation
uses the roto-inversions, so that the combined symbol is a litile more dif
cult to remember. We introduce the following new Schinflies symbol for the

mirror-rotat

aCor

where the h subseript on the mirror plane indicates that the plane is ho
i.e., perpendicular (o the rotation axis. From the general rules above and the
illustrations in Figs. 8.10 and 8.1, it is not difficult to derive the following
list of relations:

Hermann-Mauguin S, Schonflies
roto-inversion  mirror-rotation

2 s, [
i S, <,
[ Se [
i s, S,
i 8 &
3 S, Can
14 S &
8 S, s,
bt Sie Cy
5 S5 Can

‘While the Schonflies notation for these symmetry elements (third column)
easy enough to remember, it is. unfortunately, nof the standard notation listed
in the International Tables for Crystallography (Volume A, Hahn, 1996).




185

ions of symmetry operations

The standard Schonflies notation is listed in the last column of the table
above. The general rule used to construct this table takes the order of the

roto-inversion axis, , and considers three distinct cases:

o m=4N, with N an integer: in these cases, there is no difference between

the roto-inversion and the mirror-rotation. The off
is then S, and the complete symbol is denoted by i (S,).
o m=2N+1 (ie. n is odd): in all these cases, the cquivalent mirror-
rotation has fwice the order of the roto: n. The official
5 Cyo 50 that the complete symbol becomes 7 (C,y) for

nversion, i.e.,

Schonflies symbol
1 odd.
4N +2 (i.e., even numbers that are not a multiple of 4): in such cases,

the equivalent mitror-rotation has half he order of the roto-inversion axi.
ie. = In. Itis easy to show, using stercographic projections, that we
have i = 4n/m (where the symbol n/m means that there is a mirror plane
normal to the rotation axis). The official Schonflies symbol is Cyq, 50
that the complete symbol becomes n/m (Cy,,).

‘The 4-D transformation matrices associated with the mirror-rotations can be
abtained easily by multiplying the matrix for a mirror plane by the rota-
tion matrix (reader exercise). In the remainder of this book, we will always
work with roto-inversions instead of mirror-rotations. However, the Schon-
ions will always be based on the mirror-rotation.

flies symbol for these oper

8.3.3 Combination of rotations and translations

Itis a general property of the symmetry operations we have discussed so far
that, with the exception of the translation, they all return to the same point
when applied repeatedly. For instance, when we apply a six-fold rotation
consecutive times, we recover the initial point; when we apply a mirror oper-
ation twice, we recover the same point. This means that, for each symmetry
element discussed so far, there exists an integer k, such that O* = 1 (). If we
include translations, then this statement is no longer true, since repeated apera-
tion of the translation operator takes us ever further away from the initial point

Combining translations with rotations yields a new type of symmetry ele-

ment: the screw axis. Consider a rotation axis of order n, and apply it several
times in a row. After every rotation step, we also translate the resulting point
by a certain vector 7, parallel to the rotation axis. If we apply this opera-
tion 1 times, then the resulting point will be translated with respect to the
original point by a vector n7. Since we are working in a 3-D lattice, this
new point must again be a lattice point, which means that 7 = mt, where
n axis. We have, hence,
ts of an n-

s the shortest lattice vector parallel (o the rota
created a new symmetry operation, the screw axis, which cons
fold rotation combined with a translation parallel to the rotation axis t by a
s called the pitch of the screw axi

veetor 7=

t/n. The distance 7= ||
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‘The resulting symmetry element is generally denoted by the symbol n,,. If
m=0, then there is no translation associated with the rotation and we recover
the proper rotations as a subset of the screw rotations. The value of m must
lie between 0 and n.

| A screw axis n,, consists of a counterclockwise rotation through 277/n,
followed by a translation mt/n in the positive direction along the rotation
axis.

An example of the screw axis 6, is shown in Fig. 8.12(a): the vertical line
indicates the screw axis. The helix labeled 0 is the starting point. After a
rotation of 277/6, the resulting helix is translated by a vector 7 =1/6 to the
point 1. Another rotation followed by a translation leads to point 2 and so on,
until point 6, which is located at 2 lattice vector t = 67 from point 0. The 6,
operation, shown in Fig. 8.12(b), consists of a 60° rotation and a translation
by 7=2t/6 = t/3. Both vectors t and 7 are indicated on the drawing. The
helix at point 0 is first rotated over 60° counterclockwise (indicated by the
curved arrow), then translated over 7, rotated again, translated, etc. Afier
three rotations, the resulting point has been translated by a distance 37 = t
The following three points are located in the next unit cell along the rotation
axis. Since ¢ is a lattice vector, there must also be corresponding points in
the lower unit cell (points 4, 5, and 6). We can construct the same drawing
for the 6, axis (reader exercise); the resulting screw is identical to 6,, but has
opposite rotation direction. We thus find that 6, produces the mirror image of
6,. This is true for all screw axes: the screw axes of the type n, and n, _,, are
each other's mirror image. A screw axis is called right-handed if m < n/2,

@ ®)
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Iefi-handed if m > n/2 and without hand if =0 or m = n/2. Serew axes
related to each other by a mirror operation are called enantiomorphous.

‘We have seen in Section 8.2.1 that the only rotations of importance to
classical crystallography are 2,3,4, and 6-fold rotations; hence, the only
screw axes that we will consider in this text are (with their official graphical
symbols): 2, .3, A, 3, A4, .4, 9.4, 6, .6, 8.6, 8.6, @
and 6, ‘ All screw axes are shown in Fig. 8.13 as both rendered drawings
and standard graphical representations: the number next to each cirele refers
1o the height of the circle above the plane of the drawing. The axes are all
perpendicular to the drawing.

To clude this

s section on serew axes, we determine how we can represent
this symmetry operator by means of a matrix. We have already seen all the
ingredients that we need to come up with a compact notation. The screw axis
has both a rotation and a translation, so that the Seitz symbol is given by
(D(6)|7). The 4 x 4 matrix W is then easily constructed by taking the 3 x 3
rotation matrix and combining it with the column vector of the translation
components. As an example, a screw axis of the type M along the ¢ axis of
a hexagonal reference frame is described by the matrix:

o
“’ (8.17)

cool

1
1
0
0 0

0
0
i
1

We leave it as an exercise for the reader to dete
of a 4, operator parallel to the ¢ a

the screw a

i the matrix representation
s of a tetragonal reference frame, when
s goes through the point with coordinates (1/4, 3/4, 0).

8.3.4 Combination of mirrors and translations

The last class of symmetry operators involves combinations of mirror planes
nd translations. As indicated in Fig. 8.14(a), one could combine a mirror
plane with a translation over a latice vector pasallel 0 the plane. This does
not

€ rise 10 a new symmetry operation. One then defines the glide plane
as the combined operation of a mirror with a translation over half a lattice
vector parallel to the mirror plane. An example is shown in Fig. 8.14(b).

The allowed glide vectors must be equal to one half of the lattice vectors,
In the case of centered Bravais lattices, there may be additional glide vectors,
equal 10 one half of the centering vectors A, B, C, and I. Table 8.1 lists the
various possibilities and names for all types of glide planes.®

© I the nternational Tables for Crysialiography (Volume A, Hahn, 1996), the concept of
double gides is wsed. This refers o the fact that sometimes both  and b glides are
llancously prescnt, A special geaphical symbol and notation are used to deserite these
cases (see page 6), but, i this haok, we wil not make any use of double glide plancs
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Fig.8.13. Rendered perspective
drawings of the crysalographic
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‘The official drawing symbols for glide planes depend on the orientation of
the plane with respect to the drawing. If the plane is perpendicular or at an
angle to the drawing, then the plane is indicated by a solid bold line for m (o),
a dashed bold line for a glide with translation in the plane of the drawing, a



Fig. 8.14. (o) the combinaton
of a mirror plane with an
integer-alued translation does
ot give rse to a new
symmety operaton; ) 2
side plane, consisting of &
mitor plane and a halfinteger
ransiaton.

8.3 Combinations of symmetry operations

‘Table 8.1. Different types of mirror and glide planes, their symbols and glide
vectors. Glide vectors with a (1) symbol are only possible in cubic and tetragonal
systems.

Name Symbol Glide vector(s)
mirror m none
axial glide. a a2
b b2
¢ /2
diagonal glide n AB.C
diamond glide a (a+b)/4, (h<)/4, (ca)/4
(@tbxo)/4 ()

dotted bold line for a glide with translation perpendicular to the plane of the
drawing, and a dash-dotted bold line for a diagonal glide (see Fig. 8.15). Note
that, once again, a circle reflected in a mirror plane s represented by a circle
with a comma in the center, (o indicate that an 0dd number of reflections
relate that point to the original point. For glide planes parallel to the plane of
the drawing, one uses a symbol based on | which represents a pure mirror.
For an axial glide plane, one adds an arrow to the symbol in the direction of
the glide vector, ic., *. For a diagonal glide plane, the arrow points at an
angle away from the corner, as in /. Examples are shown in the right side
column of Fig. 8.15.

“The matrix representation for a glide plane is readily obtained by combining
the 3 x 3 mirror operation with the appropriate translation components. For
instance, an a-glide reflection in the plane z = 0 converts the z-coordinate
of any point into —z and translates that point by (1/2,0,0). The resulting
‘matrix is hence given by:

(8.18)

Toon
co-o
|

— o s
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Plane of symmetry (100) %5

4y Plane of symmetry (001)

O 0
O+ [l

@+ o+

The Seitz symbol is also shown readily to be (D(m)|), where 7 is the glide
vector. We leave it 10 the reader to determine the transformation matrix W for
a diagonal B glide reflection parallel to a (010) mirror plane going through
the point (1/2, 172, 1/2) (cubic reference frame).

8.3.5 Relationships and differences between operations of first and second type

Tn this section, we will take a closer look at the differences between operators
of the first and second kind. From the examples in the previous sections, we
can infer that the proper motions (operations of the first kind) are described
by orthogonal matrices with positive unit determinant, i.c.,

det|'D| = +1, (8.19)

whereas all transformations which change the handedness of an object (oper-
ations of the second Kind) have:

det|"D|

(8.20)

Successive products of any number g of operators of the first kind leave the
determinant unchanged:
det|'D,'D,y..."D;| = +1. ®21)

However, for operators of the second Kind, the handedness of the product
is determined by the number of operations: if ¢ is even, then the resulting
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Since the product of two orthogonal matrices is again an orthogonal matrix,
it follows that the combination of two symmetry operations must again be a
symmetry operation. Figure 8.16 shows two special cases: on the left, two
intersecting mirror plancs are shown to be equivalent to a rotation over twice
the angle between the mirror planes around their intersection line. On the
sight, it is shown that the combination of two parallel mirror planes with a

spacing ¢/2 is equivalent to a translation over a distance 1

We thus find that intersecting mirror-planes always imply the existence
of rotational symmetry. Parallel mirror planes always imply the existence
of translational symmetry. Tn general, it can be shown that the combina-
tion of two rotations about intersecting axes can always be replaced by a
single rotation: this is known as Euler’s theoren and the complete proof
of this theorem can be found in McKie and McKie (1986), page 43-47.7
This theorem is important for the derivation of all the point groups in
Chapter 9.

It is instructive to take a closer look at the 3 x 3 sub-matrix of the 4 x 4 sym-
metry matrices. If we ignore all translations, then all symmetry matrices of the
type:

7 Euler has many theorems that carry his name, and this is just one of them.
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Fig. 8.17. Three ratation axes
2,8,3nd € on a stereographic
projection, used o ilstiate
Euler’ theorem,
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Dy D; 0

Dy Dy 0
w=|? e

Dy Dy 0

0 0 1

represent symmetry elements which all intersect in one common point, namely
s easy 1o see: when the matrix D is multiplied by the position
cular

the origin. Th
vector (0,0,0), the result is always (0,0,0), regardless of the part
details of D. Hence, the origin is the only point that is invariant under all
symmetry operations D. For this reason, these operations are called point
symmetries

The question we must answer next is the following: is it possible for an
object to have multiple rotational symmetries, and, if so, which combinations
of rotation axes are allowed? The first part of this question is easy to answer:
take a cylinder for example. The cylinder has a rotation axis of infinite order

parallel 1o its long axis, and an infinite number of two-fold rotation axes
perpendicular to the long axis, going through the center plane. Thus, it is
possible for an object to have multiple rotational symmetries.

In the case of crystals, we must refine the second part of the question
to: which combinations of rotation axes are compatible with translational
periodicity? In other words, under which conditions can two (or more) rotation
axes simultaneously be compatible with the Bravais lattice? Consider the
stereographic projection in Fig. 8.17: there are three rotation axes, represented
by the poles A, B, and C. Then Euler’s theorem states the following (without
proof):

If the angle between the great circles AB and AC is @, the angle between
the great circles BA and BC is f. and the angle between the great circles
CA and CB is . then a clockwise rotation about A through the angle

2a, followed by a clockwise rotation about & through the angle 2 is
equivalent to a counterclockwise rotation about C through the angle 2.

4
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Fig. 818, Rendered

showing al si cystallographic
combinatons of mulip
rotation axes.

84 Point symmetry

If the rotation axes at A, B, and C are n-fold rotation axes, then the angles
2a, 2B, and 2y must be of the type 2/n with, in the case of crystals, n =
1,2,3,4,6. We can tum this statement around o that the angles between the
great circles connecting different rotation axes must be of the type 2a/2n, or
m/n. Note that these are angles between great circles, i.c., they are measured
on the surface of the projection sphere. The angles between the rotation axes
themselves can then be derived by means of spherical trigonometry. It can be
shown that the angles between the rotation axes are given by:

©o e CosacosBo
sinpiny
. cosB+cosacos
cos G = S3PFcosacosy, (8.22)
Snasiny
wou SO YHeosBeosar
snpsina

If we substitute all possible combinations for @, B, and y, and compute the
angles AB, BC, and CA, then we arrive at the values shown in Table 8.2.
We find that only six different combinations of multiple rotation axes are
compatible with the Bravais lattices. Those combinations are: 222, 223, 224,
226, 233, and 234. They are represented as rendered perspective drawings
and stereographic projections in Fig. 8.18. Other combinations, such as 22n
with n =5 (also shown in the table) or n > 6, are possible for isolated objects,
but are not compatible with the Bravais lattice translational symmetry. The
combination 235 (last line in Table 8.2), known as the icosahedral symmetry.
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Table 8.2. Combinations of three rotations axes for crystallographic symmeties.
A indicates that the cosine of one of the angles falls outside the range [—1, 1]
The bottom two lines show combinations involving the non-crystallographic
five-fold rotation axis; these will become important in Chapter 15,

o om o R ] ) possvle?
2 2 2 90" 90" 90"
> 2 3 e o0 o
> 2 s e o0 el
> 2 s 0 W

2 3 3 70°32 54044 yes
2 3 4 4044 35016 yes

2 3 6 0 0 trivial

2 4 4 0 0 0 ivial

2 4 6 * « * no

2 6 6 * * * o

3 3 3 0 0 0 wivial

3 3 4 + * *

3 3 6 * * * no

3 4 4 * * * o

3 6 * w * no

3 6 6 * * * o

4 4 4 * x * no

4 4 6 + * * no

4 6 6 . * i o

6 6 6 * w * no

2 2 5 %0 r 360 Rot in erystals
2 3 5 37723 31743 20054 not in crystals

8.19. This and other examples of
non-crystallographic symmetries will be discussed in Chapter 15

is shown as a rendered drawing in

Arthur Moritz Schinflies (1853-1928) was a German mathematician. He
studied at the University of Berlin from 1870 until 1875 and subsequently
received a doctorate from Berlin in 1877. Schonflies was appointed as chair
of applied mathematics at Géttingen, set up by Felix Klein in 1892. In 1899,
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Fig.8.19. Rendered drawing
of the icosahedral combination
of rotaion axes 235,

Fig. 820, () Atur Moriz
chinies (1853-1926)

cure coutesy of ). Uima de
Farie), and (0 Camille Jordan
(1830-1922) icure courtesy
of . Lima de Fari).

(@) )

he was named chair at Konigsberg. In 1911, he became Professor at the
Academy for Social and Commercial Sciences in Frankfurt. Schonflies served
as professor from 1914 until 1922 at the University of Frankfurt and was
rector during the period 1920-21

Schonflies was one of three men who, in the 18905, almost simultaneously
derived the existence of the 230 space groups (which will be discussed in
Chapter 10). Schanflies also developed the famous Schinflies notation for the
crystal forms index. He applied his space group theory to crystal structures
and to the problem of the division of space into congruent regions related
by the symmetry of the group. His interest in symmetry guided many of his
scientific endeavors.
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Many of the initial efforts in describing the way that atoms and molecules
are amanged in crystals were developed in the eighteenth, nineteenth and
twentieth centuries prior to the development of techniques to actually probe
the atomic structure, The simple packing models were precursors of the mon-
umental developments that occurred as a result of considerations of symmetry
and the mathematical properties of groups (in this case groups of symmetry
operations). In 1844, Cauchy studied the group properties of permutations,
‘a mathematical construct that was a precursor to symmetry group operations
that will be discussed in subsequent chapters.

Mathematicians such as Christan Wiener (1826-96) and Camille Jordan
(1838-1922) contributed to the development of the theory of space groups.
Wiener developed a theory of symmetrical repetitions, and Jordan studied
groups of motions. Jordan’s work on group theory was published in the first

ever group theory text book: Traité des substitutions and des équations alge-
braique (1870). Felix Christian Klein (1849-1925), an influential German
mathematician, studied the problem of space groups from the point of view
of transformation groups, extending the work of Jordan to consider adding
mproper rotations to the discrete group of proper rotations (1892). He also
published the important work, Lectures on the Icosahedron in 1876, in which
he laid out the group theory for icosahedral groups. The German mathe-
matician Georg Frobenius (1849-1917) was also known for his work in
‘group theory. His famous congruence is the basis for an algorithm for the

construction of the space groups.

() Inversion operation: Show that the inversion operator in 2-D is equiv-
alent to a two-fold rotation.

and
show that, for values of 1
between the symbol 7 and A,

: Use projections to
4N, with N integer, there is no difference

Mirror-rotations: Determine the 4-D transformation matrix for the
mirror-rotation & aligned along the ¢ axis of a hexagonal reference
frame, and show that it is equal o the matrix for (3)C%,. What are the
coordinates of all points generated from the point (v, x, 0) (with respe
to the hexagonal reference frame)?

(iv) Serew axes: Show by means of a drawing that the 6, screw axis is the

of 6.

Determine the transformation matrix W for a diagonal B
glide reflection parallel to a (010) mirror plane going through the point
(172,172, 1/2) (cubic reference frame),

(vi) Seitz symbol: Show that the inverse of the Seitz symbol (D]t) is given
by the symbol (D-'| ~D't)

o
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8.6 Problems

(vii) 4-D transformation matrices I: Determine the coordinates of a point
(x, 3 <), after it has undergone transformation by a serew axis 6, along
the hexagonal e-axis, followed by a mirror operation through the (11.0)
plane going through the origin.

) 4-D transformation matrices 11 Determine the 4-D transformation

ion of the matrix on the coordinates (x, y, 2) for the

matrix and the
following operations:
tem.

(2) A 4, screw operator about the [001] in a cubic sy

(b) A b-glide operator with a reflection across a plane perpendicular
10 the a-axis at the x = 0 position in a cubic sysem.

() A 3 roto-inversion operation about the [111] in a cubic system.

(d) A 4, screw operator about the [100] in a cubic system. What would
happen if you operated with this screw operator twice?

(ix) 4-D transformation matrices Il: Consider a 4, screw operation not
passing through the origin:
() Determine the matrix representation W of a pure translation from
the origin to the point with coordinates (1/4, 3/4,0)
(b) Determine the matrix representation W of a 4, operator parallel to
the c-axis of 4 tetragonal reference frame.
(c) Determine the matrix representation W of a 4, operator parallel
10 the e-axis of a tetragonal reference frame, when the screw axis
‘goes through the point with coordinates (1/4,3/4,0).
(x) Pernuations: Label the vertices of an equilateral triangle 1, 2, and 3,
respectively.

(a) Determine all of the permutations of the numbers, 1, 2, and 3.
(b) Describe a symmetry operation associated with each permutation,
(¢) Write down a 2-D rotation matrix representing each symmetry

operation.



CHAPTER

Point groups

“Group theory is a branch of mathematics in which one does something 1o some-
thing and then compares the results with the result of doing the same thing to
something else, or something else to the same thing.”

James Newman, mathematician

9.1 What is a group?

198

In this section, we will give a pract

example of a group and illustrate
some of the important group properties; then we will define a group in precise
mathematical terms

1 A simple example of a group

Consider the crystal depicted in Fig. 9.1. This is a typical shape for a quartz
erystal. Looking at the drawi

2, we find that the only symmetry clements
present in this crystal are the ones corresponding to the configuration 223,
discussed in the previous chapter. If we denote a general symmetry operator
by the symbol O, then we can define the following six symmetry operators
for the quartz crystal

0y=¢ = the identity operator;

0,=3 = rotation through an angle @ = 2/3;

0,=3" = rotation through an angl A7/ o
o, rotation through 7 about the x-

o, rotation through 7 about the y

rotation through 7 about the u-axis.
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Fig. 9.1, A typical quartz cystl
and s symmery elements

9.1.2 Group axioms

9.1 Whatis a group?

The rotation axes 2, ,

are perpendicularto a central axis 3. If 3 and e.g., 2, are
iven, then, by Euler’s theorem, the other two 2-fold axes are automatically
determined. We define the successive operation of two operators by writing
the operators in the reverse order, i.e., the operator that is applied first is
written to the right

0,0,: 0, is applied first, followed by O, ©.2)

The symbol . stands for the multplication or suces:
two operators

e application of the

The successive operation of two s
operator. Some examples a

nmetry operators is again a symmetry

. 0.0,=0
. 0,.0,=0,

The inverse of every operator is also an operator:

O, and O, are mutually reverse operators,
© 0.0, and Oy are self-inverse operators.

And, finally, the identity operator e can also be obtained by combining the
different operators, e.g., e = 0,07 =0,.0, = 0}

From the quartz

2 example in the preceding section, we learn that the
combination of two symmetry operators is again a symmetry operator, that
there exists a neutral operator ot identity operator, and that each operator has
an inverse. Tn this section, we will formalize these statements and properly
define what is a group.
The following four rul

must be satisfied, in order for a set § to become
a group under a certain multiplicative operation:

(i) in the set §, the muliplicative operation is defined such that the product
of any pair of elements 0,0, is also an element of , i.e., the set is

closed:
¥0,0,€9,30,€5:0.0,=0; 3

(i) the multiplicative operation is associative:



Point groups

(iii) there exists a unit element e:

Jee§—V0,€G: e0, ©5)
(iv) each element has its inverse element:
l ¥0,€6,30,€9:0,0,=0,0,=¢ : ©.6)

If aset of elements (0. 0s. ..., 0,} satisfies rules 1 through 4 for a given
‘multiplication rule, then that set is called a group.

(v) the order of the operations

unimportant

V0,0 0, 07

If, in addition, the set satisfies rule 5, then the group § is an Abelian or
commutative group.

It is easy to show that the symmetry operators of the quartz example
in the previous section satisfy all four principal rules; therefore, the set
of symmetry operators of quartz forms a group. In general, the symm
ors of any crystal form a group; as we will discuss in a later
stallographic groups have definite designations (although there
stems in use). The quartz group is named 32 (Ds): the
4 name is the internationally agreed upon name for this point group,
€., the so-called Hermann-Mauguin symbol. The second name is the
Schéinflies symbol, which is used primarily by solid state physicists and
chemists.

The properties of any abstract group are fully determined if all possible
multiplications between its elements are defined; for this purpose the concept
of a multiplication table (or Cayley's square) is introduced. The products
of any two group-elements are written in a 2-dimensional table; if every
element appears only once in each row and column, then the set forms
4 group. If furthermore the square is symmetric with respect to the main
diagonal, the group is Abelian. The multiplication order goes from the left-
most column to the top row (i.c.. elements of the top row are executed
first).
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As an example, we give the full multiplication table of the quartz group:

RO e 3 kS 2, 2, 2,
e e 3 3 2, 2, 2,
3 3 L 2, 2, 2
3 3? e 3 2, 2, 2,
2, 2, 2 2, e 3?3
2, 2 2, 2, 3 e 3
2 2, 2, 2, 3 3 e

9.1.3 Principal properties of groups
The following properties refer to all abstract groups

« Order of a group: A group may contain one, several, or an infinite number
of elements; this is called the order n of the group. If # s finite then the
group is called a finite group.

Example: the order of the quartz point group is 1 = 6.

« Isomorphism:

If 2 one-to-one correspondence exists between the elements of two groups,
then those groups are isomorphous.

Obviously, the order of isomorphous groups is the same. This relation

between two groups is denoted by a double-headed arrow <, i.., if
S=lan \2,) and 3= {hy. ... . h,} then
G Kl Vg, g,G.Vh hieH: g.g; <> h, ©8)

Example : The group § denoting the space rotations through an angle
27/ is isomorphous with the group of complex numbers exp(2rin/N)
where 0= 1 < N.

Tsomorphous groups are, therefore, different representations of one
and the same abstract group and consequently have identical multiplica-
tion tables.

« Homomorphous groups:

Two groups are homomorphous if there exists a unidirectional corre-
spondence between them, i.e., with every element of one group there
corresponds one or more elements of the other group.
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‘This refation is denoted by a single-headed arrow —, pointing from the
‘group with the highest order to the one with the lowest order, L.

G- if (g a4} = bl

By (1=

)= e (09)

pss =gz

Mapping several elements of one group onto one element of another
‘group can be useful in the classification of elements: one obvious example
is the mapping of symmetry operators according to their handedness, i.c.,
4 symmetry group G can be mapped onto the group {1, ~1}. Another
interpretation might be the following: if a symmetry operator changes
the sign of e.g., the z-component of an atom coordinate vector, then thi
operator is mapped on —1, else on +1. In the case of the quartz group 32
(D), this would produce the following mapping

32.(Dy) = {1,~1): with (0, 0,0} — 1 and [0, 0, 05} > —1
9.10)

It is easy 1o ver
multiplication.

fy that the set {1,~1} is a group under ordinary

 Cydic groups

If a group contains an element O, such that the powers of @ exhaust all
group elements, then this group is called a cyclic group, and O is called
the generating element.

e group can thus be written as:
§=1{0,0%...,0,....0"=¢} 9.11)

This type of group represents rotations through an angle 2/n and is
denoted by C, (Schonflies notation) or n (Hermann-Mauguin symbol).
For this type of group, it s sufficient (0 give the generating element instead
of the full multiplication table.

« Group generators: Since all elements in a group can be written as products

of the other elements (this is essentially shown in the group multiplication
table) there will be a minimum number of elements from which all the
others can be reconstructed. This minimal set of group elements is called
the set of group generators. One can then reconsiruct the complete group
by (1) taking all the powers of each generator until either the identity or
the generator iself is found, (2) take all the products between the resulting
elements and the generators until no new elements are found.
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9.2 Th

9.2 Three-dimensional crystallographic point symmetries

o Subgroups and supergroups: Assume a group § of order #; if a subset
of n, elements O, also forms a group, then this set 5, is called a subgroup
of § and is denoted as G C §. If, in addition, this subgroup is different

from cither {e) or  itself, then the subgroup s called a proper subgroup.
‘The quartz group 32 (D;) contains two proper subgroups:

subgroup 3 (C,) = {0y, 0;,03) ©.12)

subgroup 2 (Cy) = {0, 05} ©.13)

‘These groups describe pure thi
are both cyclic.

Some groups do not have any proper subgroups: in that case only the
trivial subgroups {e} and § exist. The order of a subgroup is always an
integer divider of the order of the main group (this is called the Theoren
of Lagrange). the ratio

and two-fold rotations, respectively, and

is called the subgroup index.

In a similar way, § is a supergroup of G;; a large part of group theory
is devoted to the generation of complicated supergroups from simple, low
order grou

In the preceding chapter, we derived all rotational symmetry operations com-
patible with the 14 Bravais lattices, and we have seen that the combination of
symmetry elements generates new symmetry elements. These sefs of s
try elements which are mutually consistent are called groups. In this section,
we will derive all 32 erystallographic point groups, ic.. all the symmetry
groups that are compatible with translational periodicity in three dimensions.
‘They are known as point groups because all symmelry elements intersect each
other in a single point.

The 32 crystallographic point groups can be derived in a very simple way
by counting the ways in which the symmetry elements can be combined to
form closed sets. In order to derive all groups in an unambiguous way, we
will proceed in seven steps, from the simplest groups 1o the highest order
cubic groups. In the following, all point groups will be denoted with both
the international (or Hermann-Mauguin) symbol and the Schonflies symbol
(between brackets). Note that all point groups will be discussed, and the
crystallographic ones will be highlighted.

"To clasify the meaning of the various combinations of symmery elements,
rendered 3-D illustrations are included in the following sections; these images

mme-
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were created with a ray-tracing program (Rayshade, De Grac, 1998), and
show the symmetry elements in the proper orientation in space, along with
sets of equivalent points. These points are organized as a short helix, to high-
light the fact that some of the symmetry clements change the handedness of
the object, whereas others leave it unchanged. For each point group, the corre-
sponding stercographic projection is also shown. Note that the handedness of
the equivalent points is not usually shown in these stereographic projections;
they only distinguish between points in the northern and southern projection
hemispheres.

The simplest point group contains only the identity operator 1 (E); its
schematic representation is shown in Fig. 9.2. The corresponding sterco-
graphic projection is shown to the right of the figure: three labels are shown,
one for the Hermann-Mauguin symbol (top left), one for the Schonflies nota-
tion (top right), and one for the order of the point group (lower left).

Before we proceed with the derivation, it is useful to make a few comments
on the point group notation, in particular for the international or Hermann-
Mauguin notation. In general, the Hermann-Mauguin notation consists of (at
‘most) three symbols; each symbol corresponds to a particular direction in the
Bravais lattice. The relevant directions are listed in Table 9.1. When we name
the crystallographic point groups in the following subsections, we will refer
back (o this table.

9.2.1 Step I: the proper rotations

The simplest groups are the proper rotation groups, formed by the identity
and all powers of an n-fold rotation axis, which is the generating element.

Notation: n [C,] [C for Cyclic]

Al rotational groups are obviously cyclic groups of order n; they contain
a single invariant line (the rotation axis itself). All odd groups are polar in
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Table 9.1, Primary, secondary, and tertiary symmetry directions in each of the
seven crystal systems. For the tetragonal system, the symbol (uvi] refers to the
fact that equivalent directions are obtained from permutations of the first two
indices only.

Crystal system Primary [uvw] Secondary [wow] Tertiary [uvu]
Cubic {100) (i (110
Hexagonal [00.1] [10.0] [120]
Tetragonal [001] (100] (110]
Orthorhombic [100] [010] [001]
Trigonal [ [010] [1i0]
Monoclinic 010] - -

Ticlinic —~ = —

all directions whereas the even groups are only polar along the rotation axis.!
If N'= i then both n and m are subgroups of N: as an example, consider
the group 6 (C,) of order 6, which has both 2 (C;) and 3 (C,) as subgroups.
For n — oo, the rotation group describes the symmetry of a rotating cone
The crystallographic point (rofation) groups are 1 (C)), 2 (Gy), 3 (Cy). 4
(C,) and 6 (C,) and they are shown graphically in Figs. 9.2 and 9.3. Using
the symmetry directions of Table 9.1, we find for the monoclinic system,
for which the two-fold rotation is the highest order rotational symmetry,
that the rotation axis is parallel to the primary direction, which is the [010]
direction. For the trigonal system, on the other hand, the primary direction
is the [111] direction, so that the three-fold axis in this system is parallel
1o [111]. In the hexagonal system, the six-fold axis lies along the primary
[00.1] direction. and in the tetragonal system, the four-fold rotation axis lies
along [001].

9.2.2 Step II: combining proper rotations with two-fold rotations

According to Euler’s theorem, the presence of one two-fold axis perpendicular
10 a rotation axis, will result in the generation of a set of equivalent two-fold
axes. This generates the so-called dihedral point groups.

Notation: n2 [, ] [D for Dihedral]

Once again, there is a difference between the odd and the even groups: for the
0dd groups the operator  generates all two-fold axes, as shown in Fig. 9.4 for
the group 32 (D). For all these groups the n-fold axis is non-polar, whereas

' A group s polar if the dircctions ¢ and — are not related (o cach other by @ symmetry.
aperation
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the two-fold axes are polar. The group 1
cyelic rotation groups.

For the even groups on the other hand, not all two-fold axes are generated
from just one initial axis: a second two-fold axis needs to be provided in
order 10 generate th lete set. Therefore, the H i symbol
contains two 2 (C)s. The even dihiedral groups are all non-polar.

‘The order of all dihedral groups is 2n. The crystallographic dihedral point
groups are 222 (D,). 32 (D,). 422 (D) and 622 (D) (see Fig. 9.4).

In the trigonal system, the three-fold axis lies along the [111] direction, as
before, and the two-fold axis lics along the tertiary (110) dircctions, since
these directions are at right angles to [111]. In the tetragonal and hexagonal
systems, the two-fold axes lie along both secondary and tertiary directions
(see Table 9.1), whereas the orthorhombic system has a two-fold axis along
each of the three symmetry dir

2(C,) is already contained in the
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9.2.3 Step llla: combining proper rotations with inversion symmetry

These groups are obtained by combination of an n-fold rotation axis with a
center of symmetry in the origin. Each inversion rotation group has equiva-
lence with a mirror fotation group ii: fi,ey <> Zn and ity <> 2n.

Notation: # [S,]

Note that these groups have one single axis but contain operators of the
second kind. This is particularly clear in the 3-D renderings, which show the
presence of both lefi-handed and right-handed helices.

For n =4k, the inversion groups and mirror rotation groups are identical,
eg.d=48 .+ For n=4k+2, the inversion element actually generates
a simple mirror plane perpendicular to the rotation axis; these groups are the
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odd groups of step IIIb (sce next section). Normally, 6 (Cy,) is written as
3/m.

The crystallographic inversion rotation groups are 1 (C,), 2 )3
(Cy).4(S,). and 6 (Cs,) (=3/m) and they are shown schematically in Fig. 9.5.
The order of these point groups is 2 when 7 is odd, and 1 when n is even.
“The direction of the roto-inversion axes in the various crystal systems is the
same as that of the proper rotation axes discussed in Section 9.2.1.
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g proper rotations with perpendicular reflection elements

These groups contain a principal axis and a mirror plane perpendicular to the
axis; hence, they contain operations of the second kind and both lefi-handed
and right-handed helices in the 3-D representations,

Notation: n/m [C,,] [/ for horizontal]

The odd members of this type of point group were already discussed in
the previous section; the point 2roups nq,/m are equivalent to 2n. The order
of all these groups is 2n. The limiting group of this type describes a rotating
cylinder oo/m.

“The erystallographic point groups of type n/m are 2/m (Cy,), 4/m (C,;)
and 6/m (C,,) (see Fig. 9.6). The direction of the rotation axis is given by the
primary direction for cach crystal system in Table 9.1, and the Miller indices
of the mirror plane correspond to the plane perpendicular to the rotation axis
in each crystal system. For instance, for the monoclinic point group 2/m
(C3,). the two-fold axis lies along the [010] direction and the (010) plane is
the mirror plane.
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9.2.5 Step IV: combining proper rotations with coinciding reflection elements

Fig. 9. Graphic
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aysalographic nm point
roups.

Mirror planes containing a rotation axis of order  generate a new type of
point group; the generating elements are n and m.

Notation: nm [C,,] [v for vertical]

The situation here is very similar to the one in Step II: odd rotation
axes generate all the mirror planes from a single starting plane, whereas for
even rotation axes a sccond generating mirror plane must be provided, as
is illustrated in Fig. 9.7. The order of all these groups is 2n. The group
1m is identical to m (C,) = 2. The limiting symmetry oomm describes a
regular cone.

The crystallographic point groups of type nm are mm2 (C,,), 3m (Cy,).
4mm (C,,) and 6mm (C,). Note that the two-fold axis in the point group.
mm2 (C,)is written as the third symbol, not the first one. This is in agreement

mm2-C, 3m-Cy,
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‘with the entries for the orthorhombic crystal system in Table 9.1, which shows
that the [001] axis (parallel 1o the two-fold axis) is the tertiary direction. For
all other crystal systems, the rotation axis falls along the primary direction
for this class of point groups.

9.2.6 Step Va: combining inversion rotations with coinciding reflection elements

Fig. 98, Graphic

The combination of an inversion point and a reflection plane through this
pointis equivalent to a two-fold axis. The generators are the inversion rotation
and the mirror plane.

Notation: fim [D,,] [d for diagonal]

In 0dd and “twice-even” (n = 4k) groups, the two-fold axes bisect the
angles between the mirror planes. For odd groups only one mirror plane is
needed in the international symbol, for even groups a two-fold axis and a
‘mirror plane are considered to be the generators. The simplest groups Im and
2m are equivalent to 2/m (C,) and mm2 (C,,) respectively.

The crystallographic point groups of type im are 3m (D), 42m (D,,),
and 6m2 (D) and are shown in Fig. 9.8. In 42m (D,,), the two-fold axes are

Bm-Dy
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considered 1o lie along the secondary directions of the type (100], whereas
the mirror planes lie perpendicular to the tertiary directions (see Table 9.1).
For 6m2 (D,,) on the other hand, the mirror planes are taken to be normal
to the secondary directions (10.0] and the two-fold axes lie along the tertiary
directions, hence the order of the symbols m and 2 is reversed in the two point
group symbols. Note that for 6m2 (D,,), the two-fold axes lie in the mirror
planes, whereas in 42m (D), the mirror planes bisect the two-fold axes.

g and perpendicular reflection

7 Step Vb: combining proper rotations with coinci
elements

If both perpendicular and coinciding mirror planes are present, then only the
even rolations create new groups; the rotation axis and one miror plane of
each type are needed as generators.

Notation: 2m [D,,]

The intersection of two mirror planes at right angles generates a two-fold
axis along the intersection line. Again, two independent coinciding mirror
planes need (0 be defined for m even roation groups. The full symbols of
the groups are & ‘The order of all these groups is 4.

The cly;ml!ngmphlc nt groups of type 2m are mmm (D), 4/mmm
(D) and 6/mmm (D) (in shorthand notation) and the graphical repre-
sentations are shown in Fig. 9.9. The rotation axes are, as before, oriented
along the primary directions of the crystal systems, and the mirror planes are
perpendicular to both the secondary and tertiary directi

9.2.8 Step VI: combining proper rotations

‘The only combinations of rotational symmetries we have not used yet are 233
and 432. These generate groups with only rotational elements present.

Notation: nyn, 7] and [0]

There are only three point groups of this type, namely 23 (T), 432 (0)
and the (non-crystallographic) icosahedral point group 532 (7). The Schisn-
flies symbols for the crystallographic point groups stand for tetrahedral and
octahedral symmetry respectively. The orders of these point groups are 12,
24, and 60 respectively. Note that they are groups with only operators of
the first kind. Because of the presence of multiple three-fold axes, the point
‘groups 23 (T) and 432 (0) belong to the cubic symmetry type. All equivalent
points have the same handedness, since there are no symmetry operators of
the second kind.

‘The erystallographic point groups of type m,n, are 23 (7) and 432 (0) and
schematic drawings are shown in Fig. 9.10. In point group 23 (7), the two-fold
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axis is oriented along the primary direction of the cubic crystal system (sec
Table 9.1), with the three~fold axes along the secondary directions. Note that
there is also a point group 32 (D,), 50 the order of the symbols is important!
In point group 432 (0), the four-fold axes lie along the primary directions, the
three-fold axes, as before, along the secondary directions, and the two-fold
axes lie along the tertiary directions of the cubic crystal system.

9.2.9 Step VII: adding reflection elements to Step VI

Finally, we can add mirror planes (or inversion symmetry) to the groups
of Step VI; because of the mutual orientation of the rotation axes, these
ymmetry planes will in general be arranged in an “oblique” way.

Notation: #i,n, [T,], [7,], and [0,

1f we add mirror planes through the two-fold axes of 23 (), the three-fold
axes will become inversion axes and the resulting point group is of order 24
and is denoted by the symbol m3 (7).

‘Adding mirror planes through the three-fold axes of 23 (T) results in four-
fold inversion axes (but note that the inversion element itself is not present
in this group!); the resulting group is of order 24 and denoted by &3m (7).

Finally, we can add either mirror planes or the inversion symmetry to the
£1oup 432 (0) t0 obiain the erystallographic sroup of the highest order (48)
which is denoted by m3m (0,). In full notation this group is known as 32
Combination of mirror planes with 532 (7) resuls in the icosahedral group
m35 (1) of order 120.2

The crystallographic point groups of type in, are m3 (7,), 43m (7,) and
m3m (0,) and they are shown in Fig. 9.11. The orientation of the rotation
axes s identical to that of the point groups 23 (T) and 432 (0). This concludes
the enumeration of all 32 crystallographic point groups.

9.2.10 General remarks

92101 Classes of point groups
Out of the 32 crystallographic point groups, only 11 have a center of sym-
metry. These centrosymmetric point groups are shown in the second column
of Table 9.2. The other non-centrosymmetric point groups are subgroups of
these 11 groups. It is not difficult to verify that each of the groups in the last
column of Table 9.2 becomes equivalent to the centrosymmetric one when
combined with the inversion operator. All the groups in a i

gle row of the

* The icosahedral symmetry groups will be discussed in much more detail in the chapter on
on-erystallographic symmerry (Chapter 15).
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Table 9.2. The seven crystal systems with the centrosymmetic point groups (Laue
asses), and the remaining point groups that are subgroups of the 11

centrosymmeic groups.
Crystal system Lave class Lower symmetry class members
Triclinic 1) (©)
Monoclinic 2/m (Cyy) 2(C).m(C)
Orthorhombic mmm (Dy,) 222 (D), mm2 (C,,)
Tetragonal 4/m (Cy) 4(C.4(5) .

A/mmm (D,,) a2 (n,), 4mm (C,,). 2m (D.,)
Trigonal 3y 3

3m (D) 2 (n) s... (c,v)
Hexagonal 6/m (Cy) 6(C.6

6/mmm (Dg,) m (n‘,) ) (o). 6m2 (D)
Cubic m3 (1,)

m3m (0,) uz (o), 3m (T,)
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table belong to a so-called Laue class.* The centrosymmetric point group in
a Laue class is used as the class symbol.

Polar point groups are groups in which there exists at least one direction
that has no symmetrically equivalent directions. It is easy o see that this can
only happen in non-centrosymmetric point groups in which there is at the
most a single rotation axis. There are 10 such polar groups: they are dmm
(C.,) and 6mm (C,,) and all their subgroups 6 (Cy). 4 (C,). 3m (Cy,), 3 (Cy).
mm2 (Cy,). m (C.), 2 (C), and 1 (C,).

The presence of symmetry at the atomic length scale has far-reaching con-
sequences for the properties of a given material, whether they be mechanica
optical, electrical, magnetic, or thermal. It can be shown in very general terms
that the symmetry group of any property of a crystal must include the point
‘roup symmetry operations of that crystal. This is known as Newnann's prin-
ciple (Newnham, 2004). Certain material properties, such as piezoelectricity
and optical activity, can occur only in non-centrosymmetric point groups.
‘The application of symmetry to material properties is rich and extensive but
outside the scope of this text; we refer the interested reader (o the literature
(Newnham, 2004, Nye, 1957).

921022 Chirality and enantiomorphism
The stereographic projection is the standard method to represent the point
groups graphically. The rendered images shown in Figs. 9.2 through 9.11
have the added advantage that the handedness of each equivalent point is
easily observed. If all equivalent points have the same handedness, then the
object with the corresponding point group can exist in two different versions:
a left-handed version and a right-handed version. The point groups for which
this can occur have no improper rotations, i.e., no roto-inversions or mirror
rotations. Crystals or molecules that belong to these point groups are known
as chiral objects, i.e., they have a handedness. Such objects are also known
as dissymmetric objects (Hahn, 1996, p. 787). In chemistry and biology, the
terms enantiomerism and chirality are used, whereas in crystallography the
term enantiomorphism is more common.

9.2.10.3 Matrix representation of point groups
Tn the previous chapter, we have seen that every symmetry operation can be
represented as a matrix. Since the point group operations do not contain any
translations, we can restrict ourselves to the 3 x 3 sub-matrix D of the full
Seitz symbol (Dt). Returning to the quartz point group 32 (D) introduced
in the first section of this chapter, we can associate with each symmetry
operation 0; a 3 x 3 matrix D,. If we take the axes 2., 2, and 3 of Fig. 9.1 as

The reason for this terminology will become clear when we discuss difraction in Chapter 11,
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the reference axes, then it is easy to show that the six transformation matrices
are given by

©.14)

=
Dy={-1
0

Using these matrices, we can construct a multiplication table, similar to the
one on page 201, by taking all possible products between two matrices:

2@®) D, D, D, D, D, D

D, D, D, D, D, D D
D, D, D, D, Dy D D,
D, b, D, D D Dy D
D, D, D, Dy D, D D
D, b, by D, D D D
D, D, D, D, D, D, D,.

Note that these two tables have exactly the same structure! This is an example
of an isomorphism between the group of the operators 0, and the group of the
six matrices shown above. Both of these are representations of an underlying
abstract group, §, with elements {a, b, ¢, d, e, f}, which can be defined by its
own multiplication table; the same can be done for all other point groups a
well. It s possible for multiple point groups to be isomorphous with a single
abstract group.

K a b < d e f
a a b < 7 e 7
b b e a food e
c 3 a b e ! d
d d e I a ¢ b
e e s d b a e
f 7 d e c b a

92,104 Group-subgroup relations; descent in symmetry

Figure 9.12 shows all the group-subgroup relationships between the crystal-
lographic point groups. The two highest order point groups are the hexagonal
group 6/mmm (D) and the cubic group m3m (O, ):; all other groups can be
considered as subgroups of these two. In some cases, there are several poss-
ible orientations of a subgroup with respect 1o the larger group. For instance,
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point group 3 (C,), a simple three-fold rotation axis, has four possible ori-
entations with respeet to point group 23 (7). On the other hand, 222 (D)
has the same orientation as 23 (7), as s readily seen from a comparison of
the two stereographic projections. The table can also be used to determine
all the centrosymmetric point groups: simply start from 1 (C,) and list all the
point groups that 1 (C,) is a subgroup of (i.e., follow all the lines originating
in 1 (C)). The centrosymmetric point groups are: 1 (C;), 2/m (Cy,), 4/m
(Cay). mmm (D), 4immm (D), m3m (0,), 3 (Cy), m3 (7,). 6/m (Cyy).
3m (Dy). and 6/mmm (D). in agreement with the 11 Laue classes listed
in Table 9.2. Figure 9.12 is known as a descent in symmetry, and we will

use this representation again when we discuss the non-crystallographic point
‘groups in Chapter 15.

92105 Special posiions and orbits

All point group illustrations in the preceding sections use as general object
4 right
not ints

anded helix. Care has been taken to make sure that this helix does
ct any of the symmetry elements of the group. When the object is
allowed to intersect one or more of the symmetry elements, then something

interesting happens. Fig. 9.13(a) shows a rendered representation of point
group 4/mmm (D,,). The helix has been replaced by a small sphere. When
the sphere does not intersect any of the symmetry elements, there are a total of
16 equivalent spheres, which is the order of the point group. These positions
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are known as general positions. We define the site symmetry of a particular
Tocation as the point group of the object with respect to that location. For the
sphere arrowed in Fig. 9.13(a), there are no symmetry clements going through
the center of the sphere, so the site symmetry for that sphere s equal to 1
(C). This is always the case for a general position, and, in fact, we can define
the general position for any point group symmetry as a position with sitc
symmetry 1(C,).

The set of all points that are symmetrically equivalent to a point with
coordinates (x, y, z) with respect to a particular point group § is called the
crystallographic orbit (or, simply, the orbir) of (x, y, z) with respect to §. The
‘number of points in the orbit of a general point with respect to a point group.
is equal to the order of that point group. For the example in Fig. 9.13(a), the
orbit consists of the following points:

@) m=pz) (xnz)  (x-n)
oy =) (@ =y =2) (232 (=z-y —Z)
0:5) (rxd 0oxd (weng O
0. % =2) (=% -2) (h =% —2) (=3, —

z)v

These coordinates can be obtained by operating with all the symmetry
matrices of the point group 4/mmm (D) on the point with general coor-
dinates (x,y,2). The general position used for Fig. 9.13(a) is equal to
(0.65,0.15,0.40).

When we move the general point towards the z-axis, as shown in
Fig. 9.13(b) and (c), then the 16 equivalent points will “merge” into only two
‘points located on the z-axis. This means that for the point (0,0, z), the orbit
consists of only two poins, (0.0, ) and (0, 0, ~z). This is also obvious from
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Equation 9.15: when we put v =0 and y =0, then there are only two distinct
points left over. Note that the point (0, 0, z) s located on the four-fold rotation
axis, and also on the four mirror planes that contain the four-fold axis, but not
on the horizontal mirror plane. Hence, the site symmetry of (0,0, 2) is 4mm
(C.,). Points like this are known as special points, and their site symmetry is
higher than that of point group 1 (C)).

Alternatively, we can move the point (x, ¥, 2) to one of the vertical mirror
planes, as shown in Fig. 9.13(d) and (e). On the mirror plane, the coordinate of
the point is (x, x, 2), and it is clear that there are only eight equivalent points.
The site symmetry is simply a single mirror plane, represented by the point
group m (C,). However, we can say something more about this mirror plane,
namely that it is orfented at 45° with respect to the coordinate axes. Referring
to Table 9.1, we see that the (110] directions in the tetragonal crystal system

represent the tertiary symmetry directions. We include this information in
the Hermann-Mauguin symbol for the site symmetry as follows: - -m. The
two dots indicate that there are no symmetry elements along the primary

and secondary directions. If we had moved the general point to the (x, 0, z)
position, then there would again be eight equivalent positions, but this time
the site symmetry would be -m., since the mirror plane is normal to the
secondary symmetry direction for the tetragonal system.

Finally, we move the special point (v, ¥, z) down to the horizontal mirror
plane in Fig. 9.13(f). The result is an orbit with four equivalent points. The
site symmetry consists of two intersecting mirror planes (at right angles).
‘We know that this corresponds to point group mm2 (C,), but once again
we can include a litdle additional information in the site symmetry symbol
The horizontal mirror plane is normal to the primary tetragonal symmetry
direction. Both the vertical mirror plane and the two-fold axis along the
intersection of the two mirror planes are located along the tertiary dircction,
S0 that the site symmetry is written as m-m2. If we had moved the spec
point to the (x, 0, 0) position, then the orbit would again contain four point
this time with site symmetry m2m-

Let us now summarize the general and special positions that we have found
for the point group 4/mmm (D,,). We start with the orbit with the largest
number of members, which is the general position (x, y. 2), and then list the
special positions in descending order:

.2) (hki)
2) (01
2) (hhl)
0) (hk0) 9.16)
0) (100)
b m-m2 (x,x,0) (110)
ad4mm (0,0,2) (001)

o e s
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The last column contains Miller indices; for the (i)
eight equivalent planes, just as there are 8 equivalent pos

pe planes, there are
for the (x,0, )
point. The first column is then known as the mmultiplicity of the plane in the
point group 4/mmm (D).

The letter symbols in the second column are added once all the special

o

positions are listed. By convention, the lowest order site symmetry is labeled
by the letter a, the next one by &, and so on, until all site symmetries have
been labeled. If we combine the first two columns, then we obtain what is

known as a Wyckoff position. For instance, we can talk about the 8¢ position,
o the 4b position. Chapter 10 n the International Tables for Crystallography.
volume A, standardizes all possible site symmetries for all crystallographi
point groups. This means that the 8 position for point group 4/mmm (D)
is, by international convention, a position of the type (x, x, 2). We refer the
reader to the tables for further information.

As a final remark, note that all the special site symmetries are subgroups of
the original group 4/mmm (D,,). This can be verified easily, using Fig. 9.12.

921056 Crystallographic and non-crystallographic point groups
‘able 9.3 illustrates the relations between the erystallographic point groups
and the larger set of general 3-D point groups, in particular the icosahedral
point groups 532 (/) and m33 (1,). The limiting point groups of infinite order

are shown schematically on the bottom row of the table. They are based on the
highly symmetric shapes of the sphere, the cone, and the cylinder. Arrows on
these shapes indicate that the object is rotating; for i

ance, point group oo is
sented by a rotating cone, which has a rotation axis of infinite order
alung the cone axis. If the cone were at rest, then there would also be mirror
planes containing the rotation axis (which is the case for point group comm),

but the rotation motion eliminates these mirror planes. Similarly, the top and
bottom planes of the cylinder rotate in opposite directions in point group o2,
50 that there are an infinite number of two-fold axes normal to the cylinder

axis, but no mirror planes. A single mirror plane normal to the cylinder axis
resuls in point group so/m (the rofation once again prevents the presence

of mirror planes containing the rotation axis). The full cylinder symmetry of

cofmm is obtained by eliminating all rotation motions. Finally, the sphere
symmetries oo and socom are distinguished from each other by the fact
that, in the former, every point on the sphere surface rotates around the axis
conne

ing it 10 the center of the sphere.

92107 Examples of shapes, molecules, and crystals
Table 9.4 lists, for each crystallographic point group, the names of a geo-
metric shape, a molecule, and a mineral with that symmetry. In addition,
in the second column, it lists two numbers, which represent the percentage
of a population of 127000 inorganic and 156000 organic compounds that

have that particular point group symmetry. For instance, for 2/m (Cy;) the
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Table 9.3 Crystalographic and non-rystallographic point groups.
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population numbers are 34.63% for inorganic compounds and 44.81% for
organic compounds. This means that out of 127000 inorganic compounds,
approximately 43 980 compounds have the monocinic 2/m (Cy,) point group
symmetry. Note that the 11 point groups corresponding to the Lave classes
have the highest population numbers, indicating that the majority of inor-
ganic compounds, around 80%, are centrosymmeric. Amongst the organic
compounds, about 74% are centrosymmetric. Despite the fact that the high-
est cubic symmetry, m3m (0,), only accounts for about 6.7% of all the
inorganic compounds, the cubic materials play a very important role in our
technological world.

92,108 Definition of generator matrices

We know from the multiplication table of a group that each element of the
‘g2roup can be written as the product of other elements. In practice, we need to
know only a few elements, and the complete group can be constructed from
these by matrix multiplication. The minimum symmetry operators needed to
‘generate the complete point group are known as the generators. There are only
14 matrices, D, from which all possible crystal symmetries can be derived.
‘We will represent these matrices by symbols of the form D, where (x) is a
letter ranging from (a) through (n).* The 14 matrices are defined in Table 9.5

+ Additionsl generator marices can be added to this list to deseribe non-erystallographic point
eroups.
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9.2 Three-dimensional crystallographic point symmetries

‘Table 9.4, Eampls of molecules and arystals with symmetries belonging to the
various point groups. The % population (taken from Table 3.2 in (Newnham,
2004)) consists of the percentage of 127000 inorganic and 156000 organic
compounds (inorganig/organic) that are found to belong to each point group.

Point group % population  Shape. Molecule Crystal
1c) 067124 Pedion cuFCiBr  —
SFCIO
i) 138710.18  Pinacoid C.HCLBr,  Anonbite
Turquoise
Wollastinite
2(c) 220670 Sphenoid H,0, -
el
m(C) 130145 Dome Noa =
2/m(Cy) 634481 Rhombic prism HO, plinar  Chlorie
C.H,CI, planar Datolte
pidote
Gypsym
Orpiment
Realgar
Tale
Tianite
22(D,) 3561013 Rhombic disphenoia Fdingtonite
mm2(C,) 332331 Rhombic pyramid Hemimorphite
mmm (D) 1207784 Rhombic dipyramid Andalusite
Aragonite
Barite
Chrysobalite
Sulfur
G 036032 Trigonal pyramid =
i) 121058 Rhombohedron = Dolomite
Hexagonal prism Hmenite
Phenakite
3RD) 054022 Trigonal apezohedron  C,H, Cinnabar
Low Quartz
3m(C,) 074022 Ditigonal pyramid i,
SF.Cl, Tourmatine
3m(D,) 318025 Diigonal scalenohedron CH,
Brucite
Corundum
Hematite
4 019025 Tewagonal pyramid  — =
i) 0250018 lsoseeles tethedron  C.H,6 =
c

Tetragonal disphenoid  C,F.Cl,,



Point groups

Table 9.4. (cont).

Point group % population Shape Crysul
Ym(Cy) L1067 Tomgond dpsrmid | — Scapolic
Seheclte
£20) 040085 Tomgonl wesshedion =
dmm (C) 030038 Diemgonapramid CoNH)ClBr —
mal prism SF.CIBr
Dm0, 04034 Dramgort waemeion Gty Chalcopyrite
CiH,
CH,
Ammm (D) 459069 Ditetragonal dipyramid  SF,Cl Ruile
Ditetragonal prism oF, Zircon
[Auci
(NiCN)
6(C) 04102  Hogonlpyrmid  — =
6(c,) 0.07/0.01 Trigonal pyramid Fe(OH), Nepheline
082017 Hexagonal dipyramid ~ — Apeiite
024005 Hexagonal trapezohedron — High quars
) 045003 Ditexagonal pyramid  (CH)Cr Warzite
Gm2(Dy) 04002  Divigonal dipyrmid B, Benitoite
Cft,
CHy
PP,
50,
INOJI-
6/mmm (D,,) 282005 Dibexagonal dipyramid  C,H,
Hexagonal prism
23(1) 0.44/009  Tetartoid
m3 (T,) 0.84/0.15 Diploid _— Pyrite
432(0) 0.13/0.01 Gyroid — —
Bm(r) L4001 Hekiscmhedon  CH, Terahedrie
Spalerite

m3m(0,)  6660.12  Cuboctahedron

Tetrzhexabedron
Truncated octahedron
Rhombic dodecahedron
Octahedron

Spinel

Tuble 9.6 lists for all 32 crystallographic point groups which generator
matrices are needed to create the entire group. Note that the identity matrix,
D, is always an element of the group but does not appear explicidy in
Table 9.6. Note also that the selection of generators is not unique. For instance,
for point group 6 (C,). we could select just one generator (a 60° rotation
around the < axis). Instead, the table only lists generators selected from the
14 matrices in Table 9.5; the matrix representing the 6-fold rotation is not one
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9.2 Three-dimensional crystallographic point symmetries

Table 9. Defiiton of the 14 fundamental crystalographic point symmetry
‘matrices.

—oo

Table 9. The generator matices fo the crystallographic point groups. The letters
x in the generator columns refer to the transformation matrices D* of Table 9.5.

Puin group  Generstors Poi gomp Generstors Pt group Genertors Poi ooy Generators

1e) - 4y ® ey hn o emm bk
i B i 2wy an ) ik
2(¢) . amcy)  eh €0 kn
me) 2wy ax mOg fhe
YmiC) b AmC) e §G) b
M) he  Bmoy)  am 6@ in
mm2 () b Ymm (D4) G5k 6/m(C) bhn "
mom (D) beh 30 B @20 hen  mim) ek

of the 14 listed, and we need 2 generators from the list of 14 to generate the
e group 6 (C,). The main reason for defining the 14 matrices is that they
are also used as generators for the 230 space groups, 1o be introduced in the
next chapter

As an example, consider point group 3m (D), which has generators D',
9, and D We begin by multiplying the generators with themselves until we
obtain the identity matrix. For D and DI* his does notead to: new symmetey
operation, since D = DI = D) for D) we obtain a new matrix:*

en

oo = [

5 We use the abvious notaton that D)D)
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and also DI"™ = D, This is to be expected, since this matrix represents a
three-fold rotation.

Next, we compute the product of the two generator matrices D and D"':
we find two new matrices (recall that matrix multiplication is, in genera
not commutative, 5o we must multiply the matrices together in both possible
orders):

—1 1 0 1o 0
p@=( 0 1 o], ad D=1 -1 0
00 -1 0 0 -1

This brings our total to six matrices, including the Do),
D, D, DI, DY, and D™, Finally, multiply all six matrices with the
generator D), which leads to the following six new matrices:

lentity mat

-1 0 0 1o
pto=| 0o -1 o), o™=[1 0 0
0 0 -1 0 0 1
1o 1 -1 0

p"=f-1 1 0 D=1 0 0],
00 -1 0 0 -t
-1 0 -1 0 0
p"m=10 -1 of, DU -1 10
0 01 00 1

It is straightforward to verify that any other product of these 12 matrices
will generate one of the 1

. in other words, we have generated the entire
group of order 12. For instance, consider the product D" since D" is
a diagonal matrix, we can change the order of the matrix multiplications to
D) = Dl = D which is one the 12 group elements. Similarly, for
DO we have: D) = DU  Dlonan = D) which belongs to the
12 that we derived. The same procedure can be applied to the other 31 point
‘groups, and is not too difficult to implement in a computer algorithm.

ic point

In 2D, there are fewer possible point groups. We can derive the 2-D
crystallographic point groups starting from the 3-D groups by eliminating
those groups that contain operators that are inconsistent with two dimen-
sions. For instance, a horizontal mirror plane has no meaning in 2-D; neither
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Fig.9.14. Graphical
representations of the ten 2:0
erystallographic pint groups.
Notetha the gencral poinis al
lie in the equatorial plane,
hence they correspond to
poins on the projection cice.

9.4 Historical notes

9.4 Historical notes

Table 9.7. 2-D crystal systems and corresponding 2-D
arystallographic point groups.

al Compaible
system point groups

Oblique 1C).2(€)

Rectangular m (C,), mm2 (Cs,)

Square 4(C,). 4mm (Co)

Hexagonal 3(C)).3m (C,,), 6 (C,), 6mm (C,.)

does an inversion operation. Mirror planes inclined to the horizontal plane
must also be excluded. Instead of mirror planes, we only have mirror lines.
This leaves only ten 2-D crystallographic point groups: 1 (C,), m (C,), 2
(), mm2 (Cy,), 3 (Cy), 3m (Cy,), 4 (Cy), dmm (C,,), 6 (Cp). and 6mm
(Cy,)- Tt is customary to use the same point group symbols in 2-D and
3-D; it will be clear from the context which of the groups one refers to.
Table 9.7 shows the four 2-D crystal systems, along with the point groups that
belong to each system. Graphical representations of the groups are shown in
Fig. 9.14,

Group theory currently occupies an important position amongst the math-
ematical theories. Group theory was invented by the gifted French mathe-
matician Evariste Galois (1811-32). Galois lived during a tumultuous period
in French history. He was born at the peak of Napoleon's power in 1811,




Fig 9.5, 2) Bvariste Galois
(1811-52) and () LEC

Hessel (1796-1872) (picure
Courtesy of 1. ima-de-Fri)

Point groups

just a few years before his historic loss at Waterloo. As a teenager, Galois
became interested in mathematics, in particular in the theory of equations,
and he published his first paper on continued fractions in 1829, at age
17! Mathematicians at that time were very interested in the solubility of
polynomial equations. While the solutions to the quadratic equation had
been known for a very long time (going back to the Babylonians and the
Greeks), the general cubic and quartic equations had been solved only recently
(see Livio (2005) for an entertaining account), and the next equation, the
quintic, appeared to resist all attempts at finding a mathematical expres-
sion for its solutions. Galois developed what is now known as the Galois
theory, a precursor of modem group theory, which uses certain symmetry
properties of the polynomial equations to decide whether o not the solu-
tions can be written down using rational functions and n-th order roots. He
showed from the symmetry of the quintic equation that its solution cannot
be written down using only additions, subtractions, multiplications, divisions,
and roots.

Despite his young age, Galois was one of the most influential mathe-
maticians of the nineteenth century. His scientific work includes results on
elliptic functions and Abelian integrals. He died at age 20 from wounds
received during a pistol duel (Livio, 2005). After his death, his brother,
Alfred, and a friend collected all of Galois® writings and, eventually, another
influential French mathematician, Joseph Liouville, published them in 1846.
From then on, group theory became an important mathematical field, with
numerous applications in symmetry, physics, biology, language, music, and
50 on.

The contributions of J.F.C.Hessel (Fig. 9.15(b)) were discussed in the
historical section of Chapter 3, on page 75,
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9.5 Problems

95 Problems

(i) Generating relationship: Express a generating relationship for 622 (Dy).
(il) Subgroups: Determine the operations that are lost in reducing the sym-
metry from 4/mmm (D) to 422 (D)

(iii) Multiplication table: Express the multiplication table for 6 (C). Is it

cyclic?

(iv) Lae classes: Show that the point groups 2 (C) and m (C,) both

become equal to 2/m (
operator
v) Polar point groups: Determine the polar directions for all 10 polar

) when they are combined with the inversion

‘groups described in Section 9.2.10.1 on page 214. (Note: for the lowest
symmetry point groups there is no nique polar direction.)

(i) Group ~ subgroup relations: Show graphically, using stereographic

projections, that mm2 (C,)C4mm (C,,) and 3m (C,,)C6mm (C,,

(vii) Point group operations: Consider the 23 (T) tetrahedral point group:

(v

(a) Derive 3-D matrix representations for the two generators of this
group (use Table 9.6 to determine the generators).

(b) Determine the matrices representing the inverses of the generators.

() Show that you can represent 2, and 2, (i.., the two-fold rotations
around the y and z axes, respectively) by cyclic permutations of
the diagonal elements of 2,.

(d) By repeated operation of the generators, determine the e

st of the
matrix representations for the elements of the 23 () point group.

i)

Point group multiplication table I: Consider the 422 (D,) dihedral point
group:

(a) Express 3-D matrix representations for the two generators of the

group (use Table 9.6 to determine the gencrators).

(b) By repeated operation with these matrices, determine the matrix
representation for all the elements of the 422 (D,) dihedral point
group.

(c) Determine the entries in a group a muldiplication table (Cayl
square) for this group by depicting repeated operations or by
explicit matrix multiplication

ix) Point group multiplication table II: Consider the 4/m (Cy,) point group,

(a) Express 3-D matrix representations for the two generators of this
group.

(b) By repeated operation with these two matrices, determine matrix
representation for all elements of the group.

() Determine entries in a group multiplication table for the group
using a stereographic projection and explicit matrix multiplication
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] O Plane groups and space groups

10.1 Introduction

20

The presentation of mathematics in schools should be psychological and not
systematic. The teacher should be a diplomat. He must take account of the psychic
processes in the boy in order 1o grip his interest, and he will succeed only if he
presents things in a form intuitively comprehensible. A more abstract presentation

is only possible in the upper classes

Felix Klein, quoted in D. MacHale, Comic Sections (Dublin, 1993)

In the previous chapter, we derived the 32 point group symmetries that are
compatible with the translational symmetry of the 14 Bravas lattices. Now

isk the following question: wihat happens when we place a molecule
(or a motif) with a certain point group symmetry § on each lattice point of a
certain Bravais lattice 77 To fully answer this question, we would need (0
take every point group that belongs to a given crystal system and combine it
with the translational symmetries of each of the Bravais lattices belonging to
the same erystal system. For instance, for the cubic point group m3m (0,),
we would need to combine it with the three cubic Bravais lattices cP, ¢/, and
«cF. For each of these combinations, we would need to ask the question: is
this a new symmetry group? Furthermore, for each combination we would
need to replace each mirror plane by all possible compatible glide planes, and
each rotation axis by all possible screw axes and again ask the question:

we can ask

this a new symmetry group?
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The reader might wonder where all these new symmetry elements come
from? Consider a simple example. If we have two parallel mirror planes, m,
and m,, separated by a distance #/2, as shown in Fig. 10.1, then a consecutive
‘mirror operation in both mirrors is seen easily to be equivalent to a translation
over a distance 7. Object 1 is mirrored into object 2 by the first mirror, and
then again mirrored into object 3 by the second mirror. The distance between
objects 1 and 3 is equal to twice the distance between the mirror planes.
Conversely, since the combination of any two symmetry operations must
again be a symmetry operation, we also find that a mircor plane combined
ror plane must give rise (0 a

with a lattice translation perpendicular to that mi
new mirror plane at a distance half that of the translation length. This simple
example illustrates that, as we combine symmetry operations from the point
translations, we will create many additional symmetry
se newly generated

groups with lati
operations. Glide planes and screw axes are amongst th

symmetry elements.

