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Part 1: Trees of Group–subgroup Relations

1 Introduction

In the early days of crystal structure determinations it became clear that the laws govern-
ing the packing of atoms and molecules must be understood, that crystal structures have
to be classified and ordered, and that relations between themmust be recognized. Mean-
while more than 400000 crystal structures have been deposited in databases. Without
ordering principles it would be a hopeless undertaking to master this flood of data.

Many conceptions have been developed to this end, such as thefamous rules of PAUL -
ING on ionic radii, coordination polyhedra and the joining of polyhedra or the Zintl-
Klemm-Busmann rules. These and other principles have served in textbooks and other
publications to classify crystal structures. However, in most cases symmetry considera-
tions have not been considered at all or only as a secondary tool. This is astonishing,
since symmetry is indispensable for the determination and the description of a specific
crystal structure. There is a reason for this discrepancy: Related crystal structures often
have different space groups, and the relations between themresult from group–subgroup
relations between their space groups. These relations wereonly partially known up to
1965, and a useful form derived by NEUBÜSER & W ONDRATESCHEK was not gener-
ally accessible for another 18 years [1]. For the first time, they were included in the
1983 edition ofInternational Tables for Crystallography, Volume A [2]. And yet, even in
the 2005 edition, the listing of the subgroups in VolumeA is incomplete. The complete
listing finally has become available in 2004 in the additional Volume A1 [3].

In addition, two essential kinds of information are missingin Volume A: (1) One must
not only know the subgroups of the space groups, but also which coordinate transfor-
mations are involved; (2) The relations between the positions occupied by atoms in the
space groups in question must be known. In principle, this information can be extracted
from Volume A, but that is a cumbersome task prone to errors. In the new Volume A1
all this information is now completely available (for all ofthe infinite many subgroups).
Another source of information is theBilbao Crystallographic Server[4].

In 1980 BÄRNIGHAUSEN presented a procedure to set forth structural relations be-
tween crystal structures with the aid of symmetry relationsbetween space groups [5].
For a recent review on this subject see [6]. Short descriptions can be found at [7] and
[8]. The main concept is to start from a simple, highly symmetrical crystal structure and
to derive more and more complicated structures by distortions and/or partial substitutions
of atoms. A tree of group–subgroup relations between the involved space groups, now
called aBärnighausen tree, serves as the main guideline. The highly symmetrical start-
ing structure is called thearistotypeafter MEGAW [9] or basic structureafter BUERGER

[10, 11]. The derived structures are thehettotypesor derivative structures.
Aside from their usefulness in systematic crystal chemistry, group–subgroup relations

have other applications: They help understanding the domain structures of twinned crys-
tals, they are indispensable to treat second-order phase transitions and they even help in
the determination of protein crystal structures.
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4 TREES OF GROUP–SUBGROUP RELATIONS

2 The Symmetry Principle in Crystal Chemistry

The usefulness of symmetry relations intimately has to do with the symmetry principle
in crystal chemistry. This principle is based on experienceand has been worded during
its long history in rather different ways. B̈ARNIGHAUSEN summarized it in the following
way [5]:

The Symmetry Principle in Crystal Chemistry

1. In crystal structures the arrangement of atoms reveals a pronounced tendency
towards the highest possible symmetry.

2. Counteracting factors due to special properties of the atoms may prevent the
attainment of the highest possible symmetry. However, in most cases the
deviations from the ideal symmetry are small (key-word pseudosymmetry).

3. During phase transitions and solid state reactions whichresult in products of
lower symmetry, the higher symmetry of the starting material is indirectly
preserved by the formation of oriented domains.

Another wording which stresses aspect 1 is due to BRUNNER [12]:

Atoms of the same kind tend to occupy equivalent positions.

This wording gives us a hint to the physical reasons governing the symmetry principle:
Depending on chemical composition, the kind of chemical bonding, electron configura-
tion of the atoms, relative sizes of the atoms, pressure, temperature etc., there existsone
energetically most favorable surrounding for atoms of a given kind which all of these
atoms strive to attain. According to quantum theory, atoms of the same kind are indistin-
guishable, but in a crystal this is only ensured if they are symmetry-equivalent.

Aspect 2 of the symmetry principle is exploited in the following chapters. Factors that
counteract the attainment of the highest symmetry include:(1) Stereochemically active
lone electron pairs; (2) Jahn-Teller distortions; (3) Covalent bonds; (4) Peierls distortions;
(5) Ordered occupation of like atomic positions by different kinds of atoms; (6) Conden-
sation of lattice vibrations (soft modes); (7) Ordering of atoms in a disordered structure.

Aspect 3 of the symmetry principle has its origin in an observation of BERNAL. He
noted that in the solid state reaction Mn(OH)2 → MnOOH → MnO2 the starting and the
product crystal had the same orientation. Such reactions are called topotactic reactions
[13, 14]. In a paper by BERNAL & M ACKAY we find the sentence [15]:

“One of the controlling factors of topotactic reactions is,of course, symmetry.
This can be treated at various levels of sophistication, butwe find that the
simple concept of Buridan’s ass illumines most cases.”

According to the metaphor of BURIDAN (French philosopher, died ca. 1358) the ass
starves to death between two equal and equidistant bundles of hay because it cannot
decide between them. Referred to crystals, such an asinine behavior would correspond
to an absence of phase transitions or solid-state reactionsif there are more than one
energetic equivalent orientations of the domains of the products. Crystals, of course, do
not behave like the ass; they take both.
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3 Subgroups of space groups 5

3 Subgroups of space groups

The theory of space groups is dealt with in the literature [3,16, 17, 18]. However, for
the understanding of the following sections I repeat a few important terms.

A space group is a group according to group theory. The symmetry operations (not
the symmetry elements) are the group elements that make up the space group. A group
that results by the removal of some of the symmetry operations is a subgroup. If there
exists no intermediate group between a space group and one ofits subgroups, then this
subgroup is a maximal subgroup. The index (of the symmetry reduction) is the factor, by
which the number of symmetry operations has been reduced; italways is an integer. The
index of a maximal subgroup always is a prime numberp or a power of a prime number
p2 or p3.

According to Hermann’s theorem, a maximal subgroup is either a translationengleiche∗

or a klassengleichesubgroup. A translationengleichesubgroup still has the complete
translation lattice; its primitive unit cell has an unchanged volume. A klassengleiche
subgroup belongs to the same crystal class; it has lost translational symmetry,i.e. the
conventional unit cell is either enlarged or it has lost centering translations.Isomorphic
subgroups are a special kind ofklassengleichesubgroups which belong to the same space-
group type (same Hermann-Mauguin symbol) or to the enantiomorphic space-group type
(e.g. P41 and P43). Every space group has an infinity if maximal isomorphic subgroups.

4 Bärnighausen trees

The aforementioned notions permit us to represent symmetryrelations between different
crystal structures in a concise manner. Beginning with the space group of the aristotype
at its top, we construct a tree of group–subgroup relations in a modular design, each
module representing one step of symmetry reduction to a maximal subgroup. Therefore,
we only have to discuss one of these modules in detail.

For two structures we want to interrelate, we place their space-group symbols one
under the other and indicate the direction of the symmetry reduction by an arrow pointing
downwards (scheme on the following page). In the middle of this arrow we insert the
kind of maximal subgroup and the index of symmetry reduction, using the abbreviations t
for translationengleiche, k for klassengleiche, and i for isomorphic. If the size of the unit
cell or its setting changes, we also insert the new basis vectors expressed as vector sums
of the basis vectors of the higher symmetric cell. If there isan origin shift, we enter
this as a triplet of numbers which express the coordinates ofthe new origin referred to
the basis of the higher symmetric cell.Any change of the basis vectors and the origin is
essential information that should never be omitted.

∗called zellengleichesubgroups by HERMANN, but now calledtranslationengleichesubgroups to avoid cer-
tain misunderstandings. Germantranslationengleichemeans ‘with the same translations’.Klassengleichemeans
‘of the same (crystal) class’. A committee of experts of the International Union of Crystallography was not able
to agree upon equivalent English terms and decided to keep the German terms; however, some authors use the
terms ‘equi-translational’ and ‘equi-class’. Use the German terms with terminal -e irrespective of the declension
endings that would be used in German.
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6 TREES OF GROUP–SUBGROUP RELATIONS

Scheme of the general formulation of the smallest step of symmetry reduction
connecting two related crystal structures

Hermann–Mauguin symbol of the
higher symmetric space groupG ➤

Symbol designating the higher
symmetric crystal structure,e.g. the
chemical formula or mineral name

➤

Type and index of the subgroupH ➤

Basis transformation∗ ➤

Origin shift∗ ➤

Hermann–Mauguin symbol of the
maximal subgroupH ➤

Symbol designating the lower
symmetric crystal structure

➤

∗ mentioned only if there is a change

P6/m2/m2/m

AlB2

Al : 1a B:2d
6/mmm 6m2

0 1
3

0 2
3

0 1
2



























k2
a,b, 2c
0, 0,–1

2
x, y, 1

2z+ 1
4

➤

➤ ➤

P63/m2/m2/c

CaIn2

Ca:2b In :4 f
6m2 3m

0 1
3

0 2
3

1
4 0.455



























see note 5

➤ coordinate
transformations

see note 5

Explanatory notes
1. Possible types of maximal subgroupsH of a given space groupG:

symbol term meaning
t translationen-

gleiche
G andH have the same translational lattice; the crystal class
of H is of lower symmetry than that ofG

k klassengleiche G andH belong the same crystal class;H has lost transla-
tional symmetry, its primitive cell is larger than that ofG

i isomorphic G and H belong to the same or the enantiomorphic space
group type;H has lost translational symmetry, its unit cell
is larger than that ofG

2. The indexi of a subgroup is the number of cosets ofH in G. The number of sym-
metry operations ofH is 1/i of those ofG.

