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Part 1. Trees of Group—subgroup Relations

1 Introduction

In the early days of crystal structure determinations itamee clear that the laws govern-
ing the packing of atoms and molecules must be understoatl ctiystal structures have
to be classified and ordered, and that relations between thest be recognized. Mean-
while more than 400000 crystal structures have been degbgit databases. Without
ordering principles it would be a hopeless undertaking tstarathis flood of data.

Many conceptions have been developed to this end, such darttoais rules of RUL-
ING on ionic radii, coordination polyhedra and the joining oflybeedra or the Zintl-
Klemm-Busmann rules. These and other principles have derveéextbooks and other
publications to classify crystal structures. However, insincases symmetry considera-
tions have not been considered at all or only as a secondaty This is astonishing,
since symmetry is indispensable for the determination &eddescription of a specific
crystal structure. There is a reason for this discrepan@fatBd crystal structures often
have different space groups, and the relations between theunit from group—subgroup
relations between their space groups. These relations e partially known up to
1965, and a useful form derived byENBUSER & W ONDRATESCHEK was not gener-
ally accessible for another 18 years [1]. For the first tinfeeytwere included in the
1983 edition ofinternational Tables for Crystallographyolume A [2]. And yet, even in
the 2005 edition, the listing of the subgroups in Voluéds incomplete. The complete
listing finally has become available in 2004 in the additiovi@ume Al [3].

In addition, two essential kinds of information are missingolume A: (1) One must
not only know the subgroups of the space groups, but alsohnvboordinate transfor-
mations are involved; (2) The relations between the passtioccupied by atoms in the
space groups in question must be known. In principle, thigrination can be extracted
from Volume A, but that is a cumbersome task prone to errors. In the newmél
all this information is now completely available (for all gie infinite many subgroups).
Another source of information is thBilbao Crystallographic Servef4].

In 1980 BARNIGHAUSEN presented a procedure to set forth structural relations be-
tween crystal structures with the aid of symmetry relatitbetween space groups [5].
For a recent review on this subject see [6]. Short descriptican be found at [7] and
[8]. The main concept is to start from a simple, highly synmicat crystal structure and
to derive more and more complicated structures by distust@and/or partial substitutions
of atoms. A tree of group—subgroup relations between thelied space groups, now
called aBarnighausen tregserves as the main guideline. The highly symmetrical -start
ing structure is called tharistotypeafter MEGAwW [9] or basic structureafter BUERGER
[10, 11]. The derived structures are thettotypesor derivative structures

Aside from their usefulness in systematic crystal chemigiroup—subgroup relations
have other applications: They help understanding the dorsi@uctures of twinned crys-
tals, they are indispensable to treat second-order phassitions and they even help in
the determination of protein crystal structures.
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4 TREES OF GROUP-SUBGROUP RELATIONS

2 The Symmetry Principle in Crystal Chemistry

The usefulness of symmetry relations intimately has to dih whe symmetry principle
in crystal chemistry. This principle is based on experieand has been worded during
its long history in rather different ways. ARNIGHAUSEN summarized it in the following
way [5]:

The Symmetry Principle in Crystal Chemistry

1. In crystal structures the arrangement of atoms reveatsrsopnced tendency
towards the highest possible symmetry.

2. Counteracting factors due to special properties of tbematmay prevent the
attainment of the highest possible symmetry. However, irstnaases the
deviations from the ideal symmetry are small (key-word plssymmetry).

3. During phase transitions and solid state reactions wt@shlt in products of
lower symmetry, the higher symmetry of the starting matesandirectly
preserved by the formation of oriented domains.

Another wording which stresses aspect 1 is due RUBNER [12]:
Atoms of the same kind tend to occupy equivalent positions.

This wording gives us a hint to the physical reasons govgriiire symmetry principle:
Depending on chemical composition, the kind of chemicaldiog, electron configura-
tion of the atoms, relative sizes of the atoms, pressurepe¢emture etc., there existme
energetically most favorable surrounding for atoms of aegikind which all of these
atoms strive to attain. According to quantum theory, atofghe same kind are indistin-
guishable, but in a crystal this is only ensured if they amarsetry-equivalent.