Figuring out which of these combinations gives rise 10 a new symmetry
group is clearly a formidable task. This task was first completed by the end
of the nineteenth century by Federov in Russia (Federov, 1891), Barlow in
England (Barlow 1894). and Schonflies in Germany (Schonflies, 1891). They
independently concluded that there are “only” 230 distinct symmeties. This
is a very important result! It essentially tells us that every crystal in nature,
and every crystalline material we can fabricate, nust have one of those 230
symmetries. Note that this result was obtained by pure group theoretical
reasoning, and that very few. if any, experimental observations were used
in its derivation. The 230 resulting symmeiry groups are known as the 3-D

space groups.
Instead of systematically enumerating all 230 space groups, a somewhat
lengthy task, we will, in this chapter, present a few examples of space group
symmetry in 2-D and 3-D, and explain the international notation for the space
groups. Then we will discuss the two types of space groups (symmorphic
and non-symmorphic). and we will conclude with a description of the space
‘group entries in the International Tables for Crystallography, volume A.
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10.2 Plane groups

Plane groups and space groups

Since there are only ten 2-D point groups, and five different 2-D Bravais
lattices, it should not be too difficult to consider all possible combinations
A plane group is the infinite group obtained by combining point group
symmetries (and glides) with the translational symmetries of a 2-D latiic
‘The plane groups are obtained as the union of the translational symmetries
of the 2-D lattice with the point group symmetry about the lattice point when
decorated with an atomic or molecular basis,

‘The assignment of the ten point groups to their respective crystal system
results in ten plane groups determined by their combination with the primitive
Bravais lattice in each system. Two additional plane groups are obtained by
combining m (C,) and mm2 (C,,) with the centered rectangular latiice. The
last five plane groups are determined by the addition of glide operations
where compatible with the preceding 12 plane groups. This yields a total of
17 plane groups with their distribution among the 5 2-D Bravais lattices
summarized in Table 10.1

As an example of a procedure to determine the symmetry operations of a
plane group, we consider Fig. 10.2. This figure illustrates the decoration of
an oblique lattice with objects having the 2 (C;) 2-D point group symmetry.
First we draw a primitive oblique unit cell. Then we consider the 2 (C,) point
group, represented graphically by the | symbol. This point group has two
operations, the identity and a two-fold proper rotation. At every lattice point
of the oblique cell, we place a copy of the point group symbol. Then we look
for all implied symmetry elements. If we were (o take an arbitrary object at
4 point (x, y) near a latiice point (0, 0), the action of the two-fold rotation
operator s to replicate it at the position (—x, —). A translation along the
a-axis (horizontal direction) would then replicate it at the position (1—x, —).
An equivalent operation that takes an object from the position (x, ) to the
position (1—x, ) s a two-fold rotation about the point (12, 0). Therefore,
we conclude that this plane group has two-fold rotation operators at all cell
edge centers. Hence, we draw the | symbol at each edge center. A similar
analysis allows us to conclude that the cell center also has two-fold symmery,
so we draw the | symbol there as well. This cxhausts all of the symmetries
of this plane group.

‘The result of this derivation is the plane group p2. Note the nomenclaure
used for the plane groups: first we use the Bravais lattice centering symbol
(p for “primitive” in this case), followed by the point group symbol (2). Note
that the oblique latiice is the only primitive lattice that we can combine with
the 2 (C,) point group. Therefore, it is not necessary to explicitly state the
crystal system in the plane group symbol p2.

‘The prior procedure can also be depicted in terms of how a general point
i “copied” into equivalent points in the lattice. This is shown in the lower
left side of Fig. 10.2. Here an object, represented by an open circle, is placed
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10:2 Plane groups

Table 10.1. 2-D Bravais lattices, point groups, and the number of plan groups for
each Bravais lattice type.

2D Bravais latice Point groups # Plane groups
primitive oblique 1(C),2(Cy) 2
primitive rectangular  m (C,), mm2 (C,,) 5
contred retngular m (C,), mm2 (c,,) 2
primitive squar 4(C,), 4mm (( 3
Deimitve hoxagonat 3(C), 3m [L”I «(Lﬁ) 6mm (C,) 5

near 4 lattice point. The action of the two-fold operator replicates this object
at a position rotated by an angle 7 about this point. The pair of objects is
then replicated by adding translat at it within the cell and adjacent
cells. After this is complete, it is apparent that the resulting collection of
sses two-fold symmetries about the cell center and edge centers,
in addition to the two-fold symmetry about the vertices of the cell. Note that
the orbit of a general point in a plane group is an infinite set of points, due
to the fact that the lattice translations continue from — o to +20 in both
directions. Note also that there are only two equivalent points per unit cell

The site synumetry of a general point s by definition equal to 1 (C,). Tn the
plane group p2, there are four special positions, namely the locations of the
two-fold axes, (0. 0), (0, 1/2). (1/2,0), and (1/2, 1/2). The site symmetry at
each of these locations is, obviously, 2 (C,). The Wyckoff positions are then
1. 1. 1¢, and 1d. respectively for the four locations of the two-fold axes, and
2 for the general position (x. y). The International Tables of Crystallography
(Hahn, 1996) lists all of the general and special points for all 17 plane groups
(Chapter 6)

Let us consider another example of the construction of a plane group.
Figure 10.3 illustrates the decoration of a square lattice with objects having
the 4mm (C,,) point group symmetry. This resuls in the p4mm plane group.,
as follows. First, we draw a primitive square unit cell. Then we consider the
4mm (C,,) point group. To the 4 symbol for a four-fold rotation axis we
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add the four mirror planes to represent the 2-D point group. This point
group has cight operations: the identity, the three four-fold proper rotation
operations, and four mirror lines. If we take an arbitrary object at a point (¥, y)
near the lattice point (0. 0), the action of the four-fold rotation operator is to
replicate it at the positions (=, ), (—x, =), and (y, —x), respectively. The
mirror lines give rise to the positions (—x. ), (x. =), (3, x). and (=, —x).

We replicate the point group symbol at every lattice point of the square
cell. We align the mirror lines along the cell edg: I diagonals.
‘Then we look for all implied symmetry elements. It s clear that the square
lattice must have a four-fold axis at the center of each cell, so we draw the
mbol at the cell center. The mirrors along the cell diagonal pass through
the center as well. The four-fold axis at the center rotates these mirrors to
produce new mirrors which pass through the center of the cell edges. This
indicates that the point at the center of the cell also has 4mm (C,,) point
group symmetry. Since each edge has a pair of intersecting mirrors, there
must be a two-fold axis at each edge center. The presence of parallel diagonal
mirror lines through the origin and the cell center implies the presence of
another mirror line centered halfway between the original two mirror fines.
‘This new diagonal mirror line turns out to be a glide line; this is easy to show
when we consider the drawing in the lower left-hand corner of Fig. 10.3. Here
an object, represented by an open circle, is placed near a latiice point. The
action of the four-fold operator replicates this object at positions rotated by
/2, 7, and 37/2 about this point. The mirror lines replicate each of the four
right-handed objects into lefi-handed objects, represented by an open circle
with a comma in the center. The eight objects are then replicated by adding
translations to repeat them within the cell and adjacent cells. We see that
there are eight equivalent points inside the unit cell. There must be precisely
one symmetry element connecting each pair of two equivalent points. For
nstance, point 1 is converted into point 3 by the four-fold rotation at the
center of the cell, and points 5 and 7 through the repeated application of

s and the c
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Fig. 104. The 17 2-D plane.
groups: p1, p2pmpgam,
‘pamm,p2mg, p2gs,
camm p4 pammpagm
P3.pam,p3imps, and
pomm.

102 Plane groups

the four-fold rotation. Point 1 can be mapped onto point 1" by u regular
lattice translation along the horizontal direction. We can also reach point 1"
starting from point 2, by means of a diagonal glide line going through the
points with coordinates (0, 1/2) and (1/2, 1) (dashed line). The hooked arrow
indicates the translate-mirror motion of point 2. It is clear from this simple
illustration that in an infinite space group, there is precisely one symmetry
operation for each pair of points, no matter how many unit cells apart these
points are. This completes the derivation of the pdmm plane group. Note that
the crystal system is not mentioned in the plane group symbol,
because the point group 4mm (C,) can only be combined with the square
lattice.

The same procedure can be applied to derive the other 15 plane groups,
Without going into all the details, here s how the general derivation works.
We start by considering the most general (lowest symmetry) of the 2-D
Bravais lattices, the oblique lattice, which is simply a parallelogram with
angles between the bases that are not 77/2 or 27/3. This lattice s compatible
only with the 1 (C,) and 2 (C,) point groups. Combination of 1 (C,) with the
oblique lattice gives rise to the primitive plane group labeled p1. Combination
of 2 (Cy) with the oblique lattice gives rise to the plane group p2 (also
primitive) which was derived above. Figure 10.4 shows the crystallographic
representation of all 17 plane groups. As in the illustrations above, this
consists of (a) decoration of the latt with the appropriate point group
operations; and (b) inclusion of new symmetry elements implied by the first
For additional illustrations and lists of general and special point positions the
reader s referred to Chapter 6 in the International Tables for Crystallography
(Hahn, 1996),

Combination of a mirror plane with the rectangular lattice gives
primitive plane group, pm. Replacing the mirror line by an axial glide line we
find a second plane group in the rectangular Bravais lattice: pg. Combination

wlrr=]=]zz

om Pe em  pamm

once ag

se to the

—r
[ )
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of a mirror with the centered rectangular lattice also gives rise (o a primitive
plane group, however, it is again convention to represent this as an equivalent
centered rectangular plane group with symbol em. It is also possible to
combine two orthogonal mirror planes with the rectangular Bravais lattice
giving rise to the p2mm plane group. OF course, additional 2-fold axes are
required at the intersections between the orthogonal mirror planes. Axial and
diagonal glides give rise to the p2mg and p2gg plane groups, respectively.
Diagonal glide lines in combination with the centered rectangular lattice
results in the c2mm plane group.

The plane group pd is obtained by adding the 4 (C,) point group to
the square Bravais lattice. The pdmm plane group, derived above, has two
orthogonal sets of diagonal glide lines that are implied and therefore not
ncluded in the plane group symbol. Addition of new axial and diagonal glide
lines to the group p4 gives rise to the plane group pdgm.

Three- and six-fold rotational axes are only compatible with the hexagonal
Bravais lattice. The primitive unit cell is represented as a parallclogram
(thombus). In plane groups with three-fold rotational symmetry, the three-
fold operation is replicated at all lattice sites. In plane groups with six-fold
rotational symmetries, the six-fold operation is replicated at all lattice sites.
In both cases, the three-fold axes are replicated also at positions (1/3,2/3)
and (2/3, 1/3) along the cell diagonal

Combination of the hexagonal lattice and a three-fold axis gives rise to
the primitive plane group p3. There are two ways of adding mirror planes
to the plane group p3. The three-fold axis replicates the mirror planes along
the edges of an underlying triangular lattice. The plane group p3m1 has an
additional mirror line along the cell diagonal, mirror lines passing through the
cell vertices and the midpoint of opposite edges as well as implied glide lines.
The p31m plane group does not have the additional mirror lines but does have
4 triangular network of glide lines around the three-fold axes located on the
cell diagonal. Combination of the triangular lattice and a six-fold axis gives
rise to the primitive plane group p6. Addition of a mirror plane to p6mm
gives ise to the plane group p6m. In both cases, two-fold axes on the cell
edges are implied.

As a final exercise, we consider the 2-D structure illustrated in Fig. 10.5(a).
‘This is an example of a Kockel diagram (Borchardt-Ott, 1995) which can be
used to illustrate the symmetry of a particular plane group using a structural
motif. Such diagrams can provide interesting exercises 10 test the comprehen-
sion of the subject. In such an exercise, one is typically asked to (1) determine
the unit cell (unit mesh); (2) show all symmetry elements in the cell; and (3)
determine the 2-D plane group for the structure. The example in Figure 10.5
is a square mesh that has four-fold and two-fold rotation axes, vertical and
diagonal mirror lines, and diagonal glide lines. It s, therefore, an example of
the p4mm plane group illustrated above.
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Fig. 105, (3) Kockel diagram
of a symmetric 2:D strucure
and (b i unit mesh and
‘symmetry operatons.

10.3 Space groups

Fig 106, Constrcton of the
space group Pmm (C}) from
the Bravais latice 0P and the
point roup mm2(C, ).

103 Space groups

Consider the 3-D orthorhombic point group mm2 (Cy,). It has four elements:
the identity, a two-fold axis parallel to the -direction, and two mirror planes
my and m, at right angles to each other. Since orthorhombic point groups can
only be compatible with the orthorhombic Bravais lattices (of which there
are four), we need to investigate the combination of these symmetry elements
with the various orthorhombic centering operators. Figure 10.6 shows how
we can construct a space group based on the point group mm2 (C,,) and the
Bravais lattice oP. At every lattice point of P, indicated by filled circles on
the drawing, we put a copy of the point group drawing. We notice that the
‘mirror planes line up with the unit cell boundaries, so we draw solid lines to
indicate that they are indeed mirror planes. We also know that two parallel
mirror planes at a distance 1 give rise to an additional mirror plane at the
distance #/2. Hence we draw two new mirror planes half-way through the unit
cell. Finally, we know that the intersection of two mirror planes is equivalent
10 a two-fold axis along the intersection line, 50 we draw th

+0 0+
~o[o+ o)
o+ +0

Poun2.
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intersection. This completes the drawing. This configuration of symmetry
elements is of course repeated in every unit cell. The infinite set of symmetry
elements thus obtained forms the space group Pmm (CL,). The space group
symbol is formed by combining the centering information of the Bravais
lattice with the point group symbol (in International or Hermann-Mauguin
notation). It is not necessary o include the o for orthorhombic, since the
point group symbol already indicates that the group must have orthorhombic
symmetry. Note that the centering symbol is written as an uppercase letter,
as opposed to the centering symbols for the 2-D plane groups, which are
written as lowercase letters. The Schonflies notation for the space groups will
also be shown between parentheses; this symbol is based on the point group
Schinflies symbol.

nally, we can indicate how a general point is “copied

(0 the equivalent
points. This is shown on the lower right corner of the drawing. The open
circle with the + sign next to it indicates a general point above the plane of
the drawing, a minus sign would be below. The symbol £+ indicates that
the point is half a unit cell above the original point, etc. The circles with a
comma inside indicate that the point is related to the original point by an
improper symmetry operation. In other words, those points are lefi-handed

versions of the original right-handed point. This type of drawing is
‘groups what the stereographic representations are for point groups.

The space group Pmmz2 (CL,) has four equivalent points inside the unit
cell; these points have coordinates:

‘The positions with the highest site symmetry are found along !he two-fold
rotation axes, located at (0,0,2), (0, 1/2,2), (1/2,0,2), and (
These four locations have site symmetry mm2, and are denoted tvv \h» Wyel
off positions la, 16, lc, and 1d. respectively. In addition, there are four
mirror planes in this space group, leading to the following special positions:

The site symmetry for the first
10 of these is -m, and for the other two it is m-~. The Wyckoff positons
are labeled 2¢, 2/, 2¢, and 24, respectively. The general position, (x, y
then gets the notation 41

Let us repeat this exercise for the orthorhombic oC lattice, using the same
point group symmetry. Figure 107 shows the steps in the construction of
space group Cmm2 (C3.). The centering vector of the oC Bravais lattice
copies every point with coordinates (x. y, z) onto an equivalent point (x+
1/2,¥+1/2.2). Looking at the equivalent sites inside the unit cell (lower
left of Fig. 10.7), we find that there are eight equivalent positions. If we take
any pair of points, there must be a symmetry operator that converts one into
the other. For instance, point 1 is converted into point 2 by means of the
two-fold rotation axis located at position (1/4, 1/4,0); 2 goes to 7 by means
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Fig. 10.7. Constrution of the.
space group Cmm2 (CY) from
the Bravas lattice oC and the
point group mm2 ().

103 Space groups

+0 Or g g
+O|0+ +Q) T 6--41
-Slo- ¢4

of the two-fold rotation axis at the center of the cell, as do 4 10'5, 1 10 8, and
3 to 6. Which symmetry operator brings 1 onto 32 To answer this question
we start from the presence of two parallel horizontal mirror planes (top right
of the figure) going through the points (0,0,0) and (1/2,0,0). Due to the
translational symmetry, there must be a third parallel mirror plane half-way
in between them, going through the point (1/4,0,0). From the positions of
the equivalent points, we see that this mirror plane is not just a simple mirror
plane, but instead a glide plane with a translation vector (0, 1/2,0). This
glide plane takes point 1, translates it to the position (x, y + 1/2,
mirrors it into position 3, with coordinates (1/2 = x,y + 1/2,.2).

The full set of eight equivalent points has the following coordinates:

0.0.0+ (5L1,0+
®h) 1D @xo)

line contains the zero-vector and the centering veetor C. To find
all the equivalent point coordinates we must add these vectors (hence the +
sign) to all four coordinates on the second row. Those coordinates are found
by matrix multiplication of the symmelry matrices of the point group mm2
(Cs,) with the general position vector (x, y,2). The muliplicity of a general
point is equal to the number of equivalent positions for a general point inside
a single unit cell. For this space group, Cmm2 (CY), the multiplicity is 8,
whereas it is 4 for Pmm2 (C3,). Note that the multiplicity for & space group
is similar to the order for a point groups since all space groups are of infinite
order, there is no point in using the order of the space group to say something
about the number of equivalent points inside a single unit cell.




Fig. 108, Consirucion of the
space group Imm2 (C) from
the Bravas latice of and the
pointgroup mm2 (C,.).
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2). We must remember that the point group symbol is
copied at every lattice site, but now the central lattice site is at a position 1/2
above the plane of the drawing. The two-fold axis which for the space group
Cmm2 (CY)) is generated at the position (1/4, 1/4,0) now becomes a two-
fold serew axis, indicated by the symbol {. This is easy 1o understand when
we consider how to go from point 1 1o point 2: we rotate 180° around the
point (174, 1/4,0), and then we must translate by (0,0, 1/2) alon;
obtain point 2. This combined operation is a 2, screw axis. A similar analysis
for the points 1 and 3 reveals that the glide plane must be a diagonal glide
rather than the axial glide that we found for space group Cmm2 (C3!). The
dash-dotted lines represent the four diagonal glide planes in the unit cell. The
multiplicity of a general point is again 8, but the coordinates are now given by

D+
[EN

0,0,0)+
[C N

(%,2).

We leave it to the reader to determine the special positions for both Cmm2
(C1}) and Imm2 (C%2) space groups.

We have found that the space group Cmm2 (C3) contains axial glide
planes amongst its elements, and that Imm2 (C}) has two-fold screw axes
and diagonal glide planes. Since those symmetry elements are the result of
the combinations of othe; ments, we do not need to
include the symbols for the axial glides or the screw-rotation symbol in the
space group symbol. If a space group symbol does not contain any serew-

rotation symbols or glide plane symbols, then that space group is called
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symmorphic. If the symbol does contain screw-rotation symbols, glide plane
symbols, or any combination of both, then that space group is called non-
symmorphic. Tn the following sections, we will discuss both classes of space
‘groups in more detail

10.4 The symmorphic space groups

As mentioned above, a symmorphic space group is a space group with a
symbol that does not contain any screw-rotations or glide planes. One can
enumerate all the symmorphic spce groups by taking the combinations of all
Bravais lattices with all point groups of the same crystal class, just as we did
in the previous section. In other words, for the lattice aP we have two triclinic
point groups, 1 (C,) and 1 (C)); for mP there are three monoclinic point
groups, for mC there are also three monoclinic point groups, and so on. This
results in the formation of 61 space groups, listed in Table 10.2." Note that
cach space group has been assigned a sequential number, from 1 to 230, The
International notation is shown along with the Schinflies notation; it is clear
that the Scheenflies notation is simply a sequential numbering added to the
original point group Schonflies symbol. These symbols are not as instructive
as the Hermann-Mauguin symbols.

This does not conclude the enumeration of the symmorphic space groups,
however. There are 12 additional symmorphic space groups, indicated in
‘Table 10.2 by an underlined space group number. The additional space groups
are formed in a number of different ways:

o We have assumed that there is only one possible relative orientation
between the point group symmetry elements and the Bravais lattice direc-
tions. For several point groups there is more than one way to copy the point
‘roup onto the lattice. A typical example would be the space groups P42m.
(D},) and Pdm2 (D},). For space group P42m (D},), the mirror planes
are positioned along the diagonals of the tetragonal unit cell, whereas for
group PAm2 (D3,) they are parallel to the faces of the unit cell. This is
indicated by reversing the order of the two-fold axis and the mirror plane
in the Hermann-Mauguin symbol. A similar situation occurs for space
groups 1m2 (D3,) and 182m (D}}), and for Pém2 (D1,) and P62m (D3,).
For the orthorhombic point group mm2 (C;,) we can position the two-fold
axis perpendicular o the C-centered plane, which results in Cmm2 (C3\),
or we can position the two-fold axis parallel to the centered plane, in
which case one uses the A-centered unit cell. The latter case gives rise to
the symmorphic space group Amm2 ().

! s casy o verity tht e e 1 groups sulin.frothe combination of Bravas lcices
10 et group: L2 k)2 x 3 (o) + 4 x 3 oo ¢
7 crmgonsh £ 1 5 rgona) 41 x 7 rexagomaly 53 x 3 (Ub) =
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Tal

ble 10.2. The 73 symmorphic space groups, wth sequential number,

International and Schinflies symbols, and corresponding point group.

Symbol 5G# PG Symbol
PL(C) W 3(c) P3(C})
Pi(c) 145 R3(CY)
P2(C}) 147 3(c,) P3(CL)
c2(c) 148 R3 ()
Pm (C) W 20y P312 (D)
cm(c) P321 (D})
10 2m(Cy)  P2m(Ch) 155 R32 (D])
12 3m(Cy) P3m1 (C},)
6 220, P3m (C},)
21 3m ()
n Sm,)  P3mDi)
2 Pim1 (D},)
25 mm2(C, R3m (D3,)
33 6(C) P6(C))
3 6(Ca) P6(Cl,)
2 6/m(C,)  P6/m(Cl)
w“ m2 (C) 022(0,) P62 (D})
47 mmm (D) P D) 6mm (C,)  Pomm (C),)
65 Cemenm (D) Gz (D) P2 (e8]
69 ®3)
7 6/mmm (D) Pé/mams [IM)
54 2(1) P23 (7))
1 F23 (1)
81 A 123 (1)
8 mi(7,) Pm3 (7))
8 4/m(Cy) Fm3 (7))
87 m3 (73)
8 422(0) 432(0) P432(0')
97 F432(0)
9 4mm (C.) 1432 (0°)
107 Bm (1) Pi3m (7')
11 a2m (D) F43m (T5)
ns  amz (o) 1aam (75)
0o im2(n,) mim (0,  Pmdm(0)
21 d2m(Dy) y Fmdm (0})
123 4 (Dy)  P4/mmm (D},) 229 Im3m (09)
139 14/mmm (D};)

The trigonal point groups can be combined with the R Br: attice which
gives rise to the space groups R3 (C3). R3 (C2), R32 (D)), R3m (C5,),
and R3m (D3,). The trigonal point groups can also be combined with
4 hexagonal primitive Bravais lattice, which gives rise to space groups
P312 (D}), P3m1 (C},), and P31m (D),) (these are part of the regular 61
space groups ob

ed by combining the hexagonal Bravais lattice with
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the various point groups). In

dition, one can change the orientation of

the point group elements with respect to the hexagonal basis vectors which
creates the space groups P321 (D3), P31m (C3,). and P3m1 (D},).

“This concludes the enumeration of the 73 symmorphic space groups.

10.5 The non-symmorphic space groups

Fig. 109, The symmetry
combination mm2, ivesrise
108 equiclent o, wiich
orespond to e the
arangement of poits forthe
space roup Prma ().

The remaining 157 (= 230 — 73) space groups can be derived by system-
atically replacing one or more of the symmetry clements in the Hermann-
Mauguin symbols of the point groups by screw-rotations and/or glide planes.
Let us consider an example. We have seen in Fig. 10.6 that the combination

of mm2 (C;

the two-fold axis by a two-fold screw axi
ig. 10.9 that a general point is transformed into 7 other points, 4
of them at height -+, the other four at height
of points with the points in Fig. 10.6 we find that they are identical. In other
words, if we combine the symmetry mm2, with the Bravais lattice oP, then

drawing in

we find the symmorphic space group Pmm2 (C},). with a unit ¢

along the two-fold axis. This is not a new symmetry, so the space group

Pmm2, is not a new space group.

The next combination we can try

) with 0 produces the space group Pmm2 (C},). If we replace

2,, then we can see from the

+. Comparing this arrangement

I doubled

sme2,. i.e., we convert the mirror plane

perpendicular 10 the b-axis into a c-glide plane. This combination results in the
construction shown in Fig. 10.10. The presence of the c-glide plane removes

half of the points that were
resulting space group is ca
This procedure must be repeated for all possible combinations of

led Pme2, (G3,).

ntroduced by the mirror plane in Fig. 10.9. The

rew

axes and glide planes in all point groups and Bravais latiices. This is a

e

jous task and we will only list the resulting non-symmorpl

space groups

in Table 10.3. Interested readers may wish to consult Buerger (1956) for a
detailed and complete derivation of all 230 space groups.

Note that it is straightforward to determine which point group corresponds
10 a given non-symmorphic space group: simply replace all screw axes by
a regular rotation of the same order, and all glide planes by a mirror plane.

For instanc

consider space group 14, /am (Di). If we replace the 4, screw

axis by a four-fold rotation, and both glides a and d by mirrors i, then we

obtain point group 4/mmm (D). If we use the Schin

s notation, we can

simply drop the superscript from the space group symbol.

”Q

12+Q

[olxN

O
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Table 10.3. The non-symmorphic space groups, with sequential number and
corresponding point group.

SGE PG Symbol SGE PG Symbol
s 20 Ceem (D3)

7 m) Cmma (D3})
9

o ymey)

13

14

is

7 mo) ac)

18

19

20

2 4/m (Cy)

6 mm2(G)

Bl

28

B 4220,

30

31

)

E

3

36

37

39 4mm (C,.)

a0

41

3

45

46 Pame ()
48 mmm (D) Pa,be (Ch)
a9 4mm(C,)  Mem (Cf)
50 14,md (ClY)
st 1yed (CL)
52 a2m (D) Pa2e (D3,)
5 Pa2,m (D)
54 Pa2,c (D)
55 Pic2 (0%,)
56 sz ol
57 k)
58 |4c2 [
59 324 (D}

0 Almmm (D) w/.m 3
61 Pajnbm (D},)
62 Pd/nnc (D)
6 Pa/mbm (D3,)

2
6 Cmea m‘*) 128 Pajmne (DF,)



Table 10.3. (cont).

10.5 The non-symmorphic space groups

5G# PG Symbol G Symbol
120 Pi/nmm (D],) 6,22 (D))
130 Pa/nee (D},) P6,22 (D)
131 Py /mme (D3,) P6,22 (DF)
132 Pi, /mem (D13) 6mm (C,)  Poee (G,

133 Pay/mbe (DY) som (C,)
134 P, /onm (D) Péme (C,)
135 P, /mbe (D m2(D,)  Poe2 (D)
136 P4, /mnm (D} P62c (D)
137 Pd;/nme (D) 6/mmm (Dg,)  P6/mee (DF,)
138 Pa, /mem (D) P6,/mem (D)
10 14/mem (D) PG, /mme (D)
141 14y /amd (DS} 23(7)

12 14, facd (D)

144 3(Cy) 3, (CY) m3(7,)

145 2 (CD)

151 20)  P312(0)

152 P3,21 (D)

153 P3,12 (D) 432(0)

154 3,21 (D))

158 3m(C,) P3l(CL)

159 3le (Cl)

161 e (CS,)

163 3m(Dy) P3le (D) 3m (7,

165 3el (D)

167 Rie (08,)

169 6(C) 6 (C n (0,)

170 e (C]

171 P6, ()

12 6, (C)

7 6, ()

176 6/m(Ca)  Poy/m (Ch) Fdic (0})
8 620 P62 (D0 Ta3d (0}f)
179 6,22 (D)

Fi. 10.10. The symmety
combination me, gie rie o
2 new non-symmorphic space
roup Pmaz, (C})
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10.6 General remarks

We conclude this section with some remarks about space groups. Thus far
we have considered space groups in 3-D and plane groups in 2-D. A more
‘general approach to symmetry theory shows that there are four different types
of symmetry groups in 3D:

3 the space groups, describing periodic 3-D structures (infinite crystals).
© it the layer groups, describing the symmetries of objects, infinitely
extending in two directions but finite in the third direction (one plane is
invariant),
i the rod groups, describing the symmetries of line-type objects, infinite
in one direction (one line remains invariant).
3 the point groups, describing the symmetries of finite figures in 3-D
space (only one point remains invariant)
In this text, only G5 and G3 have been discussed extensively because they
are of central importance for crystallography: the other groups are used in
specific research fields. In two dimensions, one di

iguishes between three

different types of symmetrie:

the 2-D plane groups, describing the symmetries of two dimensional
planar figures (NOT planes in 3-D space!).

© G3: the 2-D rod groups, describing the symmetri
plan.

s of line figures in a

G2 the 2-D point groups, describing the symmetries of finite figures in a
plane.

ing (0 look at the number of possible groups as a function of
the dimension of the space: in the following table, the number of possible
‘groups is given for one, two, and three dimensions. In four dimensions, there
are 4250 space groups G2 all of these are known and tabulated!

3 1o
3230 80 75 32
2 — 17 7
1l = = 3 2

In the remainder of this book, we will use space groups to describe
important crystal structures. Before doing so, it is instructive to discuss the
information that is tabulated in the International Tables for Crystallography,
Volume A (Hahn, 1996). This book presents, among many other things, a
complel g of all 230 space groups. Two typical space group deseriptions
are shown on the following pages for the symmorphic space group Cmm2.
(CY) (Fig. 10.11), and for the non-symmorphic space group Pmna (D)
(Fig. 10.12).
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Cmm2

' 2 Orthorhombic

No. 35 Cmm?2 Patterson symmetry Comm

Cnmz w2

Origin on mm?2

Asymmetric unit 0 <x<

Symmetry operations

For (0,0, 0)+ set

2200z G)mx0z @Hmoyz

@25

Fig 1011, Example space group descrpton or space group Cmm2 (C3), showing al enties lsed in
the Internatonal Tabtes or Cysallography, volume A, page 228 (Hahn, 1996) (TC). This fgure i
continued an page 248 with the parial contents o page 229 from IT

@axtz @blyz

Generators selected  (1): 1(1,0,0); 10, 1,0): (0,0, 1); (4, 2,0); (2); (3)

Positions
Multiplicity, Wyckoff Coordinates. Reflection
letter, Site symmetry conditions

(0,0,0)+ 0) General:
8 o1 ey QR

Iz Btk
G)riz @iy Otz k=2n

HOE =20
Oz Rk k=20

0k0;
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Special: as above, plus
4 m 0 no extra conditions
4d m x no extra conditions
4 e 2 L ikl h=2n

25 mm2 no extra conditions
24 om0 no extra conditions

Symmetry of special projections

Along [001) p2mm Along [100] p2gm  Along [010] c2mm
a=1 a b

atx,0.0 Origin at 0, 3,0

Origin at 0,0,
Pmna mmm Orthorhombic
No. 53 Patterson symmetry Ponm

Origin at center (2/m) at 2/ n 1

Asymmetricunit  0=x<}  0=y<l;

Symmetry operations

1 (2) 2(0.0, 1
(5)10,0,0 (6)axyt

-3

)2x,0,0
0.z (8)m0.y.z

Fi. 10.12. Bampl space group descripion for space group Prnna (0}),showing all entiesfsted in
the Internatonal Tabie for Cystallography, volume A, page 269 (Hahn, 1996). This fiure is continued
on page 249 with the partal conentsof page 269 from ITC.
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Generators selected (1); 1(1,0,0% 10, 1,0): 10,0, i (2): (3 (5)
Positions

Multipliciy, Coordinates Reflection
Wyekoft conditions
leter, Site

symmetry
General:
s
R0: b
00 =20
ot =21

80

Special: as ahave,
plus o extra
conditions

4.0

a 2m

Symmetry of spe

Along [001] p2mm Along [100] p2gm Along 010] c2mm
a=la b=b a=b b=c w=c b=
Origin at 0,0, Origin at x,0,0 Origin a0, 3,0

The space group description consists of the following items (referring to
Figs. 10.11 and 10.12):

« Atthe top of the page, we find the shorthand space group symbol Cmm2,
the space group number (35), the Schonflies symbol C!, the complete
space group symbol Cmm2, the point group symmetry mm2 (C,,), the
crystal system (orthorhombic), and the Patterson symmetry which will be
defined in Chapter 11. For space group Pmna (D3,), the full space group
symbol is given by P22,
Next, we have a set of drawings showing the relative positions of all sym-
‘metry elements, projected along the three main directions of the orthorhom-
bic reference frame. The drawing in the lower right comer indicates the
equivalent positions with a notation similar to the one introduced earlier
in this chapter. Each symmetry operator has a specific graphical symbol
‘We have introduced many of them in Chapter 8; for a complete
refer the reader to Chapter 1 in ITC-A (Hahn, 1996).

Note that the drawings for Pmna (D},) are significantly more compli-

ing we

cated than those for Cmm2 (C31). The main reason for this i the presence
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le glide planes. The arrows with only a “half head” represent
two-fold screw axes that lie in the plane of the drawing; the number next
to the symbol indicates the height of the screw axes above the plane of
the drawing.

For space group Cmm2 (C), the origin of the reference frame has point
symmetry mm2 (Cy,), ie., the origin is taken at the intersection of two
mirror planes and a two-fold axis. For Pmna (D},), the origin is taken
at a point with symmetry 2/m (Cu,), where a two-fold axis (Iying in the
plane of the figure at upper right) intersects a mirror plane. Note that th
point also coincides with an inversion operator. For many space groups,
the International Tables list two possible origin choices; in those cases
the Tnternational Tables show all the information in Fig. 10.11 for both
origin choices,

The asymmetric unit is the smallest part of space from which, by appli-
cation of all symmetry operations, the whole of space is filled exactly.
In other words, it is that portion of the unit cell that will completely fill
all of space when it is copied by the various symmetry operators. Recall
that space groups are infinite groups, by virtue of the lattice translations.
The volume of the asymmetric unit is equal to the volume of the unit cell

divided by the product of the order, 1, of the point group corresponding
10 the space group, and one plus the number of centering operations. For
Cmm2 (C1)), we find n =4 and there is a C-centering operation, so that the
the volume, V,. of the asymmetric unit equals V, = V/(4x (1+1)) = V/8.
For Pmna (D},), we have V, = V/(8 x 1) = V/8.

A complete list of all symmetry operations, grouped by centering vector (if

any). In the case of Cmmz2 (CL!), there is a C-centering operation, whereas
Pmna (D},) is a primitive space group. The notation for the symmetry ele-
ments includes the location of each of the elements, and a more complete
explanation can be found in Chapter 11 of ITC-A (Hahn, 1996). There
are eight symmetry operators in space group Pmna (D},): in addition to
the identity, we have a two-fold screw axis, two two-fold rotation axes

along the two directions normal to the screw axis, an inversion center at the.
origin, an a glide plane, a diagonal glide plane, and a regular mirror plane.

For each space group, a similar display can be found in ITC-A. For tetragonal,

hexagonal, and rhombohedral symmetry, the Tables show only one graphical

of the symmetry operators, projected along the [001], [00.1] and

[111] directions, respectively. For many of the cubic space groups, only one

quadrant of the unit cell is shown, because of the large number of symmetry
operators. The highest possible number of symmetry operations in a space
‘group, not counting the Bravais lattice translation vectors, but including the
centering veclors, is 192; this corresponds to the combination of the highest
order point group, m3m (0), with 48 elements, and the face-centered cubic
Bravais lattice, which has three centering operations. The resulting space
group is Fm3m (03).
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On the second page of each space group description, we find additional
information. The most important portion is reproduced in the second part of
Figs. 10.11 and 10.12.
o The generators are the symmetry elements from which all others can be
generated by matrix multiplication. Note that the basis vectors are always
the generators, as are the centering vectors. For Cmmz2 (CL!), the
entire space group can be created if the three basis veetors, the centering
vector, and the two-fold axis and one of the mirror planes are provided.
Every other symmetry operator of the infinite space group can be created
by an appropriate matrix multiplication (using the 4 x 4 matrices introduced
in Chapter 8).
The positions table indicates the most general position and all its equiv-
alent positions. The most general position is always indicated by x, y, z.
Application of a symmetry element with number (j) from the first page of
the space group description then results in the position (j) X', y'.
the primes indicat me combination of the coordinates x, v, and
first set of coordinates refer to the most general point. The number at the
beginning of the top line of the table gives the multiplicity of the general
position. The third symbol on the first line indicates the site symmetry of
the general point, which is always equal to 1 (C,). The remaining entries in
the table indicate special positions, for which the point lies on one or more
of the symmetry clements. For instance, the second entry for space group
Cmmz2 (C})) indicates a point of the type 0, y, z. which lies in the mirror
plane formed by the a and b vectors. Because of this, there are only half
as many equivalent points, which results in a multiplicity of 8/2
shown in the first column. The site synimetry for this position is then sq\ml
to m--. One can progressively move the special point to the intersection
of two or more symmetry elements, which further reduces the multiplicity.
The highest symmetry is obtained for points along the ¢ axis, for which the
site symmetry is mm2 (Cj,). The third column of the table indicates the
site symmetry of the general (always 1 (C,)) and special positions. Note
that these site symmetries will always be subgroups of the point group
corresponding to the space group. It is customary to refer to the special
positions in the following way: one provides a letter as a label for each
entry in the table, starting with the last entry (highest point symmetry). One
refers to a special site by the combination of the multiplicity and the letter,
as in 8/, or 4d. The letter is known as the Wyckoff letter, and the symbol
16 is the Wyckoff symbol. A crystal structure may then be described by
listing the Wyckoff symbols for all the atoms in the asymmetric unit. The
last column in the Positions table contains diffraction information, and this

amoy

will be discussed in more detail in Chapter 11.

The next section shows the symmetry of special projections. If the unit
cell is projected along the [001] direction, then the resulting 2-D figure
will have the plane group symmetry p2m m for both space groups Cmm2
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(CY) and Pmna (D},). The 2-D unit cell will have lattice parameters
a and b’ that are, in general, fractions of linear combinations of
original basis vectors. The location of the origin of the 2-D unit cell is also
specified.

There are several additional entries in the space group descriptions in
ITC-A; these are related to subgroup-supergroup relations, but we will not
need them for this text. The interested reader is referred to Section 2.15
in ITC-A (Hahn, 1996).

the

ith the exception of the last column under the heading Positions, the
reader should now be able to understand the basic space group information
listed in the International Tables for Crystallography

10.7 +Space group generators

The section on space groups in ITC-A is more than 600 pages long, and
contains a lot of information. The true power of group theory can be shown
by considering what it would take to encode all space groups in a con
puter program. The naive way would be to Key in all special positions
for each space group. This would be a tremendous task, and there would
be a lot of opportunities for mistakes. Group theory provides us with a
much easier way of accomplishing this task. We know from the point
group examples in Section 9.2.10.8 that we can generate all the symme-
ity matrices of a point group starting from a list of generators. This list
can be rather short for each point group, assuming that we make use of
a predefined set of 14 symmetry matrices, listed in Table 9.5. Since we
must also allow for translational symmetry elements in space groups, we

introduce another set of symbols representing the fractions that nced to
be used to complete the generators elements. These symbols are shown in
Table 10.4.

Since a symmetry operator is represented in matrix form by a 4 x 4 matrix,
we must combine the generator matrices D with the components of the
translations to fully identify the space group generators. We should note
that, 10 create the entire (infinite) space group, we must include the Bravais
translation vectors as generators. We will ignore these generators in this
Section, since it is clear that we can go from one unit cell to another one by
means of translations.

It is surprising that it is possible to compile all the information on the
generators of all 230 space groups in a short ASCII file that is only 4104
bytes long! This is how it works: for each space group, we create 4 string of
characters. The first character is cither a 1 or a 0, depending on whether or
not there is an inversion operator present in the group. The second character
indicates how many generators there are, in addition (o the inversion operator
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‘Table 10.4. Encoding scheme for the components of translation vectors.

(if present). As an example, consider the space group Cmma2 (CJ!) that we
encountered in the previous section. Tts generator string is given by:

03aDDOb000jO000.

‘The first character is a 0, indicating that the inversion operator is not a gen-
erator. Then, the 3 indicates that there are thrce generator matrices. Each
generator is described by four characters: the first one determines which of
the 14 standard matrices is to be used (from Table 9.5). The subsequent three
characters indicate the three translation components (from Table 10.4). So,
for Cmm2 (C1!) the generators are aDDO, bOOO and JOOO. The first gen
erator is represented by matrix D', and has translation components (DDO)=
(1/2.1/2.0). This corresponds to the 4 x 4 matrix:

We recognize this matrix as the C-centering translation. The next generator
is 00O, which does not have a translational component. The corresponding
4 4 matrix is:

cortesponding to a two-fold rotation around the z-axis. And, finally, the third
generator is given by jOOO, which corresponds to:

which represents a mirror plane normal to the y-direction.
‘The last symbol in the generator string is a 0, which indicates that for
this space group there is no altenative choice for the origin. If there were a
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second origin choice listed in ITC-A, then this character would be a 1, and
it would be followed by three more characters indicating the location of the
second origin choice with respect 1o the first (i.c., a translation). An example
of this can be found for space group P4/nbm (D},) with generator string

046000g000c000hDDOI Y YO.

There is no inversion operator, there are four generators (meaning 4 four-
character substrings b00O, g000, c000, and hDDO), followed by a 1 and
Y0, indicating that the second origin choice is located at (~1/4, ~1/4,0)
with respect to the first origin. When the complete space group is generated by
a procedure similar to that deseribed in Section 9.2.10.8, then one can change
between the two origin locations by multiplying each symmetry matrix by
the 4 x 4 maurix representing the translation = (— 1/4, —1/4,0): the = sign
i taken to be +, when going from the first choice to the second and — when
going the opposite way.

For the highest order space group, Fm3m (0f), with 192 elements, we only
need six generator matrices (plus the inversion operator), and the generator
string s given by

16a0DDaDODbO00CO00IO00000D.

There are two space groups that require seven generators, Fd3m (0]) and
Fd3e (0%). The complete listing of all 230 space group generator strings can
be found in an appendix on the book’s web site.

Once all symmetry operators of a space group have been determined, it is
a simple matter to determine the equivalent positions, starting from a general
position (x, , z). For special positions, one would have to eliminate positio
that occur twice or more in the fist generated by multiplying all matrices with
the general position. We leave it as an exercise for the reader to determine
the complete set of symmetry matrices for the space groups P2/c (C},) and
P6,/m (C,).

One of the striking developments in the field of crystallography was the fact
that William Barlow (1845-1934), Evgraf Stepanovich Federov (I8:
1919) and Arthur Moritz Schinflies (1853-1928), men of different nation-
alities and technical interests, nearly simultaneously derived the existence of
the 230 space groups in the 1890s.

Federov was a Russian crystallographer. He introduced the concept of reg-
ularity to describe configuration 1885 he published The
urations, an influential work on fundamental

Elements of the Study of Confi
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Fig.10.13. (3) Willam Barow
(1845-1934), and () Evgral
Stepanovich Federov
(1853-1919) picures courtesy
of ). Lima-de-Fara).

(b)

geometry (Federov, 1885). He then went on to apply the concept of regu-
larity 10 the structure of the atom, which eventually led to the creation, by
D.1. Mendeleev, of the Periodic Table of the Flements. Subsequently, he
applied the concept of regularity to crystal structures which led, in 1890,
to his derivation of the 230 space groups (known as Federov groups in the
Russian literature). Around 1870, Camille Jordan, in France, had two students
working on the study of continuous (Marius Sophus Lie) and discrete (Felix
Klein) groups. About two decades later, Arthur Schonflies picked up on this
work, applied it to crystal structures, and published intermediate results, which
were read with great interest by Federov. Federov then sent his results to
Schonflies, which started a “lively correspondence” (Galiulin, 2003) between
the two researchers. Federov completed his derivation and published it in 1891
(Federov, 1891), while Schonlies published his results a few months later
(Schonflies, 1891). The reader will find an interesting account of Federov's
life and work in the article by Galiulin (2003).

Barlow was an English amateur geologist, specializing in the field of crys-
tallography. He derived all 230 space groups using an approach that was quite
different from that used by Schnflies and Federov (Barlow, 1894). Barlow
correctly predicted the crystal structure of many compounds, including NaCl
and CsCl, long before they were confirmed by means of X-ray diffraction.

By allowing each point in a crystallographic space to have a color (black or
‘white). the 230 space groups can be extended to the 1651 Heesch-Shubnikov.
black-white space groups (Shubnikov and Belov, 1964). These groups can
be used to describe all possible 3-D magnetic symmetries. It is also possible
10 extend the concept of space group to higher dimensional spaces; it has
been established that there are 4250 4-D space groups. In addition, De Wolff
et al. (1981) published the theory of superspace groups. which allows for the
description of commensurately and in-commensurately modulated 3-D crys-
tals in terms of 4-D groups. The study of groups as applied to crystallography




10.9 Problems

Fig. 10,18, 2-D paters ting
the plane.

Fig. 10.15. Symmeic 2D
Stuctures,

Plane groups and space groups

1d of rescarch that was se in motion around 1830 by

is still a very active f
the young mathema

cian Evariste Galois.

shown in the figure below,

(i) Plane groups I: For each of the 2-D pattery
identify a periodic repeat unit cell; the equipoints in projection with the

symmetry elements; and the plane groups.

Plane groups I1: Consider plane groups with a square lattice:

(a) Derive the pd plane group by adding the 4 (C,) point group to a
lattice point. List the equipoints, site symmetries, and multiplicities.
(b) Derive the pdmm plane group by adding the 4mm (C,,) point group

to a lattice point. List the equipoints, site symmetries, and multiplic-

es.
Plane groups HI : Consider the symmetric 2-D structures illustrated in
Fig. 10.15(a)

() Determine the unit cell (unit mesh).

(b) Show all symmetry elements in the cell,
(¢) Determine the 2-D plane group for this structure.

JL Il TL A A A
ACACAr 3#:*"3
}. v***

(iif)

5
2

JL L JL
Li)vj Ev vj Fv vj rvtli)

ing in Fig. 10.15(b).

(iv) Plane groups IV: Consider the 2-D
() Determine the unit cell (unit mesh).
(b) Show all symmetry elements in the cell,
() What is the 2-D plane group for this structure?
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(vi) Space groups IT: The Heusler alloys

109 Problems

() Space groups I: The spinel-type magnetic oxides include the compound
magnetite, Fe 0, which important oxides of iron. The
space group for spinel is Fd3m (7). In magnetite 0> anions oc
the 32 special position (x..x. ¥) with x = 0.3799, Fe’* cations occupy
the 16¢ special position (1/8,1/8,1/8) and Fe* cations occupy the
8b special position (1/2,1/2,1/2). The magnetite lattice constant is
083941 nm.

one of the

(2) Determine the spinel Bravais lattice and list the site symmetry and
equivalent positions for each ion in the Fe 0, structure. How many
point group operations leave each site invariant?

ow that the site multiplicity is con

ent with the Fe 0, compo-
sition. How many formula units are there per unit cell?

() Use the atomic weights for Fe and O to calculate the density of
Fe 0,

nclude Ni,;MnGa, which is an
important new ferromagnetic shape memory alloy. Heusler alloys are dis-
cussed in more detail in Chapter 17 of the text. The famous isostructural

Heusler alloy, Cu,Mn Al s the prototype for the L2, structure. The space
group for Ni;MnGa is Fm3m (0f). In Ni;MnGa, Ni atoms occupy the
8c (1/4,1/4,1/4) positions, Mn atoms occupy the 4b (1/2,1/2,1/2)
sites, and Ga atoms are found on the da (0, 0, 0) special positions. The
cubic lattice constant is 0.5825 nm.

(2) Use the International Tables for Crystallography to determine the
coordinates of all atoms in a unit cell of Ni;MnGa.

(b) Determine the Bravais lattice and list the site symmetry and equiva-
lent positions for each atom in the Ni,MnGa structure. How many
point group operations leave each site invariant?

(¢) Show that the site multiplicity is consistent with the Ni,MnGa
composition. How many formula units are there per unit cell?

() Explain how to construct this structure as a 2x 2 x 2 superlattice
structure (hint: consult a picture of the L2, structure in Chapter 17).




11

11.1 Introduction

258
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In rying 10 hink of some way in which diffraction effects with X-rays might be
Jound, and the question of their rue nature answered, he [von Laue] came 10 the
realization that Nature had provided, in a crystal, a diffraction grating exactly

suited for that purpose.”

William L. Brage, Nobel Lecture, 1922

‘The first ten chapters of this book provide an in-depth description of the
crystallographic concepts used to describe crystals and to perform crystallo-
‘graphic computations. Armed with these skills, we are now ready to begin a

discussion of commonly used experimental X-ray diffraction methods. First,
we will discuss what X-rays are and how we can generate them. Then, we
will talk about the interaction of X-rays with cr and introduce
the concept of diffraction. This will lead to Bragg's law, a central theorem
for diffraction. We will convert Bragg’s law from its usual direct space for-
mulation to a reciprocal space form, and introduce a graphical tool, known

as the Ewald sphere, to describe diffraction events. We conclude the chapter
with a brief overview of a few commonly used experimental methods. In
Chapter 12, we will continue our discussion of X-rays, and consider in detail
how an X-ray photon interacts with a single atom, then with a unit cell, and
ally with an entire crystal. This will lead to a few important concepts, such

as atomic scattering fuctors, structure factors, systematic absences, and so on.
We will then apply these concepts to the technique of powder diffractomerry,
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and show that there is a precise relation between the experimental powder
diffraction pattern and the crystal structure of the sample. Tn Chapter 13, we
expand the deseription of diffraction to include neutron diffraction and elec-
tron diffraction, both important materials characterization techniques. Finally,
in Chapter 14, we will apply the concepts we learned in Chapters 11 and 12
1o some of the materials introduced in Section 1.6 of Chapter 1

11.2 Properties and generation of X-rays

Fig. 11.1. Schematc draning
of an elecromagneic 1
consistig of an alternating set
of orthogonal lecric and
magec feds.

In this section, we will discuss some of the fundamental properties of X-rays,
and show how we can generate X-rays experimentally. We will introduce the
concept of a wave vector, and describe how one can experimentally select a
particular wave length
tromagnetic waves with a wave length in the range
0.01-1.0nm. They travel in a straight line at the velocity of light, ¢ =
299792458 mis, and they have enough energy to travel through sufficiently
act nature of X-rays was fully understood, they were
Id in the early part of the twentieth century. Their
discovery is attributed to the German physicist Rontgen (1896)
are located between ultra-violet
rays and gamma rays in the electromagnetic spectrum. Quantum mechanics
has taught us that electromagnetic radiation can be regarded as either a wave
or a particle. In the case of a wave, we typically talk about an X-ray wave,
whereas the particle description employs the term X-ray photon. Since the
two are equivalent, we will use them interchangeably.

Graphically, one can represent an X-ray wave as a sinusoidally changing
electric field, with a perpendicular magnetic field, as shown in Fig. 11.1
The distance between two consecutive peaks in the magnitude of the electric

field is known as the wave length, A. Both the electric and magnetic field
vectors are perpendicular to the propagation direction of the X-ray wave, ..,
parallel to E x B. We will indicate the direction of propagation by means of
4 unit vector ¢,. If we take the x-axis to be parallel to this direction, then
we can write down the following expression for the amplitude of the electric
field vector (using x as the position and ¢ as time):

E(x.1) = Acos 2a(kx— 1)),

Popagaion
diction
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where k is the inverse of the wave length A, (ie.. k = 1/4) and v is the
frequency of the oscillating field. For electromagnetic radiation, one can show
that the relation between wave length and frequency, the so-called dispersion
relation, s given by:

v

Substitution in the electric field expression above leads to:
E(x, 1) = Acos (mk(x — cf)
‘The magnetic field associated with this changing electric field has the same

spatial and temporal behavior. Itis customary to use complex number notation
for periodic phenomena, and we replace the previous notation by a complex

exponential notation, using the Euler formula:'

E(x. 1) = Actmt—en,

‘with the understanding that only the real part of this expression is physically
relevant, Using the properties of exponentials, we can separate the spatial and
temporal parts of this expression and we find:

B(r1) = Actwbsgiten

In the remainder of this book, we will not be interested in the temporal

behavior of X-rays, so we will usually omit this term from all equations.
‘We must make two important observations at this point:

(i) electromagnetic radiation can, for all practical purposes, be regarded as

an oscillating electric field, and

since the argument of an exponential function must be dimensionless, the

dimensions of the wavenumber k are the inverse of a length.

This means that the wave vector k = ke, must be a veetor in reciprocal
space ! If we generalize the equation above to an arbitrary orientation for the
electromagnetic propagation direction, then the product kx becomes k . The
components of the wavevector k are measured with respect (o the reciprocal

is vectors, whereas the position vector r is measured with respect to the
direct basis vectors. From the definition of direct and reciprocal basis vectors
we know that the dot product consists of only three terms:

Ker =kt ky

* aler's formula is ¢ +isin(x), which can casily be shown by writing down the
‘Taylor expansions for al three fonciions.
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When we introduced the reciprocal lattice, we showed that each reciprocal
lattice vector corresponds to a vector normal to a certain crystal plane, and
the length of the vector equals the inverse of the distance between subsequent
planes. In the case of electromagnetic radiation represented by the complex
exponential expression, we can find an analogous interpretation: the complex
exponential Ae™** has a real value, A, whenever k-1 is equal to zero.
This equation is satisfied for all the vectors r that are perpendicular o k.
In other words, the electric field has a constant value in every point in a
plane perpendicular to the wave veetor k. The distance between subsequent
maxima of the electric field is equal to the wave length A, and we can
represent the wave by the wave vector k, which is oriented perpendicularly
10 a plane with constant field amplitude and which has length equal to the
inverse between subsequent planes of constant field amplitude.? Thus, k is
similar to a reciprocal lattice vector, and we will always express K in terms
of the reciprocal basis vectors. We are now prepared to express an arbitrary
electromagnetic wave with respect to the basis vectors of an arbitrary erystal

lattce. This will become important later on in this and the following chapter.

11.2.1 How do we generate X-rays?

The theory of electromagnetism tells us that electromagnetic radiation will be
produced whenever a charged particle is accelerated or decelerated. One way
10 accelerate and decelerate an electron, for instance, s to make it oscillate in
n electric field. This is easy to understand if one realizes that a field is, by
definition, a force per unit of som case electric charge.’ So, an
alternating electric field will make an electron go up and down, which will
cause it to emit electromagnetic waves with the same frequency as the driving
Jfield. This is the principle of broadcasting, where one forces the electrons
in a piece of metal, called an antenna, to oscillate at a fixed frequency. To
produce X-rays, we must make an electron oscillate at a very high frequency,
about 10 Hz. Tt would be very difficult to produce a driving field with this
frequency, 50 we need to resort to simpler means.

If we can create a beam of high energy electrons, and then abruptly bring
them 1o a halt, then those electrons will emit part or all of their energy
in the form of X-rays. This is called braking-radiation or Bremsstralung.
The easiest way to do this is shown schematically in Fig. 11.2: a cathode
(on the left) is heated to a high temperature, and a voltage V is applied between
the cathode and the anode (on the right). If the temperature is sufficiently high,
but not so high that the cathode will melt, then the electric field £ = V/d,
with d the spacing between the electrodes, will pull the electrons with the

2 T for this reason tha the expression €37 i offen refered 10 48 @ plae are.
* Other example: the gravitational field s the gravitationsl force pee it of mass.
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Fig. 112 Schemaic draving
of an Xay generator.

Xeray

Cutode

Heaed

highest ener
(this process is known as thermal emission). The potential energy of such an
electron s equal to the electron charge multiplied by the potential drop:

ies out of the cathode and accelerate them towards the anode

eV.

‘When the electron reaches the anode, it has been accelerated to its maximum
velocity, and the potential energy has been converted completely into kinetic

energy’

For a potential drop of V = 10000 volts, the final velocity will be 59.3 x
10°ms, or close to 20% of the velocity of light. At that point, the electron
collides with the anode, and loses all of its energy in a very short time.

About 9% of this kinetic energy is converted into thermal energy in the form
of lattice vibrations, and about 1% is transferred to atomic and conduction
electrons. These electrons will be excited into higher energy levels, and when
they revert back to their original energy levels, they will emit electromagnetic
radiation with a frequency in the X-ray range. Needless o say, such a setup
requires a water-cooling system, because most of the energy is lost in the
form of heat. The anode is thus either kept cool by means of a coolant, or it

is continuously rotated so that the exposed region is only briefly heated.

Exch electron hitting the anode (or farger) may lose either a fraction of its
energy. or it may lose all energy at once. Since the energy of an X-ray photon
is given by Planck’s constant multiplied by the frequency, we can determine
the maximum X-ray frequency, or, equivalently, the shortest wave length that
will be generated. as a function of the applied potential V.
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Fig. 1.3, Schematic Xray
specrum for 2 malybdenum
target as  funcion of voltage
and wave lengih. Based on Fig
14 n Cullty (1978),
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from which we find:

ann

if V is measured in volts. This minimum value is known as the short wave
lengtl limit, and it represents the smallest wave length that can be generated
by an X-ray tube, for a given potential drop. A minimum wave length of
0.1nm thus requires a potential of 12398 volts.

IF the electron does not pass on all of its energy at once, but only a fraction,
then a longer wave length X-ray photon will be created. The curves in Fig. 1.3
represent schematically the X-ray intensity as a function of wave length and
tube voltage, for a molybdenum target. For sufficiently high voltages, the
curves will show, in addition to a broad maximum, sharp peaks, which are
known as characteristic radiation

The total X-ray intensity generated by the target is equal to the integral
over one of these curves, and one can show that it is proportional to the
target current, the target atomic number, and roughly the square of the applied
voltage. To generate a high intensity of X-rays one thus needs a heavy atom
target, say tungsten, and as high a voltage as one can generate.

The characteristic peaks can be understood by considering the electronic
structure of the target atoms. Suppose that the incident clectrons have enough
energy to knock a K electron out of its shell. The atom is left in a highly
excited state and one of the electrons from the higher levels will fall into
the low energy state, emitting a quantum of energy in the form of an X-ray
photon. The energy of this photon is equal to the energy difference between

i

=

tensity

Xeray

Wavelength (nm)
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Table 11.1. Lst of the more commonly used K wave lengths in nm (Cullty and
Stock, 2001).

Target Ka Ka, Ka, KB,
o 02291000 02293606 0228970 0208487
Fe 01937335 01939980 01936042 0.175661
Co 01790260 01792850 01788965 0163079
cu 01541838 01544390 0.1540562 01392218
Mo 00710730 00713590 00709300 0.06:

the initial and final energy state of the atom, and thus depends on the type of
atom. If the beam of electrons does not have enough energy to knock one of
the inner electrons out of its shell, then there will be no X-ray emission caused
by de-excitation of the atom, simply because it can never be excited in that
way (0 begin with. As the tube voltage s increased, the short wave length limit
decreases and when the electron energy becomes larger than a threshold value,
a characteristic peak will appear on top of the Bremsstrahlung background.
The intensity of this characteristic peak can be many times higher than that
of the continuous radiation, and depends on the difference between the tube
voltage and the minimum voltage necessary to excite the target atoms. The
higher the tube voltage, the more intense are the characteristic peaks with
wave length larger than A,

‘The characteristic peaks have labels which consist of three parts: a capital
leter indicates the level into which the atom will de-excite, a Greek letter
indicates the level from which the atom de-excites, and a subscript number
distinguishes between various energy levels of the excited state. An example
would be Ka, which represents radiation caused by de-exc
first level of the L-shell into the K-shell, K, which coresponds to de-
excitation from the second energy level in the M-shell into the K-shell, and so
on. The energies (and X-ray wave lengths fated with such de-excitation
processes have been measured for all elements. A few of the more important
ones (wave lengths) are listed in Table 11.1. Since the Ke, and Ka, wave
lengths are closely spaced, and they are the ones used most frequently for
X-ray diffraction experiments, one can compute a weighted average wave
length, with the Ka, wave length counting for 2/3 and Ke, for 1/3. If the
subscript is not used, as in K, then it is understood that the weighted average
is being used. Unless mentioned otherwise, all exampl
use Cu Ker radiation.

on from the

in this chapter will

In summary, an X-ray source employs a stream of high energy electrons,
‘generated by a heated filament wire, which is directed towards a metal target
The kinetic energy of the electrons is converted mostly into heat, but a
small percentage leaves the target as X-ray photons. These photons have a
continuous range of wave lengths, with a few superimposed characteristic
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Fig. 11.4. Schematc coss
section of an Xy ube,
showing the flament (F), the
target (T), and the windows
(W) through which the Xays.
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high intensity peaks. The higher the accelerating voltage, the larger the wave
length range of the X-ray source.

X-ray sources have many different uses, apart from diffraction experiments,
50 their design has become more or less standardized. A cross section through
4 typical X-ray tbe is shown in Fig. 11.4, The tube consists of a cylindrical
‘metal part (light gray) with an inlet and outlet for cooling water. The anode
(A) is located right next to the cooling water channel. The cathode (C)
is located at the bottom of a hollow cylindrical glass tube that has been
evacuated (vacuum). The filament (F) is typically a tungsten coil. When the
filament is heated and a voltage is applied between the anode and cathode,
a beam of electrons is emitted from the filament and accelerated towards the
anode. The cooling water removes the thermal energy generated by the sudden
deceleration of the electrons. The X-rays escape from the tube through a
‘number of thin windows, typically made of beryllium or a polymeric material.
Depending on the design of the tbe, there can be one 1o four such windows.
The glass cylinder provides electrical insulation for the high voltage supply
cable which is inserted into the tube. This cable also carries wiring for the
filament heating current.

11.2.2 Wave length selection

If we want to study crystals with X-rays, then we must first find a way to
select one particular wave length with which we will illuminate the crystal.
From the continuous spectrum shown in Fig. 113 we should select only the
high intensity characteristic peak, and remove all other wave lengths. This
appears 10 be a non-trivial task, but fortunately nature provides us with a
straightforward solution. To understand how we can remove a large fraction of
the wave length spectrum it is instructive to determine what happens to a beam
of X-ray photons when they travel through a medium with a certain density
p. Part of the X-ray beam will be absorbed, and the amount of absorption
increases with increasing thickness of the material, with its density, and with
the wave length of the X-rays. The latter is easy to understand if one realizes
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that a longer wave length means a lower photon energy and hence a reduced
penetration depth.

Mathematically, the absorption process is expressed by an expones
function, known as Beer's law:

e,

where u is the linear absorption coefficient, with units of cm='; x is the
distance travelled through the solid, and /, is the incident X-ray intensity
‘This equation states that, if a beam of X-rays travels a distance 1/p through a
solid, then its intensity will have decreased to 36.75%
value. The absorption coefficient depends on the materi

length. It is customary to normalize g with respect to the density (since o is
proportional to the density) and one defines the mass absorption coefficient
J1/p. The equation for absorption then re:

(112)

Values of the mass absorption coeffic
function of X-ray wave length. Coefl

from the values for the N individual elements by taking a weighted average,
with the weight fractions w, as weight factors, ie.:

(3)-5-()

‘Table 11.2 lists the mass absorption factors for about a dozen elements, for
the most frequently used X-ray wave lengths. If we draw the mass absorption
coefficient for a particular element as a function of increasing wave length
(or decreasing photon energy), then we find a curve similar to that shown in
Fig. 11.5. Starting at the large wave length end of the figure, we find that
the mass absorption coefficient decreases as the photon energy increases. If
the photon energy becomes high enough to knock out an electron from the
K-shell of the absorbing atoms, then 41/p will suddenly increase by several
orders of magnitude. This is similar to the absorption of energy from the
incident electrons in an X-ray tube, except that now the energy is provided by
the X-ray photon instead of by the incident electron. With increasing energy.
we find again a decrease of the mass absorption coefficient for wave lengths
shorter than the critical wave length Ay.. The sharp feature in the absorption
versus wave length curve is called an absorpiion edge, in this case the K
absorption edge. From the values of the edge wave lengths, one can deduce

information about the energy levels of the atoms in the absorbing material.
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Fig. 11.5. Schematic
representation of the mass
absorpton coeficient versus
wave length, showing a K
absorption edge.
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‘Table 11.2. Mass absorption coefficients for selected elements (in am/g) (taken
from Appendix 8 in Culity (1978)).

Eement Density Mo a o ce
(o)

Ke KB Ko KB Ka K8 Ka  Kp
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c G683 avs  lade 1076
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o 26 36 s60s
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Mo 266 74 3563
A s 64 w3
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A wna S50 67
" 308 5 s

Kabsorption
o cage

K X

The general variation of the mass absorption coefficient with wave length
(away from the absorption edges) s of the form:

()

»
with k a constant and Z the atomic number of the absorbing atom. Absorption
is thus sensitive to both the wave length and the atomic number (and hence
density) of the absorbing material.

The location of the absorption edges for various elements is particularly
useful in that it allows us to construct X-ray filfers. Consider the con
spectrum of a copper target, as shown in Fig 11.6(x). It consists of two
peaks, Ka (split in two separate peaks) and K at a slightly shorter wave
Iength. If we superimpose the mass absorption coefficient of nickel onto this
drawing (dashed line) then we find that the edge lies in between the copper
Kerand KB peaks. If we place a sufficiently thick layer of nickel in an X-ray
beam generated with a copper target, then. because of absorption, the beam
emerging from the nickel layer will have a wave length spectrum similar to

IAN

nuous




Fig. 116, Cu Xeray intensity
and Ni mass absorption
cosfcent versus wave length,
before (3 and afer (6)
appiicaton of the fter. Based
on Fig. 113 in Culty (1978).
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the one shown in Fig. 11.6(b). In other words, if we place a thin foil with
atomic number Z — 1 in a beam of X-rays generated with a target of atomic
number Z, then the K peak of the target radiation will be almost completely

absorbed, and the background intensity around the Ka peak will also be
attenuated. The ratio of K to KB copper radiation intensity will change from
7.5: 1 before filtering to 500 : | after filtering, if the thickness of the nickel
filter i about 20 microns (see problems at the end of the chapter).

11.3 X-rays and crystal lattices

In this section, we will analyze how X:
matter. Before we begin, it is useful to consider a

ay waves interact with crystalline
simple example, using
visible light. Fig. 11.7 shows a pattern obtained by shining a bright green laser
beam through a thin piece of finely woven fabric onto a white wall. The 2-D
fabric, with its regular pattern of fibers and open spaces between the fibers, is

analogous 10 a 3-D crystal, which has atoms and open spaces in between the
atoms. The monochromatic laser beam provides a reasonable approximation
toa plane wave and the wave interacts with the regular fiber pattern to produce
a diffraction pattern! Such diffraction patterns can sometimes be observed
when looking through a thin curtain at a distant street light, in particular when
the street light is a bright yellow Na light, which has only two strong wave

engths in the yellow range of the visible spectrum. The patterns can also be
observed with a regular light point source, but in that case different wave
lengths will be scattered by different angles, so that the diffraction pattern
contains rainbow-like streaks instead of well-defined points.

* Recall that a plane wave is a wave described by ¢
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Fig. 11.7. Opica diffraction
patter obiained by shining

reen laser trough a piece of
inely woven fabric onto a wall.
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Instead of using fabrics and street lights to do our experiments, let us
now focus on regular patterns of dots on a transparent slide. We can use a
simple drawing program to create 2-D regular arrays of dark dots on a white
background, and then photograph the array using 35 mm slide film. If we take
a laser (say, a red He-Ne laser, with a wave length of 670 nm) and shine it
through the slide onto a white wall, then we will observe a diffraction pattern
on the wall. This diffraction pattern is very similar 1o that observed with
fabrics, but the advantage is that we can now measure the spacings between
the clearly defined intensity maxima on the wall.

We can change the pattern of the original array 10 other 2-D lattices, and
instead of dots we can use squares, triangles, or any other shape. Fig. 11.8
shows a set of eight different patterns, taken from the Optical Transform Kit,
published by the Institute for Chemical Education.”

The observed diffraction patterns are shown below each individual pattern.®
There are several important things we should point out about these patterns:

o Pattems (a) and (b) are centered and primitive square unit cells of the
same dimensions. Note that the diffraction pattern of the primitive cell has
more diffracted spots than that of the centered cell.

Patterns (¢) and () have the same lattice parameters, but the unit cell is
filled with a different arrangement of squares. Note that the positions of the
iffracted spots are identical, but their intensity distribution is somewhat

different

o Patterns (b) and (d) are both primitive square lattices, and the lattice param-
eter of pattem (b) is smaller than that of (d): comparing the diffraction
patterns, we find that the spacing between the diffraction spots is larger for

5 URL: hipsice.chemwisc.edu.
We did not sctually teke a picture of the patterns on the wall, but, nsicad, we computed the
mathematical/numerical equivalent, which is known as & Fourier transform.
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Fig. 11.8. Eight periodc
patterns wit diferent atice
parameters andjor difrent
unit cell conerts, and the
orresponding difraction
patterns. The pattems are part
ofthe Oplica Transform Kit
avalable from the Istitute for
hemical Education, and are
reproduced here with
rmisson.
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n reciprocal

(1) than for (d), which reminds us of the properties of objects
space.

Patiern (€) is a rectangular patiern with the same a-parameter as patiern
(b): note that the horizontal axis of the diffraction pattern is longer than
the vertical one, while the opposite is true for the original pattern

Patien (f) has an oblique unit cell; note that the diffraction pattern is also
oblique, but with a different angle

« Pattern (g) contains a unit cell with a vertical glide plane. Note that in the
diffraction pattern some of the reflections along the central vertical line.
are missing (arrows).

Pattern (h) is a hexagonal pattern, which produces a hexagonal diffraction
pattern.

Since there appear to be definite relations between the original lattice
patterns and the corresponding diffraction patterns, we can hope that, given a
diffraction patiern, we might be able to reconstruct the original pattern. Tt s,
in fact, possible to derive rules that relate the diffraction pattern to the original
pattern and vice versa. We have already seen the mathematical framework
needed 1o express these rules: it is the framework of the reciprocal lattice.