3. Basis transformation: The three basis vectors ofH are expressed as linear combina-
tions of the basis vectorsa, b, c of G.

4. Origin shift: The coordinate triplet of the origin ofH is given in the coordinate
system ofG.

5. Additional information: Space permitting, the atomic positions are given in a box next
to the space group symbol in the following way:

element symbol: Wyckoff label
site symmetry

x
y
z

The coordinates are given for one atom in the
asymmetric unit. If a numeric value is fixed by
symmetry, it is stated as 0 or as a fraction,e.g.
0, 1

4, 1
2. Free parameters are stated as decimal

numbers,e.g. 0.0, 0.25, 0.53. If possible, align
the site-symmetry symbol in one line with the
space-group symbol.
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4 Bärnighausen trees 7

If the atomic coordinates of two related crystal structuresdiffer because of different
settings of their unit cells, the similarities of the structures become less clear and may
even be obscured. Therefore, it is highly recommended toavoid cell transformations
whenever possible. If necessary, it is much better to fully exploit the possibilities offered
by the Hermann–Mauguin symbolism and to choose nonconventional space-group set-
tings, i.e. to use space-group symbols that do not correspond to the standard settings of
International Tables for Crystallography. Since they are more informative, it is advisable
to use only the full Hermann–Mauguin symbols. For the differences between conven-
tional and nonconventional settings see Sections 3.1.4 and3.1.6 of International Tables
for Crystallography, Volume A1 [3].

Origin shifts often cause problems and also tend to obscure relations. However, usually
they cannot be avoided. There is no point to deviate from the standard origin settings of
International Tables for Crystallography, because otherwise much additional information
would be required for an unequivocal description.Attention: The coordinate triplet speci-
fying the origin shift in the group–subgroup arrow refers tothe axes system of the higher
symmetry space group, while the corresponding changes of the atomic coordinatesrefer
to the coordinate system of the subgroup and therefore always are different. Details are
given in Section 3.1.3 ofInternational Tables, Volume A1 [3]. Pay also attention that in
the tables of Parts 2 and 3 of VolumeA1 the origin shifts are given in different ways. In
Part 2 they refer to the higher symmetry space group. In Part 3(Relations of the Wyck-
off positions) they are only given as parts of the coordinatetransformations,i.e. in the
coordinate systems of the subgroups. Unfortunately, the chosen origin shifts themselves
(there are always different possible choices) also differ in Parts 2 and 3, which means
that a coordinate transformation taken from Part 3 does not correspond to the one given
in Part 2 for the same group–subgroup pair. In case of need, one has to calculate the
corresponding values with the formulae of Section 3.1.3 of Volume A1.

For some space groupsInternational Tablesoffer two possible choices of origin (‘ori-
gin choice 1’ and ‘origin choice 2’). In these cases the choice is specified by a superscript
(1) or (2) after the space-group symbol, for exampleP4/n(2). The setting of rhombohedral
space groups is specified, if necessary, by superscript(rh) or (hex). Occasionally it may
be useful to use a nonconventional rhombohedral ‘reverse’ setting, i.e. with the centering
vectors±(1

3, 2
3, 1

3) instead of ‘obverse’ with±(2
3, 1

3, 1
3); this is specified by superscript

(rev), for exampleR3(rev).
In a Bärnighausen tree containing several group–subgroup relations, it is recommended

to keep the vertical distances between the space-group symbols proportional to the loga-
rithms of the corresponding indices.This way all subgroups that are at the same hierar-
chical distance from the aristotype are at the same level.

Group-subgroup relations are of little value if the usual crystallographic data are not
given for every structure. The mere mention of the space groups is absolutely insufficient.
The atomic coordinates are of special importance. It is alsoimportant to present all struc-
tures in such a way that their relations become clearly visible. In particular, all atoms of
the asymmetric units should exhibit strict correspondence, so that their positional parame-
ters can immediately be compared. Unfortunately, for nearly all space groups there exist
several different equivalent sets of coordinates describing one and the same structure, so
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8 TREES OF GROUP–SUBGROUP RELATIONS

that one often is forced to transform coordinates from one set to another to attain the
necessary correspondence (cf. next section).

If the space permits it, it is useful to list the site symmetries and the coordinates of the
atoms next to the space groups in the Bärnighausen tree, such as shown in the scheme on
page 6. If the space is not sufficient, this information must be listed in a separate table.

5 Atomic positions and Wyckoff positions

The use of a standardized description of crystal structureshas been recommended to
obtain comparable sets of data [19, 20, 21]. However, the corresponding rules have of-
ten been disregarded, not only because of ignorance or negligence, but also for good
reasons. Two of these reasons are the above-mentioned recommendation to avoid cell
transformations, if possible, and to observe a strict correspondence of atomic parameters
of structures that are to be compared. Furthermore, even if the standardization rules are
observed, there often are several possibilities to describe one and the same structure.

It is be no means a simple matter to recognize if two differently documented structures
are alike or not. The literature abounds with examples of ‘new’ structures that in reality
had been well known. For all space groups, exceptI m3m and I a3d, there always exist
several different equivalent sets of atomic coordinates for exactly the same crystal struc-
ture with an unchanged setting of the space group. For the space groupG the number
of equivalent coordinate sets ise; e is the index ofG in its Euclidean normalizerN

E
(G)

[22, 23]. N
E
(G) is a supergroup ofG.

A procedure to obtain one equivalent coordinate set from another is described in Sec-
tion 15.3 of International Tables, Volume A [2]; see also [24]. One takes advantage of
the Euclidean Normalizers, using the transformation formulae given in Tables 15.2.1.3
and 15.2.1.4 of VolumeA (editions of 2002 and 2005; Table 15.3.2 in the editions of
1987 to 1995) under the heading ‘Additional generators ofN

E
(G)’. The last column of

the tables contains the indicese of G in N
E
(G). Cf. example on the next page.Attention:

For chiral space groups likeP31 one obtains only equivalent sets of coordinates without
a change of chirality; for chiral structures in non-chiral Sohncke space groups [25] like
P212121 the sets of coordinates include the enantiomeric pairs.

The infinitely large set of symmetry-equivalent points in a space group is called a
(crystallographic) orbit [27, 28, 29]. If the corresponding coordinates are completely
fixed by symmetry (e.g. 1

4, 1
4, 1

4), the orbit is identical with theWyckoff position(German:
Punktlage). If, however, one or more coordinates are variable (e.g. z in 0, 1

2,z), the
Wyckoff position comprises infinite many orbits; they differ in the variable coordinate.
The set of points that is symmetry-equivalent to, say, 0, 1

2, 0.391 makes up one orbit.
The set of points corresponding to 0, 1

2, 0.468 belongs to the same Wyckoff position, but
to a different orbit. Therefore, the Wyckoff position may comprise many orbits (do not
get irritated by the singular form of the words orbit, Wyckoff position andPunktlage).

A Wyckoff position is designated by the Wyckoff label, for example 4c. The 4 is
the multiplicity; it shows how many points belonging to an orbit of the Wyckoffposition

c© Ulrich Müller, 2008. Symmetry Relations between Crystal Structures



5 Atomic positions and Wyckoff positions 9

Example 1
WOBr4 crystallizes in the space groupI 4 with the following atomic coordinates [26]:

x y z
W 0 0 0.078
O 0 0 0.529
Br 0.260 0.069 0.0

The Euclidean Normalizer ofI 4 is P14/m m mwith the basis vectors12(a−b), 1
2(a+

b), εc (cf. International Tables, Volume A, Table 15.2.1.4). The index ofP14/m m min
I 4 is ∞ ·2·2, i.e. infinite, due to the infinitesimal small basis vectorεc. By addition of
0,0, t to the coordinates of all atoms one obtains one out of an infinity of new equivalent
coordinate sets, becauset may have any arbitrary value. The index∞ ·2 ·2 expresses
that for each of these infinite many coordinate sets there arefour equivalent sets. They
result by inversion at 0,0,0 and by the transformationy, x, z. The obtained equivalent
coordinate sets include the enantiomeric pairs:

W 0 0 0.078 +t 0 0 –0.078– t
O 0 0 0.529 +t 0 0 –0.529– t
Br 0.260 0.069 0,0+t –0.260 –0.069 0,0– t

W 0 0 0.078 +t 0 0 –0.078– t
O 0 0 0.529 +t 0 0 –0.529– t
Br 0.069 0.260 0.0 +t –0.069 –0.260 0.0– t with t = arbitrary

in question are contained in one unit cell. Thec is an alphabetical label (a, b, c, . . . )
according to the listing of the Wyckoff positions inInternational Tables, Volume A [2].