Aspect 2 of the symmetry principle is exploited in the follog chapters. Factors that
counteract the attainment of the highest symmetry includé: Stereochemically active
lone electron pairs; (2) Jahn-Teller distortions; (3) Qexmabonds; (4) Peierls distortions;
(5) Ordered occupation of like atomic positions by diffdr&imds of atoms; (6) Conden-
sation of lattice vibrations (soft modes); (7) Ordering tdras in a disordered structure.

Aspect 3 of the symmetry principle has its origin in an oba#on of BERNAL. He
noted that in the solid state reaction Mn(GH}» MNnOOH — MnO, the starting and the
product crystal had the same orientation. Such reactioascaltedtopotactic reactions
[13, 14]. In a paper by BRNAL & M AckAY we find the sentence [15]:

“One of the controlling factors of topotactic reactionsa$,course, symmetry.
This can be treated at various levels of sophistication, visaitfind that the
simple concept of Buridan’s ass illumines most cases.”

According to the metaphor of BRIDAN (French philosopher, died ca. 1358) the ass
starves to death between two equal and equidistant bundldégmy because it cannot
decide between them. Referred to crystals, such an asimhavior would correspond
to an absence of phase transitions or solid-state reactfotiere are more than one
energetic equivalent orientations of the domains of thalpets. Crystals, of course, do
not behave like the ass; they take both.
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3 Subgroups of space groups 5
3 Subgroups of space groups

The theory of space groups is dealt with in the literaturel@, 17, 18]. However, for
the understanding of the following sections | repeat a feywdrtant terms.

A space group is a group according to group theory. The symnugierations (not
the symmetry elements) are the group elements that makeeuppiice group. A group
that results by the removal of some of the symmetry operatiera subgroup. If there
exists no intermediate group between a space group and oite sifibgroups, then this
subgroup is a maximal subgroup. The index (of the symmetiyaton) is the factor, by
which the number of symmetry operations has been reducediyétys is an integer. The
index of a maximal subgroup always is a prime numper a power of a prime number
p? or pd.

According to Hermann’s theorem, a maximal subgroup is eigtteanslationengleiche
or a klassengleichesubgroup. Atranslationengleichesubgroup still has the complete
translation lattice; its primitive unit cell has an unchadgvolume. Aklassengleiche
subgroup belongs to the same crystal class; it has lostlataorsal symmetry,i.e. the
conventional unit cell is either enlarged or it has lost eeng translations.lsomorphic
subgroups are a special kind kdassengleichasubgroups which belong to the same space-
group type (same Hermann-Mauguin symbol) or to the enauwtiphic space-group type
(e.g. B4, andP4,;). Every space group has an infinity if maximal isomorphicgobps.

4 Barnighausen trees

The aforementioned notions permit us to represent symmetayions between different
crystal structures in a concise manner. Beginning with thece group of the aristotype
at its top, we construct a tree of group—subgroup relationg imodular design, each
module representing one step of symmetry reduction to a malxsubgroup. Therefore,
we only have to discuss one of these modules in detail.

For two structures we want to interrelate, we place theircsggoup symbols one
under the other and indicate the direction of the symmetiiyeton by an arrow pointing
downwards (scheme on the following page). In the middle @f #rrow we insert the
kind of maximal subgroup and the index of symmetry redugctiging the abbreviations t
for translationengleichek for klassengleicheand i for isomorphic. If the size of the unit
cell or its setting changes, we also insert the new basioreexpressed as vector sums
of the basis vectors of the higher symmetric cell. If thereafs origin shift, we enter
this as a triplet of numbers which express the coordinatethefnew origin referred to
the basis of the higher symmetric celfiny change of the basis vectors and the origin is
essential information that should never be omitted.

*called zellengleichesubgroups by HRMANN, but now calledtranslationengleichesubgroups to avoid cer-
tain misunderstandings. Germé&anslationengleicheneans ‘with the same translation&lassengleicheneans
‘of the same (crystal) class’. A committee of experts of theeinational Union of Crystallography was not able
to agree upon equivalent English terms and decided to keeG#rman terms; however, some authors use the
terms ‘equi-translational’ and ‘equi-class’. Use the