Tttt
B
tabibat
3

(e) [ ® (h)



Fig. 1.9, Measurement of the
reltive phase of two
siusoidal vaves.
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It turns out that the diffraction pattern is, in fact, an “image” of the reciprocal
lattice of the original pattern.

‘When we shine a bright beam of X-rays onto a cr)
act very much like the demagnified lattice on the filmstrip, and a diffraction
pattern will be formed. From the positions of the individual diffracted beams,
be able to deduce information about the size and shape of the unit cell.

stal, then that crystal will

we w
“This is the subject of the remainder of this chapter. From the relative intensities
of the diffracted beams we will derive information about the positions of the
atoms within the unit cell, which forms the subject of the next chaper
Before we clarify the relation between diffaction phenomena and crystal
structures, we must first discuss one of the fundamental properties of any
form of wave-motion: the phase of the wave. If we have two periodic waves
with wave length A but shified with respect to each other, and we take a

point at which the first wave has zero wave amplitude as the origin, then
we can measure the phase difference between the two waves as follows:
determine the distance Ax to the closest zero crossing of the second wave
(see Fig. 11.9). The value of Ax will be between —A/2 and +2/2. Then scale
that value by dividing it by the wave length A. Finally, convert it into
by multiplication by 2u. The phase of the second wave relative to the first

ians

wave is then given by:

If @ wave is represented by a cos-function, then the phase shift can be
represented by the addition of b to the argument of the cosine, i..

A(¥)

s (275 44).

If two or more waves are added to each ather, then the relative phase will
determine if the waves reinforce each other (constructive interference) or if
they cancel each other (destructive interference) (see Fig. 11.10). Consider
two waves, with a relative phase difference ¢. The sum of the two waves
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Fig. 1110, Three sinusoidal
waves, se,
2= /4, and 3= 7 elative
phases), and at the botiom the
waves 142 and 143
Ifthe phase diference is 7,
then the waves completely
ancel each other ut,

3
Distance

can be computed using the sum and difference equations for trigonometric
functions:

8

cos(x) +cos(x-+ ) = 2cos (x+ %) cos %

from which we find that, if the phase difference is 180° (or ), then the
sum of the two waves will vanish (since cos(m/2) = 0). This is illusirated by
waves | and 3 in Fig. 11.10. If the phase difference is different from an odd
integer multiple of 7, then the result of the wave addition wi
that shown for waves 1 and 2

11.3.1 Scattering of X-rays by lattice planes

The notion of relative phase or phase difference between two waves is of
central importance to the diffraction phenomenon. We will see in the next
chapter that every electron in every atom in a solid will oscillate when a
beam of X-rays is sent through that solid. Remember that an X-ray photon
can be regarded as an oscillating electric field, which drives all electrons

on; the result of that motion is that cach electron will
emit radiation, at the same frequency as the incident radiation. T
is emitted in all directions and an external observer will detect the sum of

many periodic waves.” Since all waves have the same frequency, they will
interfere with each other, and only in directions for which all interferences are
constructive can one detect radiation. The phase differences between waves
depend sensitively on the exact location of the scattering centers which give
rise to those waves. This means that a careful study of the spatial distribution
of diffracted radiation can provide information on the location of all scattering
centers, in our case the atoms.

To use the phenomenon of diffraction, we must first understand the rela-
tion between the crystal structure and the directions in which radiation can

7 We will quantify this satement n the next chapier.
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be diffracted by that crystal. Let us first consider a single plane of atoms,
represented in Fig. 11.11(a) by a line with dots at a regular spacing a. If a
beam of electromagnetic radiation is directed at this surface under an angle 6,
then part of the radiation will go through the surface (ic., will be refracted)
without a change in direction and part will be reflected by the plane, at an
angle equal to the incidence angle 6.° This is essentially Snell’s law for the
reflection of light from a mirror surface. Reflection of light is possible for
any incidence angle.

1f we use a coherent light source, then all electrons in all atoms on the line in
Fig. 11.11(a) will oscillate with the same frequency. As a consequence, each
atom will emit concentric spherical waves, and those waves will ineract with
each other and set up a complex interference pattern, as shown in Fig. 11.11(b)
for just three scattering centers. Constructive interference will occur in only
a few directions, with a sensitive dependence on the ratio between the atom
spacing and the wave length of the radiation. X-ray diffraction methods are
all based on the direct observation of such interference patterns and the
subsequent extraction of information on the atom spacings and positions.

In a3-D crystal, we have many parallel planes, and we have to account for
eflection not only from the top plane, but also from all underlying planes as
well. Consider the situation in Fig. 11.12: wave 1 is incident on the first plane.
at the point O with an incidence angle 6. Part of the wave is reflected at an
angle 6, part is transmitted without a change in direction ? Wave 2 undergoes
the same process at point O' where part of the intensity is reflected at an
angle 6. The waves 1’ and 2’ then leave the crystal and travel in the same

® 1 the refractive index above the plane i diferent from that below the plane,then ther will
be a change in direciontis occus for nstance at th surfce of water.
% “The reader might wonder why there is no refaction of X-rays when thy eote 4 rystal.

the crysta is so smal, of the order of 10~ to 10-5, tht th

2¢ro. As a consequence, it is not possible (0 build lenses for X-rays (recall that
refactive property of glass that allows a lens (o bend the light to a focal point;
refraction, then one cannot build a len)

there s no
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Fig. 1112, Refleton of an
electromagnetic ray rom a set
of paralle planes.
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direction towards an observer, located far away from the crystal (ic., at a
distance many times larger than the interplanar spacing d).
Since the waves 1’ and 2’ have the same wave length, they will interfere

with each other, and the interference will depend on the phase difference
between the two waves. The phase difference in turn is derived from the parh
difference, and it is clear from the drawing that wave 2 has traveled further
through the crystal than wave 1. The path difference is equal to the sum of the
distances PO’ and 0'Q. Constructive interference will only occur if this path
difference equals a multiple of the wave length A. If we denote the interplanar
spacing by d, then we find:

PO'+0Q = nk;
00 (sin 6+ 5in6) = nA,
from which we derive;

113)

This is the fundamental equation of diffraction and it is known as the
Bragg equation, after W. L. Bragg, who first derived this relation in 1912.
‘This equation states that constructive interference from a set of consecutive
parallel planes can only oceur for certain angles 6, and that 0 is determined
by both the X-ray wave length and the interplanar spacing. The angle 6 is
known as the Bragg angle. Knowing the wave length, a measurement of the
Bragg angle can thus provide a direct measurement of the interplanar spacs

and if we repeat this measurement for many different sets of planes
ultimately determine the dimensions of the unit cell.

The integer number n defines the order of the diffraction process. If
2dsin =2, then the diffracted beam is known as a second-order beam, or,
in general, as the s-th order beam. One can, however, interpret the diffraction
order in a different way. Consider the following way to rewrite the Bragg
equation:

., we can

24502 a4
f

If d represents the spacing for the planes (hkl), ic.. dyy; = 1/|g,q]. then

his follows because

dfn represents the spacing for the planes (uhnk nl).
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g = nha’ +nkb* 4 nle =g, An n-th order diffracted beam from the
plane (#k1) can thus be regarded as a first-order diffracted beam from the
plane (nh nk nl)

From this point on we will only consider first-order diffraction (ic., we will
drop the factor 1 in the Bragg equation). This means that from this point on
we must distinguish, for instance, between the planes (100) and (200). Even
though the planes are parallel, for diffraction purposes they are no longer
equivalent, The interplanar spacing for the planes (100) is twice that for the
(200) planes, i.e., d\p = 20, The Bragg equation will thus be writien as:

2sin0= A (115)

We have discussed explicit techniques to compute d,q, for an arbitrary
crystal system. Using the Bragg equation and the metric tensor formalism,
we can thus compute the allowed diffraction angles for any known crystal,
provided the X-ray wave length is known. Let us consider an example: pure
copper. Capper is the prototype for the face-centered cubic structure, with a
lattice parameter a =0.36148 nm. From Chapter 6 we know that the explicit
expression for the interplanar spacing in a cubic crystal is given by:

and the Bragg equation is then rewritten as:

Jp—
B, =sin! (E /rmmw) (11.6)

For Cu Ka radiation, with a wave length A = 0.1541838 nm, this equation
reduces to:

in~! (ozlazmxm)

Note that the angle between the incident beam and the diffracted beam is
equal to twice the Bragg angle, 20 Table 11.3 lists the diffraction angle
26,4 for the lowest-index planes. Note also that the Bragg equation does
not guarantee that a diffracted beam will be present; it merely states the
‘geometrical constraints which must be satisfied before an X-ray beam can be
diffiacted by a certain set of crystal planes. In the next chapter, we will discuss
why icated by an asterisk in Table 11.3)
cannot be observed for copper, even when the geometrical condi
satisfied.

O =

11.3.2 Bragg's Law in reciprocal space

al conditions that need to be satisfied in
planes in a erystal. For a

Brage’s law predicts the geometr
order to observe diffraction from sets of laui
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Fig. 1113, (2) Representaion
of Braggs law, using only

reciprocal space quanities;
defntion of the Evald circk.
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Table 11.3. Interplanar spacings and diffraction angls for the lowest order planes
in copper. The planes marked with an asterisk do not give rise to an experimentally
observed diffracted beam, even when they satisfy the Bragg equation.

(k) PR dyy [nm] 201

(100" 1 0036148 246278
10y 2 0025560 351081
i 3 0020870 433559
(200) 4 0016166 504957
@10y 5 0014757 569636
@iy 6 0013663 629861
(220) 8 0012049 795540
@iy 9 0011431 845166
(300" 9 0011431 848166
o1 10 0010899 90.0356

given wave length, the equation defines the Bragg angle, 6, for all sets of
planes in the crystal. In the first section of this chapter, we have seen that
the incident X-ray photon can be represented by a wave vector K, parallel
to the propagation direction of the wave and with length equal to the inverse
of the wave length. This vector has the dimension of a reciprocal length and
is thus a vector in reciprocal space. We have also seen that each set of parallel
planes (kf) can be represented by a reciprocal lattice vector gy, Let us now
consider the diffraction process from a reciprocal space point of view.
Consider the X-ray beam characterized by the wave vector k, as shown
in Fig. 11.13(a). This vector makes an angle § with the plane (hk1), which
is represented by the normal vector g,,;. In the figure, we have chosen the
origin of reciprocal space o be at the endpoint of the wave vector k. The
diffracted wave K’ also encloses an angle § with the diffracting plane, and
is drawn with its initial point in the origin. Since vectors can be translated
parallel 1o themselves, we can translate the vector K’ so that its initial point
coincides with the initial point of k. The angle between k and k' is thus equal
10 26. Since the wave length does not change during the diffraction process,
the length of the vector k must also be equal to 1/A. Therefore, the endpoints
of both wave vectors are located on a circle, with center at the initial point
of k and radius 1/A, as shown in Fig. 11.13(b). This circle is known

s the
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Ewald circle (or the Ewald sphere in 3-D), after the Austrian crystallographer
Paul Peter Ewald (1888-1985), who first introduced this circle (sphere) into
erystallography (Ewald, 1913, 1962). From the drawing, we also find that the
endpoint of k' lies on the same normal to the plane (k#) as the endpoint of
k. The distance between the two endpoints can be writien as

0

25
0G = Klsin 0+ [K'|sinf = ==

According to the Bragg equation, this ratio must be equal to 1/d. This means
that the distance between the points O and G is equal to the length of the
reciprocal lattice vector g, Therefore, we can simplify the drawing to the
one shown in Fig. 11.13(b). The Bragg equation can be expressed in reciprocal

space as:

(%)

The reciprocal space version of the Bragg equation states that a diffracted
bean with wave vector K will be present if and only if the endpoint of the
vector k-+g lies on the Ewald sphere. The direction of the diffracted beam
is then given by the direction of k+g.

A particular plane (hkl) in a crystal is said to be in Bragg orientation,
if the corresponding reciprocal lattice point gy lies on the Ewald sphere.
The Ewald sphere thus provides a particularly simple interpretation for the
‘zeometry of the whole diffraction process: all we need to do to diffract X-rays
from a given set of planes is rotate the crystal (or the incident beam) until the
corresponding reciprocal lattice point falls on the Ewald sphere. The va
experimental techniques presented in the following sections are all based on
this simple observation.

Since the Ewald sphere is a central concept for diffraction experiments, it
will be useful to give a few additional examples, both in 2-D and 3-D. First,
consider the following problem: a reciprocal lattice from an orthorhombic
crystal is shown in Fig. 11.14(a). The reciprocal lattice spacings are 3 nm-!
for the (100) planes, and 2nm ! for the (010) planes. The reciprocal lattice
points shown in the figure all belong to the [001] zone. The question is then
the following: if an X-ray beam with wave number 4nm~" is incident on
this crystal, then what should be its direction to result i diffraction from the
(120) planes? We will assume for now that the X-ray beam will lie in the
plane of the drawing.

To answer this question, we look back at Fig. 11.13(b): the center of the

C.lies on the i sector line of iprocal lattice

fous

vector. I we change the wave length, A, then, in order to maintain the diffrac-
tion condition, the point C must move along this line, so that the distance
between C and O s keptat 1/A. This is sho lly in Fig. 11.14(b).
To determine the location of the point C for which the (120) planes will

n schema
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Fig. 1114, (3) Orthorhombic
[001] zone with superimposed
incident beam direcions k,
and k, for which the planes
(120) are in Bragg orentaton;
() llutration of the fact that
the center, €, of the Ewald
sphere always lies on the
perpendicuar bisectr of the
eciprocal atice vector & when
& e on the Ewald sphere.
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®

satisfy the Bragg condition, we proceed as follows: draw two circles (dashed
in Fig. 11.14()) with radius 4nm-", one centered on the origin O, and one
centered on the reciprocal lattice point g,,,. The circles intersect each other at
two points, p and g, and these points lie on the perpendicular bisector line for
120 (dashed line). Either one of these two intersection points can be chosen
as the center of the Ewald circle, which leads to two possible Ewald circles
(Full Tines) and two corresponding incident beam directions K, and ky. The
diffracted beams, k], are then easily found by adding the reciprocal lattice
vector gz

As a sccond example, consider again the orthorhombic lattice of
Fig. 11.14(a): is it possible to have both the (120) and (100) planes simuira-
neously in Bragg orientation? In order for this 1o happen, we must place the
center of the Ewald sphere on both of the perpendicular bisectors, i.c., on the
intersection C of the perpendicular bisectors, as shown in Fig. 11.15. Note
that there is only one wave length for which both of the reciprocal lattice
points (along with the origin of reciprocal space) can lie on the Ewald sphere.
We leave it 10 the reader to determine the wave length for which thi

the

case.

The previous two examples were drawn in 2-D 1o keep things simple,
but, in reality, diffraction is a 3-D pro is is illustrated in Fig. 11.16,
which shows how the Bragg condition for a particular plane is satisfied on
4 conical surface. This means that there are an infinite number of incident
beam directions (those on the surface of the cone, pointing towards the apex)
fied. This is quite

the true 3-D situation, the Ewald sphere construction becomes a bit more
difficult to visualize, but the ma are identical to those depicted in
Figs. 1114 and 11.15. In the

n ideas

se of Fig. 1115, the perpendicular bisector
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line becomes a perpendicular bisector plane, so that the Bragg orientation for
(120) and (100) planes is simultaneously satisfied along the intersection line
of the two bisector planes; this line is normal to the plane of the drawing and
goes through the point C.

Before we conclude this section, it is useful to consider the concept of the
limiting sphere. Consider the Bragg equation, rewritten as follows:

(118)

The inequality is valid because the sin-function must always give a result
between 1 and +1. From this condition, we can derive the range of inter-
planar spacings for which a diffracted beam can be generated. We rewrite the
equation as follows
A< o 1< o <o L)
< e <
Since 2[k| is the diameter of the Ewald sphere, we find that diffraction can
only occur from those reciprocal lattice points that lie inside a sphere with
radius 2[k|, as shown in Fig. 11.17. All reciprocal lattice points outside of
this sphere (represented by open circles) can never give rise to a diffracted
beam (for the particular wave length selected for this drawing). Obviously,
in 3-D, the limiting circle becomes a limiting sphere.



Fig. 117, Hustaton of the
limiting sphere; ecprocal
e ot ot

limiting sphere can never gve
rise 0 a difracted beam for
the selected wavelength.

11.4 Basic experimental X-ray diffraction tech
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‘This illustration also suggests an experimental approach fnr guaranteeing
that of
of the incident beam is rotated around, so that the Ewald sph:rr. sweeps
across the entie volume of the limiting sphere, then each reciprocal lattice
point inside the limiting sphere will, at some point, be in Bragg orientation.
Alternatively, we could rotate the crystal, and hence the reciprocal lattice,
so that each reciprocal lattice point would coincide with the Ewald sphere
twice. '

In the previous section, we have seen that we can bring a particular plane in
Bragg orientation in two different ways:

(@) rotat the crystal uni the reciprocal i point g falls o the Ewald

spl
(i) rotae the incident beam directon (and henc the Ewald sphere) undl the
sphere intersects the reciprocal lattice point.

‘The direction of the wave vector is determined by the position and orientation
of the X-ray tube. The X-ray beam that leaves one of the windows of the tube
i rather wide and diverging and must first be collimated into the proper shape.
and size. This is usually done by means of collimating slts (or a collimating
cylinder) which eliminate a portion of the beam and produce a more parallel
incident beam. For more information on collimators, we refer the interested
reader to Amndt and Wonacott (1977). Once the beam is collimated, it can
be represented by a single incident wave vector, k. The Ewald sphere, with
its origin at the starting point of k and radius 1/A, is “attached” to the wave
vector; in other words, the Ewald sphere moves along with the wave vector

 Why twice?
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Table 11.4. Commonly used X-ay diffraction techniques and the types of
‘materials they can be applied to.

technique wavelength crystal application
Laue polychromatic  single/lorge  orientation determination
grained poly
Difffactometer  monochromatic  poly (powder)  phase identification
Weissenberz monochromatic  single lattce parameters
monochromatic  single lattce parameters

Three-ffour-cirele  monochromatic  single structure determination

‘when the incident beam direction is changed. Often, it is experimentally more
practical to keep the X-ray beam direction constant; changing the incident
beam direction requires that the complete X-ray tube, with watercooling and
all attachments, be moved. Many standard X-ray diffraction techniques use a
stationary beam. In experiments where the X-ray tube is stationary, the Ewald
sphere does not change its position during the experiment

For a given orientation of k, it is rather improbable that one or more than
one reciprocal lattice points will fall on the Ewald sphere for an arbitrary

rystal orientation. In fact, almost all reciprocal lattice points will #or fall on
the Ewald sphere, unless we make them fall on the Ewald sphere. If the sphere
is fixed in space, then the only thing one can do to improve the chances of
observing a diffracted beam is to rotate the crystal such that each reciprocal
lattice point will, at some time, cross the Ewald sphere. The techniques
presented in the next paragraphs accomplish this in different ways.'"

Table 11.4 lists the most commonly used X-ray diffraction geometries,
along with the types of erystals for which they are used. Tn the remainder of
this chapter, we will discuss the standard powder diffractometer, the Debye—
Sherrer camera, and the Laue camera. For the other methods we refer the

interested reader (o Volume C of the International Tables for Crystallography

11.4.1 The X-ray powder diffractometer

In this section, we will consider only polycrystalline materials, meaning that
the sample consists of many thousands or millions of grains, each with a
random orientation. Consider, for example, pure copper: we have computed

11 The discussion i this chapier s not intended o describe exhausively all the detals of X-ray
diffacton methods, but. instead. deals oy with the most mportan featues of a number of
a more detailed description, we refer th interested
tbooks avalable. .. Culit and Stock (2001) (his
111978 text (Cullity, 1978)). itz and Howe.

is an updated version of Cullity’s origi
(2002, Gincovazzo (2002b).
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Fig. 11.18. Schematic experimental setup for the X ray powder diffactometer: n (), the Xay tube is
sationary, and both sample and detectr move at angular rates w and 2, respecively. n (b), the
sample s staionary, and both Xray tube and detecor move towards each olher at anguar ale o

the diffraction angles 26 for copper in Table 11.3. We can measure those
angles experimentally in the following way: we know from the diffraction
theory discussed

the previous scctions that the angle between the in
dent and diffracted wave vectors must always be equal to 26. The angle
between the diffracting plane and both of the wave vectors is equal to half
of that, or 6. This suggests the experimental geometries shown in Fig. 1118,
In (a). the X-ray tbe is mounted such that the incident wave vector lies
in the horizontal plane. The sample is mounted on a platform that can
rotate around an axis perpendicular to the plane of the drawing; the rota-
tion angle is equal to 0 and the angular rate is . The X-ray detector is
mounted on a movable arm, which rotates around the same axis, but at
twice the angular rate, 2w. This means that the angle between the detec-

tor axis and the incident beam direction is always equal to twice the angle
between the plane of the specimen and the incident beam direction. This
‘geometry s known as the Bragg-Brentano geometry. or, more commonly,
the 9—20 geometry. A variant of the Bragg-Brentano diffractometer is shown
in Fig. 11.18(b); in this setup, known as the 60 geometry, the sample is
stationary, and both X-ray tbe and detector move at angular rate @ towards

‘The angular relations between the X-ray tube, the specimen and the detector
‘guarantee that the conditions for diffraction are at all times satisfied. Since
the crystal is polycrystalline, every possible orientation of every set of planes
can be found somewhere in the sample. This means that, when the geometry
is correct for diffraction from the (kk/) plane, there will be some grains
in the sample for which the Bragg equation is satisfied, and they will give
rise to diffracted intensity in the direction of the detector. The diffraction
pattern is then formed by plotting the detector signal as a function of the
diffraction angle 26. Note that only those planes for which the plane normal
lies in the plane formed by the X-ray tube and the detector will give rise to a
diffracted beam; therefore, only a small percentage of all grains in the sample

will contribute to the final pattern. This technique only gives good statistical
results if the average grain size is relatively small, say tens of microns. Typical
diffraction patterns obtained with the Bragg-Brentano geometry are shown in
L7
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If we consider the §—26 diffraction experiment from a reciprocal space
point of view, we come to the following interesting observation: we know
that a diffracted beam will be present whenever a reciprocal lattice point
intersects the (in this case stationary) Ewald sphere. Since the detector is
mounted in a single plane (it can rotate around the sample axis but does
ny other way) this means that it cannot detect diffraction from
planes that are in Bragg orientation, but whose plane normal does not lic in
the plane of the detector. Since it is more likely for a plane normal to lie on
the Ewald sphere but not in the detector plane, than it s for a plane normal
10 lie in the intersection of both, this means that there are a large number
of diffracted beams going off in directions other than that of the detector.
This means that (1) we must make sure that the detector only “looks” at the
racting region of the sample and (2) we must shield the region around the
diffractometer so that no radiation will leak into the room. The first goal is
accomplished by adding “collimators” in front of the detector; a collimator is
a narrow slit that limits the field of view of the detector to only the area of
the sample that is illuminated by the incident X-ray beam. One also employs
collimators to define the shape of the illuminated area on the sample. Shielding

accomplished by surrounding the complete diffractometer with a lead-glass
chamber; to prevent a distracted operator from opening the chamber while
the beam is on, the sliding glass doors are interlocked with the beam shutter.

Powder diffractometry has become one of the standard tools of materials
nce. Often, one of the first characterization steps undertaken after a new
‘material has been fabricated is to record a powder pattern, to identify which
phases or erystal structures are present. To facilitate the task of identifying
a structure, databases have been created, that contain tens of thousands of
crystal structures. These databases used to be printed on small index cards but
are now available on CD-ROM. The International Center for Diffraction Data
(ICDD) publishes a number of databases known as the Powder Diffraction
Files. The largest of these contains 271813 material data sets:'”

not move in

? several

smaller versions, limited to organic entries or minerals, are also available. One
in use these databases to search for a particular structure; often the input to
the search program consists of the 20 values for the three most intense peaks
of the spectrum. That information, combined with some knowledge of the
chemistry of the sample, is often sufficient to identify the crystal structure.
The Powder Diffraction Files have become essential tools in the study of the
strueture of materials,

11.4.1.1 The Debye-Scherrer camera
Before the advent of automated diffractometers, powder diffraction patierns
were oblained routinely using the Debye-Scherrer camera. The camera

12 This number refers to the PDF+ databse in March of 2006,
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consists of a flat cylindrical box, with radius R of about § cm, and thickness
of about 3cm. Inside this box, against the outside wall, a strip of photo-
‘graphic film is mounted. The sample is mounted in the center of the box (see
Fig. 11.19). The X-ray beam enters the box from the left, through a collim
tor wbe, and hits the sample. A large fraction of the intensity goes straight
through the sample and exits the box on the opposite side, or, alternatively,
the beam hits a beam stop. an X-ray absorbing material.

“The diffraction geometry for this setup is very similar (o that for the modern
diffractometer. The shape of the sample is different: where the diffractometer
uses a flat sample, the Debye-Scherrer camera uses a cylindrical sample.
Since every set of crystallographic planes in the sample is present with a
random orientation, there will be a large number of grains for which the (k1)
plane is in Bragg orientation. The incident wave vector k is fixed (which also
fixes the Ewald sphere), all the planes of the type (ki) that are in Bragg
orientation will have their plane normals g, intersect the Ewald sphere along
a circle (Fig. 1119(b)). The diffracted wave vectors k' will, therefore, lic
on the surface of a cone, with top in the center C of the Ewald sphere and

surface going through the endpoints of all vectors g

When this conical surface of diffracted radiation intersects the film,
mounted against the outside wall of the camera, ring-segments will appear on
the film. An example of such a ring pattern is shown in Fig. 11.19(c). The
hole on the right corresponds to the position A of the beam stop (and hence
20/=0), and the hole on the left corresponds to the position of the incident
beam (B, or 20 = 180°).
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“The value of 26 for a particular diffraction ring can be measured as follows
determine the distance L (in mm) between the centers of the holes in the film.
Label each ring with a sequential number,

ind measure the distance between
the rightmost hole and the intersection of each ring with the line connecting
the centers of the holes (call this distance x,, where / numbers the rings). The
ratio x;/L then determines the value of 20 as:

20,

180" (11.10)

X
T
One can again use the Bragg equation o convert these angles into interplanar
spacings. Note that the filmstrip only intersects with part of the conical surface.
The fraction of the conical surface that intersects with the film depends on
the angle 26: for values of 26 close to 0° or 180°, a larger fraction of the
conical surface is intercepted by the film than for angles around 90°. In the
next chapter, we will define a correction factor to a
dependence.

count for this angular

1.2 The Laue methods
The first X-ray diffraction experiments were conducted by von Laue around
the beginning of the twentieth century (Friedrich et al., 1912). His experiments
were of fundamental importance because he showed simultaneously that (1)
Xerays are el

romagnetic waves and (2) crystals are made up of regular
armangements of atoms. In a sense, this was the first direct experimental
evidence that atoms exist. The experimental setup to obtain a so-called Laue
pattern i rather simple. A crystal (preferably a single crystal but a polyerystal
with large grains will also work) is mounted in the path of an X-ray beam
Instead of using 2 monochromatic X-ray beam, one removes the filter from
the beam path, so that the complete

X-ray spectrum of wave lengths is present
in the beam. This means that, insicad of having only one wave vector k in
the beam, one now has a range of wave vectors with lengths from very small
up 10 1/, (swl = short wavelength limit)

Fig. 11.20(a) shows the experimental sewp for the sransmission Lae
method. The polychromatic beam of X-rays goes through the crystal and
the diffracted beams are intercepted by a planar detector (originally a pho-
tographic negative, but nowadays typically a CCD camera or image plate),
‘mounted at right angles to the beam path at some fixed distance L. The film
has a hole in the center to allow the direct beam to pass through (a direct beam
hitting a photographic negative would completely overexpose the negative,
particularly for this setup which often requires one or more hours of expo-
sure time). In Fig. 11.20(b) an alternative setup, know as reflection Lae, is
shown. In this case, the detector records the diffracted beams for which 26 is
close to 180"

The geometry of a Laue pattern is somewhat more complicated than that of
a powder or ring-pattern. Let us first consider the transmission Laue method.
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The single crystal has a fixed orientation with respect to the fixed incident
beam. This means that, in addition to K, all the vectors g, are fixed in
space. If there were only one value for the length of k (i.e., monochromatic
radiation), then the probability that any of the reciprocal lattice points would
fall onto the Ewald sphere would be extremely small. However, for the Laue
method one uses polychromatic radiation, which means that instead of a
single Ewald sphere, we now have a “Ewald volume” available. This can
be understood by considering two different wave lengths in the continuous
spectrum, A, < A. The corresponding wave vectors k, and k, are parallel
and with each vector we can associate a Ewald sphere, shown in Fig. 11.21.
Since all wave lengths between A, and A, are also present in the beam,
the complete area (volume) between the two Ewald spheres (shaded in the
figure) can give rise to a diffracted beam. Every reciprocal lattice point that
falls inside this volume will give rise to a diffracted beam. This means that
the number of beams simultaneously excited can be rather large. Since a
‘photographic emulsion reacts to all wave lengths in an almost identical way,
one cannot determine which wave length gives rise to which reflection. It i
thus impossible to determine interplanar spacings using the Laue methods. It
is possible, however, to determine the orientation of the crystal with respect
to the incident beam.

be: al ‘be predicted
in the following way: in Chapter 3, we derived a relation between the inter-
planar spacing and the length of the reciprocal lattice vectors, [gu| = 1/dyq.

@ o
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We can generali 8l = K/dygs, where K is
4 constant. We recover the traditional equation by setting K = 1. We must

introduce the same factor K into the definition of the wave vector:

e this expression by wi

K
k| =—
=5

and again K = 1 resulis in the standard definition. The geometry of a Lave
diffiaction pattern can readily be understood by setting K = A, in other words,
we rescale all dimensions in units of the wave length, rather than in Angstroms
or nanometers. This means that the length of the wave vector becomes equal
o1 and the reciprocal lattice point g, is now located at a distance
A/dyy from the origin of reciprocal space. If we use poly-chromatic radiation,
then each lattice point becomes a line segment, as shown in Fig. 11.21(b),
since there is a range of A values. The Ewald volume defined on the left side
of the figure collapses into a single Ewald sphere, since each wave length
is measured in units of itself. Whenever a line segment intersects the Ewald
sphere, a diffracted beam will occur. Since this intersection point can occur
anywhere along the line segment, we have no information about the actual
wave length of the diffracted beam, as already mentioned above. We will call
the line segments extended reciprocal laitice points.

From the zone equation we know that all planes belonging (o a zone have
their plane normals in the plane perpendicular 1o the zone axis. This plane
s a plane in reciprocal space, going through the origin. All the extended
reciprocal lattice points in this plane intersceting the normalized Ewald sphere
will give rise to a diffracted beam: those beams lie on the surface of a cone,
with top in the center, C. of the Ewald sphere. The intersection of a cone
with the detector plane is an ellipse, as shown in Fig. 11.22(a). The incident
beam direction is along the line segment CO. Planes belonging to one zone
axis will thus give rise to reflections which are arranged in ellipses on a
transmission Laue photograph. On a reflection Laue photograph the same
interpretation is valid and the intersection of the diffraction cone with a plane
on the other side of the sample gives rise to hyperbolic curves (Fig. 11.22(b).
Planes belonging to a zone axis thus give rise to hyperbolic sets of spots on
a reflection Laue photograph.

Es

@
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Transmission Laue - Reflection Laue

Fig 1125, Simulated
ransmission and reflecon
Laue patensfor the 001]
orentaton of a i sigle
aystal. At the botom, an
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Pt i shown withthe beam
along the (001 oiettion
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Experimental
reflection Laue

Fig. 11.23 shows examples of computed Laue patterns for the [001] zone
axis orientation of a Si crystal (ie.. the incident beam was taken to be
parallel to the [001] dircction). On the transmission Laue pattern one can
clearly see the ellipses corresponding o planes that belong to the same
zone (two ellipses are indicated in dashed lines). The reflection Lave pat-
tern, on the other hand, has reflections that lie along hyperbolic curves,
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straight lines are degenerate hyperbolae. Multiple such
only when the incident beam is aligned with a (low index) e
direction. Note that both Lave patters reveal the symmetry of the projec-
tion of the cubic crystal; both patterns have four-fold rotational symmetry
and two pairs of mirror planes normal to the plane of the figure
4mm planar point group). An experimental Lave pattern corresponding to
the octagonal area outlined in the simulated reflection Laue pattern is shown
at the bottom of Fig. 11.23. Only reflections with low Miller indices are
indexed. There is good agreement between the experimental and simulated
patierns

To facilitate the interpretation of reflection Lave photographs a tool is
used to convert the positions of the spots on the photograph to a stereo-
graphic projection. This tool is the Greninger Chart, shown in Fig. 11
by superimposing this chart onto a Lave photograph one. can directly read
the stereographic coordinates from the set of curved lines and transpose the
spots onto a Wulff net. The Greninger chart is computed for a given source—
sample distance (typically 2 or 3 cm). The angles y and 8 are read from the
chart, and then transferred onto a stereographic projection. From the angles
between reflections on the Wulff net one can then deduce the Miller indices
of the reflections, provided the crystal structure is known. Laue recordings
are predominantly used to determine the orientation of a single crystal (or
4 grain in a large-grained sample) with respect to some external reference
frame. This is particularly useful if the single crystal does not have any well
defined facets. We leave it to the reader 1o derive the mathematical relations
between the stereographic projection, the Greninger chart, and the reflection
Laue pattern.

This concludes our brief discussion of some of the more important X-
ray diffraction methods. There are many other techniques, in particular
for dealing with single crystals, and we refer the interested reader to vol-
ume C of the International Tables for Crystallography for detailed descri
tions. In the next chapter, we will introduce methods to compute the

30 2
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11.5 Historical notes

Fig. 11.25. (3) Willam K.
Bragg (1862-1942), and ()
Willam L ragg (1890-1971)
(picures coutey f the Nobel
Museur),

Xeray diffraction: geometry

intensity of diffracted beams for the powder diffraction (Bragg-Brentano)
geometry.

William Henry Bragg (1862-1942) was the pioneer in the development of
Xeray diffraction as @ tool in crystallography. He was a British physicist and
father of William Lawrence Bragg (1890-1971). The elder Bragg studied
the ionizing properties of a-, B-, y-, and X-rays, and developed the idea of
Xerays and y-rays as consisting of neutral-pair particles. In 1915, W. H. Bragg
showed that the diffraction of X-rays by crystals could be interpreted in terms
of reflection from atomic lattice planes of the crystal. When a beam of parallel,
monochromatic X-rays is scattered off a crystal, the reflected waves emerge
in phase if the so-called Bragg condition, relating the fixed wavelength. A, the
interplanar spacing, d, and the angle of reflection, 0, is satisfied. For waves
satisfying the Bragg condition, maxima in the scattered intensity are observed.
W.H. Bragg was also the first to use Fourier series to represent electron
densities in crystalline solids. W. L. Bragg was a pioneer in the development
of X-ray diffraction as a tool in crystallography. He was responsible for the
first structural determinations of crystals using X-rays, and an example of his
writings will be shown in the historical section of Chapter 14. The Braggs used
scattering results to infer electron density maps around atoms in crystalline
solids.




11.6 Problems

(vii) Diffraction angles IV Consider a cubic cry

116 Problems

(i) Absorption of X-rays I: Compute the mass absorption coefficient for

the alloy Cu;Au, for copper Ka radiation.

Absorption of X-rays II: I the ratio I(Ka)/I(KB) before filtering is

7.5:1 for a copper target, then compute the thickness of a nickel filter,

that would increase this ratio to 500 1.

(iii) Absorption of X-rays 1: You are an engincer working on the design
of lead shielding for medical applications of X-rays. How thick should
a lead shield be if it has to attenuate the shortest wavelength of a
30000 volt copper tube by a factor of 100007 (Hint: use the equation
/p=kNZ* with k=7.80 x 10 per gram per centimeter.)

(iv) Diffraction angles I: Compute the diffraction angles 26 for the (100),
(010), and (001) reflections of a crystal with lattice parameters
{0.2,0.3,0.4,90, 60,45} (in nanometers), assuming MoKa radiation,

(v) Diffraction angles II: One measures the powder diffraction pattern
of an unknown crystal. Suppose that one knows the Miller indices
corresponding to the various reflections; in particular, the diffraction
angles associated with three reflections are given by

20,y = 29.78°

26,5, = 93.24°

20,,, = 108.70°
Could this be a cubic crystal? If so, what is the latice parameter
(assuming CuKa radiation)?

(vi) Diffraction angles IIT: For a cubic crystal with lattice parameter a =
0.408 nm, compute the Miller indices of the plane for which the diffrac-
tion angle 26 will be largest (i.e., closest (o 180%), assuming Cu Ka
radiation. What will this value be for Mo Ka radiation?

al structure with lattice

purameter @ = 0.5nm. X-rays are generated using a Fe target (Ka

radiation).

(@) Draw all reciprocal latiice points with indices up o 3 for the
zone [001]. Make sure the points are drawn in the correct relative
position.

(b) Draw to scale, on the same drawing, the radiation wave vector for
an incident beam directed along the [110] direction. Also draw the
corresponding Ewald sphere

(c) What would be a possible direction for the incident beam so that
the (320) reciprocal lattice point would fall on the Ewald sphere?
(You may draw the answer or compute it)

(d) What is the diffraction angle for the reflection (320)?
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Fig. 11.26. Debye-Scherrer
pattern for W using Mo Ka:
radiaton

Xeray diffraction: geometry

(i) X-ray powder difiaction mmlvm Jfor a eubic crystal: K1 is a salt.
Su

(ix)

(xi)

one measures a powder diffraction pattern for cubic crystals
% e e e e
nine reflections to occur at:

 positions of the first

20=21.80% 25.20%; 36.00° 42.50°; 44.45% S1.75° 56.80%; 58.45° 64.65°

(a) Determine the d-spacing for each of these peaks using Bragg’s law.
(b) Ttis suspected that KT erystallizes in the rocksalt (NaCl) structure
described in Chapter 22. The ionic radii for 1 and K+ are 0.22
and 0.138 nm, respectively. Predict the cubic latiice constant, a,
for KT

Determine the Miller indices for each of the reflections and refine
the latrice constant, a, for K1 based on the experimental data.
Comment as to whether there are any indices that are a mixture of

even and odd numbers.

The density of K1 is determined to be 3.13 glcm’. Determine the
number of formula units per unit cell
Show that the number of formula uni
suspected rocksalt (NaCl) structure.

per cell agrees with the

X-ray powder diffraction limits on reflections: For a cubic crystal with
lattice parameter a = 0,408 nm, compute the Miller indices of the plane
for which the diffraction angle 20 will be largest (i.e., closest to 180°),
assuming Cu Ka radiation. What will this value be for Mo Ka radi
tion?

Debye-Scherrer X-ray pattern: The figure below shows a Debye
Scherrer X-ray pattern for W metal using MoK radiation.

(a) Describe the differences between an X-ray powder patiern and a
Debye-Scherrer patiern.

(b) Use a spreadsheet program to tabulate the following quantities in

34K+ P)da? and dy

(€) Index the pattern and determine A*/4a* and the lattice constant, a,
for W

columns: x, 0, sin’ 0 =

5 7654321 1234
Xeray diffraction: Pt is a noble metal catalyst. Metallic Pt has an
fee crystal structure with a lattice constant @ = 0.3924 nm. Calculate

d-spacings and predict values of 20 for the four lowest angle peaks in
a powder XRD pattern, using CuKa radiation.
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116 Problems

(xi) Laue diffraction partern I: Derive the mathematical relations that relate
the stereographic coordinates to the coordinates in a reflection Laue
pattern (i.c., the mathematical refations that describe the curves on a
Greninger chart).

) Lave diffraction pattern 1I: A transmission Laue pattern is made of a
cubic crystal with a lattice parameter of 0.36 nm. The X-ray beam is
horizontal. The [0T0] axis of the crystal points along the beam towards
the X-ray tube, the [100] axis points vertically upward. The film is 4 cm
from the crystal.

(a) What is the wave length of the radiation diffracted from the (310)

planes?

(b) How high above the horizontal plane (the plane containing the
incident X-ray beam) will the 310 reflection strike the film (in cm)?
You may assume that the diffracted beam is created at the origin
of the reference frame (or, equivalently, that the crystal dimensions

nall compared to the scale of the experiment).

are very
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X-ray diffraction: intensities

“The flickering greenish light, crackling and smell of ozone were sufficiently
rerrifyi

of the early experiments, ihe interest which they aroused in medical men is not

8 10 impress the incident deeply in a childs mind. When I think, however,

their chief significance 1o me! I see them as fore-runners of my father's interest
in the ionization of gases leading o his experiments with X-rays from radium and
Jinally the experiments on the difraction of X-rays by matier which we carried

out together

W. L. Bragg, foreword to “Salute (0 the X-ray

neers of Ausiral

12.1 Scattering by electrons, atoms, and unit cells

We have seen in the previous chapter how X-rays are generated when an
electron is accelerated or decelerated. If a beam of X-rays is incident upon
4 collection of electrons, either bonded to atoms or in a conduction band,
then the electric field associated with the X-rays will force those electrons
nto oscillation. Because of the forced oscillation, they will emit their own
X-rays, and this phenomenon is known as X-ray scattering. Tn the following
subsections, we will describe quantitatively how first a single electron, then
an atom, and finally a complete unit cell scatters an incident beam of X-rays.

12.1.1 Scattering by a single electron

208

Consider a single el

ctron located in the origin of a reference frame (Fig. 12.1).
Assume that an X-ray beam goes from the negative x-direction towards the
electron. An observer is located at the point 2, in the x— : plane, at a distance
7 from the origin, and at an angle 20 above the x

plane (one can always
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Fig 12.1. Reference frame.
used for the computaion of
sigle lecton scateing

12.1 Scattering by electrons, atoms, and u

rotate the reference frame so that this setup is realized). If the incident beam
has intensity J,, then the scattered radiation at the point P can be computed
from the Thomson equation:

a1

where @ is the angle between the scattering direction and the direction of

acceleration of the electron. The constant K is given by:
e
soy: (¢
K= () (%)
This is a very small number, which i ing due to a single
electron is rather weak. It is only when one brings together large numbers

of electrons (of the order of 10 or more) that the scatering becomes easily
measurable.

194 107 *m?.

ndicates that the scatter

The electric field of an incident X-ray beam will cause the electron to
oscillate along a direction parallel to the electric field vector E. Since this
vector is perpendicular o the propagation direction (which we have taken
along the positive x-axis), the vector must be located in the y—z plae.
The direction of E is known as the polarization direction. For a normal
Xeray beam, the polarization is random. This means that, on average, the
¥ component of E must be equal to the z component. The intensity of an
X-ray beam depends quadratically on the magnitude of the electric field, and
hence the components of the intensity along the y and z directions must
be, on average, equal to each other and equal to half the total intensity.
Mathematically this is stated as follows:

The average incident X-ray photon can thus be decomposed in a component
along y, and a component along Z. Let us determine how each of these
components contributes to the scattering at the point P. First, we consider the
3 component. The angle between the y direction and the scattering direction
is = /2, from which we find:

L=

For the 26 and we find

mponent, the angle o becomes equal to 7/2

K
P) = I, co:
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The total scattered intensity at the point P is equal (o the sum of the two
component

(122)

Note that the scattered intensity is strongest for =0 and 6= ; it is weakest
for 6= /2. The angular factor in Equation 12.2 is known as the polarization
factor. We will rewrn to this factor later on in this chapter.

From here on, we will assume that the observer is located far from the
sample (far compared to the atomic scale) and the factor K/r* will not
always be explicitly written. Most diffraction experiments do not work with
absolute diffracted intensities, but with relative values; one takes the strongest
diffraction peak to be the value 100, and re-scales all peaks with respect
o this peak. In the re-scaling process, pre-factors such as K /r* cancel out
against each other.

There is another way in which X-rays can be scattered by an electron.
From quantum mechanics we know that a particle can have both part
and wave-like properties. The reverse is also true: a wave can in certain
situations behave as if it were a particle. This is the reason why we regard
electromagnetic rays as particles, or photons. As a particle, a photon has a
definite momentum and it can transfer part of this momentum in a billiard-like
collision with the electron. In doing so, the photon loses part of its energy
and therefore it changes its wavelength. Radiation scattered in this manner is
known as Compion modified radiation and the “collision process™ s known as
Compton scattering. Since the X-ray photon loses energy during this proces
the process is referred to as an inelastic scatiering event. During such an
event, the phase of the X-ray photon is changed in a random way, so that
the photon no longer carries phase sensitive (i.c., diffraction) information.
Compton modified radiation is thus useless from a diffraction point of view,
but it does contribute 1o the signal in an X-ray detector. Photons which are
scattered through the normal “Thomson” process do not undergo a random
phase change, but have their phases modified by half a wavelength (phase
shift of 7). Thomson scattering is also known as coherent scattering.

like

12.1.2 Scattering by a single atom

When an X-ray beam is incident upon an atom with atomic number Z, each of
its electrons will scatter the X-ray photons according to the Thomson equation.
In addition, some of the X-ray intensity will be scattered incoherently, or
via the Compton process. In this section, we will only regard the coherent
scattering of X-rays by a single atom.

In the forward direction, 6 = 0, each of the Z electrons will scatier the
beam with an identical phase change .

ince there is no difference between
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Fig. 12.2. (3 Forward
scatteing and (b) Scattering at
an angle 6. Note that there i
o path lengh diference for

forvard scaterng

Fig.123.
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the path lengths of the X-rays scattered in this direction (see Fig. 12.2(a)),
there is also no destru terference, and the total scattering in the forward

di

o is equal (o Z times that of a single electron.

In all other directions, § # 0, there will be some path length difference
between X-rays scattered by the different electrons and the total scattered
intensity will decrease from the level of the forward scattered beam (see
Fig. 12.2(b)). The exact mathematical theory for scattering from a single atom
is described in some detail in Chapter 21. For now, it is sufficient to say that it

involves an integral of the electron wave-function (multiplied by an appropri-
ate quantum mechanical operator) over the entire volume of the atom. These
caleulations have been done for all atoms and the results are tabulated in the

Tables for C: From the treatment,
one finds that the important variable governing the diffraction process is the
ratio of the sine of half the diffraction angle to the wavelength, i.c., sin 6/A.
One defines the aromic scattering factor, f fora given angle 8 and wavelength
X as the ratio of the amplitude scattered by the entire atom to the amplitude
seatiered in the same direction by a single electron. The atomic scattering
factor is thus a function of the variable, sin 6/A. The atomic scattering factors
for Cu and Au are shown in Fig. 12.3. Note that the value for 6 =0 is

factors for copper and gold a5
2 funcion of in 0/,

[N [Ea——

04 06
sinoin
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intensities.

indeed equal 10 the atomic number,
increasing scattering angle or decreas
Most tables

nd that the curve decreases rapidly with
ng wavelength,

list the atomic scatiering factors in terms of curve fitting
parameters. The curves represented in Fig. 12.3 are fitted with a sum of either
three or four exponential functions. The scattering factor for a particular value
of sin /A can then be computed using the following equation:

f(s) 4178214 x £ x Y ae™ (123)

where s =sin 6/A. The number of terms in the summation, N, is either 3 or 4.
‘Table 12.1 Tists the values of the coefficients a, and b, for all the elements in
the periodic table. The elements that have a + in front of their atomic number

use four terms in the expansion, the others use three terms. The numbers are
the result of computations by Doyle & Tumer (Doyle and Turner, 1968) and
Smith & Burge (Smith and Burge, 1962). Note that the equation assumes that
the wavelength is expressed in angstroms

‘This table can be used in the following way: suppose one wans to com-
pute the contribution of a single tungsten atom to diffraction of copper Ker
radiation from the (222) plane of a body-centered cubic crystal with lattice
parameter a = 3.1653A.! We need to evaluate the scattering parameter s for
this particular situation. From the Bragg equation we know that

sing 1

AT 2y

The value for d.

in a cubic cry ily found using:

Ay

from which we find d,, = 3.1653/v/TZ =0.9137A. The scattering parameter
s then equal to 0.5472 A", Substitution of this value, and the parameter
for a; and b, for tungsten, into the atomic scattering factor equation results in

(0.5472) = 74— 4178214 x (0.5472)° x [

a4 grgg-temosr]
= 74 —34.0642
= 39.9358.

Note that we work in angsiroms insicad of nanameters, since the values in Table 12.1 are
listed in angstrom units.
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Table 12.1. Atomic scattering parameters for all elements Z = 1—98: Doyle &
Tumer parameters have a + in front of the atomic number, the others are Smith
& Burge parameters. This table assumes that s is expressed in A~'; if s is
expressed in nm", then all entries must be multplied by 0.01.

Name Z b @ b a b oa b
Ac 89 6218 28323 5195 =
Az #7203 6147 307
Al +13 2276 7232 2428
Am 95 637 29156 5495 = =
Ar 418 1274 26682 2190 0326 0307
As 433 2399 45718 2790 0594 0328
At 8 6133 28047 5031 R
Au 479 2388 4286 4226 1255 0307
B 405 0045 46444 1312 one 0377
Ba 56 7821 117657 6004 1103 0376
Be 404 1250 60804 1334 0106 0416
Bi 483 3841 50261 4679 1363 0318
Bk 97 6502 28375 5478 [ —
Br 435 2166 33899 2004 0589 0307
@ 406 0731 36995 L1195 0125 0346
Ca 420 4470 99523 2971 0482 0417
Cd 48 257 S5675 3259 0838 0322
Ce S8 5007 28283 3980 [ —
e 98 6548 28461 5526 =
47 142 3093 2292 032 0323
Cm 9 6460 2839 5469 = =
Co  +27 2367 6143 223 0515 0344
Cr 424 2307 78405 2334 0490 0364
Cs 455 6062 15383 5986 109 0379
Cu 429 1579 62940 1820 0532 0333
Dy 5332 28888 4370 = =
Er 68 5436 28655 4437 - -
Eu 463 6267 100298 4844 1200 0367
F 409 0387 20239 0811 016 0279
Fe 426 2544  6h424 2343 0506 0350
Fr 876201 28200 5121 - -
Ga 431 2321 65602 2486 0599 0351
Ga 64 sm5 WA 4314 P —
Ge 432 2447 55893 2702 0601 0342
H 01 0202 30868 0244 = =
He o 402 0091 18183 081 0036 0284
HE 725588 20001 4619 = =
Hp 480 2682 42822 4241 1270 0307
Ho 67 5376 28773 4403 [
1 453 3473 39441 4060 0340
In 49 2SI 66649 3557 0884
It 775754 29059 4851 = =
K +19 3051 137075 2545 0482 0434
Kr 43 2034 29999 2927 0589 0299
La ST 4940 28716 3968 .
403 L6IL 107638 1246

Li 009 0495
Lu 75553 28907 4580 =
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Table 12.1. (cont).

Name Z b a a b o4 b

Mg+ 73670 1803 0839 3013 0289 0405

Mo 4 3000 0498 0357

Mo 442 3237 0850 0366

N +07 2420 0131 0317

Nao o+l 3391 0286 0435

Nb a4l 0593 —  —

N 60 05— —

Ne 410 1762 0153 0266

NP 2609 0524 0339

Np 93 [ R
408 2044 0138 029

0s 76 05— —

P +15 262 0320 0361

Pa 91 0s6l —  —

Pb 482 2571 1359 0321

I 46 0505 —  —

Pm ol 0576 —  —

Po 0563 —  —

P 59 0ssl —  —

P 78 052 —  —

I 94 0s6l —  —

Ra 052 —  —

RO 437 140782 3700 0868 0419

Re 75 28968 2064 0575 —  —

Rh 45 27911 1345 052 —  —

R 486 38406 1326 0299

Ru 44 27881 133 054 —  —

s +16 36650 079 2469 0321 0340

s 431 50487

se a2 88960

se 43 38830

sioan 51775

smo 6 28016

sno 450 59,104

s a3 104972

Ta 7 28507

o 65 29,046

Te 3 28246

Te 52 27999

™ 90 28651

T a2 81982

T 81 29.086

T 69 S4dl 29149

u 492 6767 85951

v 423 3245 76319

w 74 5700 28782

Xe 454 3366 35509

Y 39 4120 27548

Yo 70 559 28927

Zn 430 102 sdle
7 40 4105 28492 31dd 5277
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Note that this number is independent of the wave length of the X-rays being
used since the number 1/2d,,, is independent of the wave length.

12.1.3 Scattering by a single unit cell

e difracted
A (mu) Dlanzs e

The scattering of X-rays due 1o a complete unit cell can be computed by
taking into account the relarive positions of all the atoms in the unit cell.
We know that scattering from electrons belonging to the same atom can

give rise to destructive interference because of the relative positions of the
electrons inside the electron cloud. A similar thing happens for scattering
from a unit cell. Consider the simple example shown in Fig. 12.4. Rays 1
and 2 are diffracted from the planes (kkl) if they satisfy the Bragg equation,

which means that the path length difference between the two waves must be
equal 1o the wave length A. Suppose that the interplanar spacing d is equal
10 one of the lattice parameters, say a. In that case we would be talking
about the (100) planes. If we add an atom to the unit cell, say at position
(1/2.0,0), exactly in between the atoms at O and O, then X-rays will also
be scattered by this atom. The diffracted waves 1’ and 2’ are in phase (i.c..
path length difference equal to A), and from the drawing it is easy to see
that the pathlength difference between 1" and 3 (and also between 2' and
) is equal to half of the wave length, A/2. This means that the waves are
out-of-phase, which means that they will cancel each other out, despite the
fact that geometrically the Bragg equation for the planes (100) is satisfied!
The additional atom is located on the (200) plane. If we were to construct
the diffraction condition for this plane, then we would find that diffracted
beams from the (200) planes, with diffraction angle 6 different from that for
the (100) planes, are in-phase, which means that the (200) planes will give
tise to a diffracted beam.

This example illustrates that diffraction from a certain set of planes (hkl)
not only depends on the particular orientation of the incoming beam with
respect to the plane, but also on the particular position of atoms within
the unit cell with respect to the plane. One can show graphically, that the
phase difference between waves 1" and 3' does not depend on the position of
the extra atom within the (200) plane; .., moving the atom within the plane
does not change the destructive interference between the two beams. We thus

oy

(100

added inthe (200) nlanc
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conclude that the only thing that matters is the distance between the extra
atom and the (100) plane. This distance can be expressed by the projection of
the position vector r of the atom onto the normal to the plane (100). We have
seen in Chapter 6 that the plane normal is given by 0, and the projection
of I 0Nto g, s equal to the dot-product g, -T. If we take the extra atom to
be at the position (1/2,0,0), then this dot-product becomes equal to:

1
p-r=la* =
i 2

Here we have used the definition of the reciprocal lattice vectors. We can
translate the projection of r onto the plane normal into a phase difference by
multiplying the dot-product with 277. This leads to a phase difference of .
since:

27y T =,

and, therefore, waves scattered by the extra atom and the (100) planes are
out-of-phase. If the extra atom is at position (1/2, y, z), i.e., still in the (200)
plane, then the phase difference becomes

2T = 270" - 50+ 2ma’ - yb+2ma’ - ze =,

where again we have used the properties of the reciprocal basis vectors. We
find that adding an atom to a unit cell affects the diffraction from all lattice
planes (k7) in a way determined by the phase difference 27g ¥, where r
is the position vector of the atom with respect to the direct basis vectors. In
‘general, the phase difference is expressed by:

&= 2wy v = 2m(hx+ky+ (124)

In the previous section, we have seen how strongly a single atom scaters
Xerays in a particular direction. In the present section, we have determined
the relative phase for scatiering from two atoms. We can combine these two
numbers, amplitude and phase, into a single complex number

(12.5)

This expression states how an atom at position r contributes to diffraction
of X-rays of wavelength A from the plane (k1). Scattering from a complete
unit cell is then described by adding together these factors for all atoms in
the unit cell.



303

122 The structure factor

12.2 The structure factor

The quantity describing scattering from a complete unit cell is known as the
structure factor, and is represented by the symbol F. The formal definition
of the structure factor is:

Fis

e — (12.6)

é/‘(‘myw e ﬁj(

with N the number of atoms in the unit cell. The intensity in the diffracted
beam from the planes (kk/) is proportional to the modulus squared of the
structure factor:

T = |Fi

= FuuFi (12.7)

where the asterisk indicates complex conjugation.

This structure factor also has a geometrical interpretation: scattering from
ach atom is represented by a complex number fe. We know that a complex
number can be represented by a vector in the complex plane, as shown in
Fig. 12.5(a), which shows the complex number 2¢">. Scattering from an
individual atom s represented by such a number or vector, and, therefore, the
addition of all complex numbers in the structure factor is equivalent to vector
addition of all the corresponding vectors in the complex plane (Fig. 12.5(b)).
“This is known as an Argand diagram. If the positions of atoms in the unit
cell are such that for a particular set of planes (4kf) the total sum of complex
vectors ends up in the origin, then there will be no diffracted beam for that
particular plane, even when the Bragg condition s satisfied. This is known
as an extinction. There are several possible reasons for extinctions to occur,
and we will discuss the most important ones in the following sections.

12.2.1 Lattice centering and the structure factor

We have seen in the previous chapter that the geometry of the diffraction
process is completely determined by the shape and dimensions of the unit

@ )

Fig. 125, () Graphical representaton f the comple number 26 (5) The scaltering fom al atoms
in  unit cell s computed by adin al correspondingvecors; heticker vecor s equal fo
structure fcor. The square o the lengh of i vecor i proporionsl o thettal ifraced nensy.
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122,12 C-centered lattice
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cell. The structure factor is independent of the lattice parameters. Note that
this is the case because of the particular definition we use for the reciprocal
lattice vectors. In the following subsections, we will look at the four possible
types of centering (P, C, I, and F) and determine the extinctions for each of
them.

A primitive lattice is characterized by the absence of any centering vectors.
‘This means that for the most general atom position r = (x. y, z) (general in
the sense that the atom does not lic on a symmetry element of the structure)
there is no equivalent atom located at any of the positions v+ A, T+ B, 1+C,
or r+1 (using the notation from Chapter 3). For a primitive structure with
only one atom in the unit cell, say at r = (0,0,0), we find:

Fr= Yo fmosionm _ ¢
and, therefore, the diffracted intensity is proportional to Iy, = f*. Remember
that the value of f does depend on the particular lattice plane (#kl). In other
words, for a primitive lattice there are no extintions; all lattice planes give
firacted beam.

A C-centered lattice is characterized by the fact that, for every atom at position
r, there is an identical atom at position 1+ C. The structure factor for this
situation (for r = (0,0, 0)) is given by:

D = (1 om0

> e

Using the prope:
this as:

xponentials and Euler’s formula we can rew

Fyg = feT0 (o T g Tt
e o )

The intensity in the diffracted beams is then proportional to:

(zfé’“”“mgmw)) (2re s ”:o»%(/ﬁ»k)) ;

(h+k). (12.8)

This intensity vanishes whenever the cosine becomes zero, and this hap-
pens whenever hi+k = 2n-+1. We conclude that for a C-centered lattice all
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diffracted beams with /i k = odd, will vanish. These extinctions are called
systematic absences or systematic extinctions. Note again that this is true
independent of the shape and dimensions of the unit cell; in particular,
true for the mC and oC Bravais luttic

12213 Body-centered lattice

The body-centered lattice is characterized by the presence of an identical
atom at position r+1 for every atom at position . The structure factor is
thus written as

)

and, u the same mathematical steps as before, we find for the
hye=4f7co8 Z(hk+1), (12.9)

from which we derive that for the body-centered lattices, all reflections
h+k+1= odd will vanish. This is in particular true for the of, ¢/, and ¢/
Bravais lattices,

122,14 Face-centered lattice

The d lattice is ized by the presence of
three centering vectors, A, B, and C. The structure factor thus contains four
terms:

Fyp= (14700 @i 4 itsn)

To compute the intensity we can now proceed in three different ways: (1)
we multiply this expression with its complex conjugate and work out all the
terms (a tedious task); (2) we attempt to rewrite the expression as the product
of igonometric functions (product, because it is easy to determine when a
product will be zero); or (3) we use the fact that e™ = —1. First we follow
the second method. Let us take a closer look at the following product:

(14700 (1 4£7040) = | i) 4 b 4 ook

This expression is equal to the structure factor above, except for the factor
2J in the third exponential. However, from Euler's formula we know that:

cos2h +isin 2l

for all integers 4. We can thus replace the structure factor by

Fop = £ (1470) (14 &m0

= 4feF cos — (h+ ke cos
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Table 12.2. Comparison of the extinctions in the three cubic Bravais lattices.

(hkt) e o o oF
(100) 1 7 ) o
(10) 2 7 ar 0
Jan 3 2 0 167
(200) 3 7 v 16/
@10) 5 s 0 0
@iy 6 7 ap 0

3 7 ap 165

9 7 0 0

9 I3 0 0

10 r 45 0

1 7 0 167

12 I ap 167

13 2 0 0

1 s ar

16 I ap 167

17 7 0 0

17 7 0 0
from which we find for the intensity

I =167 cos* Z(h+ k) cos? Z(h+) (12.10)

This expression is equal to zero whenever the Miller indices h, k, and I have
different parity; in other words, for a face-centered lattice only reflections
with all Miller indices even or all odd will be present. Mixed reflections will
be absent. For all allowed reflections the cosine functions are equal o 1, and
we find Iy, = 16f°

We can also follow the third method. which goes as follows: we use the
following property of the exponential function

emH) (o) (et
which allows us to rewrite the structure factor as

Fug= £ (1 (=) (=) 4 (- 1)) (12.11)

For mixed indices, two of these factors are equal to —1, and two are equal to
+1. 50 that their sum vanishes and F,,, = 0. For indices of equal parity, all
terms are equal (o +1 and hence Fiq 162, The results for all
different centering variants of the cubic lattice are summarized in Table 12.
This table can be compared with Table 11.3 on page 276, which lists the
Bragg angles for a number of planes in face-centered cubic copper; only a few
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of the planes will actually give rise to a diffracted beam due 1o centering

extinctions.

12.2.2 Symmetry and the structure factor

In the previous section we hav how faui
absences. Symmetry elements can also give rise o extinctions. Let us consider

centering causes systematic

three examples:

(i) Inversion symmetry: An inversion center is characterized by the fact

that for every atom at position r there alent atom at position

~r. If we have a unit cell with N atoms, then we can split the structure
factor for that cell in two terms:

an equi

Fur = L1
w2

e

)

=23 fycos (2mg-ry)

‘The last summation is a sum of real numbers, and therefore we conclude
that the structure factor for a unit cell with inversion symmetry is always
a real number.

Serew axis symmetry: A screw axis can be represented by a 4 x 4 trans-
formation matrix which indicates how atom coordinates of equivalent
atoms are related to one another. As an example, we consider the presence
of a4, serew axis, parallel o the c-axis and going through the origin of
the unit cell. For every atom at position r = (x, y, 2), there are three addi-
tional equivalent atoms, at positions (~y, x, 2+ 1/4), (~x, =y, z+1/2),
and (y, —x, 2+ 3/4). The structure factor can thus be rewritten as:

e

(ka6

43,415 g

Ayt 1) g2ty kG

et

-quation can be simplified substantially if we only consider reflec-
tions of the type (00/). In that case we can write;




extinction for

I=2m41

The first factor is a simple finite geometric series and it is easy to show
that it can be rewritien as:

1-¢

ion is always equal to zero: we have to

The numerator of this exp
be careful with the denominator, however, because the ratio 0/0 is not
defined. The denominator becomes equal to zero whenever I = 4n, with
# an integer. The value of the ratio is then determined by the de I'Hopital
rule, which states that the value for / approaching 4 is equal to the ratio
of the derivatives of nominator and denominator, evaluated at I =4n. In
mathematical terms this means:

2 iei
m ———;

Summarizing, we find that the reflections of the type (00/), with / % 41
are absent in the presence of a serew axis of the type 4, parallel to the
c-axis. One can derive similar extinction conditions for all other screw

axes and the results are summarized in Table 123.

) Glide plane symmetry: For a glide plane we can apply a similar method

1o determine which reflections will be absent. Let us consider an n
glide plane, parallel to the (001) plane, going through the origin, with
translation vector 7 = (1/2,1/2,0). For each atom at position (x, ,z)
there is an equivalent atom at position (x+1/2, y+1/2, 7). The structure.
factor can thus be written as;

"
B = g, (s )
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Table 124, Systemaic absences in the (10) reflections fo glide planes parallel to
the (001) plane.

glide type 7| extinction for

_ ‘i oo (s g e

For reflections of the type (/k0) we find:

e
Fuo = X fnrin (1 ne

o
:za%cm("*k)

s ; femn sk

and therefore the structure factor becomes zero whenever h+k = 2s1+1.
Summarizing, we find that the reflections of the type (hk0), with /1+k =
2n+1, are absent in the presence of a glide plane parallel to (001), going
through the origin, with glide vector 7= (1/2,1/2,0). One can derive
similar extinction conditions for all other glide planes and the results for
glide planes parallel to (001) are summarized in Table 12.4.

This concludes the discussion of the effect of symmetry clements on the
structure factor. As a final remark we should mention that diffraction from a
given crystal structure will always have an intrinsic symmetry. This is caused
by the following observation: since we can only measure intensiti
phases, we cannot distingui

h between the (/k/) plane and the (i
For structures without inversion symmetry, the structure factor for the (hkl)

plane s equal to the complex conjugate of that of the (AX7) plane, or:
Fuu = F;

Therefore, we also have:
F

Combining these relations we have:

har=FuuFo 212
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Therefore, an X-ray diffraction data set will afivays display a center of symme-
try, even when the crystal structure does not. This s known as Friedel's law.
As a consequence, the point group symmetry of a diffraction data set must
belong o one of the 11 Laue classes described in section 9.2.10.1 on page 214.

12.2.3 Systematic absences and the International Tables for Crystallography

In Chapter 10 we described how the Tables for C:
list all 230 space groups. In particular, we showed a portion of the actual
for space groups Cmm2 (CL)) and Pmna (D},) in Figs. 10.11 and
10.12. Under the entry “Positions”, which lists the Wyckoff positions and the
coordinates of the equivalent positions for general and special sites, we find
information about the “reflection conditions.” i.c., the conditions that nced
10 be satisfied by the Miller indices f, &, and ¢ in order to have a diffracted
beam (non-zero structure factor). Note that these conditions are the opposite
of the extinetion conditions

Consider space group Cmm2 (C})) as an example. The space group
is C-centered, so that the extinction condition derived previously reads
2041, ie., the structure factor vanishes for all 0dd &-+ k. The Tnte
national Tables then state the reflection condition &+ k =2n, i.e., i+ & must
be even to have a non-zero structure factor. The general condition is typically
simplified for special combinations of the indices, such as 00 for which the
reflection condition simplifies to i = 2n. For the special positions all general

ent

h+k

reflection conditions apply, and sometimes there are additional conditions.

For instance, for Cmm2 (C3!) we have for the 4c Wyckoff position the addi-
tional reflection condition k! : h = 2. In other words, if we have a structure
with space group Cmm2 (C3!), and with atoms only on the de site, then only
planes for which J is even can give rise 10 a diffracted beam. Since we must
also satisfy the general reflection condition £+ k = 2n, and i is even, we
d that & must also be even.

For space group Pmna (D],), with a diagonal glide plane # normal to the
b direction, we find the general reflection condition K01 : h-+1 = 2n, similar
10 the derivation in the present chapter. For nearly all special positions, there
is an additional condition: hki < h+1=2n, i.c., the general condition is not
only valid for &= 0, but must be valid for all values of k. The exception is
the 4h Wyckoff position, for which no extra conditions apply.

From these examples we see how the space group symmetry, which is a
combination of lattice centering and point group symmetry, dictates which
planes can give rise to a diffracted beam. Conversely, by studying a diffraction
data set, we can determine which planes do not give rise to a diffracted beam,
and from this information we can, in principle, determine to which space
‘group the structure belongs. We will return to the topic of space group deter-
mination in the next chapter, when we talk about convergent beam electron
diffraction.




122 The structure factor

12.2.4 Examples of structure factor calculations

In this section, we will carry out a few simple stucture factor calculations
for the CsCl structure, the NaCl structure, and the diamond structure. Tn
later chapters, the reader will find additional examples of structure factor
computations

Example 1: CsCI. The unit cell of CsCl contains only two atoms, Cs in the
origin and Cl at the center of the cell, so that the structure factor is given by:

Fuag = fou o (=)

For the reflections with /i + K+ =2n we find that F = fe, + fer; for all
other reflections we have Fiy, = fe, — fo. The observed intensities will hence

be cqual to

Iy = oo+ fa) for htk+1=2m;
Iy = (feo = fa)? for htk+1=2n+1.

‘This means that we now have two sets of reflections: reflections with inten-
sities proportional to the square of the sum of the atomic scattering factors,
and reflections proportional to the square of the difference of the atomic scat-
tering factors. The former reflections are known as fundamental reflections,
the weaker ones as superlattice reflections

If Cs and CI were randomly distributed over the two sites of a body-
centered cubic unit cell, then the atomic scattering factor for each site would
be the average of those of the atoms, ie., f = (f¢, + f¢)/2. and then the
reflections with Ji+ &+ 1= 201+ 1 would have zero intensity, as required
for a body-centered cell. Any deviation from the random arrangement of
the atoms results in a non-zero intensity for these reflections, and, therefore,
the superlattice reflections give information on the degree of order in the
material.