A consequence of this kind of labeling is its dependence on the size of the chosen unit
cell. For example, the multiplicities of rhombohedral space groups are larger by a factor
of three if the unit cell is not referred to rhombohedral but to hexagonal axes.

Many space groups have several equivalent Wyckoff positions that commonly make up
a Wyckoff set. These Wyckoff positions have the same site symmetries. Forexample, all
positions on all twofold rotation axes of the space groupI 222 form a Wyckoff set.

Between the points of an orbit and the corresponding points of a subgroup there exists
a one-to-one relation. Both orbits have the same magnitude.Upon symmetry reduction, a
Wyckoff position will either split into several symmetry-independent positions, or its site
symmetry is reduced, or both happen [30]. If there is a splitting, some or all positions
can keep their site symmetries. Atomic coordinates fixed on special positions or coupled
with each other may become independent.

If atoms of an orbit are to be substituted by atoms of different elements in an ordered
way, it must split. Distortions of the structure require a reduction of the site symmetry,
unless it is already low enough. Upon distortion, the coordinates of some or all atoms
may or must deviate from the ideal parameters of the undistorted structure. In addition,
usually a metric distinction of the basis vectors takes place.

The relations between the Wyckoff positions of a group and a subgroup are uniquely
determined as long as the relative positions of the unit cells of group and subgroup are
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10 TREES OF GROUP–SUBGROUP RELATIONS

uniquely determined. Usually there are several (arbitrary) possibilities for the relative
positions of the cells, and the relations of the Wyckoff positions may differ.

How the Wyckoff positions of the space groups are transformed to the Wyckoff po-
sitions of their subgroups is completely listed inInternational Tables, Volume A1 [3].
The listed relations are only valid for the mentioned basis transformations and origin
shifts. For other basis transformations or origin shifts interchanges within the Wyckoff
sets may have to be performed. The relations of the Wyckoff positions can also be ob-
tained with the computer program WYCKSPLIT, which is accessible via internet at the
Bilbao Crystallographic Server [31]. It requires the inputof the space group, subgroup,
basis transformation and origin shift; it does not work for non-conventional settings un-
less transformation matrices are given to convert to standard settings.

6 Symmetry relations between crystal structures

In this chapter the different kinds of group-subgroup relations are explained with the aid
of simple examples.

6.1 Translationengleiche maximal subgroups

The space groupPbca of PdS2 is a translationengleichemaximal subgroup ofPa3, the
space group of pyrite (FeS2). The threefold axes of the cubic space group are lost, the
index is 3. The twofold screw axes parallel to the edges of thecube and the glide planes
are retained, but they no longer are equivalent in the orthorhombic subgroup, so that they
all have to be mentioned now in the Hermann–Mauguin symbolP21/b21/c21/a (short
symbol Pbca). As shown in Fig. 1, the atomic coordinates have not changedmuch.
However, the two structures differ, thec axis of PdS2 being strongly stretched. This is
due to the tendency of bivalent palladium towards square-planar coordination (electron
configurationd8), whereas the iron atoms in pyrite have octahedral coordination.

Upon transition fromPa3 to Pbca none of the occupied Wyckoff positions split, but
their site symmetries are reduced. Without the symmetry reduction from3 to 1 the square
coordination of the Pd atoms would not be possible.

If the positions of the sulfur atoms of pyrite or PdS2 are substituted by two different
kinds of atoms in an ordered 1 : 1 ratio, this enforces a symmetry reduction to subgroups.
These may only be subgroups in which the sulfur positions split into symmetrically inde-
pendent positions. In the chosen examples NiAsS and PtGeSe the symmetry reductions
consist in the loss of the inversions centers ofPa3 andPbca.

In both examples the site symmetries of the splitting Wyckoff positions are kept (site
symmetry 3 for NiAsS, 1 for PtGeSe). For subgroups of index 2 it always holds that
a position either splits or suffers a site symmetry reduction. Coordinate changes are not
necessary, but may occur depending on site symmetry. In our examples there are small
coordinate changes.

The relations between FeS2, PdS2, NiAsS and PtGeSe are summarized in Fig. 1 ac-
cording to the scheme presented on page 6.Pbc21 corresponds toPca21 after inter-
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6 Symmetry relations between crystal structures 11

P21/a3

FeS2

Fe:4a S:8c
3 3
0 0.386 [0.614]

0 0.386 [0.614]

0 0.386 [0.614]

t3

➤

t2
–1

4 , 0, 0

➤ x+ 1
4 , 0, 0

➤➤ ➤

t2

➤

P21/b21/c21/a

PdS2

Pd:4a S:8c
1 1
0 0.393 [0.617]

0 0.388 [0.612]

0 0.425 [0.575]

Pbc21

PtGeSe

Pt:4a Ge:4a Se:4a
1 1 1

0.242 0.633 0.876

0.009 0.383 0.620

0 0.383 0.618

P21 3

NiAsS

Ni:4a S:4a As:4a
3 3 3

−0.006 0.385 0.618

−0.006 0.385 0.618

−0.006 0.385 0.618

lattice parameters in pm:
a b c references

pyrite 541.8 541.8 541.8 [32]
NiAsS 568.9 568.9 568.9 [33]
PdS2 546.0 554.1 753.1 [34]
PtGeSe 607.2 601.5 599.2 [35]

Figure 1: Bärnighausen tree for the structural family of pyrite. Coordinates in brackets (not stated
normally) refer to symmetry equivalent positions

change of the axesa and b. Mind the origin shift from PdS2 to PtGeSe; in the conven-
tional description ofPca21, and therefore also ofPbc21, the origin is situated on one
of the 21 axes and thus differs from that ofPbca. The origin shift of−1

4, 0, 0 in the
coordinate system ofPbca involves a change of the atomic coordinates by+1

4, 0, 0, i.e.
with opposed sign. The unit cells are depicted in Fig. 2.

The substitution variants NiAsS and PtGeSe can only be connected by the common
supergroupP21/a3. A direct group–subgroup relation fromP21 3 to Pbc21 is not possi-
ble, sinceP213 has no glide planes. The difference between NiAsS and PtGeSe is due
to the different distributions of the atoms.

6.2 Klassengleiche maximal subgroups

Let us consider two variants of the AlB2 type as an example ofklassengleichesubgroups
[36]. AlB2 has a simple hexagonal structure in the space groupP6/mmm. In the di-
rection of c aluminum atoms and sheets of boron atoms alternate; the boron sheets are
planar like in graphite (Fig. 3) [37]. The ZrBeSi type has a similar structure [38], but
the sheets consist of Be and Si atoms. As a consequence, the inversion centers in the
middles of the six-membered rings cannot be retained, whereas those in the Al positions
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PdS2 Pbca

FeS2

Pa3
NiAsS

P213

PtGeSe Pbc21

➤

➤

a

c
S

As

Ge
Se

Figure 2: Views of the unit cells of pyrite, NiAsS, PdS2 and PtGeSe

are retained in the Zr positions. This enforces a symmetry reduction to theklassengleiche
subgroupP63/mmcwith doubledc vector.

The doubling ofc is the essential aspect of the symmetry reduction. The indexis
2: Half of all translations are lost, half of the inversion centers, half of the symmetry
axes perpendicular toc and half of the mirror planes perpendicular toc. Instead of the
mirror planes perpendicular to [210] (lastm in the Hermann-Mauguin-Symbol) there are
glide planesc. The Wyckoff position 2d of the boron atoms of AlB2 splits into the
two symmetry-independent positions 2c and 2d of the subgroup (Fig. 4 left), rendering
possible the occupation with atoms of two different elements.

Figs. 3 and 4 show us another peculiarity.P6/mmmhas twodifferent klassengleiche
subgroups of the same typeP63/mmcwith doubled basis vectorc. The second one cor-
responds to CaIn2 [39, 40]. Here the graphite-like sheets of the AlB2 type have become
puckered layers of indium atoms; the In atoms of adjacent layers have shifted parallel to
c and have come close to each other in pairs, so that the result is a three-dimensional
network as in lonsdaleite (‘hexagonal diamond’). The alternating shift of the atoms no
longer permits the existence of mirror planes in the layers;however, neighboring lay-
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➤
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➤a

Al

B

Zr

Si

Be Ca

In

AlB2
P6/m m m

P63/m m cZrBeSi P63/m m cCaIn2

Figure 3: The structures of AlB2, ZrBeSi and CaIn2. The mirror planes perpendicular toc of
P63/mmcare atz= 1

4 and z= 3
4
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0 2
3 c = 775 pm

0 1
3

1
4 0.455

Figure 4: Two hettotypes of the AlB2 type having the same space-group type and a doubledc
axis, but different origin positions. Due to the doubling ofc the z coordinates are halved. The
origin shift of 0,0,− 1

2 in the right branch refers to the lattice of the aristotype; as a consequence,
1
4 has to be added to thez coordinates of the hettotype
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14 TREES OF GROUP–SUBGROUP RELATIONS

ers are mutually mirror-symmetrical. The calcium atoms areon the mirror planes, but no
longer on inversion centers. The difference between the twosubgroupsP63/mmcconsists
in the selection of the symmetry operations that are lost with the doubling ofc.