Example 2: NaCl. The sodium chloride structure can be regarded as two
interpenetrating fec lattices, one filled with Na and the other with CI. The
structure factor for each individual lattice is equal to that for a regular fec
lattice. The CI latiice is shifted with respect to the Na lattice by a vector
1/2,1/2,1/2). This means that the total struct

actor can be written

as:

FraQl+ (=DM (DM (<11
(1 (<1 (<D (1))

Since e = (—1)" we find:

Fur= (fsa+ far (G DU+ DM (DM 1,
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The corresponding intensity is thus given by:
I = (o + Far (D" (L (1) 4 (=1 4 (1))

We already know from the fec example that only reflections for which
all indices have the same parity are allowed. In addition, the presence
of the second fec latiice introduces a new condition: if h+k+/
then the two atomic s

n,

attering factors must be added, if h+k+1=
2n+1 then they are subtracted. The intensities for NaCl are thus as
follows:

Ty =0 for h. kI different parity;

Ty = 16(f, +fo)* for h, k.1 same parity and h+k+1=2n;

T = 16(fy, = fr)* for k.1 same parity and h+k+1=2n+1
Once again we find two different sets of reflections: fundamental reflections
and superlatiice reflections.

Example 3: Diamond. The diamond structure can also be regarded as
two interpenctrating fec latices, but this time with translation vector 7 =
(174,174, 1/4). The structure factor thus becomes:

Fir = fe (L (=D 4 (D) (1))
L FIH I () (1) DY)

“This can be rewritten as:
Fy = 2feFi "cus(;—TUwH/)) X (14 (=) (= (1),

from which we find for the intensity

Tk D) x (1 (=1 (D) (1)

on 10 being zero for all reflections for which 4, k,  are of different
parity, this factor is also zero whenever /- k+ 1= 4n-+2 with 1 an integer.

From these examples we conclude that absent reflections in a diffraction
pattern give valuable information about the location of atoms in the unit cell,

and about the presence of certain symmetry clements.

12.3 Intensity calculations for diffracted and measured intensities

When we perform an X-ray diffraction experiment, we typically measure
the diffracted intensity for a certain period of time and with a detector with
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4 certain aperture. The measured intensity thus represents a time average
(or an integration) of the scattered intensity and we only measure a small
fraction of the total scattered intensity, because of the finite dimensions
of the detector. In the following sections, we will describe a number of
correction factors that must be included to compute the measured intensity,
rather than the diffracted intensity. We will limit ourselves to the standard
powder diffraction geometry described in the previous chapter, since that is
the most commonly used phase identification method. Intensity computations
for Scherrer patierns proceed along similar lines, whereas the intensi
of reflections in Lave patterns require a more complicated approach (e.g.,
(Marin and Diéguez, 1999).

12.3.1 Description of the correction factors
12.3.1.1 Temperature factor

Atoms in a erystal are not rigidly attached to their lattice sites. They move
around their lattice sites in a (mostly) random fashion. The amplitude of this
motion is determined by the available energy, which in turn is determined
by the temperature. IF the temperature of a solid increases, then the atoms
will vibrate with a larger amplitude. At very low temperatures, the available
energy is much smaller and therefore the atoms will be, on average, closer to
their equilibrium positions.

If an atom vibrates with a certain amplitude, then its electron cloud will,
on average, appear to be much larger and more diffuse than if the atom were
stationary at one point. A larger electron cloud with the same number of
electrons means that the electron density becomes slightly smaller, and this
affects the value of the atomic scattering factor, f. This can be understood by
considering the definition of , as the ratio of the scattered amplitude of the
total atom to that of one single electron. The theory of Jattice vibrations is very
complex and requires sophisticated mathematical techniques far beyond the
level of this book. For our purposes, it will be sufficient to state the result: the
atomic seattering factor must be multiplied by an exponential atenuation or
damping factor, generally known as the Debye-Waller factor. Mathematically
stated, we find:

= fie?,

where the subscript 0 on the scattering factor indicates that the value at
temperature T = 0 K must be taken. The factor B is a function of temperature
7 and is proportional to the mean square displacement of the atom in a
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Table 12.5. Debye-Waller factors B(7) in A? for a few elemental crystals (Peng
etal, 1996). These numbers must be multipied by 0.01 to convert them to nm?.

T Al T Fe Fe Cu An W Au
®  fee hep fee bee  fee  fee bee  fee

900 03374 01579 0.1493 0715 01692 02259 00401 0.1908
1300 03465 02281 01443 02476 02444 03262 00709 02755
1700 04531 02082 0.1885 03238 03196 65 00927 03602
2100 05596 03684 02330 03999 03947 05267 0.1145 04448
2600 06928 04560 02884 04950 04886 06517 01417 05503
2700 07194 04735 02995 05140 05073 06767 01471 05714
2800 07460 04911 03106 05330 05261 07017 01526 05925

direction normal to the reflecting plane.? The net effect of temperature is
that every atom scatters less strongly than it would at absolute zero. The
exponential attenuation factor i often written as e~ with M = B(T')s". The
intensity of a diffracted beam is thus reduced by a factor e with respect
to the intensity of that beam at absolute zero,

The theory behind the Debye-Waller factor is quite involved and requires
knowledge of the phonon density of states, i.c.. the number of latice vibrations
(or phonons) with a given frequency or wave length. Such computations are
far beyond the level of this textbook, so, instead, we simply list B(T) for

afew pure elements with different crystal structures in Table 12.5. A more
complete listing can be found in Peng ef al. (1996).

On page 298, we computed the atomic scattering factor for tungsten, when
Cu Ka radiation diffracts from the (222) planes of a bee crystal with lattice
parameter 3.1653A: the result wt 39.9358. If we include the Debye—
Waller correction factor, for T = 290K (room temperature), then we find that

fue " = 30,9358 x 0.9538 = 38.0908.

The Debye-Waller factors are unknown for most crystal structures. If
experimental values for the Debye-Waller factors are unavailable, then one
could use the elemental values as rough estimates. From the data listed in
Peng et al. (1996), it can be seen that, in general, the Debye-Waller factor
is larger for elements in the left-most columns of the periodic table. At room

temperature, values around 0.1 nm? would be quite reasonable for first column

* We are assuming that the atomic vibration amplitude is sotropie, .. it s the same in all
disections. Whill this is 3 good approximation for close-packed (metalic) structures, in
many other cases we muscallow for the vibration amplitude to be different in different
diteetions. The Debye-Waller factor is then described by a vibrarion elipsoid, a 3-D shape
that indicates in which direction(s) the maximal vibration amplitude oceurs. For our

purposes. we will always assume an isoiropic atomic vibraion patern
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elemens (Li, Na, K, Rb, C3), whereas for second column elements (Be,
Mg, Ca, Sr, Ba) values around 0.01-0.03n
other elements, values in the range 0.003-0.007 nm? are acceptable. At liquid
nitrogen temperature, the Debye-Waller factors are typically about one-third
of their room temperature values. The Debye-Waller factors for the elemental
solids decrease down a column of the periodic table. If experimental values for
B(T) are available, then these should be used instead of the estimated values.
Moreover, it is probably not a good idea to use an isotropic Debye-Waller
factor in all situations,

are reasonable. For mos

As X-rays travel through a sample, they are partially absorbed. Mathemati-
cally, this means that the total diffracted intensity must be multiplied by an
absorption factor A. The value of A depends on the thickness of the material
through which the beam has travelled and, in general, also on the shape of
the sample. Tn addition, the absorption factor can depend on the diff
angle 6, and one usually writes A = A(6). Note that it is the intensit
amplitude, that must be multiplied by A.

One can show (see, for instance, (Cullity, 1978), page 134 for a detailed
proof) that for the standard powder diffractometer, the absorption factor is
independent of the diffraction angle and equal to;

not the

1
A=
with g the linear absorption coefficient of the specimen.

For a Debye-Scherrer camera, the absorption constant is more compli-
cated (o compute; for a cylindrical sample, however, one can show that the
absorption is large for small diffraction angles and small for large angles.
The thermal effect discussed in the previous section gives rise to an oppo-
site behavior of the correction factors, so that the thermal correction and the
absorption correction nearly cancel each other out. For other methods, in
particular single crystal methods, absorption corrections can become rather
involved since the absorption factor depends strongly on the sample shape,
which is not always a simple such as a sphere or a cylinder. For more
details on absorption corrections, we refer the interested reader to (Cullity,
1978, Giacovazzo, 2002).

hape.

The modulus squared of the structure factor is proportional to the total
diffracted intensity, scatiered in a certain direction. However, for scatering
from, say, the (200) plane in a Cu powder sample, there will also be scattering
in the same direction from the (020) and (002) planes and their negatives
For planes with larger Miller indices, there are in general more pos
‘The total number of equivalent planes is known as the mulriplicity of that

ilities.
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Table 12.6. Muliplicites for general and special planes in all aystal systems. The
notation lists the Miller indices above and the multiplicity below the fine: kl/pys.

Cubic o
Hex./Rhom.

Tetragonal

Onthorhombic

Monoclinic

Triclinic

plane. Multiplicity is represented by the integer number p,,
the crystal symmetry. Table 12,6 lists the multiplicities for all plan
crystal systems. As an example, consider the (220) planes in a cubic crystal.
‘The table states that for reflections of the type (0kk), the multiplicity is equal
to 12; for the (224) planes we have py,, = 24. The total intensity scattered
from a plane (ki) must be multiplied by py,, to obtain the total intensity
scattered in the direction corresponding to the angle 26,

and depends on
in all

123.14 Lorentz polarization factor

‘We have seen in the first section of this chapter that an unpolarized beam
of Xerays is scattered differently in different directions, even by a single
tor describing this effect is given by:

electron, The trigonometric fz

1405?20
A= ———

There are three additional geomeric factors that influence the total intensity
in a diff
with tops in th
diffraction angles 20 (see Fig. 11.19(b) on page 284). The total diffracted
intensity scatiered by the (hkl) planes is thus distributed over a conical
surface. However, when we use a detector, either for powder diffractometry
orin the form of the Debye-Scherrer camera, then we only intercept a fraction
of this total diffracted intensity. For instance, for a Debye-Scherrer camera of
radius R, the radius of the cone at the point where it intersects the photographi
Im is Rsin 26. The total length of the diffraction line (circumference of the
cirele) is then 2R sin 26. The intensity per unit length of diffraction line s,
therefore, proportional to 1/sin26; close to 20 = 0° or 1807, the diffraction
circles are small (see Fig. 11.19(c)) and the intensity per unit line length
is high, whereas for angles close to 90 the intensity per unit line length
becomes much smaller. This provides a first trigonometric correction factor
of 1/5in26.

Consider next a powder sample with randomly oriented grains
of grains that are oriented close to a particular Bragg angle, 6, depends on the

The number
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value of that angle. Let us assume that we are measuring the total intensity of a
reflection with diffraction angle 20 (see Fig. 12.6). The corresponding planes
have plane normals that make an angle 90° — § with respect to the incoming
beam. If the X-ray detector measures all the intensity over an angular interval
20 A6/2, then the normal to the planes may vary from 90° — 6— A8/2 to
90°— 0+ A6/2. If we consider the intersection of the plane normals with a
sphere of radius r, centered in the origin of reciprocal space, then the plane
normals of the planes giving rise to measurable diffracted intensity lie within
a band of width rA@ on the surface of this sphere. For randomly oriented
grains, the end points of the plane normals will be uniformly distributed over
the entire surface of this sphere. Therefore, the fraction of grains diffracting
into the detector is equal to the ratio of the number of grains with normals
inside the band, AN, to the total number of grains, N. This ratio, in tum, is
equal 10 the ratio of the surface area of the band to the total area of the sphere:

AN _ ra62mrsin(90°—6) _ Acosd
N amr 2

The total number of grains oriented favorably for diffraction with an angle
20 is thus proportional to cos , which is the second trigonometric correction
factor.

The third correction factor is due to the fact that a set of planes does
not diffract X-rays only at the exact Bragg orientation, but also when the
arientation deviates slightly from the correct angle. T 3 o understand
as follows: assume that a set of planes has Bragg angle 8. When the incident
beam s in Bragg orientation, X-rays reflected from consecutive planes in the
crystal are completely in-phase. If the incident bean is then tilted by a small
angle A6, the phase difference between consecutive planes in the crystal will
change by a small amount as well. When A is small, this phase difference
will not be large enough 1o cause complete destructive inter but the
interference is not completely constructive either. Therefore, the intensity of
the diffracted beam will be non-zero, but less than the intensity at exact Bragg
orientation. The more planes that are present in the crystal, i.e., the larger the
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grain size, the smaller the range of Af values for which some intensity can
be observed. As we move the X-ray detector through the Bragg angle, we
will begin to measure some intensity at 2(0— 0'); this intensity will reach a
‘maximum value at 26, and then decrease again until it vanishes at 2(6+6")
(see Fig. 12.7). We define the integrated intensity as the total intensity over
the entire angular range.

There are two commonly used mathematical functions that describe the
peak shape: the Gaussian function and the Lorentzian function. They are
defined as

(12.13)

(12.14)

where I, is the maximum intensity, w is the full-width-at-half-maximum

(FWHM), and @ s the diffraction angle. The curves in Fig. 12.7 are shown for

20 00] for the Gaussian

function and [20 = 50°, w = 1°, I, = 100] for the Lorentzian function. The

Gaussian function drops off rapidly away from the maximum, whereas the
Lorentzian peak has longer tails.

It can be shown (e.g., Cullity and Stock, 2001) that the FWHM value of

a diffraction peak is related to the size of the grains that give rise to that

peak and also 1o the value of the Bragg angle, 0. The relation is known as

Scherrer's formula and reads as follows for grains with average diameter D:

10°, =2

094

12,15
Dos (1213)

w=

"
by
g g
E
5 .

Diffraction angle
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The smaller the grain size, the wider the diffraction peak. This relation can
be used to determine approximate grain sizes for nano-crystalline materials.

If we approximate the integrated intensity by a rectangle, wl,, we find from
Eq. 1215 that the width of the rectangle varies as 1/cos6. The height,
of the rectangle also depends on 6, and it can be shown (Cullity and Stock,
2001, Fultz and Howe, 2002) that the dependence takes on the form 1/sin 0.
The integrated intensity of a diffraction peak is, therefore, proportional to the
product of 1/cos 6 and 1/5in6, so that the third correction factor is 1/sin26
(ignoring constant factors). Combining all three correction factors with the
polarization factor we find that the intensity diffracted by an angle 26 is
proportional to;

1+cos?20 (.16

sin’ 6 cos f

“This expression is known as the Lorentz polarization factor, and it is shown
eraphically in Fig. 12.8. Note that this factor is significantly different from
1, and must be taken into account in any intensity computation.

12.3.2 Expressions for the total measured intensity

1
factor £,(0).

orentz polarization

The total intensity can now be computed by putting together all contribut-

ing factors and correction factors. It is standard practice in most diffraction
experiments to measure all intensities, and then re-scale them so that the most
intense peak has intensity 100. In doing so, one effectively cancels the inci-
dent intensity /. the constant K, the distance r from the observer (o the
sample, and a number of other factors that are common to all reflections. The
relevant part of the intensity of a diffracted beam is, therefore, given by

PaiLp () A(B)e (12.17)

00 @ 8 8
Bragg angle 0
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Table 12.7. Computation of ntegrated intensites for polycrystaline tungsten.

Line (kl) dyy  sin0 0 Suas) Lo  p
*)

(rd) (A7)

10 22381 03445 03517 02234 595101 09921 141997 12
200 15826 04871 05088 03159 529576 09843 61572 6
211 12921 05966 06393 03870 482587 09766 37912 24
220 11190 06889 07600 04468 44.6851 09689 29144 12
10009 07702 08792 0499 419907 09613 27349 24
222 09137 08437 L0M2 05472 399344 09538 30871 8
321 08459 09114 L1466 05911 383054 09463 42034 48
400 07913 09743 13435 06319 369457 09388 84419 6

Table 12,8, Computation of integrated intensites for polycrystalline tungsten
(continued).

Line  [FgPe™  Inensity 20 Relative  Experiment
©) intensity  (PDF# 040806)
1 13943.997 2376009 40301000 100
2 10869.570 401555 831 169 21
3 8854.827 808416 7326 340 40
4 7498.409 262237 §7.09 110 16
5 6517.732 27815 10075 180 25
6 X 43309 1508 60 10
7 5255362 1060339 13139 446 48
8 4812331 243924 15395 103 6

For a powder diffractometer one can remove the absorption factor A() from
the expression since it is constant and will cancel out when the integrated
intensities are re-scaled to the most intense reflection.

Let us consider an explicit example: tungsten. body-centered cubic with
lattice parameter a = 0.31653nm, for Cu-Kar radiation at 7 = 290K; the
Debye-Waller factor B is equal to 0.1581 A? (Peng et al., 1996). To compute
the diffracted intensities for a powder diffraction pattern, it is convenient to
work in table format, as shown in Tables 12.7 and 12.8. The computation
i relatively easy if one works through the tables one column at a 1
‘Spreadsheet programs are useful for these types of calculations.

‘The last column in Table 12.8 is taken from the Powder Diffraction File,
card # 040806, which fists the experimental relative intensities for the eight
reflections observed in the 26 range [0° — 180°] The agreement between

* Since the caleulated values assume that the lluminated area on the sample remains constant
for the entire angulr range,the valves from the Powder Diffraction File wer correeted so
that they represent a variable st diffactomete (ic. we used fnr-r values).
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Fig. 123, (2 Wilam Konrad
Rorigen (1845-1923), and (b)
Max Theodor Felx von Laue:
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the relative intensities is reasonably good, considering that the experimental
values represent peak intensities, not integrated intensities. In Chapter 14,
we will consider a more explicit example where we compare the calculated
integrated intensities with experimental integrated intensities for an NaCl
powder sample.

The computation of diffracted intensities for the Laue geometry is more
complicated than for the powder pattern, due to the continuous wave length
range. For a detailed description of Laue intensity computations, we refer the
interested reader to Marfn and Diéguez (1999).

Wilhelm Konrad Rontgen (1845-1923) was a German scientist who, in
1895, discovered X-rays. He was born in Lennep in the German Rhineland
and was the son of a cloth merchant and manufacturer. He moved to Holland
at an early age and in 1862 attended the Ultrecht Technical School and later
the Polytechnical School in Ziirich. He was a professor of physics at the
University of Wirzburg and director of its physical institute when, in 1895,
he discovered X-rays using a Crookes vacuum cathode tube (Ronigen, 1896).
Rontgen also pursued the study of the electrical conductivity and heat expan-
sion of crystals. It was his discovery of X-rays, however, that paved the way.
for future scientists to study the atomic structure in the crystalline solid state

Max Theodor Felix von Laue (1879-1960) was a German physicist and
crystallographer who made many contributions to the theory and practice of
X-ray diffraction. He was a professor at the University of Munich. He was the
first to observe X-ray diffraction (1912) from copper sulfate, This discovery
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opened the door to many future studies of the structure of the solid state.
Laue’s discussions with Ewald on scattering of X-rays from 3-D gratings with
a periodicity close (o that of the X-ray wave length, stimulated his experiments
to demonstrate the diffraction of X-rays by crystals. He developed what is
now known as the Laue method for X-ray diffraction.

() Symmetry related extinctions: Derive the extinctions that are implicd for
the following symmetry operations:

(a) A2, screw axis parallel to the a-direction.
(b) Absences in (hk0) reflections for a b-glide parallel to the (001)
plane.

(i) Structure factor I: Consider an hcp cell with identical atoms in the
2c position of space group P6y/mme (D3,) at (1/3,2/3,1/4) and
(2/3,1/3,3/4).

(2) Show that the atomic positions can be expressed equivalently as:
(0,0,0) and (1/3,2/3,1/2).
(b) Show that the structure factor can be expressed as:

sl

Pt = Faam (14

() Calculate the square modulus of this structure factor Fi, = Fiy, iy
(d) Express the square modulus of the structure factor for each of the
following four cases:

o h2k=3nE 0= even;
o h2k=3n1= odd.

(¢) Co has two polymorphic forms, hcp and fec. Describe extinction
conditions that could be used to distinguish the reflections from the
hep and fee phases, respectively.

(iii) Structure fuctor I1: GaAs adopts a fec structure with Ga atoms at the
(0.0.0) and As at the (1/4, 1/4. 1/4) special positions.

() Express the positions of all atoms in the unit cell.
(b) Express the structure factor for Ga As.
(¢) Express the square modulus of the structure factor.
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(d) Simplify the square modulus under the following conditions:

(iv) Structure factor HI: Consider the face-centered cubic BiF, structure,
‘with Bi atoms on the (0, 0, 0) special position, and F on (1/2,1/2,1/2)
and (174,174, 1/4) special positions of the space group Fm3m (03).
xpression for the structure factor; are there any sys

Structure fuctor IV: Consider the face-centered cubie CaF, structure,

with Ca atoms on the (0,0, 0) special po nd Fon (1/4,1/4,1/4)

secial positions of the space group Fm3m (03). Derive a simple expres-
sion for the structure factor; are there any systematic absences other
than those caused by the face centering? How does this structure factor
differ from that of the BiF structure in the previous problem?

(vi) Integrated intensities I Repeat the computation of the integrated inten-
sities of Tables 12.7 and 12.8 for the structures described in the preced-
ing two problems. You may ignore the Debye-Waller factors (i.c., put
e =1)

(vii) Integrated intensities If: Consider the NaCl structure, with Jtti
parameter 0.5639 nm, space group Fm3m (05). Na at (0.0,0) and CI
at (1/2,1/2,1/2). Compute the ratio of the integrated intensities for the

111 and 200 reflections as a function of the position of the C1 atom, when

this atom is translated linearly from the position (1/2, 1/2, 1/2) to the
position (1/4,1/4, 1/4). Hint: define a parameter g so that g = 1 corre-
sponds to (1/2,1/2,1/2) and g= 010 (1/4, 14, 1/4); then express the
structure factor as a function of ¢ and compute the integrated intensities.
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carriers of negative electricity are bodies, wiich 1 have called corpuscles,

having mass very nuch smaller than that of the aiom of any known element

Joseph 1. Thomson, Nobel Lecture, 1906

13.1 Introduction

Experimental techniques used to study the structure of materials nearly always
involve the scattering of electromagnetic radiation or particle waves from
atomic configurations. The Bragg equation along with the concept of the
structure factor form the basis of a well developed theory that enables us
to understand these scattering processes and the information that can be
derived from them as 10 the positions of atoms in a material. The most
common waves used for diffraction experiments are X-rays. Other impor-
tant and widely used techniques involve the wave properties of electrons
and neutrons, charged and uncharged particles respectively, in scattering
experiments.

Diffraction experiments can be compared and contrasted on several level.
s of

Xeray diffraction experiments are typically the most economical mes
determining crystal structures. X-ray diffractometers are commonly found in
university, national and industrial laboratories. Electron diffraction is typ
cally performed using transmission electron microscopes, which are consid-
erably more expensive than typical X-ray diffractometers, but still common
n competitive laboratory facilities. Neutron diffraction is typically performed
onal reactor facilities. High energy, high flux X-ray

at national or interna

32
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13.2 +Neutron diffraction

scattering experiments are also used to study materials, but they 100 require
advanced reactor facilities. In this chapter, we will describe briefly diffraction
experiments involving neutron reactors, electron microscopes and high energy
synchrotron X-ray facilities, as examples of other common diffraction
techniques.

It is important to
tion experiments in terms of charge, magnetic moment, and wavelength.
Xeray photons are high energy electromagnetic radiation particles with a
wavelength of about 0.1 nm. X-rays are uncharged and do not have a mag-
netic dipole moment, but they carry orthogonal electric and magnetic induc-
tion components, so that they are scattered by electronic charges and (very
weakly) by magnetic dipoles. The most important atomic scattering object
for X-rays is the atomic charge density, which is also spatially distributed

\guish the different radiation sources for diffrac-

over a 0.1 nm length scale. Electrons are charged particles and have a mag-
netic dipole moment, They have wavelengths around 0.002nm and can be
scatiered by atomic charges or spins. The scattering objects for electrons
are both the electronic and nuclear charge densities, again spatially dis-
tributed over a 0.1 nm length scale. For neutrons, wavelengths of about 0.1 nm
are common. As uncharged particles, the scattering object is the atomic

nucleus, which is spatially distributed over a 0.0001 nm length. Neutrons
also have magnetic dipole moments that give rise to significant magnetic
scatiering.

13.2 #Neutron diffraction

Neutron diffraction refers to interference effects when neutrons are scattered
by a erystalline solid.’ The neutron, discover
1932, is an electrically neutral particle with mass 1.67 x 1027 kg (0.14%
heavier than the proton mass). The neutron is a constituent particle of the
atomic nucleus. For an atom with atomic number Z and atomic weight A,
there are A—Z neutrons in its nucleus. The neutron is not a stable fun-
damental particle; it can be regarded as a proton (positively charged) to
which a ne

ively charged 7 meson is bound. This 77 meson is exchanged
with other protons in the nucleus, so that protons and neutrons continu-
ously transform into one another. The opposite charges of the proton and

the 7 meson leave the neutron electrically neutral, but the orbit of the 7
‘meson about the proton gives rise to a magnetic dipole moment that is quan-
tized in units of the Bohr magneton, similar to the moment of the electron.

1 One of the authors (MEM) gratefully acknowledges the course notes from a 1979 course by
Professor Linn Hobbs at the Case Western Reserve Universiy (naw at MIT) as influcr
the discussion of neutron diffraction in this chapter.
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A “free” neutron decays with a half-life of about 886 seconds (roughly 15
minutes) to produce a proton, an electron, and an anti-neutrino (Hodgson
et al., 1999).

Neutron s

attering is a powerful tool for the study of the structure of
materials. Since neutrons are uncharged particles, they will penctrate deeply
into most materials. As a consequence, samples with a large volume can be
analyzed (a volume of several cubic centimeters is not unusual), and the sam-
ple preparation requirements are often not too demanding. Neutrons interact
with atomic nuclei and also with the magnetic dipole moments of the nuclei.
Since they are neutral particles, they do not interact with the electron cloud.
The interactions between the neutron magnetic moment and the magnetic
moments in magnetic materials can be used to determine how the moments in
that material are oriented. Neutrons can have a de Broglie wavelength that is
comparable to atomic spacings. The Kinetic energy of neutrons is comparable
to the energy of vibrational waves (phonons) in solids. Neutron scattering has
revolutionized several areas of physics. The 1994 Nobel prize in physi
awarded to Clifford Glenwood Shull for development of the field of neutron
scattering,

Neutron scattering can be used in a number of different modes to probe
the solid state (Richter and Rowe, 2003). These arc:

(i) Elastic nuclear scattering of neutrons: Bragg s
determine the structure of erystalline solids, in much the same way that
Xerays o electrons are used. The short range of the neutron-atomic
scatterer interaction (the neutron interacts only with the small atomic
nucleus) and the seemingly arbitrary variations of the atomic neutron
Scattering factors across the periodic table (as compared to the quite
regular atomi ing factors for X-rays, for instance) make neutrons
quite attractive and unique probes of the crystalline structure. Since the

attering does not have a simple dependence on the atomic number, it

s often possible to locate accurately light atomie species in the presence
of heavy atoms; X-ray and electron diffraction techniques are typically
not sensitive to low atomic number elements in the presence of much
heavier elements.

(i) Elastic magnetic scattering of neutrons: Neutrons are excellent probes
of the magnetic structure of crystalline solids, due to the interactions
between the magnetic dipole moment and the magnetic moments in the

solid. In addition, neutrons can be polarized 1o facilitate the study of
magnetic materials.

(iii) Inelastic neutron scattering: Low energy neutrons can interact with the
vibrating crystal lattice (i.e., through neutron scattering by phonons) as
‘well as with spin waves (magnons) associated with spatially varying mag-
netic dipole moments. This type of inelastic scattering is a particularly
useful way to probe magnetic phase transitions.

attering can be used to

scatter
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(iv) Isotopic substirution: Most elements exist in various isotopic forms,
i.e., they have nuclei with different numbers of neutrons, and, hence,
atomic weights. Isotopes can have dramatically different neutron
scatering powers. Since isotopes have identical chemical properties,
isotopic substitution may be used in some cases o change the atomic
scattering factors in the material, i.c., to tailor the scattering factors so
that the diffraction experiment becomes more (or less) sensitive to a par-
ticular element. This is especially useful for the structure determination

of organic molecules; for example, substitution of deuterium for hydro-
gen may make it easier to locate the hydrogen sites in the molecule.
This makes neutron scattering a very useful technique in the study of
polymers and biomolecules.

The first type of elastic scatiering can be important in probing chemical
order in both non-magnetic and magnetic crystalline solids. As we have
seen, the seatiering power of X-rays s proportional to the atomic number,

Z, of the scatterer. This can cause problems when the sample being studied
is composed of atoms with nearly the same atomic number. Under these
circumstan

. the scatiering powers are nearly identical and quantitative
‘measurements of atomic ordering are difficult. For neutrons, however, the
main scattering source is the nucleus rather than the electrons orbiting the
nucleus. The neutron scattering lengths do not vary regularly with Z, so
that neutron diffraction becomes an attractive method for studying chemical
ordering in certain transition metal alloys, such as the Fe~Co described in
this chapter.

The interaction of the neutron spin with nuclear spins in a material depends
on their relative orientation. The above mentioned inelastic scattering events
are of particular interest for probing dynamic magnetic spin excitations
(magnons). Magnetic scatiering of neutrons can probe both static magnetic
order and, in temperature dependent scattering experiments, magnetic phase
transitions. The inelastic scattering of neutrons also provides a sensitive
probe of the magnetic ordering transition. Although it will not be discussed
in detail here, small angle neutron scattering, SANS, observed at angles
between approximately 0.15° and 15°, is a powerful technique for the study
of macromolecules, small d 3
domains.

s in crystalline materials, as well as magnetic

13.2.1 Neutrons: generation and properties

‘The properties of neutrons, protons, and electrons are compared in Table 13.1
Neutrons can be produced from a variety of sources, including the decay of

of neutrons comes from the decay of radioactive elements such as

20Ra 10 produce a particles (§He). The energetic a particles can then be
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Table 13.1. Properties of electrons, neutrons, and protons.

Particle Electron Proton Neutron
Symbol e » ”
Relative charge 1 1 0
Actual charge ~16x10°C L6x10°°C 0
Relative mass 171837 1 1
Actual mass 91055 107kg  L678x10Tkg 1675 x 10T kg

used to bombard Be atoms (3Be or '|Be) to produce neutrons through the
reactions (Hodgson e al., 1999):

Be +3He — 7C +in+5.7MeV;

'1Be +1He — "N +/n.
More intense and energetic sources of neutrons come from fission reactions

involving isotopes of U or Pu. A typical self-sustaining nuclear fission reac-
tion is:

BU A

— 'iBa +$Kr +3{n+177MeV

Neutrons are cl

fied by their kinetic energy, Ey,. as:

(i) Cold neutrons: Ey,, < 0.025¢V;

(i) Thermal neutrons: in thermal equilibrium with the atmosphere at 293 K,
with By, ~0.025eV;

(iii) Slow neutrons: 0.025 < Ey, < 100eV;

(iv) Intermediate neutrons: 100eV < Eg, < 10keV;

(v) Fast neutrons: 10keV < Ey;, < 10MeV, and

(Vi) Ultra-fast neutrons: Ey, > 10MeV.

Because the interaction of neutrons with matier is weak, only high flux neu-
tron sources, i.e., those available from nuclear reactors, are useful for neutron
cattering experiments. A typical research reactor might use the fission prod-
ucts associated with the absorption of neutrons by atoms and the subsequent
chain reaction. Such a reactor typically generates 20~60 MW of energy
and a neutron-flux between 10/ and 10" n/m/s, with an energy distribution
peaked near 1 MeV. More intense neutron sources can be generated by bom-
barding heavy nuclei with high energy light particles (e.g., protons or alpha
particles). These sources, known as spallation sources, can achieve fluxes
in the range 10/*-10 n/m?/s. Spallation is the process in which a heavy
atom is bombarded by an intense beam of high-energy protons. These protons
reach energies of several GeV and velocities of about 90% of the speed of
light
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“The fast neutrons produced by reactors or pulsed sources have flues in a

useful range, but are oo penetrating for use in diffraction experiments. For

this reason, these neutrons are often
4 moderator. This involves  loss of kinetic energy through coll

t thermalize

. through interaction with

ions with

‘moderator atoms, which eventually results in neutrons with a kinetic energy
about equal o the thermal energy, i.c.

13.1)

where m, is the neutron mass, v the velocity, T the absolute temperature (in
Kelvin) and ky the Boltzmann constant (k, = 1.38 x 10~ J/K). Solving for
v yields:

132)

Using the de Broglie relation, the neutron wavelength for thermal neutrons is

found to be:
h h
P - (13.3)
mv Sk, T
for non-relativistic particles. At 300K, the neutron kinetic energy, £y, is

about 1/40V. and the wavelength, A = 0.18 nm: the neutron velocity s about
2200 ms. Longer wavelengths (slower neutrons) can be accessed at lower

temperatures

moderator materials are water, heavy water (containing

hydrogen and deuterium) and pure C graphite.

possessing & Maxwell-Bolicmann distribution of kinetic ener

Thermal neutrons are more correctly described as an ideal gas of particles

Eyin
QT

N(Egn,

Non(8mky m*(

where N(E,,) is the number of neutrons with kinetic energy, Ej,, and N, is
the total number of neutrons.

13.2.2 Neutrons: wave length selection

For diffraction experiments, it is desirable to have monochromatic neutror
e., asingle wave length A). Monochromatization of neutrons can be accom-

G

plished through:

Time of flight Time of flight
relies on the fact that the velocity distribution of the neutrons is described
by the Maxwell-Boltzmann distribution; therefore, neutrons with a fixed
energy will travel a predictable distance over a given amount of time.
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« Use of neutron velocity selectors: Velocity selectors consist of neutron
absorbing materials cut with helical channels. When the helical channel
velocity selector is rotated at a constant velocity only those neutrons with
a specific range of velocities will traverse the channels without colliding
with the absorber. These velocity selectors are also known as choppers
because they “chop” the neutron beam into specific velocity (wave length)
ranges,

Use of single crystal Single crystal

tion refies on collecting neutrons of a fixed wave vector after Bragg
atering from a single crystal grating. This type of monochromatiza-
tion is the most accurate method to obtain a monochromatic neutron
beam.

A variety of sample geometries are possible in neutron diffraction. These can

range from powders to single crystals to thin films

13.2.3 Neutrons: atomic scattering factors

Neutrons, as uncharged particles, interact with atoms only at very short
distances. Unlike X-rays, which scatter off the clectron cloud, neutrons
interact only with the nuclei. Neutron scatiering involves nearly head-on
collisions with the nuclei, so that the probability of neutron scatter-
ing. the newron scattering cross section, is related to the size of the
nucleus. The number of nucleons (protons and neutrons) in a nucleus can
be determined from the atomic weight, since protons and neutrons have
nearly equal weights and the electron mass is negligible. As the neu-
twon and proton sizes are comparable, the volume of a nucleus of radius
i

4L 4
FmR=3mmA, 13.5)
where A is the atomic weight and r, is about 1.5 x 10~ m. For all
atomic nuclei, A is less than 250, so that ry < 107 m. Compared with
the room temperature wave length of thermal neutrons this radius is four
to five orders of magnitude smaller. Since the size of the nucleus is
so small, it can, therefore, be treated as a 8-function scattering source
(ie.. a point source). This is extremely important, since it implies that
the scattered intensity is it s not a function of the scat-
tering angle, 6. The nucleus acts as a source of a spherical scatering
wave with an angle-independent amplitude; for electron and X-ray scat-
tering, the scattering amplitude depends strongly on the scattering angle.

uniform, Le.
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The scattered wave functions for neutrons, electrons, and X-rays take on the

following functional forms;

Lexpl—ik'-r,

500 = (CO)

Jexpl iK' 1 136

where k' is the scattered wave vector, r, is the position of the wavefront, b
is the neutron scattering length and 6 the scattering angle.

It is customary to relate the neutron scattering length b to the apparent size
of the atomic nucleus. When a neutron approaches a nucleus, this nucleus will
have an apparent size, similar to (but much smaller than) the size of a bull's
eye target in an archery competition. Each nucleus — in fact, each isotope —
has a different size denoted by the symbol @ o is known as the scattering
cross section, and one can show that:

(137)

Since b does not depend on the scatiering angle 6, we would also expect
that & ~ 47}, (where the factor of 4 comes from a quantum mechanical
treatment). Therefore, we conclude that b % ry and:

b=r,AY = (15 x 107%)A*m = 154% (barns)* (13.8)

where I barn = 10~ m?.2 Equation 13.8 also implies only a small variation

in scattering cross section for heavy and light nuclei. While the general A
dependence of the scattering cross section is indeed observed, considerable
variation in b is found from element to element or even isotope to isotope,
with some scattering lengths even being negative. These variations in b are
principally due to resonance absorption in compound nucleus formation which
reduces the cross section, and, therefore, the scattering length.

A list of neutron scattering lengths for scattering of thermal neutrons is
shown in Table 132 and graphically in Fig. 13.1. The neutron scattering
lengths for Po, At, Rn, Fr, and Ac are not available. Some of the numbers
in this table have an imaginary component: B, Cd, In, Sm, Eu, Gd, and
Dy. This indicates that the nuclei of these elements have a strong tendency
10 capture neutrons, i.c., to absorb neutrons. Vanadium (V) has the smallest
(absolute) value for b for this reason, it is mostly transparent to neutrons and
is hence used as a sample holder material (e.g., a thin-walled cylinder to hold
a powder sample)

* The unit barm is named afier the expression “hiting the broad side of a bam.”
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Table 13.2. Neutron scattering lengths (in femtometer, fm) for all naturally
occurring elements; thermal neutrons are assumed. This lst s taken from a longer
lit including allisotopes, at the web sie of the National Institute of Standards and
Technology (NIST, URL: i s The
values in the table are averages over allisotopes, weighted by the natural isotope
abundances. Dashes indicate that the scattering length has not been determined.

Atom b Atom b Atom b Atom b
H o 37390 He L 190 Be 779

B 530-023 C N 936 0 580

F 5654 Ne Na o 363 Mg 5375

Al 349 Si P50 s 2847

c o 9sTI0 Ar K 367 Ca 470

se 1229 T V0384 O 3635
Mn 373 Fe Co 249 Ni 103

cu 7718 Zn Ga 7288 Ge 885

As 658 Se 7970 Br 6795 Ke 781

Rb  7.09 s Y 715 16

Nb  7.054 Mo 6715 Te 68 Ru 7.03

Rh 588 Pd 591 Ag 501 cd 487-070
In 406500539 Sn 6225 Sb 557 Te 580
1os: Xe 492 Cs sz Ba 507

Lo 824 Ce 484 Pro 458 Nd 769

Pm 126 sm Eu  722-1260 Gd  65-138%
To 738 Dy Ho 801 Er 779

Tm 7.07 Yb Lu 721 HE 77

Ta 691 w Re 92 os 107

Ir 106 Pt A 763 He 12602

T 8776 Pb 9.405 Bi 853 Po —

A — Rn  — Fro— Ra 100

Ac — Tho 1031 P 9l U847

The incoherent scattering of neutrons is different from that of X-rays
(Compton scattering) due 10 the fact that neutrons can have their spins oriented
to be in one of two directions, denoted spin-up and spin-down. As a result,
the scattering length will be different for each and can be denoted as b,
and b_, respectively. Scattered neutrons can have differences in phase which
arise from the different total nuclear angular momentum of the compound
nucleus with the neutron. These phase differences can give rise to incoherent
scattering analogous 1o that of isotope disorder in X-ray scattering.

‘The neutron’s spin angular momentum gives rise o a net magnetic moment
of 1.04 x 10-* Bohr magnetons or 1.91 nuclear magnetons. As a result, in
addition to nuclear scattering, there will also be a magnetic contribution to the
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Tengts of Table 132 25 2
fur

indicate tha the sattering.
Tength has a sigificant
imaginary companent,

n T T

ngth b (fm)

Z

(] 20 w0 o 50 100
Atomic number Z

scattered intensity. Magnetic scattering arises from the interactions between
spin due to electrons oceupying incomplete
stems containing transition metal or

neutron spins and the net atomi
shells. This is especially important for s
rare earth elements. For ionic systems, the net atomic magnetic dipole moment
can be calculated by quantum mechanical rules. Cations have magnetic dipole
‘moments determined by Hund's rules (see Box 13.1),

The magnetic scattering of neutrons s treated similarly to X-ray scattering
in terms of the sine of the angle, B, between the incident neutron wave vector
and the direction of the net atomic dipole moment arising from the unfilled
electronic shells (as given by Hund’s rules). A magnetic scattering length,
by s defined as:

(13.9)

where S is the total spin angular momentum (Table 13.3), fy is a magnetic
form factor. and y s the magnetic dipole moment of the neutron. It is,
therefore, possible to determine both the magnitude and direction of the atom

‘magnetic dipole moment using neutron scatiering

One of the most important implications of magnetic scattering is diffrac-
tion from ordered, often collinear systems of atomic dipole moments.
and materials.

“This includes 8
Ferromagnetism is an example of correlated or collective magnetism. To
define ferromagnetism, we begin with permanent atomic dipole moments.
In a ferromagnetic material, the local atomic moments remain aligned, even
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Box 13.1 Magnetic dipole moments and Hund’s rules

Magnetic dipole moments result from orbital and spin angular momentum
of electrons in an unfilled atomic shell. The relationship between magnetic
dipole moment vector, g; half the charge to mass ratio of an electron, £-;
and the angular momentum vector, T1, is given by

e,

=6

where Tl can refer to the orbital angular momentum (L) or the spin angular
‘momentum ($) and g is the gyromagnetic factor. In ferrites, the d-shells
of the transition metal cations are of interest, and the orbital angular
momentum is quenched (ie., L= 0) in the crystal. The spin angular
‘momentu for a single electron is quantized by the spin quantum number,
1/2,10 be mJi = £7/2. For spin only, the gyromagnetic factor is

and the single electron dipole moment is:

e h he
L)

o= .27 107 A m?),
o =t G Am’)
where g, is the Bohr magnetron, the fundamental unit of magnetic dipole
‘moment
For a multi-electron atom, the total spin angular momentum is

2,

with the sum over all electrons in the outer shell. Hund'’s first rule states
that, for an open shell multi-electron atom, we fill the (2/-+1)-fold degen-
erate (for d-electrons we have (2/+ 1) = 5) orbital angular momentum
states 50 as 1o maximize total spin. To do so, we must fill each of the five
d-states with a positive (spin-up) spi

before returning to fill the negative
(spin-down) spin. The total spin angular momentum for the 3d transition
metal ions is summarized in Table 133

in the absence of an applied field, below a temperature, 7, known as the
Curie temperature. As a res

It a ferromagnetic material possesses a non-zero
net magnetic dipole moment over a macroscopic volume, called a magneric
domain, containing many atomic sites. Ferromagnetic materials give
coherent magnetic scattering of neutrons.

For a simple antiferromagnet, like bec Cr, for example, equal spin
dipole moments on adjacent nearest neighbor atomic sites are arranged in

se to

an antiparallel fashion below an ordering temperature, Ty, called the Néel
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Table 13.3. Transition metal on spins and dipole moments (L =0).

# d electrons Cations s iy
1 i, v 172 '
2 Vi 1 2
3 32 3
4 2 4
5 52 5
6 2 4
7 3 3
8 1 2
9 12 1
t

temperature. For a simple ferrimagnet, unequal spin dipole moments on adja-
cent nearest neighbor atomic sites are arranged in an antiparallel fashion below

the Néel temperature. These give rise to the possibility of the space group
for magnetic scattering being different for neutron scattering as opposed to
scattering by X-rays or by electrons. In fact, if the assumption of spherical
atoms is replaced with one for which a vector representing the atomic mag-
netic dipole moment is attached to each atom, then the number of possibilities
for different space groups (the magnetic space groups) greatly exceeds the

groups previously enumerated. We forgo a complete discussion
of the 1651 magnetic space groups in this text. In 1949, antiferromagnetic
MnO was the first material for which neutron diffraction was used to study

g

spa

the magnetic order.

cattering geometry

The basic geometry of a neutron scattering experiment consists of a neutron
source, a sample, and one or more detectors (Fig. 13.2). Neutrons from the
source are scatiered by the sample and are collected by the detector(s). As
neutrons are scattered from the sample, they will undergo a change in either
‘momentum or energy (or both). Measurement of these changes, together with
an application of the physical theory of scattering, leads to an understanding
of the structural and dynamic properties of the sample. Neutrons with a wide
wave length spectrum are produced in a typical nuclear reactor source. A

crystal monochromator is then used 1o deflect neutrons of only one wave-
Iength, resulting in a monochromatic source of incident neutrons. Elastic
heutron scatiering (neutrons are scattered without energy change) results in
the standard equality of the angles of incidence and reflection, 6 = 6/, as
shown in Fig. 13.2.

Neutrons can be described as particle waves with a wave vector k

€ as
before, k is a vector in reciprocal space. The particle nature of the neutron also
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Crystal

means that k multiplied by Planck’s constant represents the vector momen-
tum of the neutron, ie.. p = hk. The scatiering vector, Ak, is defined as
the difference between the momentum K’ of the scattered neutron and the
momentum k of the incident neutron, i.c., Ak = k' — k. The absolute value
of the scattering vector [AK| equals 2sin 6/A. Bragg diffraction occurs when
the scatiering vector is equal to a reciprocal lattice vector, g, of the crystal
being studied: in that case we also have = /. Inclastic scattering events can
be probed by changing the position of the detector while keeping the sample
orientation relative (o the source constant; in other words, the exit angle " is
varied while @ is kept constant.

The fact that a nuclear reactor is needed (o provide the neutron beam
means that neutron scattering experiments are typically carried out only at
dedicated, often national, user facilities; most universities cannot afford to run
and maintain such a facility. Fig. 13.3 shows block schematics for instruments
used for neutron diffraction at the NIST National Center for Neutron Research

(NCNR) in Gaithersburg, MD. Figure 13.3 (a) shows the main reactor and
instruments used to study materials with thermal neutrons. Figure 133 (b)
shows the Guide Hall at NCNR, housing various beam lines for using cold

Fig. 13.3. nstruments used or neutron ifaction a the NIST Natonal Center for Newtron Rescarch
(NCNR) i Gaithrsurg, MD. () Detecrs clse 0 the neutron reatr source for use o theral

v, () planview ofthe Guide Halat NCNR,Housig arious beam fnes for using cold neutons
inducing small angie netron scatering. (Fgure reproduced wit permision)
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neutrons including small angle neutron scattering. The use of cold neutrons
requires cryogenic cooling. Neutrons with lower temperatures (energies) have
longer wave lengths appropriate for the study of polymer or biomolecule
erystals with large lattice constants.

13.2.5 Neutrons: example powder pattern

One advantage of the use of neuron diffraction over X-ray diffraction is
illustrated in Fig. 13.4: the determination of the superlattice reflections for B2
«-FeCo. Since neutron scatering cross sections show considerable variation
from element to element or even isotope to isotope, neutron diffraction is
attractive for the study of chemical ordering in certain transition metal alloys.
Fig. 13.4(b) shows a neutron diffraction pattern for an ordered FeCo alloy
using neutrons of wavelength 0.154 nm, the same wavelength as CuK,, X-rays
used in Fig. 13.4(a). Because of the large difference in the neutron cross
sections for Fe and Co (see Table 13.2), the superlati ons are easily
observed, whereas for X-rays they are not, unless anomalous scattering is
considered, as discussed in Section 13.4.2.

Using the same approach as in Chapter 12, Table 13.4 lists the calculated
relative integrated intensities for X-ray diffraction and the calculated intensi-
ties for neutron diffraction. The structure factor squared for this compound is

simply:

fre +(=D"fe

for X-rays and

1Bl = (g + (= 1) be,)?

for neutrons. Using a lattice parameter of a =0.28571 nm, and Debye-Waller
factors for both Fe and Co of 0.0055 nm?, we can compute the relative inte-
erated intensity /5, for X-rays and If,, for neutrons, as shown in Table 13.4;

Ko 2 FeCo
Xeray neatron
Fig 13.4. ) Simulted 10 =8
paterns for an ardered 82 ) "
FeCo ally, and () neutron | N ‘
iffacion patie fr the o o
03 @ @ % w00 % 6 0160 130 1

same with neutrons of
wavelength 0,154, the 2
same a5 Cu K, Xrays. (@ ®)
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Table 13.4. Comparison of the integrated reltive intensites for Fe Co, using
CuKe radiation and neutrons of the same wave length.

#lne Mkl s Fiu L, o B B

1 100 01750 10424 2472 6 009 696 376
2 11002475 36597 11184 12 10000 1194 1000
3 1103031 09142 68353 8 003 69 138
4 200 03500 29318 4795 6 1377 1194 215
H 200 03913 07804 37061 24 003 696 225
6 201 04287 24579 31034 24 2505 1194 555
7 220 04950 21030 27289 12 807 1194 244
8 221 05250 0589 28465 24 001 69 173
9 310 05534 18250 31743 24 1418 1194 568
100 311 05804 05027 37959 24 001 696 231
1 06062 16073 49846 & 577 19 297

Lorentz polarization and multiplicities are taken into account. The X-ray
intensities for reflections with h=+k+1=2n+1 are ncarly zero, 5o that X-ray
diffraction is not an appropriate technique to detect ordering in this system;
the powder pattern looks exactly the same as the patiern for the disordered
FeCo compound. In the neutron powder pattern, however, all reflections have

significant intensities, so that the presence of ordering can be detected casily

13.3 «Electron diffraction

13.3.1 The electron as a particle and a wave

Electrons are traditionally considered to be point-like charged particles that
can be accelerated by an electric field, e.g., in the X-ray tube, or in cathode
ray tubes (L., TV tbes). A single electron has a mass of nt, = 9.1093897 x
107 kg, and a charge of —e = —1.60217733 x 10~ C. The electron mass
is about 2000 times lighter than that of the proton or neutron, and it is
correspondingly easier to accelerate the electron using an electric field. Recall
that the ion of X-ray photons (which are, essentiall g electri

1ds) with atoms makes the electrons oscillate at a much larger amplitude
than the protons, precisely because of this mass difference. When a single
electron interacts with matter, we expect it to interact with both the negatively
charged electron clouds of the atoms and with the positively charged atomic
nuclei. The interaction of electrons with matter is, therefore, expected to be

significantly stronger than that of X-rays with matter. This has important
consequences for electron diffraction, as we will see in the following sections.

According to quantum theory, every moving particle has a wavelength
associated with it (see Equation 1.3 on page 8). Because an electron can be
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Table 13.5. Electron wavelengths, mass ratio, and fractional velocity (fracion of ¢)
for various accelerating voltages.

V (volts) Apm) nfmy
100 2.6 100019
3876 100196
10000 1220 101957
100000 3701 1.19570
200000 13914
400000 17828
1000000 29569

easily accelerated to a velocity that is a significant fraction of the velocity of
light, we must describe the electron wave length using relativistic physics.
The equation relating the electron’s wavelength (in pm) to the accelerating
potential V (in volts) is then given by:

h h 1226.39
vy VVHOITE T

T

V'ﬁ.wx/(l o

Ztm,(

For an accelerating voltage of 400000 volts, electrons have a wave length of
1644 pm, they travel at 83% of the speed of light and they appear to be 78%
heavier than an electron at rest! Values for other accelerating voltages can be
found in Table 13.

Since the electron

be regarded as a wave, this means that electrons
can be diffracted by crystal attces. The fact that the electron s a charged
ticl

the diffraction procy an electron traveling
at high specd through a crystal interacts strongly with all other charges in
the material, including the nuclear charges. The probability of an electron
being scattered by a single atom is about four orders of magnitude larger

than that for X-rays and, therefore, the aromic scattering factor for electrons,
¥\, (defined in a manner analogous to that for X-rays and neutrons) is also
much larger than fX. Ttis, in fact, possible to express the electron scattering
factor in terms of the X-ray atomic scattering factors; the relation, which

is known as the Motl-Bethe formula, and which we will state without an
explicit deri

on, reads;

[z-F6)]. (13.10)

the same meaning as in Section 12.1.2. The same
listed in Table 12.1 can be used to compute the electron
scatering factors as well
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The most important consequence of this increased scattering probability is
that an electron, after it has been scattered once, can diffract again and again,
from different lattice planes. For X-rays, the probability of multiple scattering
events is very small, so that we can usually ignore it. For electrans, this would
lead to major errors. If the intensity of a diffracted beam can be computed
by simply taking the modulus squared of the structure factor (as we have
done in Chapter 12), then one refers to the scattering process as kinematical
scattering; if the intensity is no longer proportional to the structure factor
squared, as is the case for multiple scattering, then we talk about dynamical
scattering. Dynamical scattering theory must be used 10 describe electron
diffraction, although, under certain conditions, the kinematical approach s
reasonable approximation. While this dynamical theory is well beyond the
scope of this book, we will briefly discuss its consequences in the following
sections

13.3.2 The geometry of electron diffraction

The small value for the electron wave length has important consequences for
the geometry of the scattering process. Bragg’s law tells us that the typical
diffraction angle  for a 200000€V electron with wave length 0.002 508 nm,
in a crystal with lattice spacing d =0.2nm, is about 6 milliradians or 0.36°!
‘This should be compared to the 22.7* angle for diffraction of Cu Ka X-rays
from the same planes. Since the diffraction angle @ is small, we can expand
the trigonometric function in Bragg’s law as sin@ % 6, so that we have the
approximate expression for electron diffraction:

2y = A

‘This means that almost all electron diffraction will occur close to the forward
direction, or, in other words, we only need to look close to the incident beam
direction to find the diffracted beams.

Aliernatively, we can describe the electron scattering process in reciprocal
space: the electron wavelength is about 100 to 1000 times shorter than the
typical X-ray wave length. This means that the radius of the Ewald sphere,
1/, will be 100 10 1000 times larger. The Ewald sphere is thus huge compared
to the reciprocal lattice spacings. Figure 13.5 shows a to-scale drawing of
the Ewald sphere and a reciprocal lattice for a cubic crystal with 2 lattice
parameter of 0.4nm (i.e., a* = 2.5nm™"). The small circle near the center is
the Ewald sphere for Cu Kar X-rays: the two large circle segments represent
the Ewald spheres for 200 keV and 1 MeV electrons. The corresponding Ewald
sphere radii are 6,486 nm" for the X-rays, and 398.73 and 1146.89 nm™
respectively, for the electrons. Since the ES by definition goes through the
origin of reciprocal space, we find that we can orient our erystal such that a
whole plane of reciprocal lattice points is tangent 1o the sphere (which can




133 sElectron diffraction

CuKo Xerays

S
28mt
Fig. 155, Schemalic comparison f the Evld sphresfo CuKa Xroys small irce) and 200keV and
1l decrons (arg e segments). Th undering recprocal tice cortesponds t 3 cubic cystal
ith ltice parameter = 0.4nm (fgure reproduce from Fig 27 n niroducion o
ConvenionalTransnisson Electron Microscoy, M. De Grae, 2003, Cambridge University Press).

be approximated by a plane close (o the origin). Therefore, in general, there
will be many diffracted beams simultaneously, all close to the transmitted
beam.

Another fundamental difference between X-ray or neutron diffraction and
electron diffraction is the fact that the strong interaction of electrons with
of very thin or small samples. Whereas X-rays

matter necessitates the ust
and neutrons can easily traverse samples with dimensions in the range of
several millimeters, electrons are quickly absorbed by matter, so that sample
thicknesses are Jimited to a few hundred nanometers. This has two important

consequen

5

ince it

« Sample preparation becomes a time consuming and difficult task,
is not straightforward to prepare thin foils with a thickness of less than
about 100 nm; furthermore, handling these thin foils can also become quite
difficult;

« Onamore fundamental level, the small thickness of the foil has an effect on
the reciprocal lattice points. So far, in our discussion of X-ray diffraction,
we have tacitly assumed that our crystal is effectively infinitely large. It
can be shown mathematically that the shape of a reciprocal lattice point

we

is “the reciprocal” of the shape of the erystal; for an infinite crystal,
obtain reciprocal lattice points with zero volume, i.e., mathematical points.
For the clearly finite thickness thin foils used for electron diffraction, we.
must allow for the reciprocal lattice points to have a shape and associated
volume. Each reciprocal lattice point becomes a cylindrical rod, extended
in the direction normal to the thin foil.” Since each reciprocal lattice point
now has a finite extent, it is possible for the reciprocal lattice point to
intersect the Ewald sphere, even when the actual point (i.e., the center of
the volume) is not actually on the Ewald sphere. In other words, for electron
diffraction, we can have a diffracted beam even when the reciprocal lattice.

5 In general, one can shaw that the shape of a eciprocal latice point is equal to the Fourier
seansform of the shape of the erystal. The mathematical formulation of this relation is
beyond the scope of his fext



32

n techniques

point
the diffraction process

not exactly on the Ewald sphere. This increases the probability of

There is one more basic difference between electrons and X-raysfneutrons:
electron tiajectories; electrons being charged particles, can be modified by the
influence of magnetic fields. Hence, we can build fenses for electrons and use
them to “look™ at the internal structure of materials. A transmission electron
microscope (TEM) combines the phenomenon of electron diffraction with the
ability to form images. The best microscopes today have a resolving capacity
of about 0.05nm, i.c., they can distinguish between two objects (atoms in
this case) separated by about 0.05 nm. In the following section, we will take
a closer look at the structure of a TEM, and at the ways in which it can be
used to obtain electron diffraction patterns

13.3.3 The transmission electron microscope

Now that we know the basic differences between electron diffraction and
other types of diffraction, we are ready to study the basic structure of a
transmission electron microscope (TEM). Figure 13.6 shows a diagram of a
typical TEM. Tt consists of four sections:

(i) The top of the TEM contains the electron gun, which is essentially a
heated tungsten filament that emits electrons, which are then accelerated
down the column;

(if) The illumination stage consists of a set of condenser lenses which allow
the user to focus and direct the electron beam onto the sample;

(iii) The objective lens is the main image-forming lens of the microscope:
the sample is placed inside the lens on a special specimen stage. This is
where the electrons interact with the specimen.

(iv) The bottom section of the microscope consists of the magnifying lenses
and a viewing chamber and/or camera.

The column is always mounted vertically and can be as much as three stories

high for the highest accelerating voltages. The main reason for the tall cylin-

drical shape of the microscope is the fact that electron diffraction angles are
very small, so that all the diffracted beams travel close to the incident beam
direction. In addition to the main components described above, the TEM also
has a vacuum system, since electrons cannot travel very far through air; the
magnetic lenses are water-cooled, so that the heat generated by the electrical

resistance effect is removed; the column is surrounded by radiation shields, to
prevent dangerous X-rays from escaping; and a high-voltage tank is usually
present in the room (a separate tank is used for voltages up to about 300kV;

for higher voltages, the accelerator is actually placed on top of the column)
For more details on the structure and components of the microscope we refer
the interested reader to one of many textbooks (e.g.. Williams and C:
(1996), Fultz and Howe (2002), De Graef (2003)).

ter
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Fig 13,6 Schematic diagram
of a 120keV transmission
ecron micoscope,with
orresponding ray diagram
figure reproduced from

Fig. 3.2 in ntoduction to
Conventional Tansmission
Eectan Mioscopy,

M. De Grae, 2003, Cambridge
Universiy Press).

Optical axis

The TEM uses round magnetic lenses to affect the trajectory of the elec-
trons. There are typically six or more such lenses in the column: two (or
more) condenser lenses, which form the beam that is incident on the sample;
an objective lens, with the sample immersed in the lens magnetic field; and
three (or more) imaging lenses, which take the image or diffraction pattern
produced by the objective lens and further magnify it. The final lens, the pro-
jector lens, then projects the image onto a fluorescent screen or onto a digital
detector, such as a CCD camera. Inside the TEM column there are several
additional magnetic or electrostatic elements that can be used to change the
direction of the electron beam (deflection coils) and to change the shape of
the beam (stigmator coils).
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13.3.4 Basic observation modes in the TEM

Fig. 137, (3 Schematic
lustaton of the important
clements of a lens; (b)
ilstaton ofthe geometry of
eectron diffracion
superimposed on the fens
drawing of ().

To understand how the TEM functions as an elaborate diffractometer, it is
useful 1o consider how a single lens works. We know from optical physics
that a standard glass lens can be characterized by a number of special planes.
Figure 13.7(a) shows the essential lens elements: the object, represented by
an arrow, is located in the object plane, and the lens has a focal plane and
an image plane. A typical ray diagram is superimposed onto this drawing.
A magnified image of the object s projected into the image plane; note that
the image is inverted with respect to the object, For the objective lens in a
TEM we can create a similar drawing, shown in Fig. 13.7(b). A beam of

electrons parallel 10 the optical axis i
we will assume that there is a small area on the
that gives rise to a diffracted beam; the electrons that are diffracted into this
direction move through the lens and are focused into the back focal plane of
the lens at a point that is removed from the optical axis. The electrons that
leave the sample in the same direction as the incident beam are focused into
4 point at the intersection of the optical axis and the back focal plane. From
the back focal plane, all electrons then continue to the image plane where
they recombine to form an image.

Itis important to understand the connection between the back focal plane
and the Ewald sphere. The incident electron beam can be represented by
a wave vector, K, with length equal to 1/A. The direction of this vector
s parallel (o the optical axis. If we draw this vector so that its end point
coincides with the intersection of the optical axis and the back focal plane,
then we can employ the standard Ewald sphere construction introduced in

Object e — Opical axis Sample X
Trommiced Diffutet
beam hean

Lens Y
Incident wae [
veciork |

Ja sphere
Back focal 2
planc. IO
1N Resiprocal
| lue poms
'

i\t
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Image
plane.
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M. De Graef, 2003, Cambridge
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cirls correspond to recprocal
latice pointsfor which the
studure factor vanishes.

133 wElectron diffraction

Chapter 11. For every reciprocal lattice point close to the Ewald sphere there
will be a diffracted beam (only one is shown in the figure). We conclude from
this drawing that, in a TEM, the Ewald sphere is tangent to the back focal
plane of the objective lens. If we use the magnifying lenses that follow the
objective lens to magnify the image plane of the objective lens, then we will
observe an image on the viewing screen. If, on the other hand, we use the
objective lens back focal plane as the object plane for the magnifying lenses,
then the viewing screen will display a magnified version of a planar section
of the reciprocal lattice. Such a pattern is known as an electron diffraction
patern

Electron diffraction patterns are representations of 2-D sections through
the reciprocal lattice of the sample. An example of an electron diffraction
patten for a Ti thin foil, oriented such that the (200keV) incident electron
beam is parallel to the [11.0] direction, is shown in Fig. 13.8(a). This figure
clearly shows the 2-D nature of electron diffraction patterns. Furthermore, this
pattern also shows that electron diffraction is different from X-ray diffrac-
tion when it comes to systematic absences. For the Ti structure, we know
from a structure factor analysis, that the reflections of the type (001), with
2n-+1 must vanish (this is due to the presence of a 6, screw axis in the
erystal structure). In a standard X-ray powder diffraction pattern, the reflec-
tions (001), (003),. .. are always absent. However, in the electron diffraction
pattern shown in Fig. 13.8, these forbidden reflections are clearly present!
‘This is a prime example of the fact that electron diffraction is governed by
dynamical diffraction theory instead of the kinematical theory; in other words,
the intensity of a diffracted clectron beam is not necessarily proportional to
the modulus squared of the corresponding structure factor. Tn the Ti structure,
the reflections (110) and (111) are both allowed (i.c., they have a non-zero
structure factor). Because of the strong interaction of electrons with the atoms

O=Zero structure factor



Fig. 139, Schematic
representtion o the bright
fied, dark ied,and
multbeam imaging modes in
aTem,
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in the crystal structure, an electron that is first diffracted by the (110) planes,
can be diffracted again, this time by, for instance, the (111) planes. If we
write down the Bragg equation in reciprocal space we find:

=k+gio+ i =k+go

So that it appears as though the electron was diffracted by the (001) planes
despite their vanishing structure factor! This process is commonly known
as double diffraction. The intensity in cach of the diffvacted beams can be
calculated using a quantum mechanical approach. In essence, the computation
requites solving the Schrdinger equation for the interaction of the beam
ted reader

electron with the electrostatic lattice potential. We refer the inte
to the lterature for more information on these types of computation (De Graef,

‘The TEM can also be used in imaging mode. In this mode, the magnifying
lenses take the image plane of the objective lens as their object plane, and
project a magnified image onto the viewing screen. Typical magnifi
range from a few hundred times to more than 1000000 times. In the back

ions

focal plane of the objective lens, one can physically introduce an aperture (a
metal foil with a tiny hole in the center). This aperture blocks all reflections,
except one (see Fig. 13.9(a) and (b)). If the ransmitted beam is allowed to
continue through the aperture, then the image thus obtained is called a bright
field image. If one of the diffracted beams is allowed to pass through the
aperture, then the resulting image is called a dark field image. By selecting
one particular

one particular diffracted beam to create an image, we can
set of lattice planes in the crystal; this is an extremely powerful imaging
technique for the study of crystal defects, such as dislocations and stacking
faults. For examples of these types of images, we ref interested reader
to Williams and Carter (1996) and De Graef (2003).

Sample

oL oL

OL-BFP- i f - oLBrP

Dark field Mulicbeam
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Fi. 13,10, 3)Schematic 100]
elecron difaction pattern for
the sirucure of tetegonel
BaTIO,, shown i (o).

© shows a high resouion
mut-beam image using the
refecions nsde the white
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A third imaging mode makes use of a larger aperture hole, so that multi-
ple diffracted beams can contribute simultaneously to the image. This mode
allows for interference between the diffracted beams and is known as mulii-
beam imaging or high resolution imaging. An example of a high resolution
image is shown in Fig. 13.10 for the [100] orientation of tetragonal BaTiO,.
Figure 13.10(a) shows the schematic electron diffraction pattern for this in
dent beam orientation. The crystal structure is shown in (b). The high reso-
lution multi-beam image in (c) shows a pattern of white dots; the brightest
dots correspond o the locations of the Ba atoms, whereas the weaker dots
in between correspond o the Ti locations. The Oatoms are not visible in
this particular image. For more information about high resolution imaging we
refer the interested reader to Spence (1988) and De Graef (2003).
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13.3.5 Convergent beam electron diffraction

In addition to enabling the acquisition of standard electron diffraction patterns,
the TEM provides another diffraction mode that deserves to be mentioned in
atexthook on crystallography: convergent beam electron diffraction (CBED).
In a standard electron diffraction experiment, the incident beam electrons all
travel in exactly the same direction, i.e., the incident beam is a parallel beam.
In CBED, the incident beam is focused onto a small point on the sample
surface, and a wide range of incident directions is present, as illustrated in
Fig. 13.11(a). The incident beam directions lie inside a cone with opening
angle 0, and apex on the sample surface. The angle , is rather large in the
figure, but is, in reality, of the order of a few milli-radians.* If we assume
that the sample is in Bragg orientation for a particular set of planes repre-
sented by the reciprocal lattice vector g, then the beam direction that lies
at the center of the cone will give rise 0 a diffracted beam in the dires
tion k+g. The transmitted electrons end up in the point O (Fig. 13.11(a)).
whereas the diffracted electrons end up at the location g We have scen
that the thin foil nature of the TEM sample gives rise to reciprocal lattice
points with  finite volume and shape. This means that the diffraction con-
dition can be satisfied approximately even when the reciprocal lattice point
does not lie exactly on the Ewald sphere. As a consequence, the other inci-
dent beam directions inside the cone will also give rise to diffracted beams,
albeit with a different intensity than that for perfect Bragg orientation. The
result s that the diffraction pattern consists of circular disks (Fig. 13.11(b)),
one for each reciprocal lattice point; the intensity distribution inside each

Transmitted Diffracted
disk disk

]

AR,

SV
(b)

Fig. 13.11. (2) Schemaic represrtaton o th incident beam geometry for comvergent beam electon
difracton. (b each reciprocal latice point becomes a circuer disk. The vector k, i the tangental
component angential 1 the obective lns back focal plne) o the tited ncident beam wave vector

rom Fig 6.
M.De Grae, 2005, Cambridge Univesity Pres).

# Recall that one milli-radian cquals 0.0573°
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Fig. 13.12. () and () are
110] CBED patterns, obtained
at 120KV, of Gats, for two
diferent ol thicknesses,

© shows the entre pater of
disks schematialy, along with
the Mile indice of eachcisk.
The overal pattern symmetry
is m (G), whereas the
symmetry of the cental disk
(@is mm2 (C,,). @) and ()
show an 80KV CBED pattern
for the [111] orietaton of
Curl att Al attwo different
magnifications (figure
[ G a2
and926in

i e
Eecton Hiroscopy, W. De
Graef, 2005, Cambridge
University Pres).
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disk need not be uniform, and, in most cases, is highly non-uniform due
o complex dynamical scattering events inside the crystal. Each point inside
the disks corresponds to a different incident beam direction. As shown in
Fig. 13.11(b). points in different disks connected by the vector g correspond
0 the same incident beam direction; the veetor k, is the tangential compo-
nent of the incident wave vector that contributes o that particular point in
the disk.

Figure 13.12 shows two examples of experimental CBED paiterns.
Figure 13.12(a) is a CBED pattern obtained at 120V of the [110] orientation
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of GaAs. This pattern consists of nearly touching diffraction disks; the beam
convergence angle 6, is equal to 5.1 milli-radians in this case. Pattern (b)
is identical (0 (1) except for the crystal foil thickness, which is larger in (b)
than in (a). If we analyze the intensity distributions in the individual disks of
() and (b). we find that the overall pattern symmetry, known as the “whole
pattern symmetry,” is given by the point group m (C,). At first glance, one
might be inclined to see a two-fold axis in the central disk, which along with
4 horizontal mirror plane would result in point group mm2 (Cs,). buta careful
comparison of the intensities at the arrowed locations in (b) shows that there
s o vertical mirror plane, and hence no two-fold axis. The whole patiem
symmetry is thus m (C,). If we resirict our attention to the central disk only,
then we see that both horizontal and vertical mirror planes are present, so that
the central disk symmetry is mm2 (C,,). The difference between these two
symmetries (whole pattern versus central disk) indicates that this crystal struc-
ture does not have inversion symmetry. When we combine this information
with similar CBED patierns obtained for different crystal orientations, we can
show that GaAs must belong to the non-centrosymmetric point group 43m
(T,). There is an extensive set of rules that must be applied to CBED patterns
in order to extract the point group of the crystal; for a more detailed discussion
of these rules we refer the interested reader to De Graef (2003) and referenc
therein.

The CBED patierns in Fig. 13.12(e) and (f) were obtained at 80KV on
4 Cu-15 at% Al thin foil oriented along the [111] zone axis. Pattern (e)
was obtained at a smaller magnification than pattern (f). We have seen
in the previous chapler that Friedel's law states that a diffraction pattern
must always have inversion symmetry. This means that for every reflec-
tion g there must be an equivalent reflection at —g. The resulting [111]
diffraction pattern then appears to have six-fold symmetry, since there are
six {110}-type reflections symmetrically positioned around the central disk.
In reality, however, the symmetry of the [111] CBED pattem is not six-
fold, as can be seen by carcfully analyzing all the contrast features in
both CBED patterns. For both patterns, we find that the symmetry is 3m
(Cy,). Application of the _rules mentioned above then leads to the over-
all crystal point group m3m (0,). The extraction of the 3-D point group
based on 2-D CBED pattems involves the concept of diffraction groups,
4 set of 31 groups that are used to connect the 2-D CBED symmetry to
the 3-D erystal symmetry. A full discussion of diffraction groups in the
context of CBED can be found in Buston er al. (1976). Williams and
Carter (1996) and De Graef (2003). It is also possible to use CBED pat
tems to determine the complete space group of a material. These meth-
ods are explained in detil in Tanaka er al. (1983); in 185 out of 230
space groups, these methods will determine unambiguously the correct space
group.
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Fig. 13.13. (o) Radiation
pattem for an accelrating
electron vith a circular
trajectory for (a) non-elatistic
and (b relatvistc velocites
and (0 floo pln of the
Advanced Photon EI)
‘synchrolron reactor at
Argomne National Lab w
(courtesy of ANL).

Diffraction studies of crystalline and amorphous materials have been aided
by the availability of high intensity X-ray sources, produced by the accel-
eration of charged particles to relativistic velocities. When the acceleration

results from the circular motion of charged particles, the resulting radiation
is known as synchrotron radiation. Tn Fig. 13.13, we illustrate the charac-
teristic dipolar radiation pattern emitted by an accelerating electron moving
at a non-relativistic velocity (a) and a relativistic velocity (b). The radiation
pattern reflects contours of the flux of radiated power density as given by the

Poynting vector, $ = E x B.

Consider a point charge. . subjected to an acceleration, a. The angle, 6,
is the angle between the instantaneous acceleration and the direction of wave
propagation, k. at a time, 7. The instantaneous emitted power per unit area
the direction k, the Poynting flux, is given by:

Y &laf
800 = T (13.11)
The radiation pattern is a polar diagram of S as a function of 0. For non-
relativistic particles, Fig. 13.13(a), this radiation is anisotropic with the emis-
sion strongly weighted at right angles, 6 = /2, to the direction of acceleration.
Fig. 13.13(b) shows that for relativistic charged particles the radiation pattern
becomes strongly peaked in the forward direction as observed in the labora-
tory frame of reference, i.e., the radiation is strongly peaked in the direction
of the instantaneous velocity.® This radiation pattern can be thought of as a

2 flux over the area of @

5 The tota power radiated can be obtained by integrating the Poyni

sphere centered on the instantaneous position of the charged part
Reltivistic velocitics, v, are velocities that approsch the speed of
ntio v/c approaches unty.

. i, ¢ in other words, the
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searchlight beam tangent to the trajectory of the charged particle. The flux of

the radiation, |S), is confined to be inside a cone of angular width:

a0=\1

= (13.12)

Using the fact that the total relativistic eneray of the charged particle is
E'=moc*//(1~1/c?), this angle can be rewritten as:

myc?

E

A

. (13.13)

where, for an electron, we have moc® & 5 x 10%eV. In high energy particle
accelerators, £~ 1GeV (10° eV) and, therefore, small angles around 5 x 10~
radians are attainable for forward emitted radiation. This radiation can be
concentrated on a very small area. High flux densities on small targets result
in X-ray intensities that are orders of magnitude larger than those obtainable
in powder diffractometers or rotating anode machines. The brilliance of the
source is a combined measure of the radiation flux, the angular divergence
of the light, and the source size. A high brilliance implies a high x-radiation
flux, a small angular divergence, and a small source size.

13.4.1 Synchrotron accelerators

Fig 13.18. (9) Aeral vew of
the Argonne National
Laboratory (AND) Adhanced
Photon Source (APS) facity
(photo courtesy of ANL): () a
schematic o the Brookhaven
National Laboratory (BNL)
Nationa Synchrotrn Light
Source (NSLS, picure couresy
of BN,

n
n

Figure 13.13(¢) shows a schematic of the Advanced Photon Source (APS)
synchroton reactor at Argonne National Lab (ANL). The APS is used to
‘generate synchrotron radiation for high flux X-ray experiments. Figure 13.14
(2) shows an acrial view of the APS facility: the outer diameter of the main
experiment hall (the doughnut shaped building) is 390 meters. There are 35
individual beam lines in the experiment hall; a beam line is a point along the
circumference of the accelerator ring where radiation is allowed to exit the
ach such beam is then directed towards an experimental setup for a
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Fig.13.15. Photon briliance.

Accelerating Ring (SPEAR) £, s
the ical energy ofEg. 1315,
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variety of scattering experiments. Figure 13.14 (b) shows a schematic of the
Brookhaven National Lab (BNL) National Synchrotron Light Source (NSLS).

In the storage ring, charged particles are accelerated, in an ated
pipe, to velocities approaching the speed of light. Quadrupole, sextupole,
and octupole magnets are used to control the beam shape as the charged

particles circulate around the ring. Bending magnets guide the beams and
the centrifugal acceleration provides the useful radiation. In most electron
accelerators, an electron gun provides a continuous stream of electrons, which
are first accelerated to a medium energy in a linear accelerator, then boosted
up to higher energy in a booster ring, and finally merged into the main
accelerator ring

Synchrotron radiation has many properties that are attractive for scattering
experiments, including:

() @ high beam intensity: Synchrotron radiation is a continuous source with
five or more orders of magnitude higher intensity than rotating anode

Xeray tubes. The total power (in kilowatts) is given by:

S8ET

7 (13.14)

where £ iis the electron energy (GeV), 7 is the electron current (A), and R
is the radius of curvature of the storage ring (m). Figure 13.15 shows the
spectral distribution of radiation as a function of electron energy E for the.
15GeV, 12.7m SPEAR facility. Several megawatts of power is radiated
in a smooth featureless continuum. Highly monochromatic radiation can

00 T T T
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Photons/s/mrad/mA/(10% bandwidih)
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Photon energy [keV]

* Both APS and NSLS use clectrons, whereas the Sianford Positron Acceleratng Ring
(SPEAR) uses positons.
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13.4.2 Synchrotron rac
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be produced using a grating or crystal monochromator. Band widths after
‘monochromatization are typically AE/E = AA/A~ 10,

(i) @ broad radiation spectrum: Figure 13.15 shows the photon intensi
function of photon energy for different values of the stored electron beam
energy. This spectrum can also be parameterized in terms of a critical
energy, E;

asa

#Kn\’ (13.15)

(i) a strong polarization: n the plane of the electron orbit and for energies
near the critical energy, the synchrotron radiation is nearly 100% linearly
polarized. Linear, circular, and elliptical polarizations are all possible.

‘The X-rays produced in a synchrotron can be provided to a number of beam
lines which continue as tangents to the storage ring itself. Figure 13.16(a)
shows an example of such a beam line. Additional magnets are used in
insertion devices which tailor the radiation spectrum for specific experiments;
these include wigglers and undulators. Figure 13.16(b) shows them to consist
of arrays of permanent magnets (typically the NdFeB magnets discussed
in Chapter 19) with alterating N/S polarity. The alternating magnetic field
causes oscillations in the electron trajectory which, through relativistic effects,
shift the radiation spectrum to higher energies. Wigglers do not change the
spectrum substantially but aid in tailoring beam shape. Undulators cause the
radiated power to be further focused, increasing the brilliance of the source.

jon: experimental examples

Tnthis section, we illustrate examples of the use of synchrotron radiation in the
study of nanocrystallization. Figure 13.17 (a) shows constant heating rate, 3-D
synchrotron XRD patterns at different temperatures during in-situ crystalliza-
tion of a NANOPERM amorphous ribbon (Hsiao, 2001, Hsiao et al., 2002).
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Fig.13.17. (a) Constant
hesting rate - synchrotron
XRD patterns for in-situ
aysalizaton of an Fe-Zr
based (NANOPERM) aloy
(courtesy of A. Hsiao) and

©) synchrolion Y80 of an
FeCo-based HITPERM magret,
‘showing superlattice reflections
of the ordered a-(FeCo) phase
(coutey of M. Willard).

‘The figure shows the primary nanocrystallization product, the secondary crys-
tallization products, and coarsening phenomena. Features include: (a) the
appearance of Fe (110) and Fe (200) peaks during the primary crystalliza-
tion of a-Fe at a temperature T, near 510°C, (b) secondary crystallization
occurs at a temperature T,, near 710°C with Fe,Zr and Fe,,Zr , appearing,
and (¢) the narrowing of the Fe (110) and Fe (200) peaks after secondary
crystallization. The high intensity synchrotron radiation allows for diffraction
patterns to be taken in short times (Kramer et al., 1978) during a constant
heating rate experiment so that erystallization kinetics and products can be
studied. More information on this alloy system can be found in Chapter 21.

Synchrotron XRD experiments on HITPERM (Willard et al., 1998, Willard,
2000 (Fig. 13.17(b)) were used to identify superlatice reflections identifying
the ordered a'~(Fe Co) phase. X-rays with a wavelength of 0.1748 nm, corre-
sponding to an energy between the Co and Fe K, edges, were chosen to take

advantage of anomalous scattering.

Figure 13.4(a) shows a simulated XRD pattern for the ordered B2 FeCo
alloy. As discussed earlier, the difficulty in distinguishing between a-FeCo
and '-FeCo using conventional XRD is due to the similarity of the atomic
scattering factors of Fe and Co. Since the structure factor for a superlattice
reflection is related to differences between the two atomic scattering factors,
observation of superlatiice reflections in conventional XRD is difficult. The
superlattice reflections are several orders of magnitude less intense than the
fundamental reflections. Tn order to detect the superlattice reflections, we
‘must use long counting times or very intense X-ray sources. Using the high
intensity of the synchrotron source and choosing the radiation wavelength to
take advantage of anomalous scattering allows for the direct observation of
superlatice reflections. Figure 13.17(b) shows synchrotron anomalous X-ray
scattering superlattice reflections, demonstrating that FeCo nanoparticles in
HITPERM magnets possess the ordered (B2) CsCl structure.

Superlattice reflections are determined by tuning the wavelength (energy)
of the X-rays 1o an energy for which the atomic scattering factors of Fe and
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Fig. 1318, ) Clinon J
Davison (1881-1958), and
) ifford G Shol
(1915-2001) (pictures coutesy
o the Nabel Museurn).

Other diffraction techniques

Co have a more appreciable difference (Willard er al., 1998). Because of
dispersion corrections (previously attributed to anomalous scattering) near an
X-ray absorption edge, we can significantly increase the difference between
feo and fr,.. On approaching an absorption edge, X-ray absorption dispersion
comections to the atomic scattering factors acquire a complex contribution:

F=L41+if (13.16)
where f" is the real part of the dispersion correction, and £ is the loss part.
Both £ and £ are functions of the X-ray wavelength. With corrections for

dispersion, the structure factor for the '-FeCo B2 superlattice reflections is:

Fu= (7, —

R+ e =

VI = fie) = AF+Af HAS"
as.

17)

If we select the X-ray wavelength so that A" is maximized, then the struc-
tre factor for the superlattice reflections is also maximized, o that these
reflections can be observed in the powder patiern.

Clinton J. Davisson (1881-1958) was an American physicist. In 1927, while
at Bell Laboratorics, Davisson and Lester H. Germer demonstrated electron
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13.5 Historical notes.

Table 13.6. Partal chronology of the history of the electron and the electron
microscope, and other events which have had a significant impact on the
microscopy field with references to fundamental papers

Year Event

1871 Cromwell Fleetwood Varley suggests that the carriers of
electricity are corpuseular, with a negative charge (Varley,
1871).

1876 Eugene Goldstein studics discharges in gases. and coins the
name cathode rays. starting a long debate about their nature
(Goldstein, 1876).

1891 George Johnstone Stoney coins the word electron for the

unit of charge (Stoney, 1891

1897 Emil Wicehert is the firs to obtain reasonable bounds on
the magnitude of ¢/ (January) (Wicchert, 1897

1897 ‘Walter Kaufmann and J. J. Thomson independently measure
efm (Apeil) (Kaufimann, 1897, Thomson, 1897

1899 IS i
th discovee o e slecizon (Thomson

1905 t Einstein puh\uhe\ the Special ‘heon y of Relaiv-
ity ma establishes the equivalence of mass and encrgy

(Einstein, 1905).

1913 B e S e e
gen atom (Bohr, 1913ab.c).

1923 Louis de Broglie establishes the wave-particleduality
(de Broglie, 1923).

1925 Wolfgang Pauli discovers the exclusion le: Werner

Heisenberg develops malrix quantum mechanics (Pauli,
1925, Heisenberg, 1925).

1926 Envin Schridinger develops quantum mechanics based on
differential equations: Hans Busch develops the theory of
magnetc lenses (Schrdinger, 1926, Busch, 1926)

1927 Clinton Davisson and Lestér Germer discover clectron
diffraction (Davisson and Germer, 1927b).
1928 P i icants e e el oo

Hans Bethe develops the first a,.um.
diftacion (Dirc, 1928, Bethe, 1928

19314 vk A Mk Kot il o st clecton micro-
scope (Knoll and Rusks, 19324, Ruska, 19345.),

theory of clectron

diffiaction by scattering electrons (cathode rays) off a single crystal of nickel,
In the same year, George Paget Thomson (1892-1975) and A. Reid demon
strated electron diffraction effects in scattering from thin gold films. These
first abservations were quickly followed by electron diffraction experiments
by Seishi Kikuchi (1902-74). Davisson and Thomson won the 1937 Nobel
prize in physics for their experimental discovery of the di
by crystals.

Table 13.6 (taken from De Graef (2003)) lists a pa
the history of the di

action of electrons

chronology of
overy of the electron and how these events led up to the
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Other difraction techniques

design and construction of the first transmission electron microscape by Ernst
Ruska and Max Knoll in the early 1930’s. Transmission electron microscopes
can now be found in many laboratories around the world, and are considered
o be fundamental research instruments.

Clifford Glenwood Shull (1915-2001) was born in the Glenwood section
of Pittsburgh, Pennsylvania, which was the reason for the selection of his
‘middle name.* He developed his first interest in the study of physics whil
attending Schenley high school in Pittsburgh, PA. He received his undergrad-
uate degree in physics at the Carnegie Institute of Technology (now Carnegic
Mellon University) in 1937. Shull continued with graduate school at New
York University, where he worked with the nuclear physics group headed
by Frank Myers and Robert Huntoon, and he had his thesis supervised by
Richard Cox.

‘Shull used thermalized neutrons from a Ra-Be neutron source to search for
‘paramagnetic scattering from materials to confirm predictions by O. Halpern
and M. Johnson and their students at NYU. From 1941 to 1946 he worked
for The Texas Company in Beacon, NY. In 1946 he moved with his family
to the Oak Ridge National Laboratory to work with Emmest Wollan in the
study of neutron diffraction from crystalline materials. In 1955, he moved
1o take up an academic career at the Massachusetts Institute of Technology.
His career at MIT included studies of magnetization in crystals, development
of polarized beam technology, dynamical scatiering, interferometry, and the
fundamental properties of the neutron.

Shull won the 1994 Nobel Prize in Physics, with Bertram N. Brockhouse
(1918-2003), for the development of the neutron diffaction technique. His
son, Robert, is a successful materials scientist at the National Institute of
Standards and Technology (NIST) in Gaithersburg, MD, and one of the
authors of the US Nanotechnology policy.

(i) Neutron wave length: Calculate the wave length of thermal neutrons at (a)
room temperature and (b) cooled to 4 K (liquid He temperature). How do
these compare with 400 keV electrons and to typical Brehmmstrahlung
radiation from an X-ray tube?

(i) Thermal velocities, de Broglie wave length: A thermal neutron has a
Kinetic energy of 3/2KT, where T is room temperature, 300K. .., these
neutrons are in thermal equilibrium with their surroundings. (a) Caleulate
the thermal velocity of such a neutron. Compare this with the thermal

* A complete biography can be found at Map:/nobelprize org/nobel (Nobel Lectures, Physics
1981-1990, Tore Fringsmr, and Gsta Eksping, editors, World Scientifc Publishing Co.,
Singapore, 1993),
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(iii)

(iv)

=

(i)

(viii)

(ix)

Problems

velocity of an electron at 300 K. (b) Calculate the de Broglie wave length
of the neutron and the electron of part (a). (c) Would either of these be
useful in resolving atomic positions?
Neutron flux and fluence: (a) Consider a neutron source capable of pro-
viding a flux of 10 w/m®-s. Calculate the neutron fluence over a 24
hour period. (b) How many neutrons will impinge upon a 1¢m’ cub
u sample during this period? (c) If every neutron is scattered once what
fraction of the Au atoms provide a scattering site for a neutron during
this time period?
Time of light monochromatization: Con
trons. Caleulate the following properties:

sider a source of thermal neu-

() The mean velocity of neutrons at 300K

(b) The firaction of neutrons having a velocity 1% greater than and 1%
less than the mean velocity at 300K.

() The time of flight for a neutron traveling at the mean velocity to
traverse 10m (a distance typical for a beam line).

(d) The wavelength of a 300K thermal neutron.

() The spread in wave length for neutrons having velocities # 1% of
the mean velocity.

Single crystal monochromator: Consider the use of an NaCl single crys-
tal as a neutron monochromator. What is the energy of neutrons scattered
at 12¢ for a first order (n = 1) reflection? What i the energy of X-rays?
Cold neutrons: Calculate the mean inetic energy, de Broglie wave length
and mean velocity of neutrons in equilibrium with liquid N, at 77K.
Neutron wave lengih I': Calculate the typical range of wavelengths for
the following neutrons:

(a) Cold;
(b) Thermal;

(©) Slow:

(d) Intermediate;
(©) Fast;
(f) Ultra-t

Neutron wave length I1: Calculate the energy and temperature of neutrons
required to produce a wave length of 0.154 nm, identical to that of Cu
K, radiation

Neutron wave length 11l Polymer crystals are unique in that the b
consists of macromolecules that may in fact be very large and conta
many light atoms. The lattice constant of such crystals may also be very
large. Neutron diffraction may offer several advantages for the study of
such crystals. This problem explores the relative advantages of neutron
diffraction for the study of polymers.




Other diffraction techniques

() Describe the relative merits of neutrons for scattering from light atoms
as compared with heavy atoms.

Consider small angle scattering using thermal neutrons. Using the
wave length for neutrons thermalized to 300K, determine the scat-
tering angle for the (111) reflection for a cubic crystal with a 1 and

10nm lattice constant, respectively
() What energy neutrons would be chosen to have a wave length equiv-
alent to the spacing between (111) planes for a cubic crystal with a 1
and 10 nm lattice constant, respectively.
(x) Neutron scattering factors
(a) Calculate the ratio of the X-ray scattering factors for Pu and H.
(b) Calculate the ratio of the neutron scattering factors for Pu and H
(¢) Explain why neutron diffraction would be a more appropriate tool
for studying the structure of plutonium hydride.

(xi) Synchrotron radiation: An electron moving in a circular orbit emits
‘synchrotron radiation. The energy that is radiated in turn can be expressed

in terms of B = v/c

am_ep
f v 13.18
3 (-BFR (1318)
where R is the radius of curvature of the storage ring. Determine the

ctrons in a 1 km storage ring for the following

energy radiated for el
accelerating voltages:
(@) 1Gev;

(b) 5GeV:

(0) 10GeV;

mple dimensional analysis verify

(xii) Synchrotron power spectrum: Using a
that:

88E4T

= (13.19)

Aand

where £ is the electron energy in GeV, / is the electron curren
Ris the radius of curvature of the storage ring in meters.

(xiti) Electron diffraction I: Consider the fec structure of Cu. Electron diffrac-
tion patterns can be approximated by planar sections through the recip-
rocal lattice of this structure, Create a drawing of the planar sections
normal to the [001], [110], and [111] zone axes,

(xiv) Electron diffraction I An electron beam is incident upon a crystal; the
incident beam direction s specified by the wave vector k. The crystal is
oriented such that an entire plane of reciprocal lattice po tangent
o the Ewald sphere. Derive an expression for the distance, measured
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parallel to the incident beam direction, between each reciprocal lattice
point and the Ewald sphere. This distance is commonly known as the
deviation parameter or excitation error, and plays an important role
the theory of image formation in the TEM.

(xv) Electron diffraction IlI: Create a drawing of the [110] reciprocal lattice
plane for diamond. Tndicate which reflections have zero structure factor.
Is it possible that some of these reflections will have a non-zero intensity
due to double diffraction?
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About crystal structures and
diffraction patterns

“That which we must learn o do, we learn by doing.”

Asistotle, Nicomachean Ethics

‘The preceding chapters have provided us with the tools necessary to describe
crystal structures in an unambiguous way, and to perform any kind of crystal-
lographic computation. n this chapter, we will first review several common

‘graphical representation techniques for crystal structures. Then we take a
closer look at the relation between crystal structure and diffraction pattern,
and we will consider the structures of NaCl and fee Ni as examples. We
conclude this chapter with a reproduction of one of the seminal papers in the
field of X-ray diffraction: the 1913 paper by W.H. and W. L. Bragg on the
structure determination of diamond.

14.1 Crystal structure descriptions

14.1.1 Space group desc

362

It has become standard practice in the international literature to describe a
erystal structure by stating the space group, the lattice parameters, and the
‘Wyckoff positions for all atoms in the asymmetric unit. From this information,
one can deduce all atom positions in the unit cell by application of the
space group elements listed in the Inrernational Tables for Crystallography
(Hahn, 1989). These parameters provide the minimum information needed to
unambiguously describe the structure.

A typical example would be the structure of the element Cu
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14.1 Crystal structure descriptions

Space Group: Fm3m (03) (# 225);
Lattice parameter: a = 0.36147 nm;
Atoms: Cu in da.

‘This is indeed sufficient to describe fully the crystal structure since the space
group symbol indicates that the unit cell is fuce-centered, with the cubic
point group m3m (0,). For a cubic unit cell we need only state one lartice
parameter. a. From the space group tables we find that the Wyckoff position
4a corresponds (o the position (0, 0, 0). The face-centering vectors then copy
this point into the points (1/2, 1/2,0), (12,0, 1/2), and (0, 1/2, 1/2). Note
that the Wyckoff symbol also tells us how many equivalent atoms of that
particular type there are in a unit cell
A more complex example is rutile, a form of TiO,:

Space Group Pd,/mnm (D}}) (# 136);
Lattice parameters: a = 0.4594nm, ¢ = 0.2958 nm;
Atoms: Ti in 2a, O in 4f with x=0.3.

“This structure is prinitive, with a tetragonal point group 4/mmm (D,,) and
lattice parameters @ and ¢. Referring to the Tables, we find that the 2a position
has coordinates (0,0,0) and (1/2,1/2,1/2). The 4f position corresponds
10 the positions (v, x, 0), (¥, %, 0), (¥+1/2,x+1/2,1/2), and (x+1/2, ¥+
1/2,1/2). The value of x must also be given and for rutile it is equal to 0.3.
The total number of atoms per unit cell is equal to the sum of the numbe:
in the Wyckoff symbols, i.., 6. Since one chemical formula TiO; contains
three atoms, there are two formula units per unit cell. One often states this
explicitly as part of the structure description. Since most researchers do not
usually have a copy of the Tables on their desk, one often specifies a little
more than the minimum information when describing a structure. A more
complete description for rutile would be :

Formula Unit: Ti0,, titanium dioxide
Space Group: P4, /mnm (D) (# 136)
Lattice parameters: a = 04594 nm, ¢ = 0.2958 nm
Cell Content: two formula units
Atoms: Ti in 2a[(0,0,0) and (1/2,1/2,1/2)];
0 in 47 [(x, %, 0), (F+1/2, x+1/2,1/2).
and (v +1/2,5+1/2,1/2)),
with 1 =0.3.

14.1.2 Graphical representation methods

In addition o the mathema
coordinates it s often i
1 structure.

I descriptions in terms of space groups and
structive to provide the reader with a drawing of the
nce drawings must, of necessity, be two-dimensional, there
lly no unique drawing method that always provides an unambiguous
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Fig. 14.1. [100], [110], and TP 0
[001] orthogonal projections of \ <
e N S o ©
©c® © ¢ © C ®
@ @ e © e ‘0

{100 (o) (001

and clear representation. Instead, there are several different techniques that
are frequently used and we will discuss the more important ones. Almost
all of these techniques use computer programs 1o generate the drawings.
Unfortunately, there is no single input file format for all of these programs,
50 depending on the type of drawing one wishes to create, one usually has
1o create a new input file. For large structures this can be a tedious and time
consuming task. All of the examples below will use the tetragonal rurile unit
cell described above.' Structure input files for all crystal structures visualized
1 this book are available from the book web site.

14.1.2.1 Orthogonal projection

The orthogonal projection is obtained by specifying direction indices [uvw],
and projecting the complete unit cell parallel to that direction onto a plane
perpendicular to [uvw]. The advantage of this projection is that the lincar
dimensions perpendicular to the projection axes are conserved; one of the
disadvantages is that atoms can obscure other atoms. One usually needs at least
o orthogonal projections 1o create an understanding of the 3-D structure.
An example of orthogonal projections of rutile along the [100], [110]. and
[001] directions is shown in Fig. 14.1.

14122 Perspective projection

The perspective projection introduces a 3-D aspect into the structure drawing
and this is ofien sufficient to display the structure clearly. Usually, the best
views are obtained for directions close to low index directions. The examples
in Fig. 14.2 indicate perspective views close to the directions of Fig. 14.1
Usually, the amount of perspective effect can be adjusied; some programs
will also allow for depth shading, where the contrast between an atom and
the background is decreased the further away the atom is located from the
observation point.

Al crystal structure drawings in his book were created with CrystalMaker®, a
S T e e WS B
registered trademark of Ct Limite
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Fig. 14.2. Perspective
projections near the [100],
110}, and (001) diections for
the unt el of utie, The
bottom image illustrates the
use of depth shatin.

Fig. 14.3. Onthogonal [001]
projection for the unt cell of
rute. Aoms are indicated
with the symbols described in
the legend.

14123 Height labels

14.1 Crystal structure descriptions
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One can add information to an orthogonal projection by drawing atoms at
different levels in the unit cell with different symbols. An example is shown
in Fig. 14.3: there are symbols with two different shades and two different
sizes. The open circles are at the level < =0, where < is measured parallel
10 the projection axis. The filled symbols are at height z = 1/2. The size of
the symbols indicates whether the corresponding atom is Ti or O. This type
of representation is often used to indicate the relative 3-D locations of atoms

without having to resort to 3-D representations.

14.1.2.4 Ball-and-stick representations

One of the most common representations for crystal models is the so-called
ball-and-stick representation. Atoms are represented by spheres of different
diameters (often one uses radii proportional to the appropriate ionic, metallic,
o covalent radii) and they are connected 10 their immediate neighbors by rods
or sticks. The advantage of this representation is that one can easily visualize
the coordination of each atom. Fig. 14.4 shows an orthogonal projection and
4 perspective drawing of rutle, using the ball-and-stick display mode.




Fig. 144, Orthogoral and

perspective projecions of
rute, using the ballandsick
representaton mode.

Fig. 145. (2) Prspective
projeton of ruse, usig the
space filing representaton
mode (incuding depth
shading); (b) Perspective
projecon of rute, shovwing
the outine of the cental unit
cell and the octahedral
coordination of the i atom by
0. Note that the octahedra in
neighboring urit cels share an
edge

About crystal structures and diffraction pattems

14125 Space filing models

Space filling models employ the correct atomic, ionic, metallic, or covalent
radii and draw the atoms as touching spheres. This representation mode
can provide some insight into the density of packing, and it can, as usual,
be represcnted in orthogonal and perspective projection modes. The main
disadvantage of this representation is that only atoms close to the faces of
the unit cell can be distinguished, and the space filling model is hence more
useful for molecular biologists and chemists than for material science. An
example of a space filling representation for rutile is shown in Fig. 14.5(s).

14126 Polyhedral models

It s often useful, especially in structures with ionic or covalent bonds, to
emphasize the coordination of the cations by the anions. This results in
polyhedral drawings, such as the one shown in Fig. 14.5(b), which shows
the octahedral coordination of Ti by O, and the edge sharing of neighboring
octahedra.
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14.2 Crystal structures < powder diffraction patterns

In this section, we will take some of the concepts and techniques that we
Tearned about in the first half of this book and apply them to the Ni and NaCl
powder diffraction patierns shown in Fig. 1.7 on page 20. We will attempt to
predict the diffraction patterns, starting from the crystal structures, and, then,
we will attempt to determine the crystal structures of these two materials,
starting from the diffraction patierns. While the former is a relatively simple
application of the theoretical considerations in Chapters 11 and 12, the latter
will prove to be quite  bit more challenging. The examples are both for cubic
crystal structures; in section 14.2.5, we will comment briefly on procedures
that deal with arbitrary crystal structures.

14.2.1 The Ni powder pattern, starting from the known structure

Fig. 14,6 Experimental Cu Ka
povder diffacion patern or
2US 5 cent “nicel” coin.

We have scen that the unit cell dimensions (the lattice parameters) determine
the location of the diffraction peaks, whereas the atom positions inside the cell
determine the diffacted intensities. We begin by considering the locations
of the peaks in the nickel coin powder pattern, shown in Fig. 1.7 and, for a
larger 20 range, 14.6; there are cight peaks at the following diffraction angles
(estimated from the peak maxima):

43.67°,50.84°,74.76°, 90.74°, 96.08°, 118.24°, 138.66°, and 147.26°.

‘These angles correspond to the Cu Ka wave length. This pattern was obtained
on a Rigaku - diffractometer with a Cu target, operated at 35KV with
4 current of 25 mA. The angular siep size was 0.05°, and the intensity was
integrated for 2 seconds at each angle. The nickel coin surface was cleaned

§ =l 5 z =
A i A N
W w0 [ 20 40

20 (degeees)
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Table 14.1. Lattice parameter computation for the
nickel coin, assuming a cF Bravais lattice.

20 (deg) ¢
Kay —_—
(hkl) a (nm)

4367 i 0.35871
5084 200 035590
7476 20 0.35887
9074 3 0.35898
96.08 22 0.35883
1824 400 035900
13866 31 0.35886
14726 420 0.35903

before data acquisition, but no other sample preparation was carried out. From
the US mint web site we find that the nickel coin is made from an alloy with
75 at % Cu, and 25 at% Ni.2 Both Ni and Cu have the fec structure, and
they are fully soluble in one another, so that we expect the alloy 1o have the
same structure, with a lattice parameter intermediate between that of the two
end members. In fact, Vegard’s faw, an empirical rule, states that there exists
an approximate linear relationship between the lattice parameters of a solid
solution alloy and the composition of this alloy. So, if we consider the lattice
parameters of pure Ni and pure Cu:

a4y =035236nm  and  ag, =0.36078nm,

then we expect to find a ~0.35868 nm for the alloy. We also know that the
relation between the lattice parameter and the Bragg angle is given by:

EHERASERE, a4

25inf

Using this relation, we can convert the measured diffraction angles into an
estimate of the lattice parameter. This is shown in Table 14.1, resulting in an
average observed lattice parameter of @ = 0.35890 = 000275 nm.

‘This procedure assigns equal weight to each of the reflections, and is only a
first-order estimate. A better estimate would take into account the fact that the
relation between interplanar spacing and Bragg angle is a non-linear relation.
If we consider the Bragg relation:

2dsing =1,

= URL: hitpiwwss nsmint goviabout_the._mintfindex cfin%action=cain_specifications
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and we increase d by a small amount Ad, then 0 will change by an amount
A#, such that:

2(d+Ad)sin(0+A0)

If we use the trigonometric relation sin(a+b) = sinacosb + sinbcosa,
cosAD = 1, 5in A0~ AB, and we drop terms of order AdAf, then we find:

afa, 50 that

cot 8 A6,

In other words, the fractional error in the lattice parameter is smallest when
0 approaches 90°, ie., for diffracted beams with 26 close to 180°. This
means that the refllections with the largest 26 values should receive a larger
weight in the averaging procedure. Using the FINAX program (Hovestreydt,
1983), we find for the lattice parameter of the nickel coin: @ = 035896 +
0.0003nm.” This is in reasonable agreement with the expected lattice param-
eter (035868 nm) based on Vegard’s law

Now that we have determined the lattice parameter, we can turn our atten-
tion to the peak intensities. The structure factor for the fec structure was
derived in Chapter 12, and, for a solid solution of Ni and Cu, it is given by:

! nai 3 B,
bums (L s 2men),

for reflections with Miller indices of equal parity. The Debye-Waller factors
for Cu and Ni (at 7' =290K) are: By, = 0.0035nm? and B, =0.0054nm?
(Peng 1 al., 1996). Table 14.2 lists the computation of the integrated inten-
sities for the eight observed reflections. The experimental pattern shows a
clear peak splitting due to the presence of the Ker, and Ka, wave lengths; the
splitting becomes larger with increasing diffraction angle. Therefore, we will
compute the integrated intensities for all reflections, using both the CuKa,
and CuKa, wave lengths, and then combine those intensities using

( ):

3 The FINAX progra is & computer program than can be used 10 efine latice parameters
based on experimental measurements of diffraction angles. A web intrface to this program
can be found on this book's web sitc.

T = Pl )

1
£y On) + 5O
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Table 14.2. Tabular computation of the integrated intensities for the nickel coin.

# 0kl dy(R) A7) By p o L, (Kay) L, (Kay) Relative I Relative I
(comp (ex

11 20725 02413 842163 8 118816 118120 1000  100.0
200 17948 02786 78.1220 6 84089 83581 457 80.1
220 12691 03940 61.0456 12 3654 36330 242
3110823 04620 524271 24 28109 28046 275

8

6

"

4

222 10362 04825 50.0049 27354 27335 81
400 08974 05572 419161 32386 32638 5.1
331 08235 06072 37.1922 24 50484  5.0562  25.1
9 358288 24 65993 68272 306

420 08027 0.62

in accordance with the relative intensities of the two Ka fines. The only
difference between the two contributions is the Lorentz polarization factor,
which is listed for both Ker, and Kar, wave lengths in Table 14.2. The relative
integrated intensities are listed in column 9 of this table. To compare these
values with the experimental pattern we must first convert the pattern to
integrated intensities. There are several ways to do this; in this section, we
will use the method of the cumulant function, and in the next section we will
use a curve-fitting procedure.
o . yihei Fihe

tern. b
the pattern, and then replacing the value for each 26 by the integral of the spec-
all the intensities) up o that value of 26. If the background

trum (ic., the sum of

subtraction is carried out properly, then the resulting cumulant function should

show steps corresponding to each diffracted beam, separated by horizontal se
Tmg

Fig.14.7.
ents is equal to cgrated intensity of peak. The last
column of Table 14.2ists the relative integrated intensities obtained in this way.
The agreement between the experimental and calculated relative integrated
intensities shown in Table 14.2 is not particularly good. One would typically
expect to find agreement to within a few percent, not a factor of two, as is the
case for the (200), (220), and (400) reflections. In this case, the explanation
ion of the theoretical

i that one of the assumptions made in the deriv.
expression for the integrated intensity is not valid. We have assumed that all
crystallite orientations are present with equal probability. That is not the case
for the nickel coin, since it is made from a rofled sheet that is subsequently
heat treated to recrystallize the grain structure. As a result of this operation.
the orientation of the individual grains is no longer random but displays
texture. Texture is defined as the presence of a deviation from the random
distribution of grain orientations. In the case of the CuNi alloy, it tums
out that the individual grains are more likely to have their cube planes, .,
the {100}-type planes, lie parallel 1o the plane of the sheet (which is also
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for the ickel coin powder
diffacion patern of Fig. 14.

lntezrated
intensiy

e S0 100 20 T
20 (degrees)

parallel 1o the top and bottom surfaces of the coin). As a consequence, the
probability for diffraction from the cube planes is larger than in the randomly
oriented microstructure, so that the 200 diffraction peak has a significantly
higher intensity than predicted. We conclude that, i the presence of texture,
the observed integrated intensities will deviate from the predicied values.
Conversely, by analyzing the deviations between the observed and predicted
intensities, it is possible (o derive the preferential orientation of the grains.
This approach is known as rexture analysis, and the interested reader is
referred to the literature for more information; basic information can be found
in Bunge (1983), Randle (2000), and Kocks et al. (2001).

14.2.2 The NaCl powder pattern, starting from the known structure

The NaCl powder pattern shown in Fig. 1.7 s actually a section of a patiern
obtained over the angular range [10°~120°]. The complete experimental pat-
tem is shown in Fi There are 14 peaks in this range, corresponding to
values of /2 +k2+I* between 3 (111) and 40 (620). The pattern was recorded
in a Rigaku 6~ 6 diffractometer with an angular step-size of 0.05° and 2
second integration at each step. The X-ray tube was operated at 35kV with
a current of 25mA. The NaCl powder sample was ground with a mortar
and pestle, and subsequently passed through a 325 mesh sieve (this sieve
removes all particles larger than about 45 um diameter). The powder was then
back-loaded in a standard powder holder. The reason for this somewhat com-
plicated powder preparation procedure is the fact that NaCl usually occurs
in a highly facetted form. When these crystallites are placed on the diffrac-
tometer sample holder, most of them will orient themselves with one of their
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facets parallel o the plane of the holder, so that the orientation is no longer
completely random. This would give rise to integrated relative intensities that
do not agree with the computed values. Larger crystals are more likely to
orient themselves parallel to the holder, hence the sieving procedure.

The computation of integrated intensities for the NaCl structure follows
the same procedure as described in Table 12.7 in Chapter 12. We start with

the erystal structure information:

Space Group: Fm3m (05) (# 225);

Lattice parameter: a = 0.56407 nm;

Atoms: Na in da [(0.0.0)]: CI in 4b [(1/2,1/2,1/2)].

There are eight atoms per unit cell, and the structure factor was derived in
Chapter 12

Fur= U+ Far (D) 1 (=1 (=1 (= 1)),
so that

IF

16(fyy +for (=)

for reflections with Miller indices of the same parity. There are two types of
reflections: those with f1-+k +1 =2, for which we have:

1Fil* = 160 + fa ).

and those with h+k-+=2n+ 1 for which:

1l = 160, = fer)*-

The presence of two sets of reflections i
pattern of Fig. 14.8.

also clearly visible in the powder

powder iffracion patter for
Nacl

powder, using Cu Kt
radiaton,

0
20 (degrees)
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Table 14.3. Tabular computation of the integrated intensities for NaCl.

# Mk dy A A fu fer e MNa e M0l Fy r

111 32567 0535 8987 134761 09603 09673 17.6237 8

1
2200 28204 0773 86498 12.6974 09474 09567 813663 6
30220 19943 02507 75874 106150 08975 660983 12
4 31117007 02940 69823 9.6709 08619 101742 24
5 222 16283 03071 68019 9.4248 08503 561406 8
6 400 14102 03546 61454 8.6649 08055 488313 6
7 331 12941 03864 57038 82574 07735 9.1117 24
8 420 12613 03964 55649 81430 07632 43.0860 24
9 422 LISI4 04343 50504 77602 07230 383992 24
100 S L0856 04606 47074 7.5285 06943 92554 24
10b 333 10856 04606 47074 7.5285 06943 92554 8§
11440 09971 05014 42152 7.2020 06489 311501 12
12531 09535 05244 39647 7.0264 06231 9.1898 48
132 442 09401 05318 38881 6.9699 06148 282708 24

13b 600 09401 05318 38881 69699 06148 06711 282708 6
14 602 0.8919 05606 36135 67503 05824 06420 257533 24

The atomic scattering factors of Na and Cl can be derived using the
table on page 299. The Debye-Waller factors were determined from phonon
persion computations by Gao e al. (1999): at room temperature (290K),
we have By, =0.0172nm’ and Be;, = 0.0141 nm’. The relevant factors are
abulated in Tables 14.3 and 14.4. Note thatfins 10 and 13 have contrib
from two sets of planes.

The final column in Table 14.4 is derived from the experimental powder
pattern by means of a simple peak-fitting routine. A cursory comparison of the
experimental peak shape with the Gaussian and Lorentzian functions defined
in Chapter 12 shows that the actual peak shape is in between those two; in
other words, the experimental peaks fall off more slowly than the Gaussian
profile, but faster than the Lorentzian. The combination of these two shapes is
known as a pseudo-Voigt peak shape (Giacovazzo, 2002a), and is described
mathematically as

VG

o
Mo, TF q,x

Toce -7

where the subscript k labels the individual diffraction peaks; 7, is the maxi-
(60— 0,)/wy, w is the full width at half maximum
(FWHM) of peak &, 26, is the diffraction angle for the reflection &, and 7 is
a mixing parameter (0 < 7 < 1). The constants C; are given by C, =4 and
€, =4In2. When 7 equals 1, the peak shape is a pure Lorentzian, for 5=0
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Table 14.4. Tabular computation of the integrated intensities for NaCl (continued).

¥ 20.Ke, 20 Kay Iy, Relaiive 1 Relative /
(Comp.) (Exp.)

| 273630 274324 81767 81329 857 9.50
2 316995 317803 954316 949083  100.00 100.00
3 454419 455612 568559 65200  59.57 59.57
4 S386IL 540059 18309  I8198 192 2.06
5 564649 66179 166922 165902 1749 17.21
6 662176 664035 66150 697 7.05
7 730596 732708 7550 0.80 09
8 752809 755008 159759 1683 17.68
9 830788 842355 107130 1128 118

102 904006  90.6878 5782 081 059

106 1927

1 10L1SS4 1015026 31909 335 3.00

121077797 1081712 11561 121 093

3a 100387 1104469 55929 7.32 7.36

13b 13982

141194615 1199514 53014 553 6.06

we have a Gaussian peak, and for all other values the shape is intermediate.
It s relatively straightforward to fit this peak shape to each of the expe
mentally observed diffraction peaks. Since the experimental peaks have two
sub-peaks, we use two pseudo-Voigt functions for each reflection. The fitting
routine considers the parameters 26, uy, and 1 along with the peak height
10 be variable parameters, and returns the best fit for each. From these values
one can immediately compute the integrated intensity of each peak, either by
direct numerical integration, or by analytical integration of Eq. 14.2 over the
width of each peak. The fitted value for the mixing parameter 7 is 0.25.

‘The experimental relative integrated intensities are in excellent agreement
with the theoretical predicted values, as can be seen by comparing columns
6 and 7 in Table 14.4. The fitied patiern is shown in Fig. 14.9, along with
the difference pattern (bottom of figure). It is clear that the fit is quite reason-
able over the full range of diffraction angles. To make this a more quantitative
statement, one usually defines a few agreement indices or residuals. For our
purposes, we define the profile R, agreement index:

Zlo=1l
Ry i
where I,, and [ are the observed and calculated intensities for diffraction
angle 26, and the sums run over all values of i. The weighted profile R,

o
agreement index is defined as:
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and gy is the standard deviation associated with the intensity measured at each
fitin Fig. 149 are R, = 12.9%

value 20, The agreement indices for the curve
ndard to compare the agreement

e

The analysis in this section shows that it is not too difficult to compute the
integrated intensities for a given crystal structure, and compare them with an
experimental data set. The present analysis is little more than a curve-fitting
exercise, and there are far more sophisticated approaches to the analysis of
powder diffraction patterns. A commonly used method for both X-ray and
neutron powder spectra is known as the Rietveld method. Tn this method,
idered 10 be a

the entire spectrum, including the background intensity. is cor
single discrete function against which a multi-parameter model must be fitted.
This model accounts for the background intensity, the peak shape (location,

intensity, FWHM, and tails), the atom positions and occupations in the unit
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cell, the cell parameters, thermal Debye-Waller factors, and so on. All of these
parameters can be refined together or separately, and a series of agreement
ndices are computed which provide information on the “goodness of fit”
‘The Rietveld method is a powerul tool for the quantitative interpretation of
powder diffraction patterns. For more information on the Rietveld method,
we refer the interested reader to the following references: Rietveld (1967,
1969). Hill and Howard (1986). and Young (2000).

14.2.3 The Ni structure, starting from the experimental powder diffraction pattern

‘The diffraction angles for the Ni powder pattern were listed in Section 14.2.1
In this section, we will try to answer the question: can we derive the stru
ture of Ni directly from the diffraction pattern and a few additional pieces
of information, such as the density? First of all, the density of pure Ni
is 8912 g/em’; for pure Cu we have 8.933g/cm’; these are very similar,
50 that we can take the average to represent the alloy, ie., 8.923 g/cm’.
The molar mass of CuyysNigys is 62.3328g/mol, so that there are
8.923/62.3328 mol = 8.6205 x 10 formula units per cubic c
equivalently, 1 FU = 0.0116nm’.

Next, we need to find out how many formula units there are per unit cell.
Itis a general rule-of-thumb, that the number of peaks in a powder pattern is
inversely proportional to the complexity of the structure, which includes the
symmetry. This is obviously not a rule that can be proven with mathematical
equations, but it does hold approximately for a wide range of structures. §
the nickel coin pattern has only a few widely spaced peaks, we anticipate that
the structure will be simple, with a high symmetry unit cell. We will begin
with the assumption of a cubic lattice. There are three cubic Bravais lattices,
P, cl, and cF, so we must check all three of them to see which centering
corresponds to the experimental patern. Table 14.5 lists, in the first column,
the Bragg angle 0 (in radians), followed by the three sets of Miller indi
and calculated cubic lattice parameters for the three centering operations. To
compute a, we make use of Equation 14.1

From the table we see that the cP and cf Jattices have a rather large standard
deviation, whereas the cF lattice has a small standard deviation, as well as a
nearly integer number of formula units per unit cell. Therefore, we conclude
that the Bravais latice is the ¢ lattice. One formula unit equals CugsNi
50 that there are three Cu atoms and one Ni atom per unit cell, for a total
of four atoms per unit cell. Since the lattice is cF, these four atoms must be
equivalent to each other, so that there is only one atom position that must
be determined; the others are fixed by the lattice centering operations. The
easiest choice for that atom position is the origin, 5o that the entire structure
is determined.

The derivation above is deceptively simple, and might give the wrong
impression to the reader. Structure determination s almost never straightfor-
ward, for the simple reason that, in most cases, the unit cell is not known
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Table 14.5. Latice parameter computation for the nickel coin, assuming that the
Bravais lattice is cP, c/, and ¢F. The angles in the first column are derived from the
experimental powder diffraction pattern.

0 (rad) s o oF
Ke,

k) a () (hkD) a () (hki) a (nm)
03811 100 02710 110 02929 111 033871
04437 110 02538 200 03589 200 0.35890
06524 111 02198 211 03108 220 035887
07919 200 02165 220 03061 311 0.35898
08385 210 02316 310 03276 222 0.35883
10318 211 02198 222 03109 400 035900
12100 220 1 03080 331 0.35886
12851 221 400 03211 420 0.35903

av.  02278:£00100m  0.3170:£00198mm  0.35890:0.00001 nm
# FUleell 1019 27472 3

The example in this section was intentionally chosen to be cubic, 5o that we
would have to determine only one lattice parameter. In general, however,
there are six lattice parameters, three lengths and three angles. Furthermore,
we know from the discussions in Chapter 3, in particular Fig. 3.7, that there is
an infinite number of possible choices for the unit cell! So, given a diffraction
pattern, which unit cell do we try out? Obviously, it is desirable to select the
‘most symmetric unit cell, which is what we did above, but if we were to pick
another cell, for instance, the rhombohedral cell introduced in Section 7.4.2 on
page 147, then we should still be able to consistently assign Miller indices to
all experimental peaks, and find the correct rhombohedral lattice parameters.
Let us analyze briefly how this can be done.

First of all, we know that the rhombohedral cell is a primitive cell, with
only one atom per unit cell. We will need to determine two lattice parameters,
a and a. For a primitive cell, we know that there are no systematic absences

due to centering, so for arbitrary @ and @, we expect to see a large number
of peaks. Yet, the experimental pattern has only eight peaks in the observed
angular range. Tn other words, we are looking for a particular combination of
@ and a for which there are relatively few peaks.

The relation between the diffraction angle and the Miller indices and lattice

parameters for the rhombohedral system is given by
P B
= 57 (7 4+ P)(1 4 cosa) = 2(hk + hi + kD) cos )

This relation can be rewritten as:

=Ac’+B(o—27), (14.3)
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Fig. 14.10. Cunves of sin” 0
versus a from Equalion 14.3)
for  range of Mile indices;
smaller iler indics labeling
the curves are with respectto
the thombohedral reference
frame. Larger il indices
along the fine a = 60" are
with respect to the cubic
System.
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where @ = Ji* + &%+ I, 7= hk+ i+ ki, and A and B are constants related

to the lattice parameters:

»
Z- and B=Acosa.
1

A

‘The lattice parameters can then by comparing the experin
tal values for sin® 0 with calculated values for a range of A and B parameters
and all possible sets of Miller indices. In practice, the number of lattice planes
that can give rise to diffraction is rather limited, since the X-ray wave length
is of the same order of magnitude as the lattice parameter. For a given choice
of a (and hence A), we can plot all the possible values of sin’ 6 for all possible
values of a and allowed combinations of the Miller indices. An example is
shown in Fig. 14.10; each curve represents the values of sin’ @ according to
Equation 14.3. Along the horizontal axis, the value of a varies. Each curve
is labeled with the corresponding Miller indices. The value of a determines
ased, all curves move

the vertical position of all the curves; when a is decr
upwards, whereas they move downwards with increasing a. We know from
the experimental results that the first peak does not oceur until % 20°, and

08

06

04

@0l L I L )
W 50 ) o 0 %
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this places an upper limit on the value of a; similarly, if @ becomes too small,
then the lines will move upward and disappear off the top of the drawing. We
know that we need eight lines between 0= 20° and 0 = 75°, so that places a
lower limit on a. By trial and error, we find that @ = 0.26nm is a reasonable
value; Fig. 14,10 is drawn for that particular value of @ and Cu Ka radiation,
so that A % 0.08776.

To determine the value of B, we find that, for most values of @, there
are about a dozen lines present in the interval between the two dashed lines.
There are two values of a for which there are fewer lines: @ = 60° and
@ =90°. The latter one would result in a primitive cubic unit cell, which
can be excluded based on the foregoing discussion. The former produces
eight diffraction peaks, as is needed to explain the experimental data. From a

iear least-squares it of the experimental data to Equation 14.3 we find
092118 and 8 = 0.046059, or a =0.25378 and @ = 60", These lattice
parameters are in good agreement with the cubic ones derived earlier. The
rhombohedral Miller indices can be converted to the cubic ones by means of
the relation (derived in Chapter 7):

1

1
IR VAV
Similar procedures are available for unit cells belonging to the tetragonal,
hexagonal, and orthorhombic crystal systems. While the graphical procedures
based on figures similar to Fig. 14.10 were quite popular before the advent
of desktop computing, nowadays unit cell determination is essentially a non-
linear least-squares problem that is readily solved by means of standard
numerical algorithms.

We conclude from this example that the determination of the unit cell
parameters is not always straightforward, but it is always the first step in
structure determination. Once the lattice parameters are known, then the posi-
tions of all diffracted beams are known, and one can focus on the intensities
of the individual peaks, i.¢., on the determination of the atom positions. There
are several algorithms available for the computation of the so-called reduced
basis, the basis with the shortest possible non-coplanar lattice vectors. Such
algorithms compute the shortest possible lattice parameters based on an initial
guess of the lattice parameters. We refer the interested reader to Chapter 9
of the nternational Tables of Crystallography for more information on unit
cell determination (Hahn, 1996).

14.2.4 The NaC/ structure, starting from the experimental powder diffraction pattern

In this section, we will attempt to derive the NaCl crystal structure from the

powder diffraction patiern; i.c., we will try o show that there is no other
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configuration of Na and CI atoms that gives rise to the same diffraction
pattern. First of all, we will assume that we don’t know the crystal structure
atall. Let us list the facts that we do know:'

(i) We know that NaCl erystals oceur in nearly perfect cube shapes, which
indicates that the crystal system is most likely the cubic system.

(i) We also know the density (which can be measured in a variety of ways):
2.16g/em’.

(iii) From chemical analysis, we might be able to figure out that there are two
different atomic species, Na and CI. and that there are identical amounts
of each element in the compound (i.c., the formula unit is NaCl). The

Periodic Table of the Elements, first constructed in the last decade of

the nineteenth century, would show us that Na is in the first column,

whereas Cl is in the column next o the inert elements. The molar masses
of the elements are 22.989 ¢/mol for Na. and 35.452g/mol for Cl.

Combining the molar masses with the density, we can find out how many for-
mula units (FU) there are in a unit volume, or, conversely, the volume of one
2162 =2.16/58.441 mol 7% 102 FU,

formula unit. We have 1 e
sothat 1 FU = 004493 nm’.

Next, we need to find out how many formula units there are in a unit cell
To do 5o, we turn to the powder diffraction pattern of Fig. 14.8. If we assume
that the structure is cubic, then we have three possible Bravais lattice:
eI, and ¢F. Combining Bragg’s equation with the equation for the interplanar
ystal we find, as before:

spacing in a cubic

We can obtain the diffraction angles of the Ke, peaks dircctly from the
o the experimental powder pattern presented in the previous section.
(in radians) are shown in the first column of Table 14.6. Then
we use Table 12.2 and the equation above to determine, for each of the three
possible Bravais lattices, what the latiice parameter a would be; to do 50, we
simply assume that the first reflection is a (100) reflection in the P case. a
(110) reflection in the ¢/ case, and a (111) reflection in the cF case. When we
work our way through the table, we find that only in the case of the cF Bravai
lattice are all entries close 1o a single number. The average of these values
yields a = 0.56390.0002 nm, which is the cubic lattice parameter.? Along
the way, we also figured out that the structure must be cubic face-centered.
‘The unit cell volume is then equal to 0.17931nm’, so that the number
of formula units per unit cell equals 0.17931/0.04493 = 3.9909 ~ 4. There

4 These are fucts tha a late mineteenth century scientist would be able 10 find out
% The accepted room temperature lttice parameter for NaC! s 0.56402 am (Rohrer, 2001),
which i well within the standard deviation of the current measuremen.
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Table 14,6. Lattice parameter computation for NaCl, assuming that the Bravis
latice is cP, c, and cF. The angles in the first column are derived from the
curveiting approach in the previous section.

0 () P o oF
Kay (k) aGm) (k) e(m) (k) alom)
0239 100 0ms4 L0 04602 11 05636
0217 10 03983 200 05633 200 05633
0397 LI 03I 211 04880 220 0S635
040 200 0302 20 04811 311 05641
0493 0369 30 05147 2

0578 03453 222 04884 400

0638 0368 320 0489 331

0657 03784 400 05045 420

0733 03dss Al 04884 42

0789 03432 40 o484 si1

0883 03306 32 04676 M0

0941 0302 42 0des9 3

0960 0330 431 04795 442

143 320 0336 40 0504 620

a.io  03489400206nm  04912:£0.0257am  0.5639£0.00020m
# FUlcell 09452 26371 39909

are hence four formula units of NaCl per unit cell. Since the Bravais lattice
is face-centered cubic, this means that for each Na atom, there are three
equivalent ones at positions given by the centering vectors, and the same for
CI. To determine the atom positions, we proceed as follows. We assume that
there is an Na atom located in the origin: this is a reasonable assumption,
since we can place the origin anywhere we want, so why not on an atom
position? This means that all four Na atoms are now fixed. That leaves the
position of CI to be determined. We must only determine the position of
one of the four CI atoms, since the others are related to the first by the face
centering vectors. For now, let us assume that the CI atom is located at the
position (x,,2).*
The structure factor for this unit cell is then given by:

= (o + fae D (14 ()M (D) (1)),

© We know that C1 sis i the center of the unit cell,but we would like o be able o derive

that direcly from the data!
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Note that the structure factor can be rewritten (for reflections with Miller
indices of equal parity) as:

Fua = 4(fya +fae™),

where ¢, = 2r(hx + ky+ Iz) is a phase factor. Writing the structure factor
in this way reveals clearly the nature of the problem that we have to solve.
In order to determine the location of the CI atom (or, mare generally, the
entire crystal structure) we must determine the phases ,,,. Once we know
the phases, we can simply solve a system of linear equations to retrieve the
coordinates (. y. ). The modulus squared of the structure factor is given by:

1l = 1603, + f& + 2y for €05 )

One way to solve this problem would be to vary the positions (x, y,z) all
over the unit cell, and to compute the agreement indices R, and R, as
we have done in Section 14.2.2; where these indices reach their minimum
values is where the CI atom should be located. Alternatively, let us simplify
the problem a little by assuming that the CI atom must be located in one
of the interstitial sites in the Na fec lattice. There are two such sites, the
tetrahedral site at (1/4, 1/4, 1/4) and the octahedral site at (1/2,1/2,1/2).
The corresponding values of the phase factor are:

octahedral gy, = m(h+k+1);

Z(h+k+1).

tewahedral - ¢y, = 5

I we consider the first two reflections of the powder pattern, 111 and 200,

then we have:

. . 3w
B=3m =
=2 b=

Substitution in the structure factor expression results in:

16(f5 = fa)
=160/ + o)

13l

for the octahedral site, and:
1Fl = 16073, +
=16(fs, = fa )

L2
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In the tetrahedral case, we find that the 111 reflection should have a larger
intensity than the 200 peak (even after correcting for the multiplicity and the
Lorentz polarization factor), which does not agree with the experiment; the
octahedral position does give good agreement with the experimental powder
pattem, so that we conclude that the CI atom is located in the octahedral
intersitial positions of the Na fec lattice. This concludes the structure deter-
‘mination for NaCl.

14.2.5 +General comments about crystal structure determination

In the previous sections, we have discussed the structure determination of
two very simple cubic materials, a Ni-Cu alloy and NaCl. In Fig. 1.7, we
nlw show the powder pattern for sucrose, with chemical formula C,,H,,0 ..
s is a much more complex pattern! First of all, we note that there are
many reflections, even for small values of 26. This most Tikely means that
the structure has a large unit cell with a low symmery. In fact, the structure
of sucrose can be considered as an example of a molecular structure,
structure in which the individual sucrose molecules remain identifiable. We
will take a closer look at a large vasiety of molecular solids in Chapter 25,
the final chapter of this book. For now, we start from the structure of the
sucrose molecule.

Sucrose is a disaccharide, i.¢., a sugar molecule made from two monosac-
charides, fructose and glucose, through a condensation reaction. Glucose and
fructose are simple sugars with chemical formula C (H .0, but with a differ-
ent structure.” In glucose, a six-membered ring contains five carbon atoms and
one oxygen atom, with a single CH,OH group; fructose has a five-membered
ting with four carbon atoms and one oxygen atom, and two CH,OH groups.
When both monosaccharides react, they form sucrose and release one water
molecule. The structure of the sucrose molecule is shown in Fig. 14.11(a);
the two component molecules are clearly identifiable.

‘The sucrose crystal structure is monoclinic, with lattice parameters (in nm)
{1.08633,0.8705, 0.77585, 90.0°, 102.945°,90.0°}. The stru i-
tive, and for each atom at position (x. v, 2), there is an equivalent atom at
position (—x. ¥+ 1/2, ~2). i.e., all atoms occupy the general 2a positions of
the space group P2, (C3). This space group has as its only symmetry cle-
ment (other than the identity), a two-fold screw axis 2, parallel to the [010]
direction. There are two formula units per cell, for a total of 90 atoms per
unit cell. The fractional atom coordinates are listed in Table 14.7, and the
structure s shown projected along two directions in Fig. 14.11(b) and (c).¥

* Sugars belong 10 the larger categary of carbohydrate molccules with general composition

# The atom caordinates for the suerose siructurs were extracted from  data file located at the.
URL: i
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Table 14.7. Fractional atom coordinates for the sucrose crystal structure.

aom x y z aom x 3 z

Cl 070039 085792 051513 HI 066530 074510 046120
€2 068747 097474 036400 H2 058840 096930 028830
€3 071455 013673 043553 H3 081290 014480 051030
C4 06259 017095 055802 H4 052830 016810 047820
C5 064075 005107 070471 H5 073620 006130 079070
C6 054246 007083 081545 H6 054690 0.18730 086560
€7 08969 063110 045620 HI 094800 052240 047840
C8 087554 069262 063105 H8 080530 060910 036700
€O 099282 069075 07851S HO 072810 087230 0.15340
CI0 093522 066653 094524 HIO 004950 038840 077100
Cll 082365 056133 087136 HIl 076820 026600 025750
C12 071073 058194 095332 HIZ 090160 077720 098450
Ol 082857 084630 060835 HI3 063930 039130 036750
02 077046 093550 025234 HI4 085350 044010 088680
03 06919 024770 029720 HIS 056280 099260 092810
04 065120 031410 064370 HIG 073490 053990 008870
05 062281 089878 063136 HI7 039850 093830 071340
06 04185 004530 071380 HIS 091550 082470 034580
07 096983 073550 037881 HI9 003100 090890 082390
08 078795 059445 068428 H20 001670 065380  0.19610
09 007367 081776 079548 H21 065230 077800 083970
010 002123 059734 008904 H22 063280 051190 088050
OIl 067356 073800 095963

Note that the structure determination for this compound requires the locations
of 45 atoms (3 x 45 = 135 coordinates) to be determined. That means that
there are 135 phase factors by, to be determined, one for each atom!

Since we already know the structure parameters, it is relatively straightfor-
ward to compute the powder pattern, using the same approach as in earlier
sections. The resulting patiern is shown in Fig. 14.12. The top profile is
the computed one, the bottom shows the experimental pattern. The most
intense reflections are labeled with the corresponding Miller indices. Note
that the overall agreement is reasonably good, although the relative intensities
are not always the same, indicating a possible preferential orientation in the
powder sample. It s interesting to note that this complex structure was first
solved in the 19505 (e.g.. Beevers ef al., 1952), well before the advent of
‘moderm computers!

Structure determination is. in the most general sense. a phase problem; i.e..
if the phases of all the terms in the structure factor are known, then all atom
positions are known and the structure is considered 1o be solved (note that
the atom types follow from the amplitudes in the structure factor). From the
experimental observations, one can only derive the modulus squared of the
structure factor, | Fyy | for each reflection. While the phase, d, is unknown,
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it s stll possible to derive useful information from the intensities alone.
To understand how this works, we must first realize that X-ray diffraction
analysis of a erystal structure is essentially a Fourier analysis of the electronic
charge density. In Fourier analysis, a 3-D function, f(r), is decomposed
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into a superposition of
operation:

nusoidal waves by means of the Fourier transform

100 = T = [ a'e ey e (144)

the function f(k) is a function in Fourier space (note that Fourier space and
reciprocal space are identical), and is said to be the Fourier space represent
tion of f(r). The inverse Fourier transform is defined by:

10 =77 [0] = [ dk s ey (145)

the functions f(r) and f(K) form a Fourier transform pair. The value of
the function (k) for a particular K represents how much the plane wave
exp(~27ik-r) contributes to the function f(r).

‘We can use the concept of the Fourier transform to describe the diffraction
process. Consider the charge density p(r); the Fourier transform of the charge
density is given by:

p)=T[p@)] or p(r)=7""[p(k))

The charge density can then be written as:

p(r) v = sy (14.6)

V is the volume of the unit cell. In other words, the charge density consists
of a sum of plane waves, one for each set of planes in the crystal, and each
plane wave contribution is equal to the structure factor for that set of planes.
In explicit coordinate notation we have:

1

Pl 2

The structure factor is defined as before:

Fy=Y [, = Flp(r)].
q

1If we know both the amplitude and phase of all structure factors F, then
Eq. 14.6 allows us to compute the complete electron density p(r). Knowledge
of the electron density at each point in the unit cell then reveals where each
atom is located, since the density shows maxima at the atom locations. This
means that structure determination is equivalent to computing the inverse
Fourier transform of the structure factors
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From an experimental point of view, we know that we are limited by the
fact that we can only determine the modulus, |, of the structure factor and
not its phase. This means that we cannot, in general, perform the inverse
Fourier transform. Based on these moduli, we can define a new function,
P(r), as follows:

P(r) 22 (14.7)

\iL Ify

This function is known

the Patterson function, and it can be computed
directly from the experimental data, without the need for any of the phases
(Patterson, 1934). It can be shown that the Patterson function has maxima
at Tocations r corresponding to all interatomic vectors. The height of these
maxima is related to the atomic seattering factors. So, while the Patterson
function does not directly provide the structure solution, it is a very useful
t00l to narrow down the search for the corret structure, since it allows for

the determination of all the interatomic vectors in the structure,

A significant research effort over most of the past hundred years has
resulted in several methods to determine the phases of the structure factors;
none of these methods provides the solution to the general phase problem, and
all these methods need some kind of “first guess” for the phases, after which
they will, often iteratively, solve for the correct phases. The techniques used
for solving the phase problem for a particular structure can be quite involved,
and we refer the reader to the following texts for more detailed information:
Giacovazzo (2002a), Drenth (2002), Rhodes (2000), Warren (1990), Glusker
and Trueblood (1985) and many others.

Solving crystal structures, in particular those of complicated proteins which
crystallize in huge unit cells with thousands of atoms, is quite an involved
task, and is usually carried out in specialized, dedicated laboratories equipped
with three-or four-circle diffractometers (i.c., the sample can be oriented with
three or four angular degrees of freedom, so that every possible orientation
can be obtained). The reader may consult the journal Acta Crystallographica
10 find many examples of modern structure determinat

o discuss these specialized structure solution methods in detail would lead
us too far away from the main purpose of this book: to describe the structure
of materials. In the following chapters (15 through 25), we will provide many
examples of important and interesting crystal structures. On occasion, we will
refer back to this chapter when we show diffraction patterns and such. The
reader should not forget that every single crystal structure discussed in this
book was, at one point in time, the subject of an experimental study by means
of X-ray, neutron, or electron diffraction (sometimes even a combination of
two or more of these techniques). The number of known (solved) crystal
structures is very large; more than a quarter of a million different structures
have been solved, and that number is increasing at a steady rate. The small
selection of structures in the second half of this book reflects to some extent

ns.
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the interests of the authors, but is kept s
will find something of interest.

ciently general so that most readers

14.3 Historical notes

In this section, we reproduce in its entirety one of the seminal papers of X-ray
crystallography, a 1913 paper by W.H. and W.L. Bragg on the structure
determination of diamond. While there are several early papers by father and
on Bragg that we could have selected, we choose this one because it is the
first example of the use of systematic absences duc to symmetry elements
(what we now call the diamond glide planes). Other important papers include:
Bragg (1912), Bragg and Bragg (1913), Bragg (1914, 1915ab, 1920, 1929,
1930).

‘The original citation is: W. H. Bragg and W. L. Bragg (The Structure of
the Diamond) Proc. R. Soc. A, 89, pp. 277-291 (1913), and the article is
reproduced with permission from The Royal Society.

The Structure of the Diamond.
By W. H. Braco, M.A, RS, Cavendish Professor of Physics in the
University of Leeds, and W. L Brace, B.A,, Trinity College, Cambridge.

(Recoived July 30, 1913.)

There are two distinet mothods by which the X-rays may be made to help
t0 a determination of crystal structure, The first is based on the Laue
‘photograph and implies the reference of cach spot on tho photograph to its
propor reflecting plane within the crystal. It then yields information as
to the positions of these planes and the relative numbers of atoms which
they contain. Tho X-rays used are tho heterogeneous rays which issue from
certain bulbs, for example, from the commonly used bulh which contains a
‘platinum anticathode.