The conventional description of the space groups accordingto International Tables
requires an inversion center to be at the origin of space group P63/mmc. The position
of the origin in an Al atom of the AlB2 type can be kept when the symmetry is reduced
to that of ZrBeSi (i.e. it is on a Zr atom). The symmetry reduction to CaIn2, however,
requires an origin shift to the center of one of the six-membered rings. In terms of the
unit cell of the aristotype that is a shift by 0, 0,−1

2, and this way it is marked in the
group–subgroup arrow in Fig. 4. For the new atomic coordinates, which are referred
to the axes system of the subgroup, the origin shift results in the addition of+1

4 to
the z coordinates,i.e. with oppositesign, compared to the value given in the group–
subgroup arrow; in addition, due to the doubling ofc, the z coordinates of the aristotype
have to be halved. The newz coordinate of the In atom therefore is approximatelyz′ ≈
1
2z+ 1

4 = 1
2 · 1

2 + 1
4. It cannot be exactly this value, because then there would have been

no symmetry reduction and the space group would still beP6/mmm.

In the relation AlB2 → ZrBeSi the site symmetry6m2 of the boron atoms is main-
tained and the Wyckoff position splits. In the relation AlB2 → CaIn2 it is the other way,
the position does not split, the atoms remain symmetry-equivalent, but their site symmetry
is reduced to 3m1 and thez coordinate becomes independent.

Among klassengleichesubgroups of index 2 there often exist two or four different sub-
groups of the same space-group type which differ in their origin positions. It is important
to choose the correct one of them, with the correct origin shift. In International Tables,
Volume A1 [3], all of these subgroups are listed, but not so in VolumeA [2].

6.3 Isomorphic maximal subgroups

Isomorphic subgroups are a special kind ofklassengleichesubgroups. The main partic-
ularity is that each space group has infinite many isomorphicsubgroups. Their indices
may be prime numbersp or powersp2 or p3, but often only certain prime numbers are
permitted [3]. The index agrees with the factor by which the unit cell has been enlarged.

A classical example concerns the trirutile structure. The space group of rutile,
P42/mnm, has an isomorphic subgroup of index 3, but none of index 2. Bytriplica-
tion of c it becomes possible to substitute the titanium atom positions of rutile by two
different kinds of atoms in a ratio of 1 : 2, as for example in ZnSb2O6 (Fig. 5). Since
the space groupP42/mnmhas no isomorphic subgroup of index 2, a ‘dirutile’ with this
space-group type cannot exist.

Note that rutile and trirutile havedifferent space groups of the same space-group type.
A space group includes a specific translational lattice and is used to designate the sym-
metry of a given crystal structure. The space group type, however, is independent of the
lattice metrics.
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Figure 5: The group–subgroup relation rutile–trirutile. The twofold rotation axes depicted in the
unit cells show that only one third of them are retained upon the symmetry reduction

6.4 The space groups of two structures have a common supergroup

Two crystal structures can be intimately related even when there is no direct group–
subgroup relation between their space groups. Instead, there may exist a common super-
group. The above-mentioned structures of NiAsS and PtGeSe offer an example. In that
case, the pyrite type corresponds to the common supergroup.Even if there is no known
representative, it can be useful to look for a common supergroup.

β -K2CO3 and β -Na2CO3 have similar structures and unit cells (Fig. 6). The planes
of the carbonate ions are not aligned perpendicular toc; compared to the perpendicular
orientation, inβ -K2CO3, they are rotated aboutb by 22.8◦ and those ofβ -Na2CO3 are
rotated abouta by 27.3◦. There is no group–subgroup relation between the space groups
C12/c1 andC2/m11 of the two structures (the nonconventional settingC2/m11 chosen for
β -Na2CO3 ensures a correspondence between the cells of both structures).

Looking for common minimal supergroups ofC12/c1 andC2/m11 one can find two
candidates:CmcmandCmce. Since the atomic coordinates ofβ -K2CO3 and β -Na2CO3
are very similar, any origin shifts in the relations from thecommon supergroup toC12/c1
as well asC2/m11 must be the same. In the listings of the supergroups the origin shifts
are not mentioned, neither in VolumeA nor VolumeA1 of International Tables. One has
to look up the subgroups ofCmcmandCmcein Volume A1 and check in which cases the
origin shifts coincide. One finds that the relationCmce→ C12/c1 requires an origin shift
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β -K2CO3 C12/c1 β -Na2CO3 C2/m11

�
a

?b

➤

22.8◦ ➤

27.3◦

Figure 6: The unit cells ofβ -K2CO3 and β -Na2CO3. The angles of tilt of the CO2−3 ions are
referred relative to a plane perpendicular toc.
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Figure 7: Group–subgroup relations among some modifications of the alkali metal carbonates [41]
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of 1
4,1

4,0 (or –1
4,–1

4,0), while all other relations (Cmcm→ C12/c1, Cmcm→ C2/m11,
Cmce→ C2/m11) require no origin shifts. As a consequence, onlyCmcmand notCmce
can be the common supergroup (Fig. 7).

No structure with space groupCmcm is known that can be related to the discussed
carbonate structures. Could there be any other structure with an even higher symmetry?
A supergroup ofCmcm is P63/mmc and, in fact, α-K2CO3 and α-Na2CO3 are high-
temperature modifications that crystallize in this space group. They have the carbonate
groups perpendicular toc. In this case there exists a higher-symmetry structure thatcan
be chosen as the common aristotype. In other cases, however,the common supergroup
refers to a hypothetical structure.

6.5 Large families of structures

Using the modular way to put together symmetry relations setforth in the scheme of
page 6 and in the preceding sections, large family trees can be constructed. Headed by an
aristotype, they show structural relationships among manydifferent crystal structures. As
an example, Fig. 8 shows structures that can be derived of theReO3 type [42]. The left
part of Fig. 8 refers to only one compound, WO3, and shows relations between different
polymorphic forms of this compound. The right part of Fig. 8 lists relations between
substitution derivatives of ReO3 and their distorted variants due to the Jahn-Teller effect,
hydrogen bonds, differing atom sizes etc. Many other trees of this kind have been set
up, e.g. hettotypes of perovskite [5, 43], rutile [44], CaF2 [45], NaCl [46], hexagonal
closest-packed structures [47], zeolites [48]. For more citationscf. [6].

In addition to show relations between known structure types, one can also find sub-
groups of an aristotype for which no structures are known. This can be exploited in a
systematic manner to search for new structural possibilities, i.e. one can predict crystal
structure types [46, 49]. For this purpose, one starts from an aristotype in conjunction
with a structural principle and certain additional restrictions. For example, the aristotype
can be a hexagonal closest-packing of spheres and the structural principle can be the par-
tial occupation of octahedral voids in this packing. Additional restrictions can be such as
the chemical composition, a given molecular configuration or a maximal size of the unit
cell. Of course, one can only find such structure types that meet these starting condi-
tions. Two examples of predictions are presented in Section14.1. For every space group
appearing in the B̈arnighausen tree, one can calculate how many different structure types
are possible for a given chemical composition [50, 51, 52].

7 A warning and appeal to use group–subgroup relations
with circumspection

Using the tables ofInternational Tables, Volume A1, or using computer programs as of-
fered by the Bilbao Crystallographic Server, it may be easy to search for group–subgroup
relations between space groups of crystal structures.This should only be done bearing in
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Figure 8: Family tree of hettotypes of ReO3. For the atomic parameters and other crystallographic
datacf. [42]

mind and explicitly stating a crystallographic, physical or chemical context.It is sense-
less to construct relations in a purely formal manner, without a sound crystal-chemical or
physical foundation. Crystallographic, chemical and physical common sense and knowl-
edge should always be kept in mind.

Group theory is a useful tool, but don’t try to subordinate physics and chemistry under
formal conceptions, inventing relations that don’t reallyexist. It has to be the other
way: Experimental evidence always has priority, and group theory may then be used to
interpret the results with circumspection. In Section 9, page 21, I mention an example of
how group theory may not be applied.
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In addition, by experience we know that setting up trees of group–subgroup relations
is susceptible to pitfalls. Some sources of errors are: Not taking into account necessary
origin shifts; wrong origin shifts; wrong basis and/or coordinate transformations; unnec-
essary basis transformations for the mere sake to cling on standard space-group settings;
lack of distinction between space groups and space-group types; lack of keeping track of
the development of the atomic positions from group to subgroup (this is a frequent and
serious error); skipping intermediate space groups; usingdifferent space-group or coor-
dinate settings for like structures. If the group–subgrouprelations are correct, but origin
shifts or basis transformations have not been stated, this can be the cause for subsequent
errors and misunderstandings.
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Part 2: Symmetry Relations at Phase Transitions,
Domain Structures and Topotactic Reactions

8 Phase transitions in the solid state

A phase transition is an event which entails a discontinuous(sudden) change of at least
one property of a material.

If the sudden change concerns the volume or the entropy,i.e. if one of the first deriv-
atives of the free enthalpy is not zero,∆V 6= 0, ∆S 6= 0, ∆H = T∆S 6= 0, it is termed, after
Ehrenfest, afirst order phase transition. First order phase transitions always exhibit hys-
teresis; they proceed in a more or less sluggish manner and during the transition the old
and the new phases coexist. It proceeds by nucleation and growth. All structural changes
occur at and only at an advancing interface between the receding old and the growing
new phase. If crystalline, the two phases may be related by a group–subgroup relation of
their space groups, but often this not the case.

Reconstructive phase transitions, which involve the breaking and rejoining of chemical
bonds, always are first-order transitions.

If the first derivatives of the free enthalpy show no discontinuity, but the second deriva-
tives do, the phase transition is termed to be ofsecond order. There is no sudden volume
change and no latent heat (∆V = 0, ∆S= 0, ∆H = T∆S= 0). Structural changes at second
order phase transitions are continuous. Driven by certain lattice vibrations, the so-called
soft modes, the atoms are displaced in a synchronous (‘military’) fashion in all unit cells
of the crystal. It is mandatory that the space groups of the two phases are related by a
group–subgroup relation (not necessarily a maximal one). Landau theory has been very
successful at the interpretation of second order transitions.

Calcium chloride undergoes a second-order phase transition at Tc = 490 K (Fig. 9)
[53, 54]. At T>490 K it is tetragonal, rutile type, space groupP42/m2/n2/m. When cooled
from higher temperatures, at 490 K, a mutual rotation of the coordination octahedra sets
in. The rotation angle increases continuously the more the temperature is lowered. As
soon as the slightest rotation has taken place, the symmetrycan no longer be tetragonal;
among others, the reflection planes that run diagonal through the unit cell cannot be re-
tained. The symmetry is reduced to that of an orthorhombic subgroup ofP42/m2/n2/m
in which these reflection planes are not present; this subgroup is P21/n21/n2/m. The
tetragonal-to-orthorhombic symmetry reduction involvesa differentiation of the lattice pa-
rametersa and b. If we keep the labels of the directions, eithera < b or a > b holds.

Inevitable temperature and pressure gradients in the crystal, the mosaic structure of
real crystals, crystal imperfections, and fluctuations that occur close to the transition point
cause that even in a second-order transition in reality not all of the crystal transforms uni-
formly at the same moment. Rather, we obtain different domains, some of them having
a < b, othersa > b. The result is a twinned crystal of the low temperature form.
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Figure 9: Group–subgroup relation between two modifications of calcium chloride and the mutual
rotation of the coordination octahedra.

9 A first-order phase transition via a common subgroup,
is that possible?

When pressure is exerted upon silicon, it first transforms toa modification with theβ -tin
structure (Si-II, I 41/amd). Then it is transformed to silicon-XI [55]. At even higher
pressures it is converted to silicon-V which has been described with a primitive hexagonal
structure (P6/mmm). The space group of Si-XI,I mma, is a subgroup of both,I 41/amd
andP6/mmm, and the structure of Si-XI can be related to either, Si-II and Si-V (Fig. 10).
If there were no atomic displacements, the calculated coordinates of a silicon atom of Si-
XI would be 0,14,−0.125 when derived from Si-II, and 0,1

4, 0.0 when derived form Si-
V. The actual coordinates are half-way between. The metric deviations of the lattices are
small; taking into account the basis transformations givenin Fig. 10, the expected lattice
parameters for Si-XI, calculated from those of Si-V, would be aXI = aV

√
3 = 441.5 pm,

bXI = 2cV = 476.6 pm andcXI = aV = 254.9 pm.

The mentioned phase transitions of silicon aredisplacive, with small atomic displace-
ments. The coordination of a Si atom shows this (contact distances< 340 pm):

Si-II 4×243 2×259 4×304 I 41/amd
ւ ց ↓ ւ ց

Si-XI 2×239 2×246 2×255 2×275 2×327 I mma
↓ ց ↓ ւ

Si-VI 2×238 6×255 P6/mmm
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Figure 10: Symmetry relations among three high-pressure modifications of silicon.

The lattice parameterc of the hexagonal structure is approximately half the value of a of
tetragonal Si-II. The volume jumps are small (0.2 % and 0.5 %). There are two separate,
experimentally observable phase transitions. In a certainpressure range, the whole crystal
actually consists of stable Si-XI; it is not just a hypothetical intermediate. Taken all these
facts (and assuming that Si-V really has the ascribed unusual simple hexagonal structure),
a group-theoretical relation between Si-II and Si-V existsvia the common subgroup of
Si-XI.

However, the situation is completely different at reconstructive phase transitions when
there is no group–subgroup relation between the space groups of the two phases. The
success of Landau theory in the treatment of second-order transitions has lead, with some
success, to extend the theory to first-order transitions. A mandatory requirement of Lan-
dau theory is the existence of a group–subgroup relation. Ifthere is no such a relation,
a way out seems to be to assume a two-step mechanism. Similar to the transformation
of Si-II to Si-V via Si-XI, two consecutive transitions via an intermediate phase have
been assumed. The hypothetical intermediate is supposed tohave a space group that is a
common subgroup of the initial and the final phase.

Reconstructive phase transitions are always first-order transitions and exhibit hystere-
sis. Hysteresis completely rules out a synchronous (military) motion of the atoms. The
transition proceeds by nucleation and growth. Any intermediate state is restricted to the
interface between the growing new and the receding old phase.
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On either side of the interface the space groups are different. There exists no symmetry
operation that can map one space group onto another one. Therefore, at the interface,
there can be no symmetry and, much less, a three-dimensionalspace-group. In addition,
a space group is something static. In a snapshot of, say, a fewfemtoseconds duration, no
crystal ever fulfills a space group because nearly all of the vibrating atoms are displaced
from their equilibrium positions. It is only after a longer view that one can recognize
mean atomic positions which allow the assignment of a space group. During a phase
transition, the interface advances through the crystal, the atoms are in motion; there, no
mean atomic positions exist.

Invented “transformation paths” for reconstructive phasetransitions via hypothetical
intermediate structures having common crystallographic subgroups do not reflect physical
reality. Nevertheless, quite a few papers were published that postulate such paths. In
some papers, detailed pictures of the assumed atomic motions are shown, depicted in one
cell. However, since the synchronous atomic displacement is ruled out for a first-order
transition, the depicted one cell should not be confounded with a crystallographic unit
cell. The assumed displacements can take place only in one or a few cells at a time,
followed one by one by more cells like in a row of falling dominoes, i.e. by nucleation
and growth. The assignment of a space group to a short-lived transient state existing in
only one cell is in contradiction to the definition of a space group.

10 Domain structures

The domain structure of crystalline phases that often results at solid-state phase transitions
and during topotactic reactions can be transparently interpreted with the aid of symmetry
considerations [5, 56, 57, 58].

A domain structure is the result of nucleation and growth processes. If the crystal
lattices of the two phases are not too different, the orientation of the new phase depends
on the orientation of the old one. The orientational relations between the phases before
and after the transformation, as a rule, are not the result ofa homogeneous process in-
volving a simultaneous (military) motion of the atoms in a single crystal. The crystalline
matrix of the substrate rather governs the preferred orientation adopted by the nuclei
that are formed in the course of the nucleation process. The crystallites that result from
the subsequent growth of the nuclei maintain their orientations. The resulting system of
intergrown crystals is called atopotactic textureafter W. Kleber [59]. Under these cir-
cumstances, aspect 3 of the symmetry principle, as stated onpage 4, is fully effective.
A phase transition that is connected with a symmetry reduction will result in new phases
that consist of

twin domains,
if the formed phase belongs to a crystal class with reduced symmetry,

antiphase domains(translational domains),
if translational symmetry is lost.

The total number of domains, of course, depends on the numberof nucleation sites.
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The number of different domain kinds, however, is ruled by the index of the symmetry
reduction. At atranslationengleichesymmetry reduction of index 3 (t3 group–subgroup
relation) we can expect twins with three kinds of domains. Anisomorphic subgroup
of index 5 (i5 relation), since it is aklassengleichesymmetry reduction, will entail five
kinds of antiphase domains. If the symmetry reduction includes several steps (in a chain
of several maximal subgroups), the domain structure will become more complicated. With
two t2 group–subgroup relations, we can expect twins of twins with two kinds of domains
each. The actual number of observable domain kinds may be less than expected if a
domain kind is not formed during nucleation. This can be controlled by the nucleation
conditions; for example, an external electric field can suppress the formation of more
than one kind of differently oriented ferroelectric domains.

In the physical literature, phase transitions betweentranslationengleichespace groups
sometimes are calledferroic transitions, those betweenklassengleichespace groups are
non-ferroic.

Among phase transitions induced by a change of temperature,as a rule, the high-
temperature modification has the higher symmetry. No such a rule can be stated for
pressure-induced phase transitions.