The sccond method is based on the fact that homogencous Xerays of
wavelength X are reflocted from o set of parallol and similar erystal plancs
at an angle 6 (and no other angl) when the relation ) = 2sin0 is
fulfilled. Hero d is the distance between the succssive plancs, 8 is the
glancing angle which the incident and roflocted rays mako with the planes,
and 5 is a whole number which in practice g0 far ranges from one to five.
Tn this method the X-rays used are those homogenoous heams which issue in
considerable intensity from some X-ray bulbs, and are characteristic radiations
of the metal of the anticathode. Platimum, for cxample, emits several such
beams in addition to the heterogeneous radiation already mentioned. A bulb
having a rhodin anticathode, which was constructed in order to obtain o
radiation having about half the wave-length of the platinum chaacteristio
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rays, has beon found to give a vory strong homogeneous radintion con
of one muin beam of wave-length 0607 x 10~* em. *, and & much less intenso
beam of wave-length 0:333x 107 em. Tt gives relatively lttlo hetero-
geneous radiation. Its spectrum, as given by the (100) planes of rock-salt,
is shown in fig. 1. Tt is very convenient for the application of the second
method. Bulbs having nickel, tungsten, or iridinm anticathodes have not so
far been found convenient; the former two because their homogeneous
radiations are relatively weak, the last because it is of much the sume

Ry

I
U L.

G e 0

Tta. 1.—Spactra. of viodium rays | 100 planes of rock salt

wave-length us the heterogencous rays which the bulb emits, whilo it is woll
to havo the two sofs of rays quite distinct. The platinum homogencous rays
are of lengths somewhat greater than the average wave-length of the general
hoterogencous radiation; the serios of homogeneous iridium rays are very
like the series of platimum rays xaised one octave higher. For convenience,
the two methods may bo called the method of the Laue photograph, or,
briofly, the photographic method, and the reflection metbod. The former
requires heterogencons rays, the latter homogoncous, The two wethods
throw light upon the subject from very different points and are wutually
helpful.

Tho present paper is confined almost entirely to an account of the
application of the two methods to an analysis of the structure of the diamond.

The diamond is a crystal which attracts investigation by the two new
‘methods, because in the first place it contains only one kind of atow, and iu
the second its crystallographic properties indicate a fairly simple structure.
Wo will consider, in the first place, the evidence given by the reflection

mathod.
The diagram of fig. 2 shows the spectrum of tho rhodium rays thrown by
the (111) face, the nutural cleavage face of the diamond. The method of
obtaining such diagrams, and_ their interpretation, are given in a preceding
# This valuo i doduced from tho positions of tho spectra of the ludivm rays in the
alt o tho assumption et tho structure of ruck-salt s @ recently

desribed (eo precoding paper)
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paper.* The two peaks marked Ry, 1, constitute the first order spectrum of
the thodium Tays, and the angles at which they occur axe of imj pvrmnca in
what follows. 1t is also a material point that there is no second o
spectrum.  The third is shown at Ry, rs; the strong line of the lourth o
is at Ry, and of the fifth at Ry.
The first deduction to be made is to be derived from the quantitative
‘measurements of the angle of reflection. The sines of the glancing angles

Tio. 2—Spectra of rhodium rays: 111 planes of dimond.

inx Ry, s, Ry, R are (after very slight correction for errors of sefting) 0:1456,
941, 07449 Dividing these by 1,3, 4, 5 rospectively, we obtain
m«ms, 01475, 0°1485, 01490, Those are not exactly equal, as they might
e expected to be, bus inorease for the larger angles and tend to o maxium.
The effect s due to reasons of geometry arising from the relatively high
transparency of the diamond for X-rays, and the consequent indefiniteness of
the point at which reflection takes place. The true value is the maximum
to which the series tends, and may with suficient aceuracy bo taken as
01495 Tn onder to keep the main argument clear, the consideration of this
point is omitted.
We can now find the distanco betwveen successive (111) plancs.
We have
A=2dsin6,  000TX107 = 2dx 01495,  d = 203x10
The structure of the cubic crystals which have so far been investigated by
* oy, Sor, Proc, val. 88, p. 426,
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these methods may be considered as derived from the face-centred lattioo
(fig. 3): that is to say, the centres which are effective in causing the
reflection of the Xerays aro placed one o oach comer and one i the middle
of each face of tho eubieal element of volume. This amounts to assigning

i, 3.

four molecules to each such cube, for in general one atom in each moleoule is
50 much more effective than the rest tht its placing determines the structure
from our point of view. There are four, hecouse the eight atoms at the
corners of the oube only count as one, each of them belonging equally to
cight cubes, and the six atoms in the contres of the faces only count as three,
each of them belonging equally to two cubes. The characteristics of the
reflection are then as follows —

Lot ABCDEFGH be the cubical clement. There aro effective centres at
all the corners and at T, M, N, P, Q, R, the middle points of the faces. The
edge of the cube being denoted by 2, the reflecting planes which are parallel
t0 & cube face, called generally the (100) planes, are spaced regularly, the
distance from plane to plane being a. A1l the plancs contain equal numbers
of centres

The (110) planes, ns which the plane through ACGE is a type, me
rogularly spaced at a distance afy/2, and also are all equally strewn with
effective contres.

The (111) planes, of which the planes through EDB, HICF are types, are
regularly spaced at a distance 2u//3, and again are all similar to cach other.

Tn wha may for the present be called the normal case, any one of these
sets of planes gives a series of spectra which diminish rapidly in intensity as
we proceed from lower to higher orders, us, for example, the spectra of the
rhodium rays given by the (100) planes of rock-sals. (Fig. 1 shows tho
spectra of the firsb two orders.)
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The relativo spacings of tho spectra given by these three sets of planes aro
shown in fig. 4. Spectea of tho (100) planes being supposed to ocour at
values of sin 6 proportional to 1,2,3,..., it follows from the above argument
that the (110) planes will givo spectra at 1414, 2828, 4242, ..., and the
(111) planch at 0866, 1732, 2598

The position of the first spectrurn of the (111) pluncs (fig.4)1s a peeulinrity
of the faco-controd lattice. If the cffective centres were at the comers only

)

o

R e B

T 6 s son
Fio. 4.—Spectra. of face-centred Intice.

of a cabe whose length of side was a, the spacings of tho three sets of planes
would be a, afy/2, and afy/3, and the three sets of spectra would ocour
411,2,3; /2,202, 3/2; /3, 2/3,3,/3.

The eubieal crystals which we have so far examined give results which
rosemblo tho digram of fig. 4 more or loss closely. Individual cases depart
50 little from the type of the diagram that the face-centred Inttico may bo
taken as the basis of their structure and the departures considered to reveal
their separato divergencies from the standard. For convenionoo of descrip-
tion we will speak of the first, second, third spectra of the (100) or (111)
planes and so on, with reforenco to fi. 4 We may then, for cxample,
describe the peculinrity of the rock-salt (111) specirum® by saying that the
frst order spectrum s weak and tho second strong. The interpretation
(tos cit.) is that the sodium atows are to be pub at the centros of the edges
of the cubic element of volume, and the chlorine atoms at the corners and
in the middlo of each face or wice varsd : for then the face-centred lattice
(cube edge 2a) is brought half way to being the simple cubie lnttice (edge )
having an effective centre af every comer. The first (111) speotrum touds
o disappear, the second to inoreass in importance. In the case of potassium
chloride, the atoms are all of equal weight and the change is complete: the
first onder spectrum of the (111) plancs disappears entirely. In zincblends
or iron pyrites one atom is so much more effective than the other that the
diagram of spectra is uch move nearly characteristic of the face-centred

* Seo proceding paper.
T
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Iattice : at least 8o far as regards the spectra of the lower orders.  We hope
to deal with these cases luter

Tet us now consider the case of the dismond. The spectrum given by
the (111) planes is shown in some detail in fiz. 2. Tt should be stated that
the ordinates represent the gross currents observed ; nothing has been
subtracted for natural Jeak, seattered radiation, and so forth.

W first use the angular measurements to enable us to determine the
‘mamber of carbon atoms in the clementary cube of side 2. Lot us assume
provisionally that there are four earbon atoms to each cube, making the
face-centred lattice. The density of the dismond is 331, and the weight of
each atom is 12 times the weight of each hydrogen atom or 12 x 164 x 10

The volume of the cube is thercore

4x12x 164 x 10~
B

=224x 104,

The length of each edge (i, 2a) will then b
Y(224x107%) = 282x 107
The distance between consecutive (111) planes
= 2a/y/3=163x 107"

Now we have found experimentally that the vight value is 203 x 1075,
These two numbers are very nearly in the ratio of 1:/2. It is clear that
we must put cight, not four, carbon atows in the elementary oube ; we then
obtain 20/,/3 = 205 x 107, and this close agreement with the experimental
value suggests that we are proceeding in the right way. The value of 20
is 350 x

We have thorefore four carbon atoms which we are to assign to the
elementary cube in such o way that we do not interfere with the characteristics
of the face-contred lattice.

It s here that the absence of the socond order spectrum gives us bhelp.
The interpretation of this phenomenon is that in addition to the planes
spaced at o distance apart 203x 10 thero are othor like planes dividing
tho distances between the first so% in the ratio 1:3. Tn
fact there must be parallel and similar plancs as in
fig. B, s0 spaced thab AA’ = A’B/3, and so on. For if
waves fall at a glancing angle 0 on the system ABC, and
are rellected in o second order spectrum we have
20 =24Bsind. The ples A’B'C’ reflect an exactly similar sadiation
which is just out of mp with the first, for the difference of phase of waves
reflected from A and B is 2, and therefore the differonce of phase of waves
veflocted from A and Vi /2. Consequently the Ionr atoms which we have

YT

¥ia. 3.
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at onr disposal are to make new (111) planes parallel to the old and related
to them us A’B'C are to ABC. When we consider whoro they are to go we
aro helped by the fact that being four in number they should go to places
which are to be fonnd in the eubes in multiples of four. The simplest plan
5 t0 put them in the centres of four of the eight smaller cubes into which
the main cube can be divided. We then find that this gives the right spacing
becauso the perpendicular from each such centre on the two (111) planes
which Tie on either eide of it are respectively a/2,/3 and (u v/3), where a is
the Tength of the side of one of the eight smaller cubes. For symmetry it is
nocessary to place them at four centres of smaller cubes which touch each
other along edges ouly : cg. of cubes which lie iu the A, G, H and T corners
of the lurge cube. If this is done in the same way for all cubes like the
one taken as unis it may be scen on cxamination that we arive ab a
disposition of atoms which has the following characteristics :—

(1) They are armanged similarly in patallel plancs spaced alternately at
distances ¢/2,/3 and ay/5/2, o in the case of the diamond 0508 x 10~* and
22 105 em.: the sum of these being the distance 205 x 10 which we
have already arrived at.

(2) The density has the right value.

(3) There is no second order spectrum in the reflection from (111) planes.

Tt is not very easy to picture these dispositions in space. But we Dave
ome to @ point where we may readjust our methods of defining the positions
of the atoms a5 we hiave now placed thew, and arrive at a very simple resuls
indeed. Every carbon atom, as may be seen from fig. 5, has four neighbours
at distances from it oqual fo ay/3/2 = 1522 10-* om,, oriented with
respect to it in directions which are parallel to the four diagonals of the
cube For instance, tho atom at tho centre of the small cube Abedgfyl,

related in this way to the four atoms which lie at corners of that
cubr\\ ., 1), the atom at the centre of the face ABTE is related in tho
samo way to the atoms ab the centres (P, Q, R, ) of four smali cubes, and
50 on for every other atom.  We may take away all the structure of cubes
and reotangular axes, and leave only a design into which no elements enter
but one length and four directions equally inclined to each other. The
characteristics of the design may be realised from o consideration of tho
accompanying photographs (figs. 7 and 8) of @ model, taken from differant
‘points of view. The very simplicity of the result suggests that wo have como
to a right conclusion.

The appeatance of the model when viewed at right angles to a cube
dingonal is shown in fig.7. The (111) planes are scen on cdge, and the
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1:3 spacing is obvious. The union of every carbon atom to four neighbours
in a perfeetly symmetrical way might bo expected in view of the porsisient
totravaloncy of carbon. The linking of six carbon atoms into a ring is also
an obvious feature of the structure. But it would not be right to lay much
stress on these fucts ab presont, since other crystals which do not contain
carbon atoms possess, apparently, a similar structure.

We may now proceed to test the result which we have reachod by
examining the spectra reflected by the other sets of planes. Ono of the
diamonds which we used consisted of o slip which had clesvage planes as
surfaces; its surfaco was abous 5 mm. each way and its thickness 08 1mm.
By means of a Laue photograph, to bo described later, it was possible to
determine the orientation of its axes and so to mount it in the Xray
spectrometer a5 to give roflection from the (110) or the (100) planes as
desired.

As regards the former there should be no special foatures, for the four
carbon atoms which wo placed at the centres of four of tho eight smaller
cubes all now lie in (110) planes. The latter are equally spaced and all
alike, the space distance being «/y/2 or 125 x 105, The first glancing angle

at which reflection occurs is, therefore, sin™ ‘L 007 xléﬁ:

416°. The
experimental value was 1435° The specira at I'nghm orders oceurred at
203° and 472° The sines of Lhegu three angles are 02478, 04894, and
07325, or nearly as 1: at precision was not attempted ; to attain
it would have been needlosly Lmlv\vlcsoms. The intensity of the difforent
ordors fell offin the nsual way.

On the other hand, the (100) spectrum might be expested to show cortain
peculiarities. By placing four atoms at the contres of the four small cubes
we have, in fact, interleaved the 100 planes, as it were: and these now
consist of similar planes rogularly spaced at a distance a/2 or 0885 x 1075,
0607 x10-¢
TT7x 1

200. Using the language alrendy oxplained, we may say
that the first (100) spectram has disuppeared, and, indeed, all the spectra of
odd order. Spectra were actually found at 20:3° and 436°: the sines of these
angles being 03469 and 0921, the lutter being naturally much loss
intense than tho former. A carelul search in the neighbourhood of 10°
showed that there was no refloction at all at that angle.

The results for all three spectea are shown disgrammasically in fig. 9,
which should be compared with fig. 4.

Tt is instructive to compare the Teflection offects of the diamond with those

The first speotrum should therefore ocour at an angle sin™
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of zineblende. Our results seem to show that it is built up in exactly the
same way, except that the (111) planes contain alternately zinc atoms only
and sulphur atoms only. If the zinc atoms are placed at each corner of the
cube and ab tho centre of each face, the sulphur atoms lie at four of the eight
centres of the smaller cubes. ‘The (100) planes, like the (111) planes, contain

Tia, 0.—Spoctra of diamond.

alternately zine and sulphur atoms. These alternations of constitution
modify the forms of the various spectra, 5o that they lie betuween the forms
of the space-centred latice (fig. 4) and the forms of the diamond (fig. 9).
The first (100) spectram is not entirely absent but is wuch smaller than the
socond, and in the same way the second (111) spectrum, though it is to be
scen, is smaller oven thun the third. The schems of the zincblends spectra
is shown in fig. 10. Their actual positions agree perfectly with those which

o | I )
. | 5

Fio. 10.—Spectra of sincblende.

can be caleulated from a knowledge of tho density of the crystal, the weight
of the ZnS molecule, and the wave-lengths employed. In consequence of the
altonation of zine and sulphur plunes af wnequal spacings along the (111)
axis, the orystal censes to be symmotrical about o plane perpondioular to that
axis, 16 becomes hemihedral, and acquires polarity.

W now go on to consider the Laue photograph of the dinmond. A
photograph taken with a section of dizmond cut parallel to the cleavage
plane (111) is shown in fig. 11 The exporimental arrangement was similar
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to the original arrangement of Laue, the distonce from diamond to photo-
graphic plate being 1'80 cm., and the time of exposure four houre, A tost
photograph was taken first, which made it possible to caloulate the exact
orientation to bo given to the dismond in order that the incident X-rays
might be traly parallel to a trigonal axis. The symmetry of fig. 11 shows

Fic. 1,

that a close approximation to this orientation has been obtained. The X-ray
bulb had & platinum anticath

In fig. 12 is given the stereographic projection of this pattern.® The spots
of the photograph are reprosented in the diagram by dots of corresponding
‘magnitude, and several ciroles, each passing through the spots reflested by
the planes of one zons, are drawn. The indices placed next the spots are the
Millerian indices of the planes whioh reflect theso spots, the planes being
referred to three equal axes making 60° with each other as in the case of the
examples zincblonde and fluorspar given in the above paper. Imagining &

# Soo preceding puper.
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cube with one corner at the diamond and the long diagonal of the cube
parallel to the incident X-rays, the three cube cdges would meot the photo-
graphic plate at the points marked X, Y, Z.  The spot (110) is thus reflected
in the cube face, meeting the plate along XY, (110) being the indices of
a cube face referred to the axes employed.

It will now be shown that on analysis the photogeaph appears to be in
acoordance with the structure which we have assigned to the dinmond on the

°

z
T, 12.

vesult o the reflection experiments. Tn tho first place, of the thee cubic
space lattices it is evidently that which has points at cube corners and at the
centres of the oube faces which is most characteristic of the diffracting s
Tor our purpose this space Inttice is most conveniently referred to threc axes
which are diagonals of the oube faces meeting in a corner. The co-ordinat
of any point of the system may then be written

tem.

P
where p, g, v are any integers, positive or negative, and ¢ is half the diagonal
of the square of edge 2.
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“The indices of the reflecting plane are given for each spo of the photo-
graph, and it will bo seen that they could not possibly have a more simple
form. Tt referred to the cubic axes they become much more complex. Alon
the axes chosen, the nterval between successive points of the lattice is the
smallest possible, and these axes are very important point-rows of the
system. The remarkable serics of spots lying on the three circles in the
diagrem which culminate af the points (110), (101), (OL1), are due to planes
which pass through these point-rows, and this alone is good evidence of the
paramount importance of the cube face diagonals as axes.

T is thus clear that a simple analysis of the pattern can be made if the
planes are roforred to axes of the face-centred cubic lattice. It is also
ovident, however, that the pattern is more complox than it should bo if due
toa set of identical points arranged in this lattice, of which examples have
been given in a former paper, For instance, there ave spots reflected by the
‘planes (11T), (131), (141), and (221), (021), and yet none by the plane (12
(seo dingram, fig. 12). In the case of zincblende and fuorspar no complications
of this kind ocour, although in theso cases the presence of the lightor atoms
of sulphur and fluorine must affect somewhat the difftaction pattern given by
th lattice arrangement of heavy atoms of zine and caloium.  Yet here, where
carbon atoms alone are present, the pattern is not as straightforward as those
given by zineblende and fluorspar.  We thus come to the conclusion that the
carbion atoms are not arranged on a single space lattice.

1t the structure assigned to diswond in the former part of this paper is
cortect, a simple explanation of the diffraction pattern can be arrived at.
Ac to_this structare the carhon atoms are not arranged on o spuce
lattice, but they may be regarded as situated at the points of two inter-
penetrating face-centred space lnttices. These lattices are so sitnated in
relation to each other that, calling them A and B, each point of lattice B is
surrounded symmetrically by four points of lattice A, arranged tetrahedron-
wise and vice eersé. This cam be seen by referonce to the diagram of fi, 6.

Tt is now clear why the pattern must bo referred to the axes of the face-
centred luttice, for it the structuro is to be regarded as built up of points
arranged on the simple eubic lattice, with three equal axes at right angles,
no fewer than eight interpenetrating lattices must be wsed to give all tho
points.

Consider lattice A referred to the oube face disgonals as axes, Then all
the points of that latice have imlim

rding

w
2, 4 7 being any integers. The relative position of lattice B is arrived at it
we imagine lattico A to suffer a translation alovg the trigonal axis which is
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the long diagonal both of the elementary parallelepiped and of the cube, the
amount of this translation being one-fourth of the long diagonal. Reference
t0 one of the diagrams will make this more clear than any explanation which
eould be given hore, The points of lattice B then have co-ordinates
e @+de (Do
The planes of luttice A which have Millerian indices (lmn) are given by

ot my+nz =
ger. The corresponding planes of lattice T are given by
Hemitmg=10+2 (=30 = Qe

or ot mytne= ;LH””’#‘}L.
Wheu the (inn) planes of both lattices are considered together, threo
cases prosen themselves :—
1) When Ltm+n is a multiple of fou, the ylancs of lattice B are
coincident with those of lattice A, both beiug given by
Loty = Gatoger x ).
An example of this is found in the plane (110) or (130).

(2) When Z+m-+n is a multiple of two but not of for the planes of
latéice A are given by

otmy+ne =
Those of lattice B are given Ly
lrpmydne = (B+1)e,
and are thus half-way between the planes of lattice A
Examplos—Planes such as (110) and (121)
(8) When Z4m -+ is 0dd, the equations of the two sets of planes aro

le4mytaz = Po,
and Loy myns = (P+1d),

or Lotmy+ne = (L=
and the plancs oceur in pairs, in such a way that the two planes of a pair are
separated by one-fourth of the distance hotween the suceessive pairs.
‘Esamplea—Octahedron faces (100), (010, (001), and (111).
Ttis now clear whevein lies the difference between planes (11T) and (181), on
the one hand, and (12T) on the ofher. The (12T) planes of the one lattice alone
would probably give & strong refloction of a pact of the X-ray spectrum in
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which there was a large amount of energy, but tho presence half-way betyweon
them of the planes of the other lattice (1-+2—1 = 2) annuls their effeot.
On the other hand, though the (15T) and (117) planes now oceur in pairs, the
wave-length reflected from them is the sume as that for a singlo lattice. On
Tooking over the indices of the reflecting planes, it will be seen how large a
proportion of them have -+m-+n cither odd or o multiple of four; in fact,
the doparture of the pattern from simplicity is just that which would be,
expected from the nature of the point system, which differentiates the planes
into these three sets.

A more complote analysis of the pattern would be of little intorest horo
becanse the positions of the reflection peaks afford a much simpler method of
analysing the structure. In comparison with the examples given in the
former paper, this is a case where the diffraction s caused by a point system
as against a space lattice, both a translation and a xotation being necessary
to bring the system into sclf-coincidence. This gives special nterost to the
‘photogmaph.

We huvo to thank both Prof. S. P. Thompeon, F.RS, and Dr. Hutchinson,
of the Mineralogical Taborator
diamonds which were used in these experiments.

Cambridge, for their kindness in lending us



] 5 Non-crystallographic point groups

“When 1 am working on a problem 1 never think about beauy. 1 only ihink about
how to solve the problem. But when I have finished, if the solution is not beautiful,
Fhnow it is wrong.”

Buckminster Fuller (1895-1983)

15.1 Introduction

In Chapter 9, we considered the group of symmetry operations for the quartz
crystal. We used this example to define what a group is (in terms of the
group axioms). Then we derived the 32 crystallographic point group sym-
metries. These are the only point groups compatible with translational peri-
adicity. This restriction on crystallographic point groups was important for
the development of space groups in Chapter 10. A less restrictive view of
point group symmetry may be necessary, however., 1o understand the structure
of many non-traditional materials. In this chapter, we consider examples of
non-crystallographic point groups.'

Non-crystallographic point groups are useful to understand more com-
plicated structures. In molecular solids, the Bravais latiice is decorated by
molecules (i.¢., the unit cell has a molecular basis). These solids may possess
symmetries not belonging to a crystallographic point group. In decorating the

! We canno enumerate them all because there are an ininite number of ther.
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Table 15.1. 5 (C,) group multiplication table. The notation D* stands for either
the symmetry operation 5" (C3) or for the corresponding transformation matrix
D(57 (C3)); D s the identity operator/matrx.

5(Cs) D o' o D’ D'
o o o o o o
o D 9 o Dt D
D D o ot D D
o D* ot o o D
Dt Dt o o 9 o

crystal Tattice, molecules may lose some of their symmetry elements. Knowl-
edge of the non-crystallographic symmetries can be helpful to understand
the properties of molecular solids. In the Frank-Kasper phases introduced in
Chapter 18, structural motifs include distorted polyhedral units (such as the
icosahedron) that, in their undistorted forms, have non-crystallographic point
‘roup symmetries. A recently discovered solid, known as a quasicrystal, has
a quasi-periodic arrangement of atoms, giving rise to diffraction patterns with
non-crystallographic point group symmetries! Quasicrystals are discussed in
detail in Chapter 20.

15.2 Example of a non-crystallographic point group symmetry

Consider all the symmetry operations that are written as powers of the 5-fold
rotation: 5 (C,). 57 (C2). 5° (C2). 5* (), 5% (C3) = 1 (E). These five operations
form a point group, labeled § (C). Since cach operator is writien as a power
of asingle operator, 5 (C,), the resulting group is a cyclic group of order 5. The
operator 5 (C,) is the generator of the group. Group clements are represented
by transformation matrices:

cos 22
D" (€)= | sin2z
o

RORENER)]

for a counterclockwise rotation by 27 /5 around the z-axis.

If we use the shorthand notation D" to indicate the symmetry operation
5" (C3). then we can establish the group multiplication table for the § (Cs)
group, as shown in Table 15.1. Each of the operations has an inverse. For
example, the inverse of the 5 (C,) operation is 5* (C£) and vice versa. One can

i, we denote point groups by their Hermann-Maguin symbols, with the
comesponding Sonfits noaon  prenbese
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Fig, 15.1. 3 Ballandsstick
model o the C, fullrene.

b) Projected strucure along a
fuefold ars showing single
and double bonds,

see that the product 5 (C,)- 5' (C2) is equal 1o the identity operator, 1 (E), as
s the product 5 (C2):5 (C,). Similarly, the inverse of 5% (G2) is 57 (C3). The
order of the 5 (C) group is 5.

The trace of each transformation matrix is an invariant; i.e., it is indepen-
dent of the choice of coordinate system. For the matrix in Equation 15.1, the
trace is equal to 1 +2cos(27n/5). All operations of a point group that have the
same trace belong to the same equivalence class (elass). For the 5 (Cs) point
‘group, the operations 5 (C;) and 5 (CS) have the same trace, 1+2cos(2/5),
and belong to the same equivalence class. Operators 57 (CZ) and 5° (C3) have
a different trace, 1+ 2cos(47/5), and, hence, belong to a second class. The
identity operation, with trace equal to 3, is in its own class. The traces of
symmetry operators are important for the description of physical properties.

When the rotation operators of the point group 5 (Cs) are combined with
other symmetry operators, such as a two-fold axis normal to 5 (C,), or a
mirror plane, we can derive a number of new point groups. In the following
sections, we will take a closer look at symmetry groups with rotations that
have non-crystallographic orders, such as 5 (C;), 8 (C), 10 (Cyp), and 12 (C,,).

15.3 Molecules with non-crystallographic point group symmetry

Molecular point groups are not restricted (o the 32 crystallographic point
groups of Chapter 9. The icosahedral groups m35 (1,) and 532 (D). which
have -, 3-, and 2-fold rotational symmetry axes, describe the symmetry of
the C4, molecule (Fig. 15.1). Sub-groups of the icosahedral groups include
the pentagonal groups that have five-fold rotation axes but no three-fold
rotation axes. A decagonal group, TOm2 (Dy,), describes the symmetry of the

o molecule. In this section, we will use C, 10 illustrate icosahedral group
theory and discuss related molecules.

The C, molecule is a third allotrope of C, in addition to the diamond
cubic and hexagonal graphitic forms. Box 15.1 summarizes the symmetries
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Box 15.1 Symmetry operations for the icosahedral group of C.

Rotational symmetries of the m35 (/) and 532 (1) groups, with reference
10 Cyp are:

(i) The identity operator, 1 (E).

(ii) Each 5-fold rotation axis (a) has five operations: 1 (E). 5 (C;). 5% (C2).
5% (C2), and 5' (C2). The 5 (C,) axes pass through pairs of the 12
pentagonal faces. Six pairs, each with four 5-fold rotations (excluding
the identity operator), yield a total of 24 operations.

(iii) Each 3-fold rotation axis (b) has two operations (in addition to 1
(B)): 3 (C;) and 3% (C3). The 3 (C;) axes pass through pairs of the 20
hexagonal faces. Ten pairs of hexagonal faces, each with two 3-fold
rotations, yield a total of 20 operations.

(iv) Each 2-fold rotation axis (c) has a single 2 (C.) operation (in addition
to 1 (B)). The 2 (C,) axes pass through pairs of the 30 edges shared
between hexagonal faces. Fifteen pairs of edges, each with a single
2-fold rotation, yield 15 operations.

‘The icosahedral rotational group, 532 (1), thus has 1+24-+20+15 = 60
symmetry operations, resulting in a group order of 0. Sixty additional
improper rotations can be added to the proper rotations of the 532 (I)
group 1o yield the 120 operations of m35 (/,). Mathematically, this is
accomplished by the direct product operation:

m3BF=52¢1  (1,=18C). (152)

The direct product of two groups G, and G, is denoted by G, & G,. The
direct product group contains all operations formed by taking the pairwise
products of the elements of one group and those of the other. The resulting
group order, k, is equal to the product of the orders of the two groups,
i.e., It = hyhy. The m35 (1,) group is the direct product of the icosahedral
group, 532 (1), and the 1 (C,) group containing the identity and inversion
operators. The 60 new operations include 15 mirror planes, 24 5 (Cy)
rotoinversions, 20 3 (C5;) rotoinversions, and the inversion operation,

(e)
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of the icosahedral group. The five-fold, three-fold, and two-fold axes of the
icosahedral 532 (1) group are visible in the wire frame drawings of C, in
Box 15.1. Each C atom has an identical environment. The m33 (/,) and 532
(1) groups have important effects on the electronic structure (Johnson ef al.,
1991) and magnetic properties of Cy and Cy-based solids (McHenry and
Subramoney, 2000).

15.3.1 Fullerene molecular structures

Sir Harry Kroto and co-workers (Kroto et al., 1985) determined the structure
of C., which received much attention due to its aesthetically pleasing, highly
symmetric arrangement of C atoms, a configuration similar to a soccer ball,
This molecule was named Buckminsterfullerene, after the American architect,
R. Buckminster Fuller (1895-1983).” Scientists asserted that many C clusters,
previously (Rohlfing ef al., 1984) and subscquently observed, might hav
ilar geodesic structures. Other caged structures with even numbers of C atoms,
empty central cavities, closed shells, and exclusively hexagonal and pentago-
nal faces were named fidlerenes. Fullerenes describe the class of C, struetures
with 7 = 16.* Examples of these C nanostructures are shown in Box 15.2.

Box 15.2 C nanostructures: the higher fullerenes

“The figure below shows examples of higher fullerenes with 60-80 carbon
atoms and a variety of crystallographic and non-crystallographic point
group symmelies.

Fuller was a propanent of geadesic structures us prominent building des

componens.
4 The affectionate term Buckyballs is also widely used.
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(a) and (b) show the C,, and C, clusters with m35 (7,) and 10m2 (D)
point group symmetries: (¢) and (d) show the Cs, and C, fullerenes, with
T22m (D) and 6m2 (Dy,) point group symmetries; (e) shows the two
isomers of the Cs fullerene with 43m (7,) (upper) and 222 (D,) (lower)
point group symmetries. Many of the larger fullerenes have multiple
isomers. The Cyy fullerene has five isomers, one with 32 (D;), two with
6m2 (Dy;) and two with mm2 (C,,) point group symmetries. The Cy
fullerene has seven isomers, one of which has m35 (/) symmetry and is
depicted in ()

The coordinates of known higher fullerenes have heen graciously made available at thel
website of Dr. M. Yaoshida; hip:/swv.cochem2 uikie.utac jp/FulleFuler himl.

Synthesis of macroscopic amounts of C, molecules was made possible by
a graphitic arc technique (Kratschmer et al., 1990). Fullerenes were identified
for even-numbered compositions from Cs; to C gy by Robert Curl et al. (Curl
and Smalley, 1991). Researchers progressed by (a) identifying molecules by
the number of constituent C atoms (by mass spectroscopy) and (b) determining

their atomie coordinates and symmeiries. New discoveries included:

trapping of atoms inside the fullerenes to produce endohedral fullerenes;

growth of macroscopic single crystals consisting of a particular fullerene.
molecule;
chemical substitution of C atoms by other elements: and

attachment of atoms to the outside of fullerenes, to produce exohedral
structures,

To stick with the “bucky” naming convention, cylindrical structures con-
structed from hexagonal C units (essentially folded-up sheets of graphite)
were called Bucky mubes (lijima, 1991). They are discussed further in
Chapter 25

Researchers in Richard Errett Smalley’s group postulated that the structural
stability of geodesics, that completely tile a 2-D space (e.g., the surface of
a sphere), could explain the notable stability of the Cs, (1 = 16) cluster
Hexagonal networks of C were not surprising, because planar hexagonal nets
are stabilized by the sp? bonding between C atoms in graphite. Pentagons

are required to provide the curvature needed for closure. The minimal closed
structure constructed exclusively from regular pentagons s the 20 vertex
Platonic solid, the pentagonal dodecahedron.

The eighteenth century mathematician Leonhard Euler showed that any
closed tiling involving regular pentagons must contain the 12 pentagons
of the pentagonal dodecahedron.
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Thus, a fullerene must have 12 pentagonal faces and an even number of
hexagonal faces as described by the chemical formula Ca,;, where 2H is
the number of hexagonal faces. Fullerenes can only contain even numbers of
C atoms.

The smallest fullerene is Cg, for which none of the 12 pentagons share
edges. Larger fullerenes are called higher fullerenes. For the higher fullerenes,
‘many possible isomers are possible, even with the constraint of 12 pentagonal
and 2H hexagonal faces.

The isolated pentagon rule (IPR) states that pentagons in fullerenes prefer
not to share edges.

“This rule is almost universally obeyed for the higher fullerenes. A second rule
prescribes the avoidance of diametrically positioned pentagons on any given
hexagon. This constraint allows aliernating bonds to be maintained on the
hexagons. There are few instances in C,, structures where the second rule is
broken (Guo er al., 1992).

Bond distances on C,y molecules were inferred by Liu er al. (1991) (and
later by Burgi et al. (1994)) from crystal structure refinements of C solids
(discussed in Chapter 25). Distances of 0.1355(9) nm for the C = C double
bonds and 0.1467nm for C ~ C single bonds were found. Many lower
Jfuterenes are illustrated in an entertaining article by Curl and Smalley (1991),
They arrived at the concept of deflated structures, by selectively removing C
atom pairs from C,

‘The isolated pentagon rule (IPR) provides a topological criterion to predict
clusters will have icosahedral symmetry (if not distorted by an elec-
tronic Jahn-Teller effect). Those clusters that maintain icosahedral symmetry
are special cases of polyhedra known as Goldberg polyhedra.

Goldberg polyhedra are built from 20(b* + be +¢?) vertices where b and
¢ are non-negative integers.

0, then the undistorted Goldberg polyhedron will have
icosahedral symmetry. The first few icosahedral fullerenes are predicted to
be Cyy (b=1.c=0), Cgy (b 1.Cy (b=2c=0). Cyy (b=3,
€=0), Cog (b=c=2), Cyyy (b=4, c=0), Cygg (b="5, c=0), and sy
® 3) (Fowler and Steert, 1987, Goldberg, 1934, 1937).

15.4 Icosahedral group representations

‘The point group 532 (1) describes the symmetry of two Platonic solids: the
regular icosahedron, and its dual, the pentagonal dodecahedron. 1t is also
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Fi, 152, lasahedral (o)
and cuboctahedral (bottom)
‘solids: (a) icosahedron, cube,
®) tuncted cosahedron,
truncated cube, (c)
icosidodecahedron,
‘cuboctahedron, (d) truncated

pentagonal dodechedron,
octahedron.

Non-crystallographic point groups

(@ (b) © (C (e

the point group for three Archimedean solids: the truncated icosahedron,
the truncated dodecahedron, and the icosidodecahedron?® Figure 15.2 (top)
illustrates that truncating (cutting or shaving) the icosahedron normal to the
five-fold axes creates new pentagonal faces and turms the triangular faces into
irregular 6-sided polyhedra.

‘The term fruncated icosahedron refers to the Archimedean solid in which
the 6-sided faces become regular hexagons.® Further truncation leads to the
i truncation l
three-fold axes passing through its vertices leads to a structure with triangular
faces along with irregular 10-sided polyhedra. The term truncated dodecale-
dron refers to the shape where the 10-sided face is a regular decagon. Further
truncation again leads to the icosidodecahedron. While the Platonic solids

have faces with either five-fold or three-fold symmetry, the Archime
solids have both five-fold and three-fold faces. We refer the interested reader
to Wenninger (1971) for structures with more than two types of faces (i
beyond the Archimedean solids).

Itis instructive to compare the symmetry of icosahedral and cubic solids.
m3m (0,) is the point group symmetry of highest order, 48 (with inversion
symmetry), and 432 (O) is a point group symmetry of order 24 (without inver-
sion). These point groups describe the symmetry of the regular octahedron,
and its dual, the cube, both Platonic solids. m3m (0y) is also the symmetry
group for three Archimedean solids: the truncated octahedron, the truncated
cube, and the cuboctahedron (Fig. 15.2 bottom).

Truncating the cube in directions normal to the three-fold axes cre-
ates new triangular faces and tums the square faces into imegular -sided
polyhedra. The fruncated cube is the Archimedean solid for which the

% The Patonic and will ilin
© “This i nearly the shape taken by the C o molecul. Even though there are:
his shape,thre s 10 sixfold symmety. Can you explain why?

faces in
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stereographic projections

(2532 (1, and () w35 (1),
red

representations.
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8-sided face becomes a regular octagon (however, the 3-D shape does not
possess eight-fold symmetry!). Further truncation leads to the cuboctahedron
Similarly, truncation of the octahedron along four-fold axes passing through
its vertices leads to a structure with square faces along with irregular 6-sided
polyhedra. The truncated octahedron is the shape for which the 6-sided faces
become regular hexagons. Note that the truncated shapes always involve
structures with {100} and {111}-type faces.

‘The 60 proper and 60 improper rotation axes of the icosahedral group, m35
(1), describe the symmetry of the truncated icosahedron, the icosahedron,
the pentagonal dodecahedron, and many other polyhedra. The symmetry ele-
‘ments of the icosahedral groups are depicted in the icosahedral stereographic
projections of Fig. 153 (Hahn, 1989). These stereographic projections use
the convention that the Cartesian x, y, and z directions are aligned along
the three orthogonal two-fold axes in the icosahedral symmetry group. The
icosahedral groups are the only point groups for which both five-fold and
three-fold axes are simultaneously present as group operations, just as some
of the cubic point groups are the only ones having both four-fold and three-
fold axes. Figure 15.3(c) and (d) show rendered 3-D representations of the
two icosahedral point groups.

6Q 104415 g+ 1mei
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Fig, 15,8 Two-, hree., and
fivefold axes of the
icosahedron in useful
coordinate systems
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Convenient representations of the icosahedral group operations include the
‘geometry where the five-fold axis corresponds to the z-axis and another where
three orthogonal sets of two-fold axes are aligned with respect to the x, y,
< coordinate axes, Fig. 15.4. The representation where the threc-fold axi
corresponds to the z-axis is rarely used. A Cartesian coordinate system where
three orthogonal two-fold axes are chosen as axes offers an orthogonal basis
compatible

for which the three axes have the same symmetry. It is, therefore,
with standard orientations for the cubic groups. This is also the choice made
by the International Tables for Crystallography (Hahn, 1989) in depicting
the stercographic projections shown in Fig. 15.3(a) and (b).

A generating relationship for the icosahedral group was first proposed
by Speiser (1937), subsequently discussed by McLellan (1961) and is sum-
marized in Box 15.3. This generating relationship starts by building a sub-
‘group [H] of all of the rotation operations about a single five-fold axis. New
operations result from multiplication with two other generators which are

orthogonal 2 (C,) operations. We can conveniently use the geometry wher
the five-fold axis corresponds to the z-axis to express the generating mat
ces. However, we can easily rotate these matrices into the other convenient
old axes as the basis.

coordinate system with orthogonal sets of two-|

Box 15.3 Generating relationship for the icosahedral group
The icosahedral rotational group, m35 (/,), can be generated as follows:
(i) Identify a five-fold rotation operation (around the z-axis) as operation

A and two orthogonal two-fold rotations as operations B and C.

Construct the cyclic subgroup, [H], as five successive five-fold

rotations:

A A E). (15.3)
This subgroup is the same as the 5 (C;) point group.
(iii) Construct a set, [K], by adding to [H] five new elements, obtained

by multiplying each rotation of [H] by the first 2 (C,) operation, B:

[K]= [H]+ B-[H] (154)
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(iv) Use the generating relationship to construct the set of operations [I]
for the icosahedral rotational group, m35 (7,):

n

KI+(0): [K]+ L (A'0) - [K]. (155)

‘This operation results in the generation of all 120 symmetry operators
of the m35 (/,) point group.

Box 15.4 Generating matrices for the icosahedral group

The genera for the icosahedral group are listed below. On the
left, with the five-fold axis along 2. we have three generating matrice:
D(Cy). D(C), and D(C3): on the right, with three orthogonal two-fold
axes acting as the basis, we have as generators: D(C,), D(C;), and D(C}).
=1 —J7¥2 0 -1 0 0
D(C;) T2 -1 o|incy={ 0 1 o)
0 1 0 0 -1
o1 1o -2
1 D(Cy) = %( 0 1 of:
7 2 0 -1
1o o

D(Cy) D(C) =

[

=L
c-o
Loo
—

[ 0),
0 0 -1

where 7= (14 +/3)/2 is the golden mean of pentagonal symmetry.

Box 15.4 gives maticy
‘geometries. The first of these has the five-fold axis oriented along z (counter-
clockwise rotation) and the two-fold axis B aligned along y. The generating
matrices in this geometry are designated D(Cs). D(C,), and D(C3), respec-
cond choice of coordinate axes, the generating matrices are
designated D(C,), D(Cs). and D(C}). One may also generate the icosahedral
‘group using only two generators, a 5 (C;) and a 3 (C,) rotation axis.

1L interesting 1o note that the icosahedral rotation group, 532 (1) is iso-
morphic with, i.e., has the same multiplication table as, the alternating group
of five elements (A5, all odd permutations of five numbers). The icosahedral
‘group shares this type of isomorphism with two other high symmetry groups

for the generators A, B, and C in each of two




an

Non-crystallographic point groups

(associated with the Platonic solids). The tetrahedral group 23 (T) is isomor-
phic with the alternating group A, (all odd permutations of four numbers),
and the octahedral group maps one to one onto the symmetric group S (the
group of all even and 0dd permutations of four numbers). The isomorphism
of the 532 (1) and Ay groups is useful in deriving the generating relationship,
described in Box 15.3, for the icosahedral group.

15.5 Other non-crystallographic point groups with five-fold symmetries

Fig, 155, Descent in
symmelry with subgroups and
ther orders for the icoszhedral
point roups.

‘The icosahedral groups 532 (/) and m35 (7,) have subgroups that are crystal-
lographic point groups, and others that are examples of non-crystallograph
point groups. For example, the m3 (T,,) group is a subgroup of m35 (7,), and
23 (T) is a subgroup of 532 (7). These crystallographic point groups repre-
sent the intersections of the icosahedral group with the cubic groups m3m
(0,) and 432 (). respectively. Other subgroups of the icosahedral group, as
shown in the descent in symmetry in Fig. 15.5, include 3m (Dy,), 32 (D),
222 (D,), 3 (C), 2/m (Cy), 2 (C2), 1 (C). m (C.), and 1 (C,) among the
crystallographic point groups and 5m (Ds,). 52 (D). 5m (Cy,). 5 (Cy). and
5 (C5) among non-crystallographic point groups.

Figure 15.6 illustrates fullerenes with pentagonal or decagonal point group
symmetries, 52 (D) and 5m (D), respectively. These are (a) an isomer of
4 C fullerene with 52 (D;) point group symmetry, (b) the C, fullerene,
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Fig. 155, Fulerenes
possessing 52 (D), Tom2
(Dy), and 3m (D)
‘symmetries (2) an isomer of
Cg (52 (0,), () C (T2
(04, and ()  secons
isomer of Cypo (Sm (Dss)).

and (c) a second isomer of a C,, fullerene with 5m (Ds,) point group
symmetry. Bach of these is shown projected with the five-fold axis lying in
the plane (top) and pointing out of the plane (bottom) of the drawing. Each
of these molecules has the cyclic group operations: 1 (), 5 (C;). 5 (C2), 5°
(C}), and 5* (C), and 5 2 (C,) axes perpendicular to the main 5 (C,) axis
These are the only symmetry elements for the Cyqq fullerene with the 52
(Dy) point group, Fig. 15.6 (). The other isomer of Cyyy, with 3m (Dy,)
the point group (Fig. 15.6(c)) has inversion symmetry. The pseudo-decagonal
symmetry shown in the projection with the five-fold axis out of the plane
results from a five-fold roto-inversion axis, 5 (Cy), and 5 m (a,) dihedral
mirror planes.

‘The T0m2 (Ds,) group is the symmetry group of the s fullerene (Fig. 15.6
(b)) (Heath er al., 1985) and the truncated pentagonal prism. This molecule
is constructed by separating the two hemispheres of the Cyo molecule and
adding a belt of 10 carbon atoms between them. This construction destroys
all but one of the five-fold axes of the original icosahedron, as well as all of
the three-fold axes. The oval structure of C., contains 25 hexagonal faces. Iis
structure was first verified by °C NMR (nuclear magnetic resonance). C is
the second most abundant fullerene formed in graphitic arcs and one of the
few fullerenes produced in sufficient abundance to grow single crystals. The
structure of the C., molecular solid is discussed further in Chapter 25,

In addition to the 52 (D) point group operations, the C, molecule has a
horizontal mirror plane and associated roto-inversion operations along with
5m (a,) vertical mirror planes. Figure 15.7 illustrates the symmetry operations
for the TOm2 (Ds,) group with reference to a pentagonal prism. This group
has inversion symmetry, horizontal and vertical mirror planes, and a five-fold
symmetry axis,
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Figure 15.7 (a) shows the action of a five-fold rotation, 5 (C,). lis repeated
action yields the 1 (), 5 (C). 5° (@), 5 (C)), and 5% (C2) operations
Figure 15.7(b) shows the action of a 10 (C,) roto-inversion operation.
Figure 15.7(c) shows the action of a 2 (C,) rotation operation perpendicular
10 the main 5 (C,) axis. This axis can be rotated using each of the 5 (C,) oper-
ations 10 yield 5 2 (C,) operations. Figures 15.7(d) and (¢) show m (03 and m
(o) mirror planes, respectively. The m (o,) mirror can be rotated using each
of the 5 (C;) operations to yield 5 m (a,) operations. It is also instructive to
label the vertices of the pentagonal prism and write the symmetry operations
in terms of permutations of the vertices.

15.6 Descents in symmetry: decagonal and pentagonal groups

Figure 15.8 (a) illustrates the descent in symmetry for the general (4N +2)-
gonal groups. General descents in symmetry allow us to see similarities
between point groups. For N = 1 (i, 4N +2=6), we can determine the
descent in symmetry for the hexagonal groups. For the decagonal groups we
have N'=2 or 4N +2 = 10. The patter of the descent is the same as for
the hexagonal groups. The non-crystallographic point groups with five-fold
rotational axes are summarized in Fig. 15.8 (b). These are all the groups
five- or ten-fold symmetry, with the exception of the icosahedral groups. Some
are subgroups of the icosahedral groups, while others have symmetry elements
not present in the icosahedral groups. The decagonal point group symmetry
occurs in several quasicrystalline phases 10 be discussed in Chapter 20.
Stereographic projections for the decagonal and pentagonal point groups
are illustrated in Fig. 15.9. These follow the descent in symmetry for a (4N -+
2)-gonal symmetry group. They are separated into sets having decagonal
symmetry (a). and those having pentagonal symmetry (b). Note the similarity




Fig. 158, Descent in symmetry
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=2) groups.

15.5 Descents in symmetry: decagonal and pentagonal groups
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between the stercographic pro conal (pentagonal) and the
hexagonal (trigonal) groups. These similarities reflect that groups of order
4(2N +1) and 4(4N +2), with N an integer, have a common descent in
symmetry with similar numbers of sub- and supergroups. Groups of order
4(4N), where N is an integer, have a common descent in symmetry different
from the (4N +2)-gonal symmetry groups. These common descents imply
that octagonal and tetragonal groups will have si

Figure 15.10 illustrates shapes following the descent in symmetry of
Fig. 15.8(b). The gray shapes belong to the pentagonal groups 2N+ 1, N =2.
We illustrate the symmetry of the point groups beginning with the most sym-
metric decagonal prism, and successively destroying some of its symmetry
by eliminating, rotating, shearing, or translating vertices.

A decagonal prism, Fig. 15.10 (top), possesses 10/mmm (D) symmetry.
It is the only decagonal group of order 40. If the two decagons are rotated
relative to one another (but not by an integer multiple of ), a twisted
decagonal prism with 1022 (D,,) symmetry results. This rotation destroys
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Fig. 15.9. Stereographic
projections of the ()
decagonal an (5 pentgonal
point groups. The top two
symbols indicate the
Hermann-Mauguin and
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number at the left bottom of
eachprjection s he orderof
the point roup.

Fig 15.10. Shapes (described
in the tex) having the
symmetries of the pentagonal
or decagonal groups in the
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By O 48 &E
10220,y Tom2 (g 10mm (Cpp,) 10/m (Cigy) 3m(Csy)
]
10(Cyy) 0085 52(Dg) Sm(Cs,) HE

the Horizontal and vertical mirror planes and all oto-inversion operations of
igonal pr Iding a group of order 20.

The pentagonal prism has T0m2 (Ds,) symmetry. A truncated decagonal
pyramid possesses 10 vertical mirror planes but no perpendicular two-fold
rotations or roto-inversions; hence, it has the 10mm (C,,,) symmetry. 10/m
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Table 15.2. Symmetry elements of the pentagonal and decagonal point groups.

Hermann— Schonflies Symmery elements

Mauguin (International notation only)

5 L8

H 1,504,539, m

S/m same a8 5 (C)

5m 1,54, 5xm

E) 1,54 5x2 (L 10 5)

10 g

™ 15,10 T

5m 1.5, 10", 1, 5xm, 5x2

10mm 1102, 10xm

10/m 1101007

Tom2 1,5 451579, m (L 10 5), 5xm, 5x2 (L 105)
1022 1107, 10x2 (L 10 10)

10/memm 1,109, 10x2 (L 10 10), 1, 10, 10xm

(Co) symmetry is obtained by stacking twisted decagonal prisms of different
chirality. This structure has inversion symmetry but no orthogonal two-fold
axes, nor vertical or horizontal mirrors. The pentagonal antiprism has 5m
(Ds;) symmetry, which is the only pentagonal group of order 20 (4(2N +1)
with N = 2). It has ten-fold roto-inversion operations, dihedral mirror planes,
and perpendicular two-fold rotation axes.

A twisted truncated decagonal pyramid has the symmetry group 10 (Cio).
A puckered decagonal prism has point group T0 (Cs, ). The twisted pentagonal
prism possesses 52 (D;) point group symmetry. The truncated pentagonal
pyramid possesses Sm (Cs,) symmetry. A pentagonal prism bisected by a
rotated pentagon possesses 5 (Cs;) symmetry, completing the subgroups of
order 10. Finally, a twisted pentagonal pyramid has point group symmetry 5
()

One can determine the matrix  the symmetries of the other
decagonal and pentagonal point groups by multiplying the matrices of the 5
(Cs) group or the 10 (C,,) group by that of another generator for the point
group in question. A second generator will be the inversion operator and/or
4 two-fold rotation operator. We end our discussion of the decagonal and
‘pentagonal point groups by summarizing the symmetry operations for each of
the groups. Table 15.2 lists all of the symmetry elements for each of the 12
decagonal and pentagonal point groups. In this table, the notation 5"V is

2 similar notation for other

shorthand for the operators 5, 5%,. . . 5%, and there
repeated operators. Note that the 3 (Cy;) and §/m (Cy,) groups are identical,
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15.7 Non-crystallographic point groups with octagonal symmetry

In this section, we consider point groups with an eight-fold rotational axis,
8 (C,) and 8/mmm (Dy,). The octagonal groups are also among the point
groups for which 2-D quasi-periodic structures have been observed in alloy
systems (see Chapter 20). Figure 15.11 illustrates two structures with 8/mmm
(Dys) symmetry: (a) the cycloocatetracne dianion (CyH, =, and (b) the
octagonal prism. While the (CgH, Y~ dianion is planar with 8/mmm (Dy,)
symmetry, the neutral molecule, cyclooctatetracne (CyH), is not planar or
arom:

Many of the octagonal point groups can be expressed as direct products
of lower order groups. For instance, the 8/m (Cy,) point group is the direct
product of the 8 (Cy) and 1 (C,) point groups:

8/m=8a1. (15.6)

Itis a point group of order 16. As before, octagonal groups can be represented
by stercographic projections. These are illustrated in Fig. 15.12. This figure
shows that the stereographic projection for the 8/mmm (Dg,) point group,
for example, consists of the eight-fold rotational axis, a set of eight two-fold
anes orthogonal to this axis, eight roto-inversion operations and cight mirror
planes for a total of 32 operations. The 822 (Dy), 82m (D,,), 8mm (C;,
and 8/m (Cy,) point groups each have 16 operations and can be derived as
subgroups of 8/mmm (Dy,) by destroying half of the symmetry operations.
The derivations are left as exercises. The 8 (Cy) and 8 (S;) subgroups are
each of order 8. It is left as a reader exercise to construct the multiplication
tables for the groups 8 (Cy) and 8 (S5).

15.8 Descents in symmetry: octagonal and dodecagonal groups

Descents in symmetry are generalized based on the order of the main
symmetry axis. If the main symmetry axis is of order n = 4N (where N
is an integer), the generalization described above for the octagonal group
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(N'=2) produces the descent in symmetry illustrated in Fig. 15.13(). If
the main symmetry axis is of order n=4N +2 or n=2N+1 (where
N is an integer), a generalization produces descents identical to those of
the decagonal and pentagonal groups, illustrated in Fig. 15.8(a). Note that
N'=2 and thus n'=2N+1 =5 represents the pentagonal groups and 1 =
N +2 = 10 the decagonal groups. Here one can see the super- and sub-
‘group relationships between the (2 + 1)-gonal and (4N +2)-gonal groups,
respectively.

Fig. 15.13(b) shows the octagonal groups of orders 32, 16, and 8. It can be
axis of order n.= 4N (where

shown quite generally that, for a main symme




Fig. 15,14, Fowchart for
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N is an integer), there will be one group of order 4n, four subgroups of order
217 and two subgroups of order .

Other important non-crystallographic point groups that will be studied in the
context of quasi-periodic tilings include the dodecagonal point groups. The
dodecagonal groups have twelve-fold symmetry axes. The main symmetry
axis is of order 1= 4N, with N = 3. Thus, one can determine the descent in
symmetry by referring to Fig. 15.13(a). This is left as a reader exercise at the
end of the chapter.

Fig. 15.14 represents a systematic method for determining the point group.
symmetry (Bishop, 1973). With the exception of the icosahedral groups, non-
crystallographic point groups cannot have two or more n (C,) axes when
n >3, so that the highest symmetry is a single n (C,) axis. The flowchart
s used as follows: if the order, n, of the rotation is known, then start
the question: are there any two-fold rotation axes normal 1o the n-fold axis?
If the answer is yes, then follow the left branch and determine if there is a
‘mirror plane normal to the rotation axis. If so, then the point group s of the
type w/mmm (D,,): otherwise, find out if there are multiple mirror planes
that contain the n-fold axis. If yes, the point group symbol is A2m (Dy,,).
otherwise it is n22 (D,). The top right branch of the flowchart asks about
mirror planes and roto-inversions, and leads to an additional four different
point group symbols.

In summary, we have tabulated examples of the icosahedral, decagonal and
octagonal group symmetries that one may use to describe solid shapes and
molecules with non-crystallographic symmetries. The point groups treated in
this chapter are summarized in Table 15.3, along with the names of shapes

7 One of these subys
that they have the

aps actually represets two subgroups with the same symbol, indicating
ime multiplication table.
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Table 15,3, Example of shapes and molecules with symmetries belonging to
selected non-crystallographic point groups,

Point group [order]  Face form Point form Molccule

3% (1) [120] pentagon

Car Cu

Texecomahedron  petagon-dodeciedon
enagon dodecitedion
2 hecatonicosahedron | IUISH DY polyoma vieus
2010 k el icosahedron and poly
homb raconahedcon
HAE! pentagonal gl petagon
pyramid
3 0] pentagonsl pentagonal aniprism
Steepiohedron
S/m (Cy) [10] (same 23 5 (C,))
ol dipentagonal uncated pentagon
pyrami
5200 110] pentagonsl wistd pentagomsl Cun
wapezohedran aniprism
S (0, (20] dipentagonal pentagonal anipriom steed | 2 S
scalenohedron by pimacoid Fe(CsHo)
818 octagonal pyramid  regular octagon
)18l square square antprism
seeptohedron
/m () 16] actagonl prism
8220, [16] wistd octagonal
aniprism
$mm (€,,) [16] mncated octagon
§2m (D) [16] square antprism sliced by Sy
pinacoid
8/mmm (0, [32] edge-runcated octagonal  (CyHy
10(Co) [10] regular decagon
0 (Cs) (10]
10/m (Cos) (20] decagonal prism
1022(0,) 201 wisted decagonal
aniprism
1o (€ 0] g runcated decugon
—
_ P Ca
Tm2 () 0] dipentagonal uncared pentagonal prism | Cop. Ca
Ru(C; i),
10/mmm (D,,) [40] edgerruncated decagonal

prism
12(C) (1 regulr dodecagon
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Table 15.3. (cont).

Foint group [order] form Molecule
Ts (2] hesagonal hexagonal aniprism
suepiobecron
12/m () 24] dodecagonal dodecagonal prism
dipyramid
12220, 124] dodecagamil wisted dodecagonal antiprism
rapezohedron
12mm (Cyo) [24] didodecagonal  runcated dodecagon
_ pyramid
22m (0,,) (24] dodecagonal hexagonal aniprism sliced by @@
alenohedron  pinacaid
12/mmm (D) 48] didodceagonal  edge-trancated dodecagonal
dipyramid prism

with these symmetries, and a few representative molecules. The face form
is the name of an object bounded by flat faces, whereas the point form
is the dual shape of the face form. For more details we refer the inter-
ested reader 1o Chapter 10 in the International Tables for Crystallography
(Hahn, 1996).

15.9 Historical notes

Felix Christian Klein (1849-1925) was an influential German mathemati-
cian born in Dilsseldorf, Prussia (now Germany) on April 25, 1849. As a
mathematician he liked to point out that his birthday was 2%, 5%, 43 (all
numbers in the birthdate are the squares of prime numbers). Klein studied
mathematics and physics at the University of Bonn from 1865-66, where
he continued, receiving 4 doctorate in 1868. Klein's doctoral research was
supervised by Julius Plicker, Chair of Mathematics and Experimental Physics
at Bonn. Klein moved to Géingen in 1868, where he was made lecturer
in 1871 He was appointed professor at Erlangen, in Bavaria, in 1872. In
1875 he accepted a chair at the Technische Hochschule at Munich. From
1880-86, he served as Chair of Geometry at Leipzig. In 1886 Klein accepted
4 chair at the University of Gottingen, where he remained until retirement
in 1913

Klein established a mathematics research center in Gottingen and served as
editor (after Alfred Clebsch) of the journal Mathematische Annalen. Klein's
area of expertise was in analytical geometry. In particular, he contributed to
the study of the properties of figures that are invariant under 4 transformation
‘group. This work, which explored connections between geometry and group
s influential in the development of crystallography. Klein explicitly
d the field of crystallography when he suggested that Schonflies
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study the problem of space groups by considering transformation groups. This
suggestion led t tension of the work of Jordan addi rotations
o the discrete group of proper rotations (1892) (Lima-de-Faria, 1990).

Klein also published the important work Lectures on the Icosahedron and
the Solution of Equations of the Fifth Degree in 1876. In this book, he
showed how rotation groups could be applied to solve algebraic problems.
He also laid out the group theory for icosahedral groups (Klein, 1876), which
are prominent among the non-crystallographic point groups discussed in this
chapter. Tn 1884, this work was published as a book which was reprinted
in 1956 (Klein, 1956). One may find an interesting extended biography of
Klein at the history website of the School of Mathematics and Statistics at
the University of St. Andrews, Scotland.*

Richard Errett Smalley (1943-2005) was born in Akron, Ohio, on June 6,
1943 In 1946, his family moved to Kansas City, Missouri, where he stayed
until his university days. Smalley received his B.S. degree from the University
of Michigan in 1965. He worked for four years as a research chemist with Shell
and received his Ph.D. from Princeton in 1973. He pioncered supersonic beam
laser spectroscopy as a post-doctoral associate at the University of Chicago
‘working for Lennard Wharton and Donald Levy. Tn 1976, he joined the faculty
at Rice University where he discovered the Cg, molecule. He remained at
Rice as University Professor, Gene and Norman Hackerman Professor of
Chemistry, and Professor of Physics and Astronomy. He continued research
on continuous carbon nanofibers until his death in 2005.

* Smalley's atobiography. wrten for Le Prix Noke (1997) is reproduced at bis Rice
University website: tpsmale.ceedu.
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At Rice University, in 1976, Smalley began collaborations with Robert
Curl. He set up both a supersonic beam apparatus and a second generation
apparatus with pulsed supersonic nozzles 1o study large molecules, radicals,
and clusters. During the late 19705, he collaborated with Andrew Kaldor
and his group at Exxon on laser-based uranium isotope separation processes
Kaldor's group also observed the clusters with even numbers of C atoms in

4 laser vaporization cluster beam that are now known as fullerenes. These
experiments were repeated on the apparatus of Richard Smalley in 1985. The
discovery of fullerenes and the subsequent explanation for their structures

opened a new field of C chemistry which is stll growing today.'* Sma
ley was named the 1996 Nobel Laureate in Chemistry for the discovery of
fullerenes along with Robert Curl and Sir Harry Kroto. Kroto was active in
microwave spectroscopy. and his measurements determined the structure of
the C,, molecule."

(i) Subgroups of the icosahedral point groups: List all of the subgroups of
the icosahedral groups and their orders.

(ii) Icosahedral fullerenes: Determine the number of hexagons on the first
few icosahedral fullerenes: Cao, Caar Cgur Cisnr Caigr Cazgr Cior and

e

(iti) Icosahedron: Show that an icosahedron, with vertices a unit distance
from the origin and 2-fold axes on the Cartesian coordinate axes, has
vertex coordinates: (1,0, £7)/y/1+72+ cp, (cp denotes cyclic per-
mutations).

Pentagonal dodecahedron I: Show that a pentagonal dodecahedron,
with vertices a unit distance from the origin and two-fold axes
along the Cartesian coordinate axes, has vertices at: (0, 7, 1)/
(L £ £1)/3+cp

Pentagonal dodecahedron I1: Show that the pentagonal dodecahedron
is the dual of the icosahedron, i.e., show a mapping of the faces and
Vertices of the icosahedron into the vertices and faces of the pentagonal
dodecahedron. Show that the pentagonal dodecahedron is 2 b=1,c =0
Goldberg polyhedron.

(v

0 An intresting account of the discovery of the fullerenes and the period afte thei discovery.
is given in the book Perfecr Symenr: The Accidental Discovery of the Fullerenes (Baggott
1994)

1 Another account of the discovery of the fullcrenes is given by Kroto at the URL
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(vi) Cube: Show that the cube is the dual of the octahedron, i.e., that
there is a mapping of the faces and vertices of the cube into the
vertices and faces of the octahedron.

(vii) Tetrahedron: Show that the coordinates for a tetrahedron with unit
edge length and with two-fold axes oriented on the Cartesian coor-
dinate axes are given by: [£1,0, /3]/2 and [0, &1, —/3]/2.

(a) Express the coordinates of a dual with unit edges obtained by
decorating the faces of the original tetrahedron.

(b) Construct the shape resulting from connecting the closest vertices
of a tetrahedron and its interpenetrating dual (the rerraheder-
stern).

(vill) Characters: Show that the trace (character) of a matrix for an n-
fold rotation axis is 1-+2cos(2m/n). For which of the one-through
twelve-fold axes is the trace an irrational number? Discuss the result
in light of the law of rational indices

(ix) Golden mean, : Show that 7* = -+ 1. Show that the trace of a 5
(C,) rotation matrix about the z-axis s 7. Show that the trace of a 5°
(C3) rotation matrix about th

(x) Cyelic groups: Show that the groups of simple rotations n (C,) are
cyclic. Show that any group whose order is a prime number must be
cyclic.

(xi) Alternating group Ay: Consider three elements: (12 3) mapped into
the vertices of an equilateral triangle. Construct the symmelry oper-
ations of the alrernating group Ay. Construct a group multiplication
table for this group. To what crystallographic point groups is this
‘group isomorphous?

(xii) Symmetric group S,: Consider three elements: (12 3) mapped into the
vertices of an equilateral riangle. Construct the symmetry oper
of the symmetric group S,. Construct a group multiplication table
for this group. To what crystallographic point groups is this group
isomorphous?

(xiii) Alternating group A Consider four elements: (12 3 4) mapped into

vertices of a tetrahedron. Construct the symmetry operations of
the alternating group A, Construct the group multiplication table
for this group. To what crystallographic point groups is this group
isomorphous?

(xiv) Symmetric group $,: Consider four elements: (12 3 4) mapped into
the vertices of a tetrahedron. Construct the symmetry operations of
the symmetric group S,. Construct the group multiplication table
for this group. To what crystallographic point groups is this group
isomorphous

(xv) Symmetric groups: Show that the order of the symmetric group S,

= ! Show that S, (i > 2) has two subgroups, one of all even

g
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and one of all odd permutations of 1 numbers, and both have order
Ji = nl/2. Show this decomposition for the icosahedral and cubic
groups.

(xvi) Pentagonal point group: Determine symmetry operations for the fer-
rocene [(CH),Fe] molecule. What point group does this represent?

(xvii) Decagonal point group: List all operations of the decagonal group.
What is the group’s order? Construct a shape with decagonal sym-
metry.

(xviii) Direct product 5 (C;) and 1 (C,): Consider a five-fold axis for the
pentagonal point group 5 (C) oriented along the -axis in a Cartesian
coordinate system. List rotation matrices for the five operations of
this group. Express the rotation matrix for the inversion operation.
Identify new operations obtained in the direct product of the five-fold
rotation matrices of the 5 (C;) and the inversion group 1 (C;). What

the new group obtained?

(xix) Direct product 5 (C) and 2/m (Cy,): Consider a five-fold axi
oriented along the z-axis in a Cartesian coordinate system, for the 5
(C4) group. Express the rotation matrix for a horizontal mirror plane.
Take the direct product of the five-fold rotation matrices of the 5m
(D) and the 2/m (C,,) group. Identify the new operations obtained.
‘What is the new group obtained?

(xX) C isomer: Fig. 15.16 illustrates one of the isomers of a Cy fullerene
along a six-fold axis () and orthogonal to the six-fold axis (b). List
the symmetry elements for this molecule and identify its point group.

(xxi) 7 (C;) point group: Express the multiplication table for the heptago-
nal group. Is it cyclic? What is the character (trace) of its generating
matrix?

(xxii) 7 (C;) point group: What are the intersections of heptagonal and
cubic groups?

(xxiti) Truncated polyhedra: Explain why the octagonal faces on a trun-
cated cube do not possess eight-fold symmetry. Do the same for the

xis
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hexagonal faces on the truncated icosahedron to show that they do
not possess six-fold symmetry.
(xxiv) Octagonal groups I Express a generating relationship for 8/mmm

(Dg)-

(xxv) Octagonal groups II: List the intersections of the octagonal and cubic.

groups.

(xxvi) Octagonal groups IHI: Determine the operations that are lost in reduc-

ing the symmetry from 8/mmm (Dy,) to 8mm (Cy,).

Octagonal groups IV: Determine the classes of operations for the 8

(Cs) group by determining the trace of the 3-D rotation matric

each element.

(xxviii) Octagonal groups V: Determine the generator for the point group §
(Cy). Construct the multiplication table for this group. Identify the
powers of the generator element that can be reduced to rota
with smaller 1.

(xxix) Decagonal groups: Express a generating relationship for 10/mmm

(xxv

for

m axes

(D)

(xxx) Dodecagonal groups: Construct a descent in symmetry for groups
with twelve-fold rotational axes. What are their intersections with
the cubic groups? And with the hexagonal groups?

(xxxi) Dodecagonal point group classes: Determine the classes of opera-
tions for the 12 (C,,) group by determining the trace of the 3-D
Cartesian coordinate rotation matrices for each element

(xxxii) 1, point group: Develop a recursive relationship to generate rotation
matrices for the 120 operations of the I, group in & coordinate
system in which the x, y, and z axes correspond to the two-fold
rotational axes. Write a program using matrix generators and the
‘generating relationship to list the operations of the T, group. Organize.
the matrices into classes for which the rrace of the matrices is the
same. Develop a group multiplication table for the I, group.
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16.1 Introduction
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Periodic and aperiodic tilings

“The diversity of the phenomena of nature is so great, and the treasures hidden in
the heavens so rich, precisely in order that the human mind shall never be lacking
in fresh nourishmen.

Johannes Kepler 15711630

Crystalline solids have been described in terms of a Bravais lati
For more complex crystal structures, it is instructive to des
terms of the stacking of crystalline planes. While there are 230 space groups,

there are only 17 plane groups, which simplifies classification. However, the

ely. In the present chapter, we build upon
these concepts to introduce the mathematics, nomenclature, and classific:
tion schemes often encountered in the materials or crystallographic literature

of 2-D periodic tilings. Since quasi-periodic and aperiodic tilings such as
the Penrose tile have become important in crystallography (e.g.. quasicry
tallography), we describe these important tilings in this chapter. A detailed
discussion of quasicrystallography is left for Chapter 20. Finally, we end with
4 discussion of the construction of 3-D structures from the stacking of 2-D
tiles, and the ling of an n-dimensional space with polyhedra (in 3-D) or
polytopes (in higher dimensional spaces,

n=3).
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16.2 2-D plane tilings

In the mathematical literature, a tiling s synonymous with a tessellation. The
theory of tilings is rich, and we will introduce concepts that are useful for
the classification of crystal structures. The text Mathematical Models (Cundy
and Rollet, 1952), was cited in the original definitions of Frank-Kasper
phases to be discussed in Chapter 18. The more recent book, Tilings and
Patterns (Gritnbaum and Shepard, 1987), is an authoritative treatment of thi
subject. Quasicrystals and Geometry (Senechal, 1995), is an excellent review
of aperiodic tilings and quasicrystals. Box 16.1 defines a plane tiling, and its
prototiles.!

16.2.1 2-D regular tilings

We begin by discussing the three regular filings of the 2-D plane illustrated
in Fig. 16.1. These are examples of monohedral tilings, i.e., all the tiles are
the same size and shape. These tilings are also edge-ro-edge, meaning that
all tles share edges. For regular tilings, the prototiles are regular polygons.
A regular polygon has identical sides and interior angles. We prove that there
are only three regular tilings in Box 16.2

The three possible regular tilings (edge-to-edge, monohedral regular poly-
gons as prototiles) are shown in Fig. 16.1. Their tiles are an equilateral
triangle, a square, and a regular hexagon, respectively. The tilings are labeled
by the Schidfli symbols, 3%, 4, and 6'

Box 16.1 Definitions of plane tilings and their tiles

A plane tiling, T is a countable family of closed sets

which covers the plane without gaps or overlaps (Griinbaum and Shepard,
1987). The clements:

are the riles of 7. The interiors of the tiles, 7;, are taken as being pairwise
disjoint, i.e., they have no area in common. The union of the sets
therefore, the entire plane.

Protailes ar the tles used as the basis for the tlings.
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Fig. 16.1. The tree regular
tiings ¥, 4',and &,

Periodic and aperiodic tilings

Box 16.2 Derivation of the Regular Tilings

Consider a regular polygon with r sides. The angle between the two sides
meeting at a single vertex is (1—2/r). The valence, v, of a vertex in the
tiling is the number of r-gons meeting at that vertex. As we travel the 27
radians around any vertex, we encounter v identical polygons. Therefore,
the angle between any two consecutive sides meeting al this vertex is
277/v. Equating the two expressions for these angle

we can solve for integers 7 and v, that satisfy this criterion. Rearranging
yields:

wr-2r-w=0 or (r-2)(v

By inspection. one c:
equation are (-

determine that the only integer solutions.
6), (r=4,v

to this

6.v

A Schliifli symbol describes the number and rype of polygons (n-gons)
that meet at a vertex in the tiling.

Note that in tiling drawings, we will often highlight the points at which
neighboring tiles meet with a filled circle; these circles do not belong (o the
tiles, and are only used to clarify the drawings. In the regular triangular tiling,
6 equilateral triangles (3-gons) meet at any vertex. This tiling i then described
a5 3° in the Schlafli notation. The square tiling has 4 squares (4-gons) meeting
ata point and is, hence, given the symbol 4°. Finally, the hexagonal tiling has
3 hexagons (6-gons) meeting at a vertex and receives the symbol 6°. In tilings
with regular polygons that are not monohedral, we may have more than one
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type of regular polygon meeting at & vertex and the tiling may have more
than one type of vertex.

16.2.2 2-D Archimedean tilings

If we relax the restriction of a monohedral tiling, but require: (a) that the
tiling be edge-to-edge; (b) that the tiles be regular polygons; and (c) that all
vertices are of the same type, then we can show that 11 distinct tilings result
(including the three regular tilings). These tilings are known as wiiform tilings
or Archimedean tilings

All vertices in a uniform tiling are symmetrically equivalent.

They can be labeled by a Schlafli symbol that describes (1) each poly;
type and (2) the degeneracy of each type which meets at an equivalent vertex.

As illustrated in Fig. 16.2, the eight uniform tilings are: (3*-6), (3°-4%),
(304:3:4), (3-4:6-4), (3-6-3-6) (known as the Kagome tiling). (3-12%),
(4+6-12), and (4+82). The 3*-6 tiling occurs in two enantiomorphic forms
(i.e. ight-and left-handed). Consider the 4-8? tiling, as an example. At each
vertex of this tiling, a single square (4) and two regular octagons (82) meet,
resulting in the Schlifli symbol (4-82). Note that for the Archimedean tling
s we travel 277 radians around any vertex we come upon a regular
square, a regular hexagon, and finally another square. Thus the
$(3:4:6-4), and not (3-6-4%).

The Archimedean tilings are also called Kepler filings. Kepler proved
that these were the only tilings of the plane by regular polygons with all
vertices surrounded identically. The procedure for the proof is sketched out
in Box 16.3. It is instructive to consider the uniform tiles within the context
of the 2-D plane groups that have been introduced previously. An example is
shown in Box 16.4

Fi. 16.2. The cight addiional g § % % % é
uifor (chimedean) tlings -
(top et to bottom right:
AR 458
48,616
o w0,
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Box 16.3 How to determine the 11 Kepler tiles

Cor
the
ny equil

ider a regular polygon with 7 sides and the angle (1—2/r) between
ides. As we travel the 277 radians around any vertex, we encounter

teral triangles, n, squares, s pentagons, 7, hexagons,
r-gons. The total angle 27 equals the sum of the angles of all the
meeting at the vertex

where N, denotes the highest order of polygon present. There are 17
solutions to this equation, and four have two ways of arranging the r-gons
around the vertex yielding 21 vertex types. Because proving this is a long
process we will regard this as a fact. To show that only 11 of these allow
repeated tiling of the entire plane, we must show that 10 out of 21 vertex
types do not allow for the tiling of the planc without gaps. The reader can
prove that the 11 Kepler iles are solutions to this equation as an exercise,

Box 16.4 Symmetry, 2-D point group, Bravais lattice and dual of a
regular tiling

Question: Describe the translational and rotational symmetries of the 3*
4-3-4 Archimedean tiling and determine its plane group. Construct cells

Solution: The solution is illustrated in the figure above. The unit cell is a
square containing two square tiles and four triangular tiles (lower left). The
plane group is pdgm (far right) with four-fold and two-fold symmetry axes,
mirror and glide planes (upper left). The construction of four Wigner-Seitz
cells closer to one vertex than to any other is shown (middle). These give
tise to a (dual) tiling of the plane, which is an example of a Laves tiling.
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16.2.3 k-uniform regular tilings

If we relax the restriction of a monohedral tiling by still requiring edg
edge tiling of regular polygons, but now allowing for two types of vert

then we have 2-uniform tilings. There are symmetry operations relating all

the vertices of one type or the other, but no symmetry operations that take
4 vertex of the first kind into a vertex of the second. We can see that there
are 20 distinet types of 2-uniform, edge-to-edge tilings by regular polygons.
These are shown in Fig. 163,

nd are uw.nhul by the following Schlifli

symbols: (3% 34-6),, (3% 3°-4-12), (3" +4% 3:4-6-4), (3-4-3-12; 3-12%),
(3531-6),, (4 30.61), (3145 41),, 3-4-6:3-4.6.4), (05 3 -4),. (3 6;
30.67), (345 4, (34760 3:-6-3-6),, (303 47),, (30 4% 37 4.3.4),,

(37:4:3-4:3-4-6-4), (3:-47:6;3:6:3-6),, (3
(316%3-6-3-6), and (3-4-6-4; 4-6-12).

As a natural extension of the 2-uniform tilings, we can describe k-uniform
e, in which there are  symmetrcally distinct vertex types inthe tling. An
example of a 3-uniform tiling, ( 2.4-3.4; 4%) is shown in Fig. 16.4 (a).
For the remainder of this texi, we will not study 4-uniform lings where
k> 2. Figure 16.4 (b) illustrates both a tiling and its superimposed dual tiling
as discussed below.

3.4, (64 3454,

16.2.4 Dual tilings - the Laves tilings

Fig 163, The 20, 2aniform
tlng ofthe plane, Let (op to
bottom: (55 36}, 5%
F4012), (545 38-6.4),
(64312, 3.12), (5%
36, (36, (547
), B4763-4:6-0), (%
o), and (56 7€)
T 04541,
-6, (6

Lx‘ 403 n.‘
(7-4:3-43.4-6-4),
B-636:3.9, 6"

‘There is another class of tilings in which we do not require regular edges, yet
we require that the vertices be regular. If we have v edges which meet at a
vertex, we define the valence of the vertex as v
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Fig. 16.4. (2) Bxample of .
S g, (7

+4:3.4; 4%; () lustraion
m i iR

and,
Supmmpux!d‘ s cual Laves
e

Periodic and aperiodic tilings

A vertex is a regular vertex if the angle between all consecutive pairs of
edges is 27/v, i.e., the angular distribution of edges about the vertex is
regular

There is a one-to-one correspondence between these new tiles and the
Archimedean tiles: each Archimedean tile has a dual in the set of tiles with
regular vertices. This duality is a significant concept. For a given tile
(U0, v,), we construct its dual, [v;,vs,...,v,], by mapping the
tile centers of the first tiling into the vertices of its dual and the vertices of
the first into the tle centers in its dual > Thus, the dual preserves the symmetry
of the original tile. A tling and its dual are completely analogous t0 a lattice
and its reciprocal lattice.

Consider tiles that are polygons with r sides and vertex valences vy, ...,
The computation in Box 16.5 explains how to derive an equation for m
possible tilings with regular vertices. There are 17 solutions to this equation

Box 16.5 Derivation of an equation to determine tilings with regular
vertices

The sum of the angles at the comers of the regular polygons is (r —2)m.

50 that:

r-2m

after rearranging the terms, we obtain:

©=2, -2 -2
vy

v

Itis not difficult to find solutions for this equation by trial and error. For
instance, the tiling [3-6-3-6] obviously satisfies this equation.

* At is designated by (....) and itsdual by ... .
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Fig.16.5. The 11 Laves tings,
Top Row: [, [5* 6], [5°- 7],
3-127), 4 [4-6-121;
Comt p* gal

6 [5-4-6-4] 4- 8]
& [5’1 The hlmg [r )
occurs in 2 enantiomorphic
forms,
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(Griinbaum and Shepard, 1987), giving rise to 21 possibilities for the valences
aken around a Of the 21 possibilities. only 11 are

‘monohedral

The Laves tilings are the eleven monohedral tilings with regular vertices
that are duals to the Archimedean tilings.

The tiles and their duals have identical rotational symmetries. The Laves tiles,

are important in the study of complex metallic alloys, are illustrated in

ue of duality has further significance. For lattices with unit lattice
parameters, the reciprocal lattice and the dual tiling are identical. Fig. 16.4(b)
illustrates the Archimedean tile (3%, 4,3, 4) and, superimposed, its dual Laves

of the original nlmg, ie., the dual tiles represent the locus of points closer
t0 one vertex than to any other in the original tling. It is apparent that the
regular tiles (3°) and (6) are duals of one another, i, [3°] = (6%) and (6]
= (3°). The regular tile (4*) is self-dual, i.e.. [4'] = (4*).

ings without regular vertices

In addition to the regular tilings introduced in the previous sections, we can

imagine an infinite number of tilings that involve tiles without regular vertices.
Among these are interesting tiles that encompass simple symmetry reductions
of regular tiles, accomplished by anisotropic deformation. For example, a
ortion of the 4 tiling by stretching along the x- or y-axis will give rise 1o
4 rectangular iling.

* Some solutions lead to more than one possibility because of enantiomorphis.
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Fig 166, () (%) 111112
regular and (5°) 1111124
imedean two-olored

tings.

Periodic and aperiadic tings

In this section, we illustrate one aspect of color rlings, the uniform coloring
of regular tilings. We can assign colors to each of the vertices or we can
assign one color to the entire tile. If we color the vertices with two colors, we.
can represent important magnetic symmetries, where the two colors denote
spin up and spin down. In what follows, we will consider concepts that are
also useful in quilting, wallpapering, and floor tiling with tles of more than
one color.

A colored tling is a plane tling, T = (7, Ty,. .. } that covers the plane
without gaps or overlaps and cach of the iles, T;, T, . . is assigned one
of a finite number of colors.

A complete description of color groups is beyond the scope of this text
‘The interested reader is referred to Griinbaum and Shepard for a detailed
discussion hepard, 1987). The question *4

tiling 50 that it remains uniform or just Archimedean?” is a more manageable
problem which we will discuss here.

Figure 16.6 distinguishes between a uniform and an Archimedean colored
tiling of the regular tiling (3°). These tilings are designated the symbols (3%)
111112 and (3%) 111112-A, where the sequence 111112 assigns the coloring
of the six tiles around a vertex. The numeral 1 represents the cotor white and
2 represents black. Every vertex has five white and one black tile connected
10 it. Both are Archimedean because each vertex is surounded by tiles of
the same colors arranged in the same way. In Fig. 16.6 (a), all of the black
triangles are pointing down, therefore all are equivalent. Thus, this colored
tiling is also uniform. Because in Fig. 16.6 (b) half of the triangles point
down and half point up, this not a uniform color tling.

There are six possible uniform colored tilings of the original (3°) tiling
(Griinbaum and Shepard, 1987). If we consider all the ways of coloring
the tles around a vertex and determine whether the coloring is uniform or
Archimedean, we can list all such tiles. With two colors of tiles (i., black
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Fig. 16.7. Al reulr single
and two-olored tings ofthe
plan ting (3): (@) ()

I 6) () 11112 O

%) 11212 @) (%) 1122

© 69 12122, 20d () (5°)
21212,

163 #Color tilings

and white), we can have six regular two-colored tilings of the plane tiling
(39), as illustrated in Fig. 16.6. These regular single or two-colored tilings
are (a) (3°) 11T11; (b) (3) 1111123 (¢) (3%) 111212; (d) (3%) 111222 (e)
(3°) 112122, and (f) (3°) 121212, Note that the trivial examples where the
color 1 is mapped into 2 or 2 into 1 (e. g., (3%) 222222, (3¥) 222221, etc.) are
degenerate tilings. If we allow for more colors, we can introduce additional
regular n-colored tilings. It is left as an exercise for the reader to show that
the only regular 3-colored tilings of (3%) are (3%) 111213 and (3%) 121213 and
the only regular 4-colored tiling of (3) is (3%) 121314, There are no uniform
5- or 6-colored regular tilings of (3°).

We can similarly determine the re;

lar n-colored tilings of (4) and (6").
However, there is an added complication in the case of (4°), where two distinct
tilings have identical labels. The additional regular single and 2-colored tilings
are (4) 1111, (4) 1112 (i), (4%) 1112 (i), (4) 1122, (4%) 1212, (6%) 111
and (6%) 112. The additional regular 3-colored tilings are (4%) 1123 (i), (4%)
1123 (i), (4*) 1213 and (6%) 123, respectively. Only one additional regular
4-colored tiling is possible: the (4') 1234. The reader is encouraged to make
color drawings of these tilings.

We can determine the regular n-colored tilings of the other Archimedean
plane tilings. These include the 2-colored tilings (3*-4%) 11122, (3*-4-3-4)
11212, (3-6-3-6) 2121, (3-12%) 211, and (4-8%) 211; and the 3-colored
tilings (3*6) 11213, (32-4-3-4) 11213, (3-4-6-4) 2131, (3-6-3-6) 2131,
(4-6-12) 123, and (4-8%) 312. An additional Archimedean, but not regular
tiling, exists as (3'+4%) 11123-A. Once again, the reader is encouraged to
‘make color drawings of these tilings as an exercise.

4 The reader is referred to Griimbaum and Shepard (Griibaum and Shepard, 1987) for
illustrations of these additonal regular color tlings,
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Fig. 16.8. Two-dimensional
Penose ting,

Periodic and aperiodic tilings

lings

A recent development in crystallography is the discovery of guasicrysialline
alloys, i.e., alloys that exhibit quasi-periodic structures. The motifs in qua
sicrystals are typically built out of units with non-crystallographic symme
tries, and consist of more than one tile (in 2-D) or brick (in 3-D). The
dimensions (lengths, areas, or volumes) of these pairs of tiles are related to
each other by an irrarional number. While the motifs are not periodic in
the traditional (translational) sense, there is a set of rules for constructing a
space-filling tling. If quasi-lartices are decorated with atoms, they diffract
under Bragg conditions. The resulting diffraction patiern has discrete peaks
in the scattered X-ray intensity and symmetrically oriented spots in electron
diffraction.

Figure 16.8 illustrates the famous Penrose tiling (Penrose, 1974, 1978,
Gardner, 1977), an example of a plane tiling which preserves global five-
fold symmetry. We can identify two Penrose rhombs with areas in the
ratio of the golden mean = (1++/5)/2 = 1.618034. 7 is an imational
fiumber often encountered in pentagonal geometry. We can construct pseudo-
translations in the Penrose tile by adding vectors pointing to the five ver-
tices of the pentagon. This set of five basis vectors allow us to think of
the Penrose tile as a crystal projected from a higher-dimensional (5-D in
this case) space, where the imational relationship between the two tles
is maintained.

Fxamples of 3-D. alloys and dral alloys,
first observed in AI-T and Al-T-Si alloys (T = transition metal atom). Tcosa-
hedral alloys exhibit global icosahedral symmetry. Thus, electron diffraction
patterns conform 1o the icosahedral stereographic projections illustrated in
Chapter 15. Icosahedral quasicrystals are likened to 3-D Penrose tik
Penrose “brick” volumes in the ratio of the golden mean. We can construct
pseudo-translations in icosahedral quasicrystals by adding vectors pointing to

with
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6 of the 12 vertices of an icosahedron. This set of six basis vectors indicates
that we can think of icosahedral quasicrystals as crystals projected from a
6-D space, in such a way that the irrational relationship between the two

results.

16.5 xRegular polyhedra and n-dimensional regular polytopes

While there are three regular tiles in 2-D, the equilateral riangle, the hexagon,
and the square, there are five regular or Platonic solids in 3-D. These are
illustrated in Fig. 16.9 in a ball-and-stick format with “atoms” at the vertices
of the polyhedron surrounding a central atom.

The Platonic solids are: the tetrahedron, which is its own dual; the cube
and octahedron, which are duals; and the icosahedron and pentagonal
dodecahedron, which are duals.

Of the Platonic solids, only the cube can be used to tile 3-D Euclidian space.
Although the other four solids ofien occur as coordination polyhedra in 3-D
solids, they occur mostly as distorted units or clusters. Because these other poly-

of these solids. We

her-dimensional spaces which preserve the symme

R
oReA

5 We discuss quasi-periodic flings and quasierysals in great detsl in Chapier 20,
Quasi-periodic tlings can be generated using the QuasiTler from the Geometry Center at
the University of Minnesota. QuasiTiler generates quasi-periodic tilings by project
Sections of higher-dimensional integer lttices onto a plane, an approdch intraduced by
de Bruijn (1981). Oriinally, QuasiTiter was writien for NeXTSTEP. for Majorie Sencchal
avisitor i the Geometry Center. Sencehal s the author of an authoritatise book on the
‘eometry of quasicrysials (Senechal, 1995).

Fig. 16, Ballandstck and
wite frame representatons
ofthe Platonic solics:

(2 iosahedron,

() pentagonal dodecahedron,
(9 cube, d) octahedron, and.
(o) tetrahedron. @
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Fi. 16,10, Geodescs (party
runcted): () icosahedron
and () peniagonal
dodecahedron.

Periodic and aperiodic tlings

In the mathematics of tilings, we can consider tilings or tessellations of
n-D spaces, such as the n-dimensional Euclidean space, or curved spaces,
such as spherical surfaces or hyperbolic surfaces. We denote these spaces as
E, S, and H, respectively, and the dimension of the space is indicated as a
superscript. For the most part, we are interested in Euclidean and, sometimes,
spherical spaces. Hyperbolic spaces are used in the description of lattice
defecs, in particular disclinations.

If we have curved arcs instead of lines as edges, we can show that the
Platonic solids are polyhedra that tile the spherical space, §°, i.e., the sur-
face of a sphere. These curved edge structures are called geodesic structures.
Figure 16.10 shows examples of geodesic tilings: the (partly truncated) icosa-
hedral (a) and pentagonal dodecahedral (b) tilings.¢ The partal truncation
emphasizes the five-fold symmetry axes in (a) and the three-fold symmetry
axes in (b). If we replace the curved edges of regular geodesics by straight
lines, then we obtain the Platonic solids. The cube is the only regular solid
that will tile the 3-D Euclidian space, E*. These progressive geometric ideas
allow us to extend the concept of regular tilings to higher-dimensional spaces
such as the 3-D spherical space, §°, and 4-D Euclidean space, E*. Such
higher-dimensional tles are known as regular polytopes (Coxeter, 1973). This
nomenclature extends the sequence described in Table 16.2.

‘We can also describe #-D tiles by Schlifli symbols. Anticipating the need
for three or more symbols to describe a node, we make a slight modification
to the nomenclature to describe these tiles; in particular, we will no longer
use superscripts. For the regular tiles of S? , i.e., the Platonic solids, we use
the Schlifli symbol {p, g}, where p denotes the regular polygon that forms
the faces and g the number of regular polygons meeting at a node. The
tetrahedron is then designated as (3, 3}, the octahedron as {3, 4}, the cube as
{4,3}, the icosahedron as {3, 5}, and the pentagonal dodecahedron as {5, 3)

[ “Truncated and semi-regular solids that have two types of rgular polyhedra
| as faces are called Archimedean solids.

®

© These were generated using Kaleidotile (Version 1.5) writen by 1. Weeks for The Geometry
Center htp//geometrygames.org.
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G

The 13 Archimedean solids are illusirated in Fig. 16.11. Table 16.1 sum-
marizes the geometrical features of each of the Platonic and Archiimedean
solids. This table gives the number of vertices, V. edges. E, and faces. F
for the 5 Platonic and 13 Archimedean solids. The table also lists a volume
factor, V., and the Schlifli symbol. The total volume of each solid is given
by V,L?. where L is the cdge length.

“The five solids that are obained by simple truncation of the Platonie solids
are given the Schifli symbol r{p. g}, where p and g denote the regular
polygons that form the two types of faces. Truncation results in polygons with
the symmetry of the original vertex; e.g., pentagons replace vertices for the
truncated icosahedron, and the original triangular faces become hexagons after
sufficient truncation to form a regular polygon. The five Archimedean solids
resulting from truncation of the Platonic solids are the fruncated tetrahedon,
designated, 1(3,3); truncated octahedron, 1(3,4); runcated cube, 1(4,3);
truncated icosahedron, 1{3, 5}: and truncated dodecahedron, 1(5.3}.

Two additional Archimedean solids are the quasi-regular solids. These
have two types of regular polyhedral faces, where each face of one kind is
surrounded completely by faces of the other kind. They are given Schlifl
symbols of the type ( J ] . where again p and g denote the regular polygons that
form the two types of faces. The quasi-regular solids are the cuboctahedron
{3} and icosidodecahedron {}}.
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Table 16.1. Number of vertices V/, edges £, and faces F for the 5 Platonic and 13
Archimedean solids, along with the volume factor V, and Schifli symbol.

Polyhedron v E Vi Schlifli symbol
tetrahedron 4 6 4 ons (3.3
octahedron 6 12 8 041 {34)
8 12 6 1000 [4,3)
icosahedron 230 12 2182 (3,5)
pentagonal dodecahedron 20 30 12 7663 {5.3)
truncated tetrahedron 218 8 2711 3.3}
truncated octahedron 24 36 14 1131 3,4
truncated cut 24 36 14 1360 (4,3}
truncated icosahedron 60 90 3 5529 r[35)
truncated dodecahedron 60 90 32 8504 (53]
2o o o2 [
icosidodecahedron 0 60 2 ns ()
Hhombicuboctabdron 4 4 36 s ol
shombicosidodectheds o 120 62 4alel  rf})
mbitruncated cuboctahedron s 72 26 4180 i}
hombitruncated icosidodecaliedron 120 180 62 2068 1] ]
snub cube 24 0 3 780 s|
snub dodecahedron 0 10 % e |

‘The Schlifli symbol for the remaining solids employ the characters r, s, and
+ for thombic, snub, and (shombi)truncated, respectively. The rhombic solids
are given the Schlifli symbols r ( 5], where thombic implies additional square
faces. There are two of these: the rhombicuboctahedron r {3} and rhombi-
cosidodecahedron r {}}, respectively. The rhombitruncated solids, given the
Schlifli symbols ¢{" |, are the rhombitruncated cuboctahedron ¢ {7} and

rhombitruncated icosidodecahedron {3} Snub implies additional triangular
faces; the snub solids are given the Schlfli symbols s ['l }- ey are the st
cube s {3} and snub dodecahedron s {3}.

A simple closed surfuce separates space into interior, surface, and exterior
points. A polyhedron is a simple closed surface made of polygonal regions.
Euler's formula, which relates the number of edges, vertices, and faces of a
simply connected polyhedron i

F-E+V=2 (16.1)

Iis easy to verify that this relation is satisfied by all the Platonic and
‘Archimedean solids in Table 16.1. This formula was discovered around 1750
by the Swiss mathematician Leonhard Euler (1707-1783), and first proven
by Legendre in 1794.
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Table 16.2. Summary of regular polytopes in £*. V is the number of vertces, £ is
the number of edges, £ is the number of faces and P is the number of polyhedra.

Name Tile  Teselaion V£ r 3
Regular Simplex  (3.3] (33,3 5 10 10 s
le-cell (3] [3.3.9) s 2 2 16
600-cell (3] [3.3.5) 20 70 1200 600
24-cell (.4 (3.4.3) 2 9% 9% 2
Hypercube: (@3] [4.3.3) 16 32 2 8
120-cell (53] 15.3.3) 60 1200 70 120
We describe tessellations in higher-dimensional spaces by the arrangement

of r regular blocks {p. q) in an edge-to-edge arrangement with the Schlifli
symbol {p. g. ). The Schlafli symbol for the cube is {4, 3). The only ulm
of the spherical space §° are (3,3,3), (3,3,4), (3.3,5), (4.3,3), (3,
and (5,3,3). There are six tesselations of £, which are mmmdnuu in
‘Table 16.2 (Coxeter, 1973). We find several of these tessellations to be impor-
tant in high

~dimensional spaces from which we project quas
amorphous structures.

We can tile another curved 2-D space by taking any of the plane tili
discussed in this chapter and wrapping it around the circumference of a
eylinder so that the vertices at the beginning and the end of the cylinder
coincide. Such a construction is important in the discussion of the structure
of carbon nanotubes (CNT) in Chapter 25. We describe the results of such
tilings of the cylinder in terms of a chiral angle, 6, that describes the direction
of the plane tile’s wrapping around the cylinder.

stalline and

16.6 Crystals with stacking of 3° tilings

We can decompose 3-D crystal structures into stackings of 2-D tilings. In this
section, we give examples of the ordered stacking of atomic close-packed
planes. Crystals that are fec or hep have low index planes with simple 3°
tilings. We use stacking sequences of these tilings to describe the polytypes of
the wide bandgap semiconductor SiC. Polytypes are structures of the same
compound that differ only in their stacking sequence.

16.6.1

ple close-packed structures: ABC stacking

The /¢( and fep structures can be described in terms of regular triangular
s, decorated with atoms at all vertices. The distance between vertices
the atomic radius, 2r. In the hep strueture,
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these tilings make up the (00.1) planes, whereas in the fec structure they
correspond to the (111 planes. The fec structure is also known as the cubic
close-packed structure, ccp. The hexagonal coordination of atoms in close-
packed planes about a central atom of equal size is illustrated in Fig. 16.12.

The 3¢ plane ling has a p6mm plane group with lattice parameters
r and - = 2m/3. Touching sphere atoms sit on each vertex of the
1‘ tiling; we refer to these sites in the first close-packed layer as A-sites. Close
packing leaves two types of voids or interstices that manifest themselves as
triangles in the plane. Triangles with their apex pointing up sit at B-sites, and
those with apex pointing downward sit at C-sites. The A-, B-, and C-sites
have basal plane coordinates (0, 0), (1/3,2/3), and (2/3, 1/3), respectively.
‘The B- and C-sites are displaced, in the basal plane, with respect to A-sites by
vectors +8 and —S, respectively, where § = 4[1010]/3 in the Miller-Bravais
notation (Krishna and Pandey, 2001).

We can construct 3-D close-packed structures with particular stacking
sequences of the close-packed planes, as illustrated in Fig. 16.13. For touch-
ing spheres, cach subsequent plane is at an elevation z = a/273 with respect
to the previous one. Figure 16.13 shows stacking sequences for the hcp
and fee structures. The tilings are the same in stacked layers, but trans-
lated so that the ABAB. .. stacking constitutes the cp structure, and the
ABCABC. ... stacking sequence constitutes the fec structure.

@

Fig 16.13. (2 Close-packed planesin the A strucure (above), At toms are black and Bsite

ms are grey. I the fc srucure (below) an addiional layer of C:se atoms are ight gray; o)

dosegaded ) hppane (1) K0 Q rfecion of e hpsucre i 3 00)plr:
and the fcc strcture projected into the (111) plane.
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Figure 16.13 (a) (top) shows ABAB. .. stacking of close-packed planes in
the hep structure. Atoms on the A-sites are colored black, and those on the B-
sites are colored gray. Figure 16.13 (a) (bottom) illustrates the ABCABC.
stacking of close-packed planes in the fec structure. Aloms on the C-sites are
colored light gray. Figure 16.13(b) shows a close-packed (00.1) hep plane (or
(111) in fec), decorated with A-site atoms, for reference. This is equivalent
to the (111) plane for the fec lattice. We distinguish the two structures by
projecting all of the atoms into the close-packed planes. Figure 16.13(c)
(top) shows the projection of all atoms in the hcp structure into an (00.1)
plane, illustrating the occupancy of the A- and B-sites and empty Csites
Figure 16.1 ion of the fec structure into a (1)
plane with all A-, B-, and C-sites occupied.

16.6.2 Interstitial sites in close-packed structures

Fig. 16.14. Atoms and
edra about

() tetrahedral and

®) octahedral intrstices

The interstices in a close-packed structure can be occupied by other atoms
to form new compound structures. Figure 16.14 shows the two types of
interstices that exist in close-packed structures. If the triangular void in a
close-packed structure has an atom directly above i, then the four atoms
surrounding the interstice form a regular tetrahedron (Fig. 16.14(a)). This is
a tetrahedral interstice, or tetrahedral interstitial site.

Figure 16.14(b) shows an octahedral interstice, or octahedral interstitial
site. Here the wiangular void does not have an atom directly above it. The
six atoms surrounding the interstitial site form an octahedron. If the two
atomic layers are A and B, then this is a C-site interstice and can be labeled
v (e and B interstitial sites are similarly defined). Because the octahedral
interstitial site is larger than the fetrahedral interstitial site it can be occupied
by a larger atom.
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16.6.3 Representation of close-packed structures

In this section, we summarize a few of the more commonly used notations for
the representation of close-packed structures. These are the ABC notation,
the Ramsdell notation (Ramsdell, 1947), the Zhdanov notation (Iglesias,
2006), and the h-c notation (Jagodzinski, 1949).

16631 ABC notation

We used the ABC notation in preceding paragraphs to describe the stacking
sequences in simple hcp and fec structures. This notation can be modified
for a binary or multicomponent interstitial compound to describe the stacking
sequence of each atom type. For example, CdI, has a structure in which the
larger I ions are close-packed. The ions follow the stacking sequence ABC. ..
‘The smaller Cd ions occupy the octahedral interstices between alternate close-
packed I planes. The structure can be denoted as aBC. . . where the Greek
letters identify the interstitial cations.

Silicon carbide, (SiC) is a material that is known to have many polytypes
which are distinguished by their stacking sequences (Frank, 1951). In all
cases, the carbon atoms occupy tetrahedral interstices between all consecutive
Si planes. One polytype has the stacking sequence ABCACB. . . for the Si
atoms. This structure can in principle be written as AaBBCYAQCYBB. ..
However, this is redundant because all of the interstitial sites are fixed by the
positions of the Si atoms; therefore, we customarily omit the Greek symbols.
‘We can also modify the notation so the layer-to-layer translations, A, B, and
C always describe positions in a unit cell. Negative translations are then
designated as A, B, and C (Pearson, 1972).

In Chapters 17 and 18, we will consider the stacking of 3%, 6%, and 3636
nets within the same structures. We will reserve the ABC notation to describe
the stacking of close-packed 3° layers; while the same interlayer translation
vectors apply to the 6 and 3636 nets, we will denote their stacking sequences
using the symbols a, b, and ¢ (for 6°), and a, B, and y (for 3636).

16632 Ramsdell notation
‘While the ABC notation gives a complete description of the stacking sequence
in close-packed structures, it does not specify the lattice type. It also requires
long character strings for large repeat units. The Ramsdell notation is a
shorthand notation that specifies the total number of close-packed layers
followed by a letter that indicates whether the latiice type is cubic (C),
hexagonal (H), or rhombohedral (R). If two or more structures have the same
lattice type and the same repeat period, we use a subscript a, b, ¢, or 1, 2,3
to distinguish between the structures. For example, SiC has two hexagonal
polytypes with ABC stacking sequences ABCACB. ... and ABCBAB. .. for
the Si atoms. Both of these structures have a hexagonal lattice with a six-layer
repeat along the c-axis. They are then distinguished by their subscripts as 6H,
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and 6Hy, respectively. Although this notation s simply compac, it does not
specify the actual stacking sequence.

16.6.3.3 Zhdanov notation

‘The positions of A-, B-, and C-sites have coordinates (0, 0), (1/3,2/3), and
(2/3,1/3) in the basal plane. Atomic translations from A to 8 (B to C) and A
10 C (Cto B) are (1/3,2/3) and (~1/3, =2/3), respectively. A classification
scheme for the stacking sequence replaces all AB and BC pairs with a +
symbol and all AC and CB pairs with a — symbol. We can also view
the steps in terms of clockwise or counterclockwise rotations with respect
to the (00.1) plane normal to the laers. This vision led Frank (1951) to
label the transitions A and v, respectively. The 9H polytype of SiC has an
ABACACBCB. ... stacking canbe written as

or AYYAYYAVY. This has the same number of characters as does the
ABC notation. Zhdanov suggested a more compact notation that just records
the sum of consecutive + (A) and — () signs in the sequence. Thus the 9H
polytype becomes (121212) or just (12) as this is the repeat sequence. The
Zhdanov otaion compleely desries stackin sequences of cosepacked
structures. in repeating
sequences by using superscripts or subscripts to deslgnal: the number of
repeating symbols (Pearson, 1972); in other words, (33333332) can be written
as (3,2) and (333233323332121333233323332) as ((3,2)3121(3,2),).

16634 h—c notation
To use the h-c notation we must look at an ABC stacking sequence and
label individual layers according to whether the layers above and below it
are the same or different. In the hcp ABAB. .. stacking, the layers above
and below are the same, so each layer is hexagonally surrounded, which is
labeled by an /. Because the repeat is a single 4, this structure is denoted by
1 using the h—c notation. In the fec ABCABC. .. stacking, the layers above
and below each plane are different and labeled as ¢ (for cubic). Because the.
repeat is a single c, this structure is denoted as c. The 9H polytype of SiC is
hhchhchhc. . . When we recognize the repeat unit, we obtain the symbol hc.

16.63.5 Defects: stacking faults

While the polytypes of SiC are distinguished by their stacking sequences
(Frank, 1951), a crystal of a single polytype may have local regions where the
stacking is not perfect. A stacking fault is an example of a planar defect in
a crystal where locally the stacking sequence deviates from that in a perfect
crystal. An interesting example of a stacking fault in 4H-SiC is discussed
in Box 166 (Liu ef al., 2002); 4H is the most common polytype of SiC.
Potential stacking faults in SiC include: an intrinsic Frank stacking fault, an
extrinsic Frank stacking fault, and a Shockley stacking fault. Frank faults are
created by removal (or insertion) of a single bi-layer into a perfect crystal. A
Shockley fault s created by displacing the crystal above the shear plane.
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Fig. 16.15. (3 Hybridizstion
etwen two atomic obidls.
®) Hybridaton in a soid
separating bonding and
anibonding bands with
bandviths W.
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‘ Box 16.6 Semiconductor nanostructure ~ planar fault

sic

Scientists are currently actively studying SiC wide bandgap semicon
ductors for applications in high power and high temperature electronics
In all semiconducting materials, structural defects are a concen as they
can degrade the electrical and optical properties of devices. Defects must |

‘Their identification by high resolution TEM allows scientists to understand
microstructure properties relationships in these important semiconductors.

The figure above, courtesy of M. Skowronski, shows the stacking sequence
of a perfect 4H-SIC crystal (a). A cross-sectional high resolution TEM
(HRTEM) image of a stacking fault in 4H-SiC (b) shows white triangles
on the right-hand side of the image to illustrate the stacking sequence. A
white arrow on the left side indicates the position of a shear plane. This
Shockley fault s created by displacing the crystal above the shear plane.
Al experimentally observed faults in SiC have a structure corresponding
to a single layer Shockley fault. An example of a hypothetical extrinsic
Frank stacking fault (not observed in SiC crystals) is shown in (¢)

semiconductors

In semiconducting materials, electron states exist in energy bands sepa-
rated by gaps with no electronic states. The origin of these energy gaps is
explained readily by making use of the concepts of band theory and hybridiza-
tion gaps. As shown schematically in Fig. 16.15(a), two atoms can lower
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Table 16.3. Energy gaps (direct and indirect) for polytypes of SiC.

Polytype ic 6H 4H M
Direet cnergy gap (¢V) 514 44 46 446
Indircet cnergy gap (cV) 239 24 28 335

their energy through hybridization to form bonding orbitals and antibonding
orbita ation energy, €. If we bring many
atoms together to form a cryst
broaden into energy bands of width W
energy bands is the Pauli exclusion principle. By comparing the size of the
hybridization gap and the band widths of bonding and anti-bonding states, we
can determine whether a gap persists or the two bands overlap. We can make
a distinction between metallic, semiconducting, or insulating behavior by
measuring the size of the bandgap, €, (the bandgap is measured from the top
of the lower band to the bottom of the upper band). Energy bands for metals,
semiconductors, and insulators, have €, ~ 0, ~ 2 and ~ 10eV, respectively.

SiC has a wide bandgap that ranges from €, = 2.45.1¢V, (as compared
1o L1eV for Si). The ¢, of SIC varies because this compound crystallizes
into a large number of polytypic structures with different stacking sequences
of hexagonal SiC double layers. Bandgaps are summarized in Table 16.3 for
four of the more important SiC polytypes. We use the Ramsdell notation to
label the polytypes. Energy gaps determine, among other things, the optical
absorption spectrum of the semiconductor

16.7 3 close-packed tilings of polyhedral faces

Given the efficiency of stacking close-packed layers of atoms, we can consider
structures that arise from the tiling of the triangular faces of the Platonic solids
with sections of a triangular tile. From this, we define new tilings which are
important, for example, in understanding the structure of viruses in Chapler 25
(Casparand Klug, 1%3) We consider Platonic solids with exclusively equilat-

“The faces can be iled n,(ur\w\.\y whereby along any edge of the triangular face
we pluce f equilateraltrangles, where f is an nteger. We see thatthis ling can

/2 new self-simila face: .,
if 1. i y 2
Thisleads 0 the tlingsllustated n Fig. 16.16 (op). The esulting polyhedron.
with faces that ilateral iangles, is k

This is not the only triangular subiiling of a triangular face. We can replace
each equilateral triangle with a tetrahedron, whose base replaces the original
triangular face. Three equilateral triangles are then inclined with respect to the
plane of the base tiangle. This new structure has three exposed faces

for each
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tetrahedron, replacing the triangular face of the original tile. This replacement
has been done for all of the tiles in Fig. 16.16 (top) and is shown in Fig. 16.16
(bottom). We can see that there are now 3/ equilateral triangles replacing
the original triangular polyhedral face.

We define the triangulation number that describes the new deltohedron
formed by these tilings. In general, the triangulation number is given by:

Pf? where P=1,3,7,13,19,21,34,37. (162)

where the numbers for P are given by P = b+ bc+c2, with b and ¢ non-
negative integers having no common factors.’ The number of facets on the
deltohedron is 4T, 87, and 20T, for the tetrahedron, octahedron, and icosa-
hedron, respectively. In Fig. 16.16, the illustrations are for P = 1 (top) and
P =3 (bottom). Larger values of P give rise to deltohedra that do not have
planes of symmetry.

As an example, let us determine the number of individual molecular units
(mers) that can decorate icosahedral deltohedra. Figure 16.17 (top) shows
P =1 (left) and P =3 (right) tlings of the triangular faces of the icosahedron,
schematically, with each of five faces showing the respective, £ =1,2,3,4,
and 5 subtriangulations. By decorating the vertices of the P = 1 (middle)
and P =3 (bottom) subtriangulations, we can count the number of molecular
entities that decorate the deltohedra. In each case, there will be 12 entities
comesponding to the decoration of the vertices of the original icosahedron.
Because cach entity that lies on an edge is shared between two faces we can
count it as half, whereas an entity in the interior of a face is fully counted.
In total, there are 12,42, 92, 162, and 252 entities in the £ = 1,2,3,4, and 5
variants of the P = 1 deliohedron, and 32, 122,272,482, and 752 entities in
the variants of the P =3 deltohedron.

Many of today’s crystallographic concepts can be traced to the 1611 writings
of Johannnes Kepler (1571-1630) on the snowflake (Kepler, 1611). Kepler

* Notice the similarity

the Goldberg polyhedra used to describe fullercncs,
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Fig.1617. P = 1 (lf) and
P =3 (igh)icosahedral
tiings shovwing f =1,2,3,4,
and s subtriangulatons. Vertex
decoratons n the P = 1
(middie) and P = 3 (botom)
subtrangulations.

Fi. 16.18. () lohannnes
Keplr (1571-1630) (picure
courtesy of 1. Lima de Faria
and originlly fom Taton
(1969) and () Frederich
Laves (1906-78) (picture

and orginally fom Jagodzinski
(157,
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was a German scientist, astronomer, and mathematician; he was born in
Weil der Stadt in Swabia, Germany. He studied theology at the Protestant
University of Tiibingen and passed the M. A. examination in 1591. Kepler
was instructed by Michael Maestlin (1580-1635) in mathematical subjects,
including Copernicus” heliocentric theory of astronomy.

Kepler was Professor of Mathematics at the Protestant seminary in Graz
from 1594-1600. He left Graz during the Counter Reformation and moved
to Prague in 1600 to serve as assistant to Tycho Brahe. When Brahe died
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in 1601, Kepler was appointed his successor as Imperial Mathematician, a
sition he held until 1612. A notable scientific accomplishment was Kepler's
B planetary motion. Tn 1612 Kepler's wife, Barbara, died and in
the same year Emperor Rudolph Il was deposed. From 161225, Kepler was
the district mathematician in the city of Linz. Kepler and his family left Linz
in 1626 during a peasant rebellion. He died in Regensburg in 1630.*

Kepler's 1611 treatise, Strena Sew de Nive Sexangula (Kepler, 1611),
considered the first serious work on geometrical crystallography (Lima-de-
Faria, 1990) In this work, he explained the observation of six-cornered
snowlakes (as opposed to ones with five or seven comers) in terms of
close-packing of minute ice spheres. He discussed simple cubic, face-
and body-centered cubic, and hexagonal close-packing of spherical units,
all of which are illustrated as motifs in the simple crystal structures of
Chapter 17.

Kepler made important contributions to the theory of tiling. By considering
combinations of regular polygons and how they tiled the plane, he determined
the 11 plane networks in which the arrangements of polygons at each vertex
are congruent. Kepler’s fascination with the Platonic solids led him to assert,
in his book Mysterium Cosmographicum (1596), that these “spherical har-
monics” were integral to an explanation of the structure of the Solar System,
an assertion that was later found to be mistaken (Mackay, 1981). Nonetheles
the notion of spherical harmonics proved to be of great mathematical impor-
tance as eigenfunction solutions to important partial differential equations,
including the Schrodinger equation discussed in Chapter 2.

George Ludwig Friedrich (Fritz) Laves (1906-78) was a Swi
tallographer who gave a mathematical derivation for the 11 plane networks
first shown by Kepler. Though he was bor in Hannover, Laves grew up in
Gtingen. He was a descendant of Georg Ludwig Friedrich Laves (1788~
1864), the court architect of the King of Hannover and England. In 1924, Fritz
Laves began university studies in Innsbruck, Gottingen, and finally Ziirich.
Laves was influenced by the work of another erystallographer, Paul Niggl
(1888-1953), whose ideas convinced him to study crystallography in Zii
Laves used concepts such as sphere packings, geometrical space, and plane
partitioning to deseribe silicates, AB, compounds, metals, and intermetall
compounds. He considered the influence of chemical factors, such as valence
electrons and ionic bonding, on structures

Laves classified crystal structures on the basis of topological concepts. He
described structural units in a series of topologically closed-packed phases
now known as the Friauf-Laves phases.'” For much of his career, Laves
worked in two main fields of research: metals and intermetallic compounds

* For a complete biography consult Caspar (199
Gt T ot Commred S ok opler, 1965,

0 Friauf-Laves phases wil be discussed in detil in Chapter 18,
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and order/disorder phenomena in alloys. He worked as an assistant (o
Victor Moritz Goldschmidt (1853-1933)."" Goldschmidt and Laves devel-
‘oped a topological approach to structure erivation. Laves remained in Zirich
in several positions until 1948 when he moved to the University of Chicago,
In Chicago, he teamed with Julian Royce Goldsmith (1918-99) to inves-
tigate order/disorder in silicates. They performed important experiments on
the alkali feldspars, studying Al-Si order and disorder. Tn this work, they
developed an X-ray diffraction method to measure the degree of atomic order
in alkali feldspars, a method that i still used today. In 1954, he returmed to
Ziirich where he was made the Chair of Mineralogy at the ETH (as successor
to P. Niggli).

(i) Regular tilings I: Determine the plane group for each of the regular
uniform tilings.

(i) Regular tilings II: Determine the unit cell for each of the regular
uniform tilings.

(iii) Regular tilings HI: Decorate the edges of the 3¢, 6%, and 4* tilings
with new vertices. Connect the vertices and identify the duals to the
regular ilings.

(iv) Regular tilings IV: Consider decorating the vertices of the 3¢, 6%,

and 4% with touching circles. Calculate the fractional area covered
by circles for each tiling.
) tiling I: Show that the Archir (4-8) and Laves
[4-87] tilings are duals. Compare the areas of the two prototiles.
(i) Arv:hxmedean tiling II: Draw the dual to the Archimedean tiling
12 ). Identify the new tiling (i.e., assign a Schlafli symbol to the

ng).
(vii) Archxmedmn tiling 111 Show that the Archimedean tiling (3*-6) has
two enantiomorphic forms; ie., construct a right-and left-handed tile.
(viii) Archimedean filing IV: Determine the 2-D Bravais lattice for the
6-4) Archimedean tiling and its dval. Show that the corre-
sponding lattices are reciprocal to each other.
(ix) Archimedean riling V: Consider the (3-12%) Archimedean tiling:

(a) Caleulate the fractional area covered by touching circles at the
‘vertices.

(b) Determine the size of the largest touching circle that can be
placed in the center of the 12-gon.

1 Some will be discussed
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() Calculate the fractional area covered by the two circles. How
does it compare with the one circle fractional coverage of the 3¢
iling?

(x) Kepler's tiles I For each of the Kepler tiles, identify the r-gons and
the number, , present at a vertex. Show that the r-gons meeting at

a vertex satisfy:

(xi) Keplers tiles II: Consider the following vertex types: 3-7-42,3-8-
24,3:9.18,3-10-15,4:5:20, 510, 3*-4-12, and 3.4-3- 12,

(a) Show that they all satisfy the relation stated in the previous

question.
(b) Explain why these vertex types do not yield Kepler tiles.
(xii) Laves tiles: Pick two of the Laves tiles and show that they satisfy:
-2) —2) -2
@=2) 02 (-2
v u

(xiii) Aperiodic Penrose tiling: Consider the tiling of a decagon with 5 each
of the oblate and prolate Penrose rhombs with unit edge lengths.
(a) Determine the pairs of interior angles for each of the Penrose
thombs.
(b) Determine the arca and the ratio of the areas of the two rhombs.
(xiv) k-uniform tilings: Fig. 16.19 shows an example of a k-uniform
tiling.
() What s the the Schlzfli symbol for this tiling? Identify the value
of k and show examples of distinct nodes.
(b) Draw a “unit cell” for this tile. Identify the plane group of the
tile.
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(xv) Colored tilings I: Show the following for colored tilings of (3°):
(a) The only regular 3-colored tilings are (3%) 111213 and (3%)
121213

(b) The only regular 4-colored tiling is (3¢) 121314.
() There are no uniform 5- or 6-colored regular tilings of (3%).

(xvi) Colored rlings II: Show that (3) 111232 is not a regular color tile
f (3

(xvii) Plaonic solds 1: Determie the point group for each of the five
Platonic solids. Which of the Archimedean solids have the same
poi 7

(xviii) Platonic solids IT: Consider the cube:

() Construct the cube’s dual by decorating the face centers with
new vertices and connecting them.

(b) What structure results when you decorate the edge centers of the
cube?

(xix) Platonic solids III: Determine the ratio of the center to vertex distance
lge length for an icosahedron.

(xx) Platonic ol 1V: Determine the o ofthecener o vete csance
and edge length for a pentagonal dodecahedron.

(xxi) Archimedean solid I Determine the coordinates of the 12 vertices
of a cuboctahedron on the basis that the coordinate axes correspond
0 the 4-fold rotation axes and the edges are of unit length

(xxii) Archimedean solid II: Determine the number of each type of face

for the rhombitruncated icosidodecahedron.

(xxiii) Tilings of curved space: Consider tiling of curved spaces:

(a) Explain how to use 6" to cover a finite cylinder and ensure that
the vertices coincide at the start and end of the circumference?

(b) Rationalize why it is not possible to cover a sphere with the 6*
tiling but it is possible to tle the sphere with pentagons.

(xxiv) Close packing I: Show that for touching spheres in an fec structure
each subsequent (111) plane is at an elevation z = ayZ/3 with
respect to the previous.

(xxv) Close packing II: Determine the number of octahedral and tetrahedral
interstices per atom in the fec and hep structures.

(xxvi) Tetrahedral interstitial sites: Calculate the ratio of radii for small
and large spheres when the small spheres just fit into the tetrahedral
sites in an hcp arrangement of the large spheres.

(xxvii) Octahedral interstitial sites: Calculate the ratio of the radii for small
and large spheres when the small spheres just fit into the octahedral
sites in an fec arrangement of the large spheres.



s Periodic and aperiodi tlings

(xxvili) ABC notation: Show that the hcp structure can equivalently be
described by the sequence ABC if it is required that all translations
are to positions in the same basal planc cell. The underlined symbol
indicates that the translation is in the opposite direction.

(xxix) SiC polytypes: Determine the Ramsdell notation, the Zhdanov
number and the h—c symbol for the following SiC polytypes: (2) 2H
ABAB, (b) 3C ABC, (c) 4H ABAC, (d) 6H ABCACB, (€) ABCB,
(f) ABACACBCB, and (g) ABCBACABACBCACB.

(xxx) ZnS polytypes: The hexagonal wurtzite and cubic sphalerite forms of
ZnS, have ABABAB ... and ABCABC. . . stackings, respectively.
Determine the Ramsdell symbol for each.

(xxxi) Deltohedra I Determine values of b and c that give rise to P=
1,3,7,13,19, 21,34,37 in the formula for triangulation numbers.

(xxxii) Deltohedra II: Determine how many entities existin the f= 1,2,3,4,
and 5 variants of the P= 1 and P =3 deltohedra for decorations of
the faces of

(a) the octahedron;
(b) the tetrahedron.
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Metallic structures I: simple,
derivative, and superlattice
structures

“The inmportant thing in science is not so much to obtain new facts as to discover

new ways of thinking about them.

Sir William H. Bragg 1862-1942

Itis often useful to go beyond the standard description of a crystal in terms of
the Bravais lattice and the unit cell decoration. In this chapter, we will look
at various ways (0 disassemble and understand a crystal structure in terms of
other concepts, including:

o derivative structures: new structures can often be derived from simpler
structures by substitutions of one atom for another. Examples include the
ordered occupation of body center and face center sites by different atoms
in the fee, hep, or bee derived structures.

interstitial structures: new structures can be derived by the ordered oceu-
pation of subsets of the interstitial sites in a simpler structure. In particular,
we will illustrate the occupation of octahedral and/or tetrahedral interstices
in close-packed structures.

stacking variations: new structures derived by the 1-D, 2-D, or 3-D.
stacking of substructures, e.g., ordered substi
(m,n, 0 integers) superlatt

‘e of a parent structure.

decomposition inio 2-D silings: we will give further examples of the
ordered stacking of atomic planes. The fec, hep, and bec structures are
typically low index planes with simple tilings. Chapter 18 will extend
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this to more complicated tiles with the introduction of the Frank-Kasper
phases,

incommensurate and long-period stackings: Sometimes, structures can-
not be defined in terms of standard unit cells, but require the introduc-
tion of commensurate or incommensurate long-period modulations and
superlattices.

polyhedral connectivity: the types of atomic coordination polyhedra in a
structure and the manner in which these coordination polyhedra connect
(i.e., by sharing vertices, edges, or faces) can reveal important aspects
of the crystalline structure, This will become important when we discuss
Pauling’s rules for fonic structures (Pauling, 1946).

We begin this chapter with a brief description of the most important parent
structures (for metallic materials) and introduce the Hume-Rothery rules and
some basic phase diagrams. Then we cover a more s
the description of derivative and superlattice structures in fec, bec, diamond,
and hep-derived structures. We conclude the chapter with a discussion of
structures with interstit
and artificial n
including how they can be identified by means of X-ray diffraction methods.

17.2 Classification of structures

In classifying crystal structures, we can make use of several classification
chemes. One is the StrukiurBericht symbol (Table 17.1), defined in the next
section: another s the Pearson symbol. We also often use a common name for
the structure type (c.g., diamond cubie, zinc blende), or the name of a mineral
or compound with that structure type and the name of a prototype material.
As 1 consequence, many structures have multiple symbols, depending on the

classification scheme in use.

17.2.1 StrukturBericht symbols

Common StrukiurBericht symbols (Hahn, 1989) are listed in Table 17.1
The StrukturBericht symbols begin with  letter followed by a number. A
designates the structure of pure elements and B designates equiatomic AB
compounds, and 5o on. The number following the letier gives the sequential
order of the discovery of the particular structure-type. In some cases, we
choose the number to parallel the structure first found in elemental form. One
such instance is when the new structure is a compound or an alloy with a
derivative or a superlattice of the elemental structure. For example, the A2
structure refers to body-centered cubic (bec) and B2 refers to an ordered AB
alloy with A atoms on the vertex sites and B atoms on body-centered sites.
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Table 17.1. StrukturBericht symbols for various crystal
struure types,
Structure Types
Atypes Elements
Biypes AB compounds
4 AB, compounds
D types A,B, compounds
E..K types More complex compounds
Liypes Alloys
0 types Organic compounds
S types Silicates

In some cases, there is more than one derivative of an elemental structure
‘within a crystal structure type. i byan i
‘number that follows the number of the elemental structure-type. For example,
two derivatives of the fec (A1) structure are the L1, and L1, structures. The L
designates that these are alloy structure-types while the 1 signifies that they
are derivatives of the Al elemental fec structure-type. The 0 and 2 subscripts
distinguish the two types of derivative structures. StrukturBericht symbols are
used extensively in the materials literature, where, often, they are the only
symbol listed to identify a particular structure-type.

17.2.2 Pearson symbols

A Pearson symbol uses the Bravais lattice symbol (cubic, c; tetragonal,
hexagonal and rhombohedral, h; orthorhombic, o; monoclinic, m; or tri-
clinic/anorthic, a, followed by a symbol designating the lattice centering
(primitive, P; single face-centered, A, B, or C: face-centered, F; body-
centered, I; or rhombohedral, R). The final character(s) indicate the number
of atoms in the unit cell.

A few examples will clarify the use of the Pearson symbol: With § atoms
in a face-centered (F) cubic (c) cell, NaCl is designated cF. With a sin-
gle atom in a hexagonal (h) primitive (P) cell, hcp-Co is designated hP1.
With two atoms in a tetragonal (t) primitive cell, CuAu is designated tP2.
The compound FeB has eight atoms in an orthorhombic (o) primitive cell
and is designated oPS. a-Plutonium (Pu) has 16 atoms in a monoclinic (m)
primitive cell and s designated mP16. Californium (Cf) has four atoms in an
asymmetric (a) primitive cell so is designated aPd.

‘The Pearson symbol does not define a single structure uniquely; there may
be several different structures that have the same Pearson symbol. Neverthe-
less, the Pearson symbol is useful when used in conjunction with the Pearson
Handbook of Crystallographic Data for Intermetallic Phases (Villars and
Calvert, 1991). This handbook contains about 50000 entries of intermetallic
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Table 17.2. Representative elements for Structure 1. Pearson’s tables list 485
intermetallc compounds (mostly solid solutions) with this structure-type.

Element 4 Element o Element  a Element  a
cu 03615 Ag 04086 Au 04078 Al 0.4049
Ni 03524 bd 03891 P 03924 Pb 04950

structures. A smaller, desktop edition (Villars, 1997) lists 27686 structures,
covering the literature from 1913 until 1995. The handbook is accompanied
by a four-volume Atlas of Crystal Structure Types for Intermetallic Phases
(Daams et al., 1991), detailing the atom coordinates, coordination polyhedra,
structure drawings, and so on. These books are valuable reference works for
researchers in the area of intermetallics, although many other closely related
erystal structures are also listed.

17.2.3 Structure descriptions in this book

Throughout the following chapters, we will introduce more than a hundred
important structure types. The tables containing the description of all the struc-
ture types introduced in this book can be found as an on-line appendix on the
book’s web site.' The structures appendix is formatted as follows: all structure:
types receive a sequential number, in the order in which they are introduced
in the text. For each structure, the following information is listed: prototype,
StrukturBericht symbol (SBS), Pearson symbol (PS), space group number and
symbol (SG), and the lattice complex (the atom positions in the asymmetric
unit). Tn addition, a table is shown listing other compounds with the same
structure and the corresponding lattice parameters. An example of such an
entry is shown in Table 17.2 for the first structure, the fec structure with
prototype Cu

Structure I Protonype: Cu
SBS/PS: Al/cF4 G #225: Fm3m (0})
Lattice complex: Cu @ 4a(0,0,0)

Assuming that we can use the space group symmetry to generate the atom
positions outside the asymmetric unit, the information listed in the structures
appendix should be sufficient to generate the entire unit cell. For each of the
structure types, the reader can also find a CrystalMaker input file on the web
site, as well as a color illustration of the structure.

' “The structure descriptons are availabie as an on-line appendix rather than  real appendix
because they would take up & large number of additional pages in an already voluminous
text. The appendis can be downloaded 15 the fil StructuresAppendi.pdf.
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17.3 Parent structures

Fig. 17.1. The basc g bee,
and hap parent structures.

For metals, many important derivative and superlattice structures are based on
the fundamental fec, bee, and hcp parent structures illustrated in Fig. 17.1. The
simple cubic structure, sc, i rarely observed in nature; one particular example
is the element a-polonium (Beamer and Maxwell, 1949). The bec and fec

truc ives of the sc structure. ltema-
tively be described in terms of stacking of simple atomic layers with triangular,
3%, or square, 4*, regular tilings. Here, the bec structure has an AB stacking of
regular square tilings, which constitute the (001) planes of the structure. The
vertices of the B layer iling sit above the centers of the squares in the A layer
tiling?

It is useful to consider the XRD patterns for these parent structures,
and 1o compare them with superlattice diffraction patterns that we will
discuss later on in this chapter. Figure 17.2 (a), (b), and (c) show sim-
ulated patterns for fec Fe, bec Fe, and hep Co, respectively. These pat-
terns were generated assuming Cu-Ka radiation and equilibrium lattice con-
stants (for large, untextured polycrystalline grains). These simple structures
also have relatively simple XRD patterns. The fec structure has reflec-
tions corresponding to the planes, (111), (020), (022), (113), (222), (004),
(313), and (240), respectively, in the range 0 < 26 < 150°. These satisfy
the extinction rules that h, k, and I have the same parity, as we derived
in Section 12.2.1.4. Elemental Cu s the prototype for the StrukiurBericht
symbol Al (Structure 1).*

bec structure has reflections corresponding to the (110), (002), (121),
(022), (031), and (222) planes respectively, in the range 0 < 20 < 150°.
These satisfy the extinction rule that 4+ -+1 must be even, as derived in
Section 12.2.1.3. While the fec structure (with Cu as its prototype) was given
the StrukturBericht symbol A1, the bec structure (with W as its prototype) is
given the symbol A2 (Structure 2).

* We discussed the stacking of close-packed layers in Chapter 16.
* Recall that the structure numbers refer 1o the entrics in the StrucruresAppendix pdf file on
the web sit.
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The hep structure has reflections corresponding to_the planes, (00.1),
00 1), (103), (12.0), (01.3), (32.0), (31.2),

(114, (033), (13.0) and (13.1), in the angular range 0 = 26 < 150°. Note
that this Acp diffraction pattern was computed for Co, which does not have
an ideal c/a ratio of y/873. The hicp structure (with Mg as its prototype) is
given the symbol A3 (Structure 3).

17.3.1 Geometrical calculations for cubic structures

We can calculate the number of lattice points in a unit cell in any arbitrary
crystal system. If we know the lattice constants and types of atoms dec-
orating each of the lattice points, we can calculate properties such as the
atomic volume, the atomic packing fraction and the theoretical density of
the crystalline solid. Next, we illustrate such calculations for the sc, bee, and
fee structures. Similar computations for other crystal systems are provided as
exercises at the end of the chapter. We already know from Section 3.5 on
page 69 how to compute the number of atoms per unit cell. Using that proce-
dure, we find that there is one lattice site per unit cell for the sc structure, two
sites per cell for the bee structure, and four sites per cell for the fec structure.

173.1.1 Atomic sizes
In materials with predominantly metallic bonds, we can learn about atomic
sizes by analyzing the close-packing of hard ‘We can determine
the metallic radius in a pure elemental metallic solid from a simple touching
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sphere consideration, such as taking half the bond distance along a close-
packed direction. This concept was proposed by Bragg (1920) and extended
1o metals by Goldschmidt (1928).

For elements having two (or more) allotropic forms (meaning that there
is more than one crystal structure for the same chemical composition), we.
can compare the touching sphere atomic radii to assess atomic size changes
between structures. An example is the bec and fec allotropic forms of Fe; the
bec lattice constant is 0.28664 nm, and the fec lattice constant is 0.36468 nm.
‘We compute the bee and fec metallic radii by considering the geometry of
touching spheres and the close-packed directions in the fe and bee structures,
as shown in Box 17.1. Next, we will consider how these radii differ if the
volume per atom is conserved.

‘The packing fraction is defined as the volume of space that is occupied
by atoms divided by the total volume of the unit cell. Tn an exercise at
the end of the chapter, we explore the packing fraction of hard spheres in
various lattices. With atoms of the same radius, there s an approximately
8% difference in the packing density between the bec and fec structures.
If we assume that the atomic volume is conserved, we can compute the
expected value for the difference in metallic radii for the fec and be structures
(see Box 17.2).

Box 17.2 shows that the metallic radius in the higher coordinated structure,
., fec with coordination number 12, s larger than that of the lower coordi-
nated structure, i.e., bec CN = 8, at constant atomic volume. The difference.
between the atomic radii in fec and bee structures is nearly 3%. The observed
difference for Fe is 4%, indicating that the atomic volume is not the same in
the two allotropic forms. We can account for atomic volume differences in
different allotropes of the same element through considerations such as ther-
‘mal expansion, directional bonding differences, differences in the magnetic
state, and 5o on.

Box 17.1 Computation of the metallic radius of Fe
structures

Jfec and bec

For an fec metal, atoms touch along [110] directions and the atomic radius

is given by av/2/4 (a is the cubic lattice constant). For a bec metal, atoms
touch along [111] directions: the atomic radius is hence given by av/3/4.
‘The atomic radii of Fe in the fec and bec structures are then computed by
substituting the equilibrium lattice constants:

V3
s

0.12890m and e =

.12420m,

showing that the fec metallic radius is roughly 4% larger than in the bcc
structure.
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Box 17.2 The volume conserving fec and bec atomic radii of Fe

The volume per atom for each of these struetures is given by:

o
PACS

242
T4

@i o= L@ ama 1029
7 Tiee

‘The theoretical desity, p, of a material can also be calculated by consider-
ations of the unit cell volume, Ve, of the crystal structure, the atomic mass,
M, and Avogadro’s mumber, Ny The general formula can be expressed as:

23

17.4 Atomic sizes, bonding, and alloy structure

When we analyze a crystal structure of a multi-component alloy, we most
understand the relative sizes of the atoms in the structure (Barrett and
Massalski, 1980). This notion is not so simple, because the same atom can
have a different size in a different crystal structure. While atomic size gener-
ally scales with atomic number, it also depends on the degree of filling of the
outer electronic shells, the valence number, and the coordination number.*
The influence of bonding on the atomic size of atoms in crystals is important
because it leads to the concept of metallic bond radii, covalent bond radii,
ionic bond radii, and van der Waals bond radii, first described by Pauling
(1946). These distinctions between radii follow the distinctions made for
chemical bonding in Chapter 2.

Itis useful to develop an intuition about atomic sizes and how they vary as
a function of the type of bonding, coordination number, valence, and valence
differences in alloys and compounds. In this chapter, we will consider mainly

“ ‘umber is the number of
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‘metallic bonding and covalently bonded solids. In Chapter 22, we will consider
ionic solids for which Pauling’s rules predict a preference for structures based
on the relative anion and cation sizes. Because some illustrated structures are
common to metallic, covalent, and fonic structures, we will see some overlap
in the structures described in these chapters
e the lattice constants of the elemental form of the

In alloys, we can
components to estimate the atomic radii, and then use these radii to predict
the lattice constants of the alloy. The simplest case is a substitutional solid
solution of two components, as it has the same crystal structure as the ele-
‘mental components, with relatively small differences in atomic number and
valence. The lattice constant for an AB alloy is predicted by Vegard's law:

ooy = Xy + Xpaty (17.2)

where a, and a, are the lattice constants of the pure components, and X, and
X, their atomic fractions in the alloy. If the
jons need to be made on the basis of

ferences in atomic number and
valence electrons are not small, corre
the electronegativity difference and/or lattice strain on substitution, yielding
‘modifications to Vegard's law. Such corrections are beyond the scope of this
introductory discussion.

In AB alloys where one of the atoms is significantly smaller than the
other (e.g., Fe-C), we can have interstitial solid solutions where the smaller

interst
lattice. Latice con

al solute atom fits comfortably in the interstices of the solvent atom
nt changes are then determined by strain effects.

17.4.1 Hume-Rothery rules

The extent of solid solubility is of considerable interest to a materials scientist
studying an alloy system. There are certain composition ranges in alloys where
the range of solid solubility is limited and new alloy phases or compounds
d solubility were first enumerated
by Hume-Rothery (1926). The Hume-Rothery rules state the factors limiting
the extent of solid solution:

(i) atomic size factor: The range of solid solubility will be restricted if the
atomic radi differ by more that about 15%. Defining atomic diameters
is simple in fee and bec structures, as illustrated above, but can become
complicated in others.

electronegarivity valency effect: Large electronegativity differences
between components of a binary alloy can promote charge transfer and
ferences in the covalency, fonicity, or metallicity of the bonds. This
leads to bond energy differences between A-A, A-B, and B-B bond
energies in the alloy. Electronegativity is an empirical parameter intro-
duced by Linus Pauling and extended by Mulliken (as discussed
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Chapter 2). A strong proclivity for A~B bond formation can lead to the
formation of stable compounds.

(iii) relative valency effect: A metal of lower valency is more likely to
dissolve in a metal of higher valency than vice versa. This rule is not
universally obeyed.

Hume-Rothery rules identify the need to consider compound formation and
intermediate phases in discussing the crystal structures observed in an alloy
system.

An ideal (line) compound has a single stoichiometry prescribed by the
ratio of A to B in the compound formula

A compound at higher temperatures will usually be able 1o dissolve addi
tional A or B to form a non-stoichiometric intermediate solid solution phase.
Intermediate phases are also known as intermetallic compounds. Examples of
intermediate phases include normal valency and electron compounds, Laves
phases, and Frank-Kasper phases.