11 Twinned crystals

An intergrowth of two or more macroscopic individuals of thesame crystal species is a
twin, if the orientation relations between the individualsconform to crystallographic laws.
The individuals are called twin components or twin domains.They are related by atwin
operationwhich is a symmetry operation that does not belong to the point or space group
of the crystal.

Growth and transformation twins have to be distinguished. For twins that are formed
during the growth of the crystal from a solution or melt, the conditions of nucleation
determine how the individuals are intergrown. Group–subgroup relations are of no impor-
tance in this case. For example, the ubiquitous growth twinsof the cubic mineral fluorite
(CaF2) show two cubes rotated exactly by 180◦ about the twin axis [111] (obverse-reverse
twins). They started growth from a common nucleus, but this has nothing to do with a
group–subgroup relation.

Transformation twins arise from phase transitions in the solid state when there is a
symmetry reduction with atranslationengleichesubgroup. The twinning operation is one
of the symmetry operations that are lost during the symmetryreduction.

Usually, chemical reactions in the solid state require hightemperatures. If a substance
forms several polymorphic forms, at first a high-temperature form is obtained. Subsequent
cooling may then result in unnoticed phase transitions withsymmetry reductions. If this
involves atranslationengleichegroup–subgroup relation, twinned crystals may result. In
X-ray diffraction, the reflections of the twin domains will be superposed in such a way
that the higher symmetry of the high-temperature form may befeigned. The structure
determination, assuming a space group of too high symmetry,will yield a faulty struc-
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Figure 11: Structure of the compounds CaCrF5, CaMnF5 and CdMnF5 and group–subgroup rela-
tions derived from the presumable high-temperature form. Top left: section of a chain of vertex-
sharing octahedra; in the high-temperature form the chain is linear. Bottom left: mutual orientation
of the unit cells of the twins

tural model. However, as the following example shows, it canalso occur that the lower
symmetry of a subgroup is feigned.

Taken from literature, the following table lists the space groups and lattice parameters
of three compounds; all three have the same structure (Fig. 11):

a/pm b/pm c/pm β/◦ ref.

CaCrF5 C2/c 900.5 647.2 753.3 115.9 [60]
CaMnF5 P2/c 893.8 636.9 783.0 116.2 [61]
CdMnF5 P21/n 884.8 629.3 780.2 116.6 [62]

The occurrence of three different space groups for the same structure, with nearly equal
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Figure 12: The relation between disordered and orderedβ -brass

lattice parameters, is absolutely improbable. It should beeasy to distinguish the three
space groupsC2/c, P2/c and P21/n from their X-ray reflection extinctions. There seems
to be a fundamental error. Twins are the cause, and group–subgroup relations help to
resolve the problem. The actual space group isC2/c [63].

The structure contains MF2−
5 zigzag chains. With linear chains, the symmetry increases

to I 2/m2/m2/m with half the unit cell size. This seems to be the symmetry at the high-
temperature preparation conditions. Upon cooling, a phasetransition with symmetry re-
duction toC2/c takes place (Fig. 11). Thetranslationengleicherelation of index 2 shows
the appearance of twins with two orientations. Corresponding to the orthorhombic cell of
the supergroup, the metric relations of the monoclinic cells are such that X-ray reflections
of one twin domain are superposed on those of the other one. Part of the reflections of
one domain appear exactly at the places of extinct reflections of the other domain. As
a consequence, theC centering of the space groupC2/c cannot be recognized by the
extinction conditionh+k = 2n+1.

The refinement of the structure of CaMnF5 with the wrong space groupP2/c, a sub-
group ofC2/c, yielded unreliable atomic coordinates and bond lengths.

12 Antiphase domains

At high temperatures,β -brass has a disordered structure with the space groupI m3m.
Upon cooling, the atoms become ordered, resulting in theklassengleichesubgroupPm3m
of index 2 (Fig. 12). Therefore, we can expect the formation of antiphase domains.

Consider a nucleus of crystallization of the ordered phase and its growth. Let us
assume copper atoms at the vertices and zinc atoms in the centers of the unit cells of
the growing nucleus. At some other place in the crystal a second nucleus forms and
grows, but let it have a shifted origin,i.e. a copper atom in the center of the initial cell.
At some place the growing domains will meet. Even though their unit cells have the same
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Figure 13: The vernier structure of Tm7Cl15. In the upper part seven pseudo-face-centered ‘cells’
of Tm atoms are shown. The Cl atoms are located at the knots of the drawn nets; in the lower part
only the nets are depicted. Seven rows of Cl atoms in the pseudo-square array are on top of eight
rows in the pseudo-hexagonal array

orientation and size, they do not harmonize because their origins are mutually shifted by
half of the cube diagonal. The result is a domain boundary at which copper atoms are
aside copper atoms or zinc atoms aside zinc atoms. This is an antiphase boundary.

Contrary to twins, antiphase domains cause no problems in X-ray diffraction (unless
the domains are very small, causing diffuse scattering instead of Bragg reflections). An-
tiphase boundaries are visible in the electron microscope.

13 Topotactic reactions

A chemical reaction that takes place in a solid in such a way that the orientation of the
product crystal is determined by the orientation of the initial crystal, is called a topotactic
reaction. In many topotactic reactions, there existsno crystallographic group–subgroup
relation between the educt and the product. The orientational relation in the topotactic
texture results from the orientation of the nuclei of crystallization which have a preferred
orientation in the matrix of the starting crystal.

Mg(OH)2, brucite, is homeotypic to CdI2; it has a hexagonal closest packing of O
atoms in the space groupP3m1. Upon thermal dehydration, a single crystal of Mg(OH)2
is transformed to MgO (periclase), NaCl type, space groupF m3m, with cubic closest
packing of O atoms. The topotactic texture obtained consists of a very large number
of MgO crystallites. They are strictly oriented like the domains of cubic [111] growth
twins, with the [111] direction pointing in thec direction of the initial Mg(OH)2 (obverse-
reverse twins) [64]. This is due to the nucleation process; nuclei of the orientations
obverse and reverse are formed randomly on energetically equivalent sites in the initial
crystal. There is no group–subgroup relation between brucite and periclase.

In other cases of topotactic reactions, there exist group–subgroup relations. The re-
duction of rare earth trihalides with the corresponding metals at high temperatures yields
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Figure 14: The crystal structures of DyCl2 (SrBr2 type) and TmCl2 (SrI2 type). Six pseudo-face-
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subhalides of the general formula LnxX2x+1. Their crystal structures are so-called vernier
structures. The halogen atoms alternate in more and less dense rows like in a vernier.
The metal atoms are arranged approximately like in a face-centered cubic lattice (Fig. 13)
[65, 66]. The structures of the dihalides DyCl2 (SrBr2 type, P4/n) (Fig. 14) [67, 68, 69]
and TmCl2 (SrI2 type, Pcab) [70, 71] and of the vernier structures can be derived from
the CaF2 type. The vernier compounds, however, have a slight excess of halogen atoms.

How their unit cells are related to the CaF2 type is shown in Fig. 15. The correspond-
ing lattice parameters (in pm) can be calculated as follows,assuminga = b = c = 682
pm (Dy compounds) anda = b = c = 678 pm (Tm compounds) for the CaF2 type:
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DyCl2 P4/n Dy7Cl15 Pcmn Tm7Cl15 Pcmn TmCl2 Pcab
calculated obs.[65]calculated obs.[66]calculated obs.[66]calculated obs.[71]

â = 1
2

√
10a = 1078 1077.5a′ = a = 682 667.4 a′ = a = 678 657.1 a′′= 2a = 1356 1318.1

b̂ = 1
2

√
10a = 1078 1077.5b′ = 7b = 4774 4818 b′ = 7b = 4746 4767.7b′′= b = 678 671.4

ĉ = c = 682 664.3 c′ = c = 682 709.7 c′ = c = 678 700.1 c′′ = c = 678 697.7

Upon heating, the partial structure of the anions melts before the proper melting point;
i.e. there is a phase transition, the cations retaining their positions as in the CaF2 type,
while the anions in between begin to float. The quasi-liquid state of the anions at the high
preparation temperatures of the vernier compounds permitsa nonstoichiometric composi-
tion. When cooled, the anions become ordered within the array of the cations. Depending
on composition, several compounds crystallize simultaneously, with intergrown crystals in
definite orientations. For example, starting from a high-temperature phase of the compo-
sition DyCl2.08, DyCl2 and Dy7Cl15 (= DyCl2.14) crystallize simultaneously .

The X-ray diffractogram of such a crystal, at a first glance, is confusing (Fig. 16, top).
However, with the orientation relations according to Fig. 15 and the group–subgroup re-
lations (Fig. 17), the diagram can be interpreted as an intergrowth of DyCl2 and Dy7Cl15
(Fig. 16, bottom). The tetragonalc∗ axis of DyCl2 coincides exactly with a reciprocal
axis of Dy7Cl15, which therefore has been chosen as itsc∗ axis; this is the reason for the
unconventional setting of the space groupPcmn (conventionalPnma).

The strong reflections in Fig. 16 result from a superpositionfrom both compounds;
they correspond to the CaF2 type, which, however, is not present.

A similar topotactic intergrowth occurs with TmCl2 and Tm7Cl15. The relative posi-
tions of the unit cells shown in Fig. 15 can be discerned clearly in the diffractograms
(Fig. 18). The basis vectors of both compounds have exactly the same directions. Pay
attention to the reflections 0 4 0 and 4 4 0 of TmCl2 in Fig. 18 next to 0 28 0 and 2 28 0
of Tm7Cl15. They do not coincide exactly becauseb (TmCl2) = 671.4 pm< 1

7b (Tm7Cl15)
= 681.1 pm. 1

2a (TmCl2) = 659.05 pm is marginally larger thana (Tm7Cl15) = 657.1 pm,
cf. the slight horizontal shift of 8 4 0 of TmCl2 vs. 4 28 0 of Tm7Cl15.
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Figure 16: Buerger precession diffractogram (hk0 reflections) of a ‘single crystal’ of DyClx with
x≈ 2.08 [65]
Bottom: interpretation as a topotactic texture of DyCl2 and Dy7Cl15. Small circles: DyCl2, SrBr2
type (P4/n); rectangles: Dy7Cl15, Tm7Cl15 type (Pcmn); large circles: superimposed reflections of
both substances. Due to then glide planes all reflections withh+k = 2n+1 are extinct
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Figure 18: Simulated precession diagram of the reflectionshk0 of a topotactic texture of TmCl2
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Part 3: Symmetry Aspects of Close-packed Structures
and Molecular Structures

14 Occupation of voids in closest packings of spheres

To comprehend the huge amount of known crystal structure types, chemists very success-
fully have developed quite a few concepts. One of them is the wide-spread description of
structures as packings of spheres with occupied interstices. Group–subgroup relations can
help to rationalize this. This requires that unoccupied interstices be treated like atoms,
that the occupation of voids is treated like a substitution of ‘zero atoms’ by real atoms.

The topotactical occupation of voids can actually be performed in diverse cases. Ex-
amples are the intercalation compounds and the large numberof metal hydrides MHx that
can be prepared by diffusion of hydrogen into the metals. However, in many cases the
occupation of voids, just like the substitution of atoms in acrystal, is not a real but a
mental process. It is a very helpful descriptive approach.

Many inorganic crystal structures can be derived from closest-packings of spheres in
which a part of the octahedral or tetrahedral voids have beenoccupied. Consider a hexag-
onal closest-packing of spheres with a partial occupation of the octahedral voids. In all
closest-packings of spheres the number of octahedral voidsis equal to the number of
spheres. The chemical composition determines what fraction of the voids is occupied. In
a trihalide AX3 whose halogen (X) atoms form the packing of spheres, with A atoms in
its octahedral voids, exactly one third of the voids must be occupied. The unit cell of the
hexagonal closest-packing of spheres contains two spheresand two octahedral voids. In
order to be able to occupy one third of the voids, the unit cellhas to be enlarged by a
factor of three or a multiple of 3. Cell enlargement means loss of translational symmetry,
and further symmetry elements may have to be removed. That means: the space groups
of the derived structures are subgroups of the space group ofthe packing of spheres.

14.1 Rhombohedral hettotypes of hexagonal closest-packing

The B̈arnighausen tree in Fig. 19 shows the derivation of certain rhombohedral structures
from a hexagonal closest-packing of spheres. Fig. 20 depicts the corresponding section
of the packing of spheres. A triplication of the primitive unit cell is necessary.

The unit cell of the aristotype contains two spheres at the Wyckoff position 2d,
±(2

3, 1
3, 1

4), and two octahedral voids at 2a, 0,0,0 and 0,0, 1
2. After triplication, the unit

cell contains six octahedral voids. They are represented inFig. 19 by little boxes and
labeled by their Wyckoff letters. Symmetry-equivalent voids have the same letter. Boxes
next to each other correspond to octahedra having a common edge, boxes one on top
of the other to face-sharing octahedra, and diagonally adjacent boxes to vertex-sharing
octahedra.

With the successive symmetry reduction the number of symmetrically independent oc-
tahedral voids increases, as can be seen by the increasing number of different Wyckoff
symbols.
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Figure 19: Bärnighausen tree for rhombohedral hettotypes of a hexagonal closest-packing of
spheres. Boxes represent the octahedral voids, the lettersare Wyckoff letters. The scheme in the
upper left shows the corresponding coordinates (cf. the octahedral voids marked①, ② and ③ in
Fig. 20). Different orbits of the same Wyckoff position are distinguished by indices (a1, a2, . . .).
Gray boxes refer to occupied voids

If we are interested in compounds of the composition AX3 (X atoms form the packing
of spheres), then two of the six octahedral voids have to be occupied by A atoms. We
express this by the formula A224X6 or A22X3. The corresponding known structure types
are:

BiI3, R3. It is a layer structure; occupied octahedra share edges (position c1
in Fig. 19).

RhF3, R32/c. All occupied octahedra share vertices (positionb in Fig. 19).

If we exchange occupied and vacant octahedral voids of the RhF3 type, the space
group R32/c is not altered. Now, four voids are occupied (positionc) and two are va-
cant; the composition is2A2X3, and this corresponds to the structure type of corundum
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(α-Al2O3). Regarded this way, RhF3 and α-Al2O3 formally have equivalent structures.
Crystal-chemically they are not equivalent:α-Al2O3 has face- and edge-sharing octahe-
dra, while they only share vertices in RhF3.

All aluminum positions ofα-Al2O3 are symmetry-equivalent. By symmetry reduction
from R32/c to R3 the corresponding Wyckoff positionc splits; the two resulting indepen-
dent positions can be occupied by different elements. Ilmenite, FeTiO3, has this structure.
It has edge-sharing octahedra (boxes side by side) that are occupied by atoms of the same
element. Occupation of the edge-sharing octahedra by different elements is possible in
R3c (positionsa2 and a3 in Fig. 19); this is the structure of LiNbO3.

The structures of some more compounds correspond to space groups of this
Bärnighausen tree. WCl6 has one sixth of the octahedral voids occupied with W atoms
in a hexagonal closest-packing of chlorine atoms. The spacegroupR3 is the only appro-
priate one of this tree; the Wyckoff positiona is occupied, the others remain vacant.

Except for the RhF3 and BiI3 type, there is a further possible structure for the com-
position AX3, namely in the space groupR32, marked WX3 in Fig. 19; it has the orbit
c2 occupied, andc1 and c3 remain vacant. This structure has pairs of occupied octahe-
dra sharing a face, and these pairs share vertices (Fig. 23).Thus far, no representative
is known for this structure type. A compound that could adoptthis structure is WCl3.
Trivalent tungsten is known for its tendency to form structures with face-sharing octahe-
dra, as in the W2Cl3−9 ion. May be it is worthwhile to search for such a modification of
WCl3 (another modification having W6Cl18 clusters is known).
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The space groupR32 also allows a structural
variant of ilmenite, which could be adopted by
the yet unknown compound AlTiO3. With Ti on
c2 and Al on c3 the octahedra joining would be
like in ilmenite. The Ti atoms would be located
in pairs of face-sharing octahedra. In AlTiO3 ti-
tanium would be trivalent and still would have a
valence electron per atom; this would favor the
occupation of face-sharing octahedra, with forma-
tion of Ti–Ti bonds.

The examples of the postulated possible
structures of WCl3 and AlTiO3 show how
Bärnighausen trees can be used to predict struc-
ture types. Fig. 21: Octahedra linking in the

predicted structure of WCl3

15 Crystal structures of molecular compounds

The treatment of inorganic compounds in the previous chapters should not give the im-
pression that group–subgroup relations may not be appropriate for compounds consist-
ing of complicated molecules. In fact, crystals of such compounds frequently have low-
symmetry space groups, with molecules occupying positionswith the site symmetries 1
oder 1. The most frequent space group isP21/c (Table 1), and for chiral molecules,
which may only adopt one of the 65 Sohncke space groups [25], it is P212121. For this
reason, a principle of ‘symmetry avoidance’ has even been postulated for molecular com-
pounds. As the following examples show, this is not true. Rather, the symmetry principle

Table 1: Frequency of the space groups among known crystal structures of molecular compounds
and frequency of the occurring point symmetries of the molecules (only organic compounds with
only one kind of molecule, approx. 96000 compounds) [77]

space groupfrequency symmetry of occupied sites point frequency
% in this space group % groupamong molecules %

P21/c 40.0 1 86 1 14 1 70.9
P1 17.4 1 81 1 19 1 8.1
P212121

∗ 11.6 1 100 2 7.5
C2/c 7.1 1 48 1 10 2 42 m 6.5
P21

∗ 5.8 1 100 2/m 2.1
Pbca 4.8 1 88 1 12 mm2 1.7
Pna21 1.6 1 100 3 0.6
Pnma 1.3 1 2 1 1 m 97 mmm 0.5
Pbcn 1.0 1 36 1 4 2 60 222 0.3
146 others 9.4 1 55 4 0.3
∗ Sohncke space group
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also holds for these compounds. However, aspect number 2, asstated on page 4, has
primary importance. The low molecular symmetry often does not permit packings with
molecules occupying special positions and enforces a corresponding symmetry reduction.