Normal valency compounds form when there are large electronegativity dif-
ferences between the elements. Examples include: Mg,Sn, Mg,Sh,, MgTe,
ete. where the valences are 2, 3, 3(5). and 6 for Mg, Sn, Sb, and Te, respet
tively. Band theory explains electron compounds based on specific electron-
1o-atom ratios, (e/a). At certain ¢/a values, many alloys will have identical
erystal structures. Prototype electron compounds include: CuZn (¢/a =3/2),
Cu,Zny (e/a=21/13), CuZn, (e/a="T/4), and a-Mn (efa~ 1). Box 17.3
explains the calculation of ¢/a values for some CuZn alloys. These are
unambiguous in that the number of free electrons in Cu can be assigned as 1
and for Zn as 2 (corresponding to a 4s and 4s” valence shell configuration.
respectively). In alloys with transition metal atoms for which the d-shell is
not full, there is ambiguity in the varying number of free s-electrons across
the transition series.

Box 17.3 Calculation of electron-to-atom ratios in Cu-Zn alloys

Here is how to compute the electron-to-atom ratios in several CuZn
alloys:

e _1)+1Q) _3
Qo= Y
CugZn, : £ = X +ED)
@548
1)+302) _

Cuzny: ==
vy 113
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Laves phases. or Friauf-Laves phases (Laves and Witte, 1935). have the
chemical formula AB,. Their atomic diameters are predicted to be in the
ratio of 1.2:1. Friauf first discovered the prototype MgZn, material (Friauf,
1927a.b) while Laves did extensive work in describing the structure of this
and the related MgNi, and MgCu, phases. These are examples of a larger

class of topologically close-packed phases (TCPs) discussed in Chapter 18,
known as the Frank—Kasper phases. The TCP structures can be understood
qualitatively using the free electron theory and quantitatively using the band
theory of solids. The free electron theory assumes an isotropic, uniformly
dense electron gas.

The cohesive energy is the minimum total potential energy occurring at
the equilibrium spacing Ry, i.¢., the energy per atom required to break all
of the bonds in the solid.

A large portion of the cohesive energy in metals exists in the electron gas
and depends on the electron density and its spatial variation. A general rule
for metallic structures is that atoms in metals should fill space to maximize
the electron density. Metals usually have high symmetry to maintain high
coordination and uniform electron densities. Thus, they choose structures with
tetrahedral interstices, which leads to a close packing of atoms. The TCPs
have on

v tetrahedral interstices and are derived from the packing of Kasper
sriangulated coordination polyhedra. This packing allows distorted tetrahedra
10 pack without problems of steric constraints.>

17.4.2 Bonding in close-packed rare gas and metallic structures

Calculating binding energies in sofids is a complicated quantum mechanical
problem that i generally solved through numerical solutions to Schrodinger’s
equation. In special cases, such as the rare gas solids, crystalline binding
can be treated empirically by considering a simple pair potential such as the
Lennard-Jones potential or the Morse potential. These potentials are isotropic
(have radial but no angular dependences) and are instructive because of their
simplicity. A Lennard-Jones potential (introduced in Chapter 2) is applicable
to inert gas solids and describes the potential energy, V. of an atom pair as a
function of separation, r, as:

(73)

5 ltis interesing 10 note that perfect tetrahedra cannot be wsed o fll 3-D space (just as
pentagons cannot be used t fill  2-D plane) but they wil tle 4-D space (Sadoc and
Mosser, 1984).
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al energy and

where the parameters € and o set the scale of the poten
interatomic spacing, respectively. The force between the two atoms is given
by the negative gradient, —dV/dr. As an atom p equilibrium only
when the force between them is zero, we differentiate the potential energy
with respect to 7 and set this equal to zero (see Box 17.4).

Pair potential analysis often aims to express the interactions in a reduced
(or universal) form. We define a reduced Lennard-Jones potential, v(r/r,),
by normalizing V(r) by —4e and expressing it as function of 7= #/r,. This
potential then has the reduced form:

(

The Morse potential assumes an exponential dependence on the interatomic
spacing, 7. A reduced Morse potential is writien

176)

(F

(i) =[1-e" 17.7)

where the parameter @ is typically of the order of 1.5 (Hoare, 1978), and
determines the compressibility of the spherical atoms as they bond in the pair.
Tn what follows, we will restrict our discussion to the Lennard-Jones pair
potential.

We can calculate the total energy in a crystalline solid by summing the
Lennard-Jones potential over all atomic pairs to yield (Kittel, 1990)

folr ) 26} o

andard summation over all pairs except those that pa
) and, py; = r;/R is the distance between

where Y, refers to a
with themselves (i.c., excluding i

Box 17.4 Derivation of the Lennard-Jones equilibrium pair separation

We determine the equilibrium separation by differentiating the potential

and setting the derivative equal to zero:

-6

From this equation, we find the equilibrium distance, r,, between the two
atoms to be:

(7.4)

o= 1120 (17.5)
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atoms 7 and j, expressed in units of the nearest neighbor distance, R. Note
that we do not sum the reduced potential, u(r), because we are interested in
determining the new (different) equilibrium interatomic spacing for atoms
the lattice, not just an isolated pair. The factor N/2 accounts for N atom:
in the system without double counting the pair interactions. The summati
of the py; in the previous expression are known as lattice suns. For the fec
structure, they are:

AN
12.13188; A[,“:Z(—) 14.45392. (17.9)
Py

For the hicp structure, they are:

1
0 APy

o
Al ) = 14.45489. (17.10)

Z’(‘)n 1213229, AL Z’(

n_,,

We determine the equilibrium value of the interatomic spacing R = R,
by differentiating the total potential energy with respect to R and setting it
equal 10 0. By setting the derivative equal 1o 0, we satisfy the requirement of
mechanical equilibrium where the sum of the forces is equal to zero. Box 17.5
derives the equilibrium atomic separation for the fce lattice.

‘This expression agrees with experimental results for the rare gas solids,

using independently determined values of o, as shown in Table 17.3. The

Box 17.5 Derivation of the fec Lennard-Jones equilibrium atomic
separation
We determine the equilibrium atomic separation by first differentiating the
pair potential and setting the derivative equal to zero. For the fec structure,
this yields:

" 21 . .
Dror 7"—\&)((1) (1212132 () =6 14454
dr R R R

1711

which can be solved to yield the equilibrium spacing. Ry, between the two
atoms:

a7.12)
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Table 17.3. R, and the cohesive energy per atom for inert gases. Values for o, €,
R, and the cohesive energy per alom Vi /N are experimental (Rohrer, 2001).

Element o nm emeV Ryom  LI2eam 1090 om  (Vyor/N)
meVitom  meViatom

Ne 0274 31 0313 0308 0299 -20
Ar 0340 104 0376 0382 0371 80
Kr 0365 140 0401 0410 0398 -6
Xe 0398 200 0435 0447 0434 -170

Lennard-Tones potential predicts that the cohesive energy will be of the same
form for all fec rare gas solids. The explicit expression for the cohesive energy
obtained by evaluating the total potential energy at the equilibrium spacin;

Vror(Ro)

2.15 % 4N a7.13)

The cohesive energy per atom is then equal to —8.6¢. As this cohesive
energy is in significant error for lighter rare gas species (sce Table 17.3),
it requires quantum mechanical corrections for greater accuracy. For larger
s, the cohesive energy is predicted to within a few per cent

rare gas spec
aceuracy.

‘The Lennard-Jones potential predicts physical properties, such as the cohe-
sive energy and equilibrium lattice spacing. from a few simple parameters. A
drawback to using these simple pair potentials is that they have no angular
dependence: therefore, they do not capture the angularly dependent bonding
existing in many solids. An important example is the sp’ hybrid bonding,
prevalent in semiconducting solids, which causes a preference for diamond
cubic and related structures. In simple metals isotropic pair potentials have
some predictive value.

Rose er al. (1984) (later extended by Smith ef al. (1991)) showed that
suitably scaled equations of state for metals, derived from first princi-
ples quantum mechanical calculations, follow a universal behavior. This
universal behavior (Fig. 17.3) is common for bulk metals, metal-metal
adhesion, and chemisorption of selected materials. Binding energy curves
derived from first principles calculations are often conveniently expressed
as a function of the Wigner—Seitz radius. r.,. For N atoms per unit
volume:

(17.14)
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Fig. 17.3. (a) Bonding energy
‘versus Wigner-Seitz radius,
(6) energy nomalzed by the
equilibrium cohesive energy
‘showing the range of the
patenil L, (9 scled energy
vrsus separaton.

(d) Universal bonding curve:
for metls determined rom
it pinils caluations.
0.1, Rose, et Piys. R, B,
29(6), 2963-2969, 1984;
Copyright (1984) by the
American Physical Soc.).
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“The Wigner-Seitz sphere is a sphere of volume 277, equal o the atomie

volume of the material at the equilibrium spacing.

Figure 17.3 (a) illustrates a typical bonding energy curve showing the
potential energy as a function of the Wigner—Seitz radius, 7. When we
construct a universal binding curve, we first normalize the energy scale by
dividing by the equilibrium cohesive energy, V(ry), as illustrated in Fig. 17.3
(b). The harmonic portion of the V(r,.) curve near the equilibrium spacing,
now fitted to a parabola that extends until it intersects the V =0 a
The width of the parabola, at V =0, is called the range of the potential and
designated L&

Figure 17.3 (c) shows the scaled energy versus separation curve, which
illustrates the universal binding relationship. The scaled length is given by (r—
Fyus0)/L. Figure 173 (d) shows the universal bonding curve for a variety of
‘metals, as determined from first principles calculations. This curve illustrates

© T can be shown

spacing (in general, clastc mody

Lis related 1o the bulk moduls of the material  the cquilibrium
re related o curvatures of poteniial functions).
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that scaled bonding energy versus scaled separation data (Rose ef al., 1984)
for a variety of metals fall on the same universal curve! Ferrante e al. (1991)
have shown that similar binding curves fit the bonding of diatomic molecules.
Through first principles calculations (using local density functional theory)
one can determine lattice constants to an accuracy of about 1%, and also
which erystal structure has the lowest total energy.

17.4.3 Phase diagrams

A phase diagram is a graphical representation of alloy crystal structure stabil-
ity ranges as a function of temperature and composition. Figure 17.4 shows
examples of binary phase diagrams in two-component AB alloy systems.
These are (a) a eutectic phase diagram (b) a peritectic phase diagram, and (c)
a phase diagram with compound formation. The axes of these diagrams are
temperature, T, along the vertical axis and the atomic fraction of B, X, along
the horizontal axis. Note that we have X, = 1 — X,. The melting temperature
of pure A is T, and of pure B is T,. We assume that the crystal structure
of solid A differs from that of B in these phase diagrams. The a-phase refers
to solid solutions of B dissolved in A (dilute in B) and the B-phase refers
10 a solid solution that is dilutc in A. Both phases show a limited range of

T T
A n
‘ L ,. L
Teta A 5| Trta =3
a+p g 7,
N X B oA % B
(@ X ® X
T
L
s
- l
Tn
ABes
Fig. 17.. Binary 4B phase
Gagrams: (o) etecic X2 B
(©) perecic and (9 with an
A,B lne compound. Xy
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17.5 Superlattices and sublattices: mathematical definition

solid solubility at all temperatures. For a range of values of X, and low
temperatures, the two solid  and 8 phases coexist.

In all three phase diagrams, the liguidus curves have negative slopes. On
cooling, a eutectic transformation (Fig. 17.4()) refers to the intersection
of two liquidus curves is at a point called the eutectic point. The eutectic
point denotes the coexistence of the (high temperature) liquid and a (low
temperature) 2-phase solid region. The coexistence point (T, Xg) is the point
at which the liquid-solid phase transformation, L — &+, occurs

A peritectic transformation (Fig. 17.4(b)) refers to the intersection of two
liquidus curves at a point called the peritectic point. The peritectic point
denotes the coexistence of the (high temperature) liquid and a (low temper-
ature) 2-phase liquid + solid region. The coexistence point represents the
L~ L+ phase transformation.

A phase diagram with an A, B phase line compound i shown in Fig. 17.4(c).
If the compound is ideal, there will be no solubility of either A or B in the
compound, and the compound has a single composition at all temperatures.
If a range of compositions is possible, the line will be replaced by a phase
field. Figure 17.4(c) shows an example of a phase diagram with a
pound and a double eutectic structure. If a compound has strong bonding, the
‘melting point of the compound may be larger than either or both of the pure
phases. The melting temperature of the A, compound is denoted by Te.
Fig. 17.4(c). Because the A, B phase melts without a change in composition, T,
is called a congruent melting point; A,B is said to undergo congruent melting.

ne com-

and definition

In Chapters 3 and 6, we defined the basis vectors a, and aj for the real and
reciprocal lattices of a structure. This was followed by a discussion of how to
describe general vectors in real and reciprocal space using these bases. Tn the
present section, we discuss the special circumstance that occurs when the b
vectors for a given lattice can be written as a linear combination of the basis
veetors of another lattice. If this transformation increases the volume of the
unit cell by an integer factor, then the new lattice is called a superlatrice of the
original lattice. If the transformation decreases the volume of the unit cell (by
dividing by an integer), then the new lattice is called a sublatrice of the original
lattice.

Let us now consider the mathematical description of such a transformation
(Giacovazzo, 2002a). A lattice, T is described by its basis vectors (a,, a,. ay).
For a transformed lattice, 7, the basis vectors are written as (], aj, a3).

2y a7.15)
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“The linear transformation that takes the lattice, . with primitive unit cell
basis vectors A into the lattice T, with primitive unit cell basis vectors A’ is

given by:
a’ My My Mg\ (2
ay My My My | | 0y (17.16)
ay My My M/ \ay

Thus, the transformation can be written as A’
formation as A = M~'A". These equations relate the primitive unit cell in
7 to that in 7 and vice versa. Now, let |M]] be the determinant of the
transformation matrix. There are several special cases:

MA, and the reverse trans-

1, then the latti

(i) If the matrix elements M, are integers and | M
7 and T coincide.

(ii) If the matrix elements M, are integers and | M]] > 1. then the lattice 7"
is a superlattice of the lattice 7, and the volume of the primitive cell in
s | M| times greater than the volume of the primitive cell in 7.

(i) If the matrix M = Q"' where the matrix elements ¢, are integers and
1Qll > 1. then the latiice 7 is a sublattice of the lattice 7 with the
volume of the primitive cell in 7 being | Q| times smaller than the
volume of the primitive cell in .

An additional case of interest occurs when the matrix M is rational, in which
case the transformation describes so-called coincident site latices.

17.6 Derivative structures and superlattice examples

Many alloy solid solutions are disordered at high temperature, i.c.. there
is an equal probability for any atom to occupy any latice site. When the
temperature

Towered, some of these alloys will undergo a disorder-order
transition, resulting in an ordered solid solution or, synonymously. a superlai-
tice or superstructure. Tn this section, we consider derivative and superlattice
structures based on the fec, bec, diamond, and hcp parent structures

17.6.1 fec-derived structures and superlattices

The fee structure derivatives and superlattices include structures in which
atoms order on the original fec atomic sites, making sites that were originally
symmetrically equivalent now inequivalent. Other structures include occupa-
tion of the interstices (some or all) by the same or different atomic species.
A third type involves m x 1 x o fee cells and site occupation patterns that
reduce the structure’s symmetry.
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17.6 Derivative structures and superlattice examples

17.6.1.1 fec ordered structures.

Fig. 175 (3) fc (A, ()
ordered L1, and (0 odered
1 structues,

Fig. 17,6, Simulated XRD
patterns for () random fec
and (b) ordered L1, FePt
strucures,

Examples of fec-based ordered structures include the L1, (Structure 4) and
L1, (Structure 5) structures. Because these are alloy structures, they are given
Strukturbericht symbols beginning with L. In fact, they are both designated as
L1, where L1 indicates that these alloy structures are derived from the first of
the elemental structures, Al. Figure 17.5 illustrates the fec structure (A1) and
its ordered counterparts, the tetragonal LT, and the cubic L1, structures. We
find the L1, structure in the CuAu prototype and the L1, structure in ordered
CujAu.

‘The tetragonal L1, structure is found in ordered AB alloys (binary alloys),
where A atoms order on altemate (001) planes and & atoms on the others.
The ordering gives rise to 4 two-layered structure, modulated along the ¢-
axis normal to the (001) planes. The A atoms occupy the 1a(0,0,0) and
1¢(1/2,1/2,0) special positions of the space group P4/mmm (D},), while
B atoms occupy the 2e(0. 1/2, 1/2) positions. Some examples of alloys with
this structure include CuAu, FePt, FePd, CuTi

Figure 17.6(x) shows a simulated XRD pattern for an equiatomic fec FePt
alloy in which the Fe and Pt atoms are distributed randomly on the fee sites.
Figure 17.6(b) shows a simulated XRD pattern for an equiatomic ordered
L1, FePt alloy with an equilibrium a-lattice constant, and an idealized c/a
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ratio of 1.7 The fec structure has reflections that obey the standard extinction
condition that , k, and I must have the same parity. For the fec structure,
any permutation of the three k! indices yields an identical reflection. This
defines the multiplicity of the reflection. The L1, alloy structure has additional
reflections corresponding to the planes (001), (110), (021), (112), (003),
(130), (023), (132), (223), (114), and (241). As the Bravais lattice of the
L1, structure is tetragonal, the  and k indices are no longer equivalent to the
Lindex.

The magnetic recording industry is interested in L1, alloys, such as the
(near) equiatomic CoPt and FePt compounds, for data storage applications.
Layered A and B atoms of different sizes give rise to a tetragonal distortion of
the parent cubie structure, in addition to the lowering of symmetry. The web
structures appendix lists the ¢/a ratios for several representative compounds.
An interesting application of L1, alloys is in self-assembled nanoparticle
arrays, as discussed in Box 17.6.

We observe the cubic L1, structure in ordered A, B alloys where A orders
on the face centers and B on the cube vertices. With reference 1o the
center of the original fec unit cell, one set of atoms occupies the octahe-
dron formed by the face center atoms and the other set occupies the cube
formed by the vertex atoms, as illustrated in Fig. 17.5(c). As a consequence,
the Bravais lattice is no longer face centered, and the space group of this
structure is Pm3m (0}). The B atoms occupy the 1a(0,0,0) special posi-
tion while A atoms occupy the 3¢(0, 12, 1/2) special positions. Examples
of compounds with this structure include Au,Cd, AlCos, PLSn, FeNis,
FePd, ete.

liamond cubic and rocksalt structures

The diamond cubic structure (Structure 6) is an fec derivative structure,
consisting of two interpenetrating fec lattices, where half of the tetrahedral
sites in either lattice are occupied (Fig. 17.7). The origin of the second fec
lattice is at a tetrahedral interstitial site of the first. This is the structure
for important semiconductors like Si and Ge. This structure is given the
Strukturbericht symbol A4. The prototype for this structure is the diamond
allotrope of C. If the two lattices have different atoms, we have an ordered
zinc-blende structure, an AB compound, which will be discussed further in
section 17.63.

Unless scated otherwise, all simulated XRD patens are generated assuming Cu-Ka radiation
and the equilibrium latice constants found in the SiructuresAppendis pdf file on the baok's
e st

Note that four-fold rotation axes of the cubic cel, paraliel 10 the a and b axes, disappear
when the structure becomes ordered. Can you identfy all other vanishing symmetry
operations?
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Box 17.6 Magnetic ~ self. bled
arrays

Scientists are currently actively studying arrays of magnetic nanoparti-
cles for data storage applications. L1, materials figure prominently in this
research. The goal is to store a single bit of information on a single mag-
netic nanoparticle: the implications are enormous potential increases in the
areal storage density (potentially approaching terabits per square inch). In
order 1o store information on a single particle, the particle must be stable
with respect (o thermally activated switching of the magnetization, which
would cause the stored information to be lost. The thermal stability is
determined by the magnetoerystalline anisotropy of the material, which is
directly related to the anisotropy of the crystal structure.

Magnetic materials with the L1, structure have a large magnetocrys-
talline anisotropy and a preference for the magnetization o lie along the
c-axis of the structure. There are several important technical considera-
tions for the use of L1, nanoparticles. Monodisperse magnetic nanoparti-
cles having the L1, structure must be synthesized. This typically involves
the synthesis of fec particles in a system such as FePt, followed by
annealing to achieve atomic ordering into the LT, structure. Tn order to
address the information that is eventually to be stored. the nanoparticles
must be arranged periodically. This is currently being achieved over short
length scales using a process called selfassembly. Periodic arrangements
of nanoparticles over longer length scales are being actively pursued.

Somm

The figure above, courtesy of M. Tanase, D. E. Laughlin and 1.-G. Zhu,
shows a high resolution transmission electron microscopy (HRTEM)
image (a) of a truncated cubo-octahedral Fe Ptnanoparticle (produced at
Scagate Research) used in self-assembled arrays. Frame (b) shows a car-
toon of the Fe and Pt atoms in the nanoparticle of (a), illustrating shape
and orientation of the particle. Frame (c) shows a TEM image of a self-
assembled array of these nanoparticles.
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‘The diamond cubic structure is common in many semiconductors.

Prototype semiconductors are Group IV clements like Si or Ge, having
four electrons in their outer shells.

In semiconductors, the atoms are typically located on sites with four-fold
coordination; this way they can participate in four covalent bonds with a total
of eight shared electrons. The four-fold coordination is typically tetrahedral,
because of the hybrid sp* bonding described in Chapter 2. The diamond
cubic structure can be viewed in terms of vertex sharing tetrahedral unis.
Figure 17.8(b) shows the diamond cubic structure of Si and its four-fold
tetrahedral coordination. To illustrate this bonding in a 2-D picture, we project
the 5 bonds into a (100) plane, as depicted in Fig. 17.8(c). Here, the even
number of electrons and strong hybridization in covalent bonds creates a large
hybridization gap between bonding energy states and antibonding energy
states.

The rocksalt structure (Structure 7, Fig. 17.7(¢)) is an example of an fec.
derivative structure consisting of two interpenetrating fec lattices, where each
of the octahedral sites in cither lattice is occupied by the other. The origin
of the second fec lattice is at an octahedral interstiial site of the first. Note
that,if both atoms were the same, then we would just arrive at a simple cubic
(s¢) lattice with a lattice constant of half that of the fee cell from which it
was derived. This structure is found for many ionic compounds, including
rocksalt, NaCl, which i its prototype. This AB compound, based on the first
elemental structure (A1), has the StrukturBericht symbol BI. The connectivity
of octahedral coordination polyhedra is discussed further in Chapter 22.
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Figure 17.9 shows simulated XRD patterns for the diamond cubic C struc-
tre (a), and the NaCl structure (b). These should be compared with the parent
fee structure of Fig. 17.2. Further fec derivative structures can be considered
in terms of ordered and/or combined occupancy of octahedral and tetrahedral
interstices.

3 fec-derived superlatices

The DO, (Structure 8) and L2,type superlattices (Structure 9) are ordered
Jfee structures. The DO, structure has a conventional fec cell of A-type atoms
with B atoms occupying all tetrahedral and octahedral sites. There are two
tetrahedral and one octahedral interstices per A atom, resulting in an AB,
stoichiometry. Stoichiometric phases with the DO, structure include Fe,Si
and AlFe,; BiF, is the prototype. Non-stoichiometric alloys with the DO,
structure are possible by having imperfect order between the sites. The 12,
superlatiice structure is based on a 2 x 2x 2 supercell of the B2 structure,
described in the next section. Both DO, and L2, structures have fee Bravais
lattices and typical lattice constants range from 0.55 to 0.75nm. A lattice
constnt of 0.5670(5) nm has been reported for Fe,Si collected from cosmic
dust (Zuxiang, 1986).

These superlattice derivatives of the fec structure can also be described as
bec derivatives. We should view these structures in settings with origins at the
(0,0,0) and at the (1/4, 1/4, 1/4) sites, respectively, as shown in Fig. 17.10
(in (b) the outline of the cell with origin at (0,0, 0) is shown for reference).
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We recognize that
bee structures.

structure has features characteristic of both the fec and

17.6.2 bec-derived superlattices

The bee structure is the structure of elemental iron. Tron (Fe) is of widespread
engineering importance because of its abundance and its mechanical and
magnetic properties. In the follo ons, we will review a number
of bec-derived ordered structures and superlattices.

17.6.2.1 bec-derived ordered structures

Fig, 17.1. The simple cubic
stucture (3), the bec structure
(A2 type) (b}, and the ordered
counterpartof t

structure, the B2.C5C1.
strudure (0,

The B-brass superlatiice structure, named for the ordered CuZn alloy, has
Cu atoms occupying cither of the body centered or vertex sites in the
bec Tattice and Zn occupying the other. The ordered AB compound has
the StrukturBericht symbol B2, and is represented by the prototype CsCl
(Structure 10). We observe this structure in many AB alloys and ionic com-
pounds. We discuss this compound in terms of coordination polyhedra and
their connectivity in Chapter 22.

Figure 1711 illustrates (a) the simple cubic (sc) structure, (b) the be
structure (A2 type), and (c) the B2-CsCl structure. The B2 structure can be
viewed in terms of interpenetrating simple cubic lattices. The B2 structure has
A atoms on the (0,0, 0) special position and B atoms on the (12, 1/2, 1/2)
sites. Examples of phases with the B2 structure include B-brass (CuZn), B-
AuCd, B-AINi, B-NiZn, AlFe, LiTl, a’-CoFe, etc.; CoFe is an example of
\portant soft magnetic material with the largest known magnetic induction
in any system and a high Curie temperature.

Superiatiice reflections distinguish between the A2 (bcc) and B2 (CsCl)
structures.

ani

Reflections shared between ordered and disordered structures are known
as fundamental reflections. Extra reflections found in the ordered phase
are called superlatice reflections.

Superlattice reflections arise when the primitive unit cell of the ordered
strueture is larger than that of the disordered structure. Consequently, the
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density of reciprocal lattice points is higher for the ordered structure. The
structure factor of the fundamental reflections of an AB alloy with an A2
structure is

Fuo=fo+fa where h+k+1=even,
and for the superlattice reflections of the B2 structure we have:
Fug=fy—fp where h+k-+1=odd.

For the ionic compound CsCI, the two atoms in the structure have differ-
ent X-ray atomic scattering factors; therefore, the superlattice reflections
in the CsCl structure are easily resolved by XRD (because fo, — foy is
large). However, this is often ot the case in transition metal alloy sys-
tems that occur in the B2 structure; in such systems, the superlattice reflec-
tions may be very weak. An example is the B2 structure of ordered CoFe.
Tron and Cobalt are directly next to one another in the periodic table
and have nearly identical atomic scattering factors, so that fy, —
Therefore, the superlattice reflections are very difficult o observe by con-
ventional XRD. The FeCo diffraction pattern was introduced earlier, in
Chapter 13.

17.62.2 bec derivative 2 x 2 x 2 superlattices

Fig 17.12. bee dervative
superatices :2x 22 bcc
cells a), and the DO, (b) and
12,type () superatces.

In this section, we will reconsider the DO, and L2,-type superlattices as bec
derivative structures, shown in Fig. 17.12. If we consider a 2 x 2 x 2 cubic cell
in an AB binary alloy, where the cube edge sites and half of the body centered
sites are decorated with A atoms and the remaining body centered sites with
B atoms, we arrive at the DO, structure. We can partition the body centered
sites into two interpenetrating tetrahedra (the X and ¥ sites, respectively).
In the set of § body-centered cells, there are 16 positions (a body center and
vertex site for each cell). The B atoms oceupy the positions: (1/4, 1/4,3/4),
(1/4,3/4,1/4). (3/4, 1/4, 1/4), and (3/4,34,3/4), with A atoms occupying
all of the other positions for a composition A, B. For compositions between
AB and A,B, A atoms occupy vertex sites as well as (preferentially) the X
sites. In the composition A;B, A atoms occupy cube vertex sites as well as all
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the X sites and B atoms oceupy all the ¥ sites. The D in the DO, Strukturbericht
symbol indicates an A,,B, compound. When B atoms are on X sites, but not
on any ¥ sites, the stoichiometry corresponds to m =3 and n= 1.

‘The 12, structure is a variant of the DO structure in ternary alloys of com-
position A4,BC, where A atoms occupy cube vertex sites, B atoms occupy
all the X sites, and C atoms, all the ¥ sites. The famous Heusler alloy,
Cu,MnAl is the prototype L2, structure.? Even though Cu and Al are non-
‘magnetic atoms, this alloy is ferromagnetic. This alloy was studied extensively
because it provided an important example of a structure for which Mn atoms,
when kept at large distances from each other (in this case a/+/2), couple
0 one another ferromagnetically.”® The Heusler alloy GaNi,Mn is another
material of current interest because of its large magnetoelastic response.
1t is an example of a ferromagnetic shape memory alloy (FSMA). Other
Heusler alloys containing Mn have large room temperature magneto-optic
Kerr rotations. This can be related to a large orbital moment on M in these
‘materials, which makes them interesting for magneto-optic recording media.
Heusler alloys with interesting magneto-optic effects include Ni,MnSb,
MnPt,Sb, MnPt,Sn, etc. There are hundreds of compounds with the Heusler
structure.

17.6.3 Diamond cubic derived superlattices
17631 Diamond cubic derived ordered structure: zinc blende

Fig. 17.13. Zincblende
sirucure in (a) space filing,
®) ballandstck
representation, showing the
tetrahedral network, and

(0 projecton on (001) planes.

Compounds between group /11 and group V elements (or group If and group
VI elements), which have an average of four electrons in their outer shells, are:
also typical semiconducting materials. These include AsGa, an example of a
1=V material, and InSb, a //-VI material. Similar bonding and crystallogra-
phy i displayed in J11-V semiconductorsthat have the ordered cinc-blende or
for which cubic ZnS is th St 11). This
structure represents an ordered AB compound and, therefore, it is designated
by the StrukturBericht symbol B3, The zinc-blende structure, its coordination
polyhedra connectivity and [001] projection are illustrated in Fig. 17.13.

(@ ®)

* Recell et f ooy s, we e the kel e of e ey o e
alphabetized version, .., we use CuzMnAlL not ACu;Ma.
10 i magnlc ouping i pure M 1 aniferomgnedc.
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c-blende h dered structure in which the Zn at y
coordinated by the S atoms and vice versa, as is readily apparent from the
projection of the structure onto (001) planes. We can view Zn atoms as
occupying half of the tetrahedral sites in the fec sulfur anion sublattice. As
a I1-VI material, its bonding is more ionic than in the ///-V materials. The
zine-blende structure will be considered further in Chapter 22, in a discu:

n
of Pauling’s rules for ionic siructures,

17.6:3.2 Interstitial substitution in the diamond cubic structure: fluorite

Fig. 17.14. (@) Zincblende,
(&) fuare and () AlAshg
srudures; 1 1 x 2 supercels
@ zincblende, (¢) InGads,
and () chalcopyite CuFes,
srudures.

When B atoms occupy all otherwise empty tetrahedral sites in the zinc-blende
structure, the resulting compound has AB, stoichiometry. Compounds with
this structure are most often ionic: however, important intermetallics with

this structure have also been discovered. The first intermetallic with this
structure was Mg,Sn, which was solved by Pauling (1923). Others include
Mg,Si and Mg,Pb. These particular compounds are textbook examples of
line compounds. The binary Mg-Sn, Mg-Si, and Mg-Pb phase diagrams
resemble the hypothetical diagram of Fig. 17.4 (c).

An jonic structure of this type is the fluorite (C1) structure, of which
CaF, is the prototype (Structure 12). In this structure, the A atom occupies
the (0,0,0) special position in the fec lattice and the B atoms decorate the
eight inters
symbol C is used for compounds with AB, stoichiometry. Figure 17.14 (a)-(c)
illustrates the zinc-blende structure, the occupation of the other tetrahedral
sites to yield the fluorite structure, and the ordering between the tetrahedral
sites 10 yield the AlAsMg structure.

The fluorite structure s discussed further in Chapter 22 in terms of Pauling’s
rules for fonic structures. A structure of stoichiometry A;B, of which K,0

oA

]
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is an example, where A atoms occupy all of the tetrahedral sites in an fec B
atom lattice, is called the antifluorite structure. We can expand this structure
type to the stoichiometry ABC, in which, for example, B atoms occupy half
of the tetrahedral sites and C atoms occupy the other half in an fec A lattic
AIASMg s an example of this structure type, shown in Fig. 17.14(c).

The oceupation of the empty octahedral sites in the fluorite structure (i.c.,
at the special position (1/4,1/4,1/4) and those related by symmetry) by B
atoms results in a compound with stoichiometry ABs, of which BiLi, and
AlFe, are examples and the fonic BiF is the prototype. We already described
this structure as Structure 8 in an earlier section. In this structure, not all
of the B atoms are symmetrically equivalent, consistent with the supercell
derivation in the discussion of bec derivatives, where the B atoms occupied
both vertices and half of the body-center sites. As an exercise, the reader may

wish (o show that, if the two sets of tetrahedral sites in fluorite are occupied
by B and C atoms, and octahedral sites by B, the resulting compound has

stoichiometry of AB,C, and its structure corresponds to the previously
discussed L2, structure type.

17.63.3 Diamond cubic derivative 1 x 1 x 2 superlattices
We may construct additional superlatiices by modulating the diamond cubic
(or derivative) structures along one direction. Figure 17.14 (d) illustrates two
zine-blende cubic cells stacked along the ¢-axis. While this structure can be
ordered into a layered L, type structure of which In Ga As, is the prototype
(shown in Fig. 17.14(e)). a more complicated ordering gives rise to the chal-
ite s g 17.14(1). T the Struk-
wrBericht symbol 1, and has the chemical formula CuFeS, (Structure 13)

1764 Hexagonal close-packed derived superlattices

In this section we describe ordered structures based on hcp structure.
These include interstitial substitutions into the hep structure and other hep
derivatives.

17.64.1 Interstital occupation: hcp structure

New structures can be derived by the occupation of the octahedral and/or
interstitial sites in the hicp structure. Depending on the occupation, the resulting
cell can have rhombohedral or lower symmetry. Although we can view these
structures in their primitive cells, we can visualize these structures more
clearly by viewing them in  hexagonal prismatic setting. This setting depicts
three cells bounded by a hexagonal prism. We can conveniently represent the
structures in terms of the stacking sequence of close-packed planes using the
familiar ABC notation.

Occupation of one of the tetrahedral sites in the hep structure yields an
AB compound with the StrukturBericht notation B4 (Structure 14). This is
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Fig. 17.15. 2) Close packed
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17.6 Derivative structures and superlattce examples
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the wartsite structure, named for a polymorph of ZnS. Tis prototype is ZnO
(zincite), with hcp O anions and the Zn cations occupying half the tetrahedral
interstices. Figure 17.15 (top) illustrates hcp O anions in a hexagonal prismatic
setting. The wurtzite structure, with tetrahedral sites oceupied by Zn cations,
is shown in (b). Figure 17.15 (c) highlights an O anion tetrahedron. This
structure has the stacking sequence BECC with Zn at z=0 and 1/2 (BC)
and O at z=3/8 and 7/8 (BC).

Oceupation of the octahedral sites in the hep structure yields an AB com-
pound with the StrukturBericht notation B8, . A related elemental AB structure
(that of Te) is discussed below. A prototype for the B8, structure s the com-
pound NiAs (Structure 15) in which Ni atoms occupy octahedral sites in an
hep As sublattice.

Figure 17.15 (bottom) illustrates an hep cell in hexagonal prismatic repre-
sentation. This figure also illustrates the filling of the octahedral interstices
in the hcp As lattice to construct the B8, NiAs-type structure. Atoms in the
top cap of an As octahedron are highlighted in frame (c). Note that the origin
is displaced by (4, 2, 1) This structure has the stacking sequence ABAC
with Ni at z=1/4 and 3/4 (AA) and As at z=1/2 and 0 (BC). The NiAs
structure is the analog of the NaCl structure because both structures are
derived from the filling of octahedral interstices in the fec and hep derivatives.
The connectivity of the coordination polyhedra in the NiAs structure will be
discussed in greater detail in Chapter 22.

17642 Other hep derivative structures

A new structure related to the L1,-type fee derivative structure is the DO,
Ni Sn-type (also Mg, Cd) structure (Structure 16). We can describe this
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structure with 4 interpenctrating hcp lattices, of which one is typically occu-
pied by B atoms and three by A atoms ~ favoring the stoichiometry A;B. In
the StrukturBericht notation, the D types are reserved for A,,B, compounds.
We can see that for the D0, structure, m =3 and n = 1.

Figure 17.16(a) illustrates a 2 x 2 x 1 supercell of the hep cell, and its
decoration (b) to yield the DO, structure. The new 2x 2 1 supercell
contains two A;B formula units. In the prototype Ni;$n structure, the Ni and
Sn atoms share the close-packed planes with the atomic ratios of 3 : 1 and
the typical BC stacking of close-packed Jayers. However, the two layers can
be decomposed into a larger 3° tiling of the Sn atoms and a 3636 Kagome
tiling of the Ni atoms.

The ABC notation for the stacking of close-packed planes (3° tilings) can
be generalized to stacking of 6° tles using the notation abc and to 3636
tiles using the notation aBy.

In the NiAs structure, the stacking sequence of the 3° tles can be denoted
as BC and that of the Kagome tiles as . In total, this structure has the
stacking sequence [BB][Cy] with Sn at 2= 1/4 and 3/4 (BC) and Ni at
2= 1/4 and 3/4. The square brackets [ ] denote atoms in the same plane.
‘We will illustrate this nomenclature further in Chapter 18.

Materials scientists have been interested in Co-Pt alloys because the
L1, phase of this material possesses a high magnetocrystalline anisotropy.
They also stdied ordered hcp derivative structures in the Co-Pt system
(Willoughby e al,, 2003) as materials for use in high density magnetic record-
ing. Co,_,Pt, alloys are examples of binary systems that exhibit a complete
range of fec solid solutions at clevated temperatures. Such isotropic cubic
phases are not of interest for magnetic recording media, because they lack
‘magnetic anisotropy.

‘The equilibrium Co,_Pt, phase diagram has cubic (a) and hcp (€) phases
along with the ordered fec derivative structures CoPt (L1o) and CoPt (12,) at
ro0m temperature. Co,_,Pt, alloys can be quenched from high temperature
and retain a disordered fec a-phase crystal structure. Upon annealing alloys
with x <0.23 at low temperatures, a transformation to the stable hcp €-phase
structure occurs. OF these structures, only the hep e-phase (Fig. 17.17(a)) and
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the tetragonal L1, phase have uniaxial magnetocrystalline anisotropy. Thus,
only these two equilibrium phase crystal structures are of interest for either
bulk permanent magnets or magnetic recording applications.

Researchers have observed new hcp derivative structures of chemically
ordered Co,Pt in thin films produced by molecular beam epitaxy (MBE)
(Harp ef al., 1993, Maret et al., 1996). Co,Pt is appealing as a material
for data storage because of a decreased cost compared to the equiatomic
CoPt (due to the lower Pt content in Co,Pt). The hcp derivative has been
suggested to be an orthorhombic derivative of the DOy, structure with space
group Pmm2 (Cl,). The DOy, structure is shown in Fig. 17.17 (b), and the
orthorhombic derivative structure is shown in Fig. 17.17 (c). The D0y, phase
consists of mixed layers of 75 at % Co and 25 at % Pt. The fec derivative L1,
phase can also be decomposed into (111) planes stacked as all mixed layers.
In contrast, the orthorhombic phase possesses a pure Co layer, alternating
with a mixed layer containing half Co and half Pt. Willoughby and co-
workers have calculated magnetic dipole moments and magnetocrystalline
anisotropy energy densities for both the D0, hexagonal crystal structure and
the orthorhombic Pmm2 (C},) derivative (Willoughby ef al., 2003).

17.7 Elements with alternative stacking sequences or lower symmetry

17.

.1 Elements with alternative stacking sequences

There can be many variations of superlattices and stacking sequences of close-
packed layers. Some of these are easily derived from symmetry-lowering
distortions of one of the previously described structures.

The structure of -La has a P6,/mme (D) space group with an a-lattice
constant of 0.377nm and a c-lattice constant of 1.2159nm (Spedding
et al., 1956). The La atoms occupy two special positions, (0,0,0) and
(1/3,2/3,1/4). As before, we will depict hexagonal and rhombohedral
structures in a hexagonal prismatic representation. Figure 17.18(a) shows the
the hexagonal prismatic representation of the a-La structure. This consists
of three unit cells in a hexagon in the basal plane. Figure 17.18(z) shows the
atoms, in the basal plane of the three cells, in sequence, highlighted as light
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gray. The third cell shown at the right of Fig. 17.18(a) consists of two half
cells that complete the hexagon.

Figure 17.18(b) illustrates the stacking of close-packed planes in the a-La
crystal structure: atoms on the A-sites are black, those on the C-sites are gray,
and on the B-site light gray. Examining Fig. 17.18(c), we can see that the
stacking of the close-packed layers is ACAB (the same as NiAs), and the
structure contains regions of hicp-like, h, stacking and fe-like, ¢, stacking.
Using the h- notation of Chapter 16, we have the stacking sequence he. If
the structre is projected into a (00.1) plane, as in the hcp structure, all three
A, B, and C sites are occupied; but, unlike the hcp structure, this structure
requires the projection of four layers to sample all three types of site. In the
Strukturbericht notation, this is known as the A3’ structure (Structure 17).

17.7.2 Elements with lower symmetry structures

‘The next elemental structure defined in the StrukturBericht notation, i the A5
structure, which is the structure of B-Sn. -Sn is a high-temperature semi-
‘metallic polymorph of metallic tin, and is stable above 286.4 K. This structure
has space group 14, /amd (DL}), with lattice constants @ = 0.58315 nm and
¢=0.31814nm (Swanson and Tatge, 1953) (Structure 18).

Figure 17.19(a) shows a unit cell for the B-Sn crystal structure in a
ball-and-stick representation, with the origin at the tetrahedral site, offset
(0, 1/4, ~1/8) from the center of symmetry. This structure is a diamond cubic
derivative structure that is highly tetragonally distorted. There are four shorter
Sn-Sn bonds at approximately 0.302 nm and two more bonds at 0.318 nm.
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We can consider Sn to be octahedrally coordinated (in a distorted octahedron)
by setting it at origin choice (1). However, we typically plot the structure of
Sn using a tetrahedral origin (origin choice 2 for the space group 14, /amd
(D)) to show the relationship to the low-temperature, a-Sn_polymorph,
which has a diamond cubic structure.

Elemental In is an example of an element with the A6 tetragonal structure,
‘which we can derive by distorting the fcc o, alteratively, bce structures. We
leave it to the reader to derive this structure as an exercise. The full structural
information can be found as Structure 19 in the web structures appendix.

‘The A7 structure is rhombohedral with space group P3cl (D4,), for which
allotropes of Bi are examples and As is the prototype (Structure 20). For an
allotrope of Bi, with lattice constants a = 0.4546 nm and ¢ = 1.1862 nm, Bi
‘occupies the position (0, 0, 0.2339) at room temperature. The z component of
this position is further observed to be strongly dependent upon temperature.

Figure 17.20(a) shows four-unit cells of the Bi structure in a ball-and-stick

ion. The Bi heets of p i
are cross-connected to the sheets above and below it. This structure was first

As and Sb; itis an important component in high temperature superconductors
A {9 i struc-

ture, although hexagonal graphite has the A9 structure discussed below.
‘The A8 structure has y-Se as its prototype. It is also the structure of Te
which has space group P3;21 (D) with = 04527 nm and ¢ =0.5921 nm
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and Te at the position (0.7364, 0, 1/3) at room temperature (Structure 21).
‘The structure consists of Te atoms, along the z-axis, that snake around a 3,
screw axis (Adenis er al., 1989). Figure 17.20(b) shows this structure in a
hexagonal prismatic representation.

structure s that of graphite (C). It has displaced hexagonal nets,
6* tiles, which are arranged in alternating layers. Atoms in alternate layers
sit above the center of the hexagon in the previous layer as depicted in
Fig. 17.20(c). Graphite has space group P6,/mme (D), with a =0.2456 nm
and ¢ = 0.6696 nm. (Structure 22). The bonding between the alternating
layers is of the van der Waals type, which accounts for the relative ease with
which individual layers can be peeled off (used in pencil leads and graphitic
Iubricants).

The AI0 structure (Strueture 23) is also a thombohedral structure with
space group P3cl (D3,), for which solid Hg is the prototype. The ideal-
ized structure with @ = 0.3464 nm, 0.6677nm and with Hg at position
(0,0,0) is depicted in Fig. 17.19(b). This structure is similar to that of Bi
it belongs to the same space group), but the atoms are located at
Figure 17.19(b) shows a single rhombohedral cell of the Hg structure.

The All structure is that of Ga (Structure 24). Gallium has an
orthorhombic space group Cmea (D35) with lattice constants a = 0.4517 nm,
b=0.7645nm, and ¢ =0.4511 nm and Ga in the position (0, 0.1525,0.079)
(Villars and Calvert, 1991), as originally reported by Bradley (1935). The a
and ¢ lattice constants are very close in size.

Figure 17.21(2) shows a space-filling depiction of the atoms in a sin-
gle orthorhombic unit cell for Ga. Figure 17.21(b) shows a ball-and-stick
representation of the short 0.24nm bonds between “dimerized” Ga atoms.
‘This tendency to dimerize (i.e., form pairs with short bonds) is perhaps an
indicator as to why Ga melts at such a low temperature (roughly room temper-
ature) and what type of clustering persists in the liquid state. Figure 17.21(c)
shows a ball-and-stick depiction including the longer 0.27 nm bonds between
other Ga atom pairs. This depiction shows a staircase arrangement of the Ga.

(©)
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bonds in this structure. This structure is similar to the Al4 structure of I,
and the Al structure of P, which differ only in their degree of dimerization.
‘These structures are not illustrated here.

‘The AI2 (Structure 25) and AI3 (Structure 26) structures are those of
- and B-Mn, respectively. These complicated structures result because Mn
has a half-filled d-shell and can be stabilized in many different symmetries.
As such, Mn will oceupy different sites in these structures. The coordination
‘polyhedra in these phases are very complicated and are similar to the Frank—
Kasper phases discussed in the next chapter,

A cubic unit cell of a-Mn has 58 atoms (Wyckoff, 1963). This struc-
tre consists of four crystallographically distinct Mn atoms. In the a-
Mn structure, one of the distinct Mn atoms sits in 12-fold coordination,
one Mn sits in 13-fold coordination, and the last in 16-fold coordination.
The B-Mn cubic unit cell has 20 atoms (Shoemaker, 1978). This struc-
ture has two crystallographically distinct Mn atoms, and both are 12-fold
coordinated. Because these complicated structures are not simplified easily
10 a level appropriate for an introductory text, we do not illustrate them
here.

The A15 structure will be discussed in more detail in Chapter 18. First
identified as a structure of an allotropic form of W, Al5 was incorrectly
identified; its prototype is not an element, but the structure of W;0.

‘The A20 structure is that of a-U, the stable phase of uranium at room tem-
perature and another orthorhombic structure with space group Cmem (D}
(Structure 27). It has lattice constants a = 0.2854 nm, b = 0.5869 nm, and
©=0.4955nm, with a U atom in the position (0.0, 0.1025, 1/4) (Wyckoff,
1963). A space-filling depiction of the atoms in a single orthorhombic cell
is shown in Fig. 17.22(a). Figure 17.22(b) shows a projection of two planes
of atoms on an (025) plane, where we can see that the U atoms form a
(puckered) hexagonal network. Figure 17.22(c) shows the stacking of these
networks normal to the (025) plane. The crystal structure of 8-U is not illus-
trated here, but is similar to that observed for the o-phase found in CrFe
intermetallics (Chapter 18).

@ ®



17.8 «Natural and art

Metallic structures |

ial superlattices (after Venkataraman et al., 1989)

17.8.1 Superlattice structures based on the L1, cell

Fig.17.23, ustration ofthe
four sublatice fo the L1,
stucure

Every structure type can serve as the starting point for the construction of
4 new structure type. We have seen this repeatedly in the previous sections,
where we derived new structure types starting from the hep. fec, and bec
structures. In this section, we will take the LI, structure type, and use it 0
create a new type known as DO,,. Then we will llustrate a series of structures
Known as long period superlattices.

We begin with the L1, structure. Consider an A;B alloy in the disordered
state at high temperature. The atoms randomly occupy the sites of an fec
solid solution. When the temperature decreases, the structure orders into the
L1, structure type, meaning that the B atoms preferentially occupy the cube
comers. However, because every lattice site in the fe lattice is equivalent,
there are four possible choices for the B atoms to occupy! Tn other words,
any of the four sites in the unit cell can be selected as the comer of the new
ordered. unit cell. Likewise, there are four possible sublatrices for the B atom
to choose from, as shown in Fig. 17.23. The structures in (b). (c), and (d)
are shifted with respect to the one in (a) by one of the three face centering
vectors, A, B, or C.

In different regions of a macroscopic crystal, the B atom may select di
ferent sublattices 1o occupy; and when those ordered regions grow, they

will eventually meet each other and form an interface. This interface is
Known as an anti-phase boundary (APB), because the structures on either
side of the boundary are “out-of-phase.” It costs energy to form such an
interface because the bonds across the interface are not entirely ordered as
those in the L1, structure. The energy per unit area of interface is known
as the APB energy, yopg. This energy may be an isotropic quantity, mean-
erface

ing that the energy does not depend on the orientation of the
with respect to the crystal lattice, or this energy may be highly anisotropic.
Tn some material systems, such as Al;Ti and AlCu,, the APB energy is
strongly anisotropic, and only APBs along (001]-type planes are found.
(see Box 17.7 for more detailed information on the number of different
sublattices)
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Box 17.7 Orientation variants, translation variants, and group theory

Consider a high temperature phase described by a point group of order
Ji. Generally, the ordered phase has low symmetry and is a subgroup
of the high temperature group. The order of the low temperature point
group is represented by 7. It can then be shown (e.g., (Van Tendeloo and
Amelinckx, 1974)) that the total number of possible orientations of the
ordered unit cell with respect to the disordered one is given by the ratio
£ For instance, for a disorder-order transition from fec 10 L1,, we have
Ji =48 for the point group m3m (0,), and (= 16 for 4/mmm (D,,), s0
that there are three possible orientation relations. Intuitively, this is rather
straightforward, because the c-axis of the tetragonal L1, structure can be

oriented along any one of the three (001)-type directions of the fcc cell

For the L1, ordered structure, the point group is m3m (0,), so that the
ratio £ = 1. There are, however, several possible sublattices on which
the ordering may begin. We may determine the total number of possible
sublattices in a given crystal structure by considering the volume of the
primitive unit cells of each phase. The parent fec phase has a thombohedral
primitive unit cell with volume a’ /4, where a is the cubic lattice parameter.
The volume of the primitive ordered L1, unit cell is equal to a*, as
the space group Pm3m (O}) implies a primitive lattice. The ratio of the
primitive volume of the ordered superlattice to that of the primitive parent
latice is the number of sublattices for the ordering transition, the number of
translation variants. For the fec — L1, transition we find four sublattices.
For the fec — L1, transition, we find only two sublattices, as the smallest
primitive unit cell for L1, has volume a'/2 (reader exercise).

Figure 17.24(a) shows a planar APB in an L1, structure; the location of the
APB is indicated by a dashed line in this [100] projection. In most compounds,
the APB is considered 10 be a defect in the otherwise perfect order of the
al structure. There are compounds for which ¥, is vanishingly small,
s it does not take much energy to introduce APBs. When this is the case,
an interesting phenomenon may oceur: the APBs may form a periodic array!
This is illustrated in Fig. 17.24(b), which shows two APBs separated by a
distance 2a, where a is the L1, lattice parameter. When this defect periodically
repeats we can e

crys

sily recognize a new unit cell, in this case with a repeat
distance of 4a along the former c-axis. The lattice parameters of this new unit
cell are hence a, a, and 4a. When the distance between neighboring APBs
shortens, we will reach the point where each L, cell has an APB, as shown in
Fig. 17.24(c). The resulting structure type is known as the D0y, structure type,
with AILTi as prototype structure (Structure 28). This s a body-centered
tetragonal structure with eight atoms per unit cell.
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From the preceding discussion, we can derive a parameter, M, which
is related to the “density” of APBs. If p is the number of APBs in the
repeat unit of the superlattice, and ¢ is the total number of L1, unit cells
in that same repeat unit, then the ratio M = £ is the inverse of the APB.
density, or, equivalently, the average distance’between the APBs. For the
structure in Fig. 17.24(b), we find p o M
D0,, structure, we have p=2 and g =2, so M = . Th: APB-fiee L1,
structure ha oo, As shown by the superlattice structures of Fig. 17.25,
pically do not

M does not need 1o be an integer. While these structures
have a special StrukturBericht symbol, they are found in many alloy systems
such as AlLTi, AICu;, CuPd, AuZn,.... The occurrence of these long
period equires the use of elaborate statistical mechanics

models.
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17.8.2 Artificial superlattices

Modern advanced deposition techniques, such as molecular beam epitaxy
(MBE) and pulsed laser deposition (PLD), allow for the precise synthesis of
artificially layered structures. A large number of new artificially structured
materials have been synthesized in recent years, and the possibilites seem to
be limited only by the researcher's imagination.

‘The term synthetic modulated structure (synonymous with nmfmm mod-
ulated structure) describes any periodically configured m: th a rep-
etition wavelength greater than the unit cell dimensions o e equlhhnum
‘material. These structures have made an impact in a variety of fields, including
the magnetic materials discussed in Box 17.8 below. Scientists are inter-
ested in these materials for their multilayer periods which strongly impact
properties, especially when the size approaches quantum mechanical length
scales. For example, synthetic modulated semiconductor structures referred to
as semiconductor superlattices or quantum wel siructures, have revolution-
ized a variety of semiconductor devices.'! Seminal work on the development
of satellite peaks in Cu,Nb, multilayers as a function of the modulation
wavelength was published by Schiiller (1980).

A sandwich structure, in which a monolayer of a material of interest is
deposited on a substrate and capped with one or many layers of the substrate
‘material, allows us to study two monolayer—substrate interfaces. Among the
most widely studied sandwich structures are the magnetic transition metal—
noble metal systems (TM-NM). In these, similar atomic spacings can be cho-
sen to reduce the influence of interfacial strain on properties, and the chemical
interactions between the monolayer and the supporting layer are small. We
can study more than two interfaces by synthesizing multilayer structures as
illustrated in Box 17.8.

17.8.3 X-ray scattering from long period multilayered systems

Xoray scattering is a powerful tool that can be used to determine structural
parameters of multilayers. The 1D periodicity of planar multilayers gives
rise to satellite reflections, which can be used to calculate lattice constants
and modulation wave lengths. Fluctuations in the Bragg and satellite peak
positions and widihs give information about the coherency and interdiffusion
‘between the layers. Figure 17.26(b) shows satellite peaks in Fe Pt,, multilayers.
‘The FePt, multilayers mimic systems studied by first principles calculations
(McHenty et al, 1991) in which Fe monolayers were embedded in Pt (or Pd)
hosts with an odd number of layers between them, maintaining the stacking
of (001) planes in the n = 1 L1, structure.

"1 First synthesized by Esaki and Tsu (1970).
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Box 17.8 Magnetic nanostructures - multilayer structures

‘The study of magnetism at interfaces in sandwiches and multilayers is a
technologially important atea of reseatch, Novel materal properdes in

ing force behind the study of ariiiall derived (man-made) srucurs
Scientists have been interested in the behavior of single magnetic mono-
layers and 2-D magnetism. It is possible to produce magnetic monolayers
supported by a substrate or sandwiched between two substrate layers. The
modulated superlattice structures illustrated below are examples of sys-
tems with interesting 2-D magnetism (McHenry et al., 1990). These are
the artificially constructed superlattices Au,Fe (a), AusFe (b), AusFe (c),
).

.., Au_Fe

Scientists have studied implications of 2-D magnetism on magnetic dipole
‘moments (MacLaren et al., 1990), exchange coupling between the dipole
‘moments, and magnetocrystalline anisotropy (McHenry ef al,, 1991).
Equiatomic FePt, FePd, and ternary FePt,Pd,_, alloys crystallize in the
Li, phase structure. Their c-axis orientation (texture) with respect to the
substrate is important for recording magnetic information permanently in
perpendicular recording media. As materials advance, high density mag-
netic recording is done at ever decreasing bit sizes (Jeong, 1994). This is
important in the miniaturization of hard disk drives and to increase storage
capacity at fixed size (Weller et al., 2002).

Large uniaxial magnetic anisotropies reflect a strong preference for
‘magnetization vectors to lie along the c-axis in L1, phase magnets, resulting
in unprecedented magnetic anisotropy (Klemmer et al., 1995). This, along
with their notable corrosion resistance, makes the L1, materials among
the most atiractive permanent magnet materials for thin film magnetic
recording applications. The c-axis texture in L1, phase magnets aligns the
natural 1x 1 superlattice with alternating Fe and Pd and/or Pt layers,
repeating in a direction normal (o the substrate plane. Temary alloys are
investigated using first principles calculations for their potential, even
larger, anisotropies and to understand the influence of alloying on the
atomic ordering transition that takes a disordered fec solid solution to the
ordered L1, phase (Willoughby et al., 2002, Willoughby, 2002).
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Figure 17.26(a) illustrates a sequence of structures constructed by adding
an additional two Pt layers to the previous structure. This yields the FePt,,
FePty, FePty, and FePt superlattice structures. These are 7x 1, 5x 1,3 1,
and 1x 1 superlattice structures, respectively. Each of these has a P4/mmm
(D},) space group with a c-lattice constant of approximately 7, 5, 3, and 1
times the a lattice constant

Figure 17.26(b) shows a simulated intensity versus 20 X-ray diffraction
pattern for an FePt,, superlattice structure, scattering Cu-Ka radiation near
the (001) reflection. The FePt,, superlattice structure (rotated by /2) is
shown in the inset. This XRD pattern shows several interesting features.
First, because of the large ( 4.2nm) c lattice constant for this system, the
(001) reflection occurs at a small value of 20 ~2.5°. The most dramatic
feature, however, is the appearance of the (001) (/ =2, ..., 12) superlattice
reflections. From these two observations we can infer that low angle X-ray
scattering is an important tool for the study of superlattices.

AINb multlayers have been sputter deposited (Barmak ef al., 1998) and
used as diffusion couples to monitor the formation of equilibrium phases
upon subsequent annealing, The as-deposited structures offer good examples
of systematic changes in the X-ray scattering as a function of the multilayer
composition, period, and individual layer thicknesses. An example of X-ray
scattering from such multilayer structures is described in Box 17.9.

17.8.4 Incommensurate superlattices
Thus far, we have always described the translational periodicity of crystal
structures in terms of a lattice and its basis vectors. In a one-dimensional
(1-D) lattice, we can describe the positions of the lattice points as follows:

1 Agposinl, b of s ght gl Gonion i the a1 x| sc, hich
has a=0.3806 nm and c = 0,361
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Box 17.9 Interface engineering in Nb Al multilayer structures

AINb multilayers preserving a 3:1 Nb-to-Al stoichiometry have been
sputter deposited as thin films with varying periodicities between 10 and
500 nm. X-ray scattering experiments (a) and microstructural observations
(b) of the modulated superlattice structures are illustrated below (figure
courtesy of K. Barmak).
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‘The XRD patterns for AINb multlayer films (a) show several systematic
changes with periodicity, A = fy, +1x:
[0} m large A, the most intense peaks observed are for bec Nb and fec

(ii) Al small A, the most intense peaks merge indicating tha the layers
are strained and exhibit a single common lattice constant.

(i) Superlattice reflections are observed as satellite peaks around the
main peak at the smallest multilayer periodicities.

A cross-sectional TEM micrograph (b) of an as-deposited multilayer film
with A =72nm shows sharp interfaces and uniform thicknesses of the
constituent layers. The XRD pattern for the 10nm multilayer film fits
well to a simulated pattern assuming a single Bragg peak with an average
lattice spacing and superlattice reflections predicted by a square wave
compositional profile for the constituent layers.
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Fig. 1727, Transormaton of
a perodic 1D latice to ong
perod superlatices with ltice
constarts (a) 0 = 4’ and (o)
a =6, respectively (f =0.5).
Transformaion o  peiodic
1D latie to incommensurate
latice with period (0 1//Z
and (@) 1/+/5, respetively,
t=029).

i i al, 1989)

x,=na, 7.17)

where a is the 1-D lattice constant and n is an integer. The concept of a
modulated structure can be illustrated by the introduction of atomic dis-
placements in this 1-D lattice. For simplicity, we will consider first a
monatomic basis in which the atoms sit on the lattice points defined above.
‘Then, we consider displacements of the original atoms to new sites, X,
given by

+fsin (%"qx") =x,+ fsin(2mng), (17.18)

where f is the modulation amplitude, and g describes the modulation
wavelength. If g is a non-zero rational number, then the new structure is
also periodic, but with a larger unit cell (i.e., a/q). This structure is referred
to as a commensurate superlattice, o a commensurate long period struc-
ture. Tf q is an irrational number, such as 1/+/2, then the structure does
not possess traditional periodicity but, instead, possesses quasi-periodicity.
Such structures are known as incommensurate superlartices. Incommensu-
rate superlattices can be constructed artificially, but they are also found in
nature.

Figure 17.27(a) and (b) illustrate the transformation of a periodic 1-D lattice,
with lattice constant ', to a commensurate, long period lattice with g = 1/4
and 1/6, respectively (f = 1). Note that this transformation leads to the long.
period lattice constant of @ =4a’ and a = 6d', respectively. Fig. 17.27(c)
and (d) shows a similar transformation with f =1/4, but with ¢ = 1/v/2 or
/+/3. This transformation leads to an incommensurate structure without
a traditional lattice constant. Because the sin function is clearly periodic,
but with an irrational period, the modulated lattice is incommensurate with
the first, i.e., the lattice parameter of the modulated lattice is not a rational
‘multiple of that of the original lattice. This irrational periodicity is, however,
recognized and given the name quasi-periodicity.
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A quasi-periodic function is a superposition of periodic functions whose
periods are incommensurate with one another.

These ideas are easily generalized to describe a 3-D monatomic latt
whete we can introduce one or more commensurate or incommensurate mod-

ulations in different directions. Incommensurate structures can also be con-
structed in a non-displacive manner. For example, we could have a traditional
periodic lattice for which the charge density, or spin density, or even the
chemical composition is modulated in an incommensurate manner. Waves
that interact with the charge or spin densities (i.¢., neutrons) will be scattered
as if they originate from an incommensurate lattice.

In substitutional alloying in an AB binary system, it is possible that the A
and B atoms will substitute randomly for one another on the same crys-
talline lattice. Alternatively, a new phase can be formed in which the two
atoms are ordered on the original lattice. The Hume-Rothery rules predict
that when there is a large difference in atomic sizes, the lattice of the larger

terstitial sit

species may remain intact and the smaller atoms may occupy i
in that lattice: such systems are known as inserstitial alloys. Two impor-
tant examples of classes of interstitial alloys are transition metals which
dissolve small amounts of smaller atoms such as C, N, H, etc. and ioni

smaller cations occupy the interstitial sites. We discuss these latter solids in
Chapter 22

Intersiitial alloys are among the most technologically important alloys.
Notable among these are Fe-C steel alloys, for which the dissolved C
crucial 1o the properties of the steel. For pure Fe, the low temperature and

room temperature phase has a bec (A2) crystal structure, known as ferrite.
At high temperatures, it has the fec (A1) crystal structure, called ausien-
ite. While C is much smaller than Fe and can be dissolved interstitially,

it does strain the bec lattice; only about 1% C can be dissolved in
rite at room temperature. For higher concentrations of C, a mixture of fer-
rite and a carbide, Fe,C, called cementite exists in equilibrium at room

temperature. The structure of cementite is discussed in Chapter 21 in the
context of metal-metalloid alloys. C, B. P, Si, etc. are examples of metalloid
elements.

A higher temperatures, much more C (up to % 2.1 %) can be dissolved
in austenite. The quenching of austenitic alloys containing larger amounts of
dissolved C to room temperature gives rise 1o the formation of metastable

phases of bee Fe with larger C content existing at room temperature.



Fig. 17.28. ) Atomic and (0)
balkand-tick depictions of the
AW Na phase strucure;

(0 connectvty ofterahedral

polyhedra (Besi etal,
1963).

17.9 Interstitial alloys

Martensite is a tetragonally distorted body-centered cubic variant of iron
with carbon dissolved at @ non-equilibrium concentration level. Marten-
site is named after the German metallurgist Adolf Martens (1850-1914),
who first studied the phase, which forms during quenching without the
precipitation of cementite. While martensite can be considered as ferite
supersaturated with carbon, the additional dissolved carbon and its strain
on the bec ferrite structure cause a tetragonal distortion of the structure.
On cooling, the fec austenite smoothly deforms into the tetragonally dis-
torted bec martensite by a shear deformation, expanding in one direction
and contracting in the other two. This strain and its resulting distortion
lead to a significant hardening of martensite as compared to the equilibrium
ferite.

Other interstiial alloys of technological importance include hydrides (sim-
ple metal, transition metal, or rare earth metal). These include light metal
hydrides like Li hydride becavse of their large H capacities per unit weight.
Renewed interest in the AH Na phase (Bogdanovic and Schwickhard, 1997)
followed reports on how doping with early transition metals, Ti and Zr,
leads to decomposition and release of H at low temperatures, an important
reaction for hydrogen storage technologies. Similar results with small rare
carth clement additions have also been reported. Again, low temperature H
decomposition kinetics are important for viable H storage applications.

The crystal structure of the AVH,Na phase is the teiragonal structure
illustrated in Fig. 17.28. This model is based on crystal structure data
for the phase as taken from Pearson’s tables (attributed to Bel'skii ef al.
(1983)). The structure can be understood in terms of (AIF,)" tetrahedral
units, forming chains along the [010] directions that are connected by bridg-
ing Na* ions. The Na* ions are also tetrahedrally coordinated by H, but
with noticeably distorted tetrahedra. Hydrogen atoms also sit in tetrahedral
coordination by the metal atoms. These infinite planar arrays are stacked
along the [001) dircction. As transition metal or rare earth atom substitu-
tions expand the c-axis lattice parameter, more room for hydrogen motion
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in the latice is provided. The structure of the intermediate AlH,Na,
phase s still the subject of scientific debate; using XRD studies, a mon-
oclinic phase has been identified (Gross ef al., 2000) whereas first prin-
ciples calculations have been employed to identify two possible structural
variants (Opalka and Anton, 2003).

17.10 Historical notes

Fig. 17.20. 2) Willam
HumeRothery (1899-1965)
(picure courtesy of
Department of Materials
Universty of Oxford) and
() Thaddeus B.Massalski
(1928-) courtesy of Ted
Massalski.

William Hume-Rothery (1899-1968) was bom in 1899 in Worcester Park,
Surrey. Hume-Rothery studied at Cheltenham College from 191216 before
entering the Royal Military Academy at Woolwich, where he originally
planned on a military carecr. When cerebrospinal meningitis left him deaf,
he transferred to Magdalen College, Oxford in 1918. Hume-Rothery com-
pleted his education at Oxford in Chemistry in the Honour School of Natural
Science. From 1922-5 he worked under H. C. H. Carpenter, the Professor of
Metallurgy, at the Royal School of Mines of Imperial College, London. There
he studied structure/property relationships of intermetallic compounds.

In 1925 Hume-Rothery retumed to Oxford, where from 1925-52 he
held various research fellowships that supported his work at Oxford
Hume-Rothery was instrumental in establishing metallurgy as a discipline
at Oxford. He founded the Department of Metallurgy at Oxford in 1956.
From 19558, he was the first holder of the George Kelley Readership in
Metallurgy, 1955-8, from 195866 he was the first Isaac Wolfson Professor
of Metallurgy. Hume-Rothery is internationally known for his work on the
formation of alloys and intermetallic compounds.
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17.10 Historical notes

During World War I, he supervised a group that performed important
work on aluminium and magnesium alloys. Hume-Rothery and co-workers
established stability rules for alloys and developed the equilibrium diagrams
for many alloy systems. An entertaining short biography of Hume-Rothery
written by Jack Christian (Christian, 1997) is reprinted at the University
of Oxford web site.”® Christian and W.B. Pearson, working with Hume-
Rothery, did some of the early studies of the 0" phase, an embritiling agent
in steels and one of the Frank-Kasper phases discussed in Chapter 18

Hume-Rothery’s investigations of alloy equilibria led to the famous Hume-

Rothery rules for alloy stability. These rules are discussed in this chapter.
‘They offer an empirical guide to deciding when two metals will be completely
miscible (i., form a single crystalline phase at all concentrations of one
dissolved in the other). Hume-Rothery was a proponent and early pioneer
in the electron theory of metals (Hume-Rothery, 1952). He was made an
honorary member of the of Metals (now ASM
in 1957. He published the influential book “The Structure of Metals and
Alloys” in 1954 (Hume-Rothery and Raynor, 1954).
1929-), was bor in Warsaw, Poland and lived
there until the middle of World War I, when he and his family left for
Switzerland to seek haven from the wartime ravages in Poland (Hutton, 2004).
Massalski began his college studies after the war at the Reggio Politecnico
di Torino in Ttaly followed 