According to experience and detailed studies [78, 79, 80], molecules strive to attain
the densest packing possible. The statistics also show: centrosymmetrical molecules in
more than 99 % of all cases adopt centrosymmetrical space groups and predominantly
occupy centrosymmetrical positions [81]. If the molecule has a twofold rotation axis, this
is retained in the crystal in 59 % of all cases. Space groups with mirror planes, as a rule,
occur only if at least one kind of molecule is situated on a mirror plane [77].

15.1 Molecules packed as in closest-packings of spheres

Some molecules have an approximately spherical shape. Theytend to pack themselves
like in a packing of spheres. C60 molecules arrange themselves as in a cubic closest-
packing of spheres, space groupF 4/m32/m [82]. The molecules rotate in the crystal,
although with a preferred orientation that corresponds to the site symmetry 2/m3. 2/m3
is the common subgroup of the molecular symmetry 2/m35 (icosahedral symmetry) and
the site symmetry 4/m32/m of F 4/m32/m. If all molecules were ordered, the space group
would beF 2/m3, a maximal subgroup ofF 4/m32/m [83]. Below 249 K the molecules
become ordered in the subgroupP2/a3 and the site symmetry is reduced to3 [84].

In crystals of the fullerene C70, obtained by sublimation, the molecules adopt a hexag-
onal closest-packing of spheres (P63/m2/m2/c) with the idealc/a ratio of 1.63; in the
mean, the rotating molecules are spherical [85]. Upon cooling, at∼ 50◦C, a first-order
phase transition takes place; the structure retains the hexagonal space group, now with

➤bpseudohex

➤a

➤

b

P63/m2/m2/c =⇒
C70, T > 323 K

c/a = 1.63

P63/m2/m2/c

C70, 273–323 K

c/a= 1.82

➤

t3
a, a+2b, c

C2/m2/c21/m

➤

k2

P21/b21/n21/m

C70, 220 K

➤

t3
a, a+2b, c

C2/m2/c21/m

poly-C70

Figure 22: The low-temperature modification of C70, space groupP21/b21/n21/m. a= 1001.6 pm,
b = 1735 pm= a

√
3, c = 1853 pm. View along the pseudo-hexagonal axis. Symmetry relations

between the C70 modifications
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c/a = 1.82. There is no group–subgroup relation. The slightly elongated molecules now
are aligned parallel to the hexagonal axis and only rotate about this direction. At∼ 20◦C
this rotation freezes. Due to the molecular symmetry102m (D5h), the crystal symmetry
cannot continue to be hexagonal, it becomes orthorhombic, space groupP21/b21/n21/m
(Fig. 22). The symmetry reduction includes atranslationengleichesubgroup relation of
index 3, and accordingly twinned crystals with thee kinds ofdomains are formed. The
intermediate space groupC2/m2/c21/m is not adopted because the molecules are rotated
about their pentagonal axis in such a way that the orientation of their twofold axes does
not coincide with those ofC2/m2/c21/m. However, the space groupC2/m2/c21/m is
adopted by polymeric C70; this is obtained by a topotactic polymerization (under pres-
sure at 300◦C), the C70 molecules being joined in thec direction [86].

The less spherical cage molecules of P4S3, P4Se3 and As4S3 crystallize like in a
hexagonal closest-packing of spheres. Several polymorphic forms occur, which is an ex-

lattice parameters in pm:
a b c

γ-P4S3 646 1092 984
α-As4S3 799 1010 912
α-P4S3 1369 1060 967
α-P4Se3 2626 1178 973

P63/m2/m2/c

hex. closest-p.

2c 6m2
1
3

2
3

1
4

t3
a,a+2b, c

➤

x− 1
2y, 1

2y, z

➤

C2/m2/c21/m

4c m2m

0 0.333 1
4
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➤
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–1
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➤
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4c ..m

0.0 0.333 1
4

obs.:–0.047 0.413 1
4

P2/b21/c21/m 4d ..m

0.25 0.583 1
4

P21/m21/c21/n

α-As4S3

4c ..m
1
4 0.583 0.25

obs.: 1
4 0.571 0.199

i2
2a,b,c

➤

k2
2a,b,c

➤

P2/b21/c21/m 4d ..m 4d ..m

0.125 0.583 1
4 0.625 0.583 1

4

P21/b21/n21/m

α-P4S3

4c ..m 4c ..m

0.125 0.583 1
4 0.625 0.583 1

4

obs.: 0.147 0.548 1
4 0.611 0.613 1

4
k2

2a,b,c

➤

P21/b21/n21/m

α-P4Se3

4c ..m 4c ..m 4c ..m 4c ..m

0.0625 0.583 1
4 0.3125 0.583 1

4 0.5625 0.583 1
4 0.8125 0.583 1

4

obs.: 0.057 0.595 1
4 0.290 0.589 1

4 0.576 0.540 1
4 0.831 0.583 1

4

Figure 23: Bärnighausen tree relating a hexagonal closest-packing of spheres with polymorphic
forms of P4S3 and As4S3 [87]. Only coordinates of the molecular centers are mentioned. Pmcn
and Pbnmare nonconventional settings ofPnma.
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Figure 24: Packing of four modifications of cage-like molecules E4X3. Dotted lines: pseudo-
hexagonal unit cells. Numbers:z coordinates of the centers of the molecules.

pression that no good packing of the molecules is possible; they are somewhat jammed
in each of the modifications. The four modifications mentioned in Fig. 23 have four
different space groups, all of which belong to the space-group type Pnma. The non-
spherical shape of the molecules is taken care of in different ways: Slight shifts from the
ideal positions atγ-P4S3 (cf. y coordinates in Fig. 23; Fig. 24), distortion of the lattice
at α-P4S3 and α-As4S3 (elongation alonga) with two different molecular orientations.
α-P4Se3 has the least deviations from the ideal packing of spheres, but it requires four
symmetry-independent, mutually rotated molecules [87].
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➤
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Figure 25: Piles of P(C6H5)+4 ions in columns

15.2 The packing in tetraphenylphosphonium salts

The P(C6H5)+4 ions in crystalline tetraphenylphosphonium salts frequently are piled to
columns parallel toc (Fig. 25). The distance between neighboring ions is 740 to 800
pm. The most frequent packing is tetragonal, space groupP4/n. The positions of the
P(C6H5)+4 ions have site symmetry4, whereas the anions are located on fourfold rotation
axes (site symmetry 4). This kind of packing is observed whenthe anions have a four-
fold rotation axis, namely with square anions like AuCl−

4 , square-pyramidal anions like
VOCl−4 or octahedral anions like SbCl−

6 (Figs. 26 and 27).

What happens if the symmetry of the anions is not compatible with the site symmetry
4? Then the symmetry is reduced, the space group being a subgroup of P4/n with the
correspondingly reduced site symmetry for the anions [6, 88]. Examples:

SnCl−5 ions have a trigonal-bipyramidal structure, point group62m. This symmetry
is compatible with the packing if the space-group symmetry is reduced fromP4/n to
P2/n, the SnCl−5 ions being aligned with one of their twofold axes along the previously
fourfold axis [89]. If the anions have no twofold axes, the symmetry must be reduced
even more. With SnCl−3 ions the packing remains essentially unchanged, but the space
group symmetry is reduced toP1 (Fig. 26) [90].

The [TiCl5(NCCH3)]
− ion still has a fourfold axis (point group 4mm, not taking into

account the H atoms). However, it is 1060 pm long and does not fit along the fourfold
rotation axis, the translation period being restricted to 800 pm by the columns of PPh+

4
ions. Nevertheless, the packing remains, but with inclined[TiCl5(NCCH3)]

− ions. This
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Figure 26: Bärnighausen tree relating diverse tetraphenylphosphonium salts.

ruins the fourfold rotational symmetry, the space group symmetry is reduced toP1 (Figs.
26 and 27) [91].

Even PPh4[TiCl5(NCCH3)]·CH3CN keeps the same packing principle. To accommo-
date the additional acetonitrile molecules, the columns ofPPh+4 ions move apart and
the [TiCl5(NCCH3)]

− ions move away from the 4 axes. After the symmetry reduction
P4/n −→ P2/n — 2c→ P21/n, the [TiCl5(NCCH3)]

− ions are located alternately on two
sides of a 21 axis [91].

P1 and P21/n are the most common space group types for molecular compounds.
Both, PPh4[TiCl5(NCCH3)] and PPh4[TiCl5(NCCH3)]·CH3CN, have no particle on a spe-
cial position, and the metrics of the unit cells are way off from being tetragonal. And yet,
in both cases the intimate relation to the tetragonal aristotype is obvious, the molecular
packing still is pseudo-tetragonal. We cannot state a ‘principle of symmetry avoidance’.
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Figure 27: Unit cells of diverse tetraphenylphosphonium salts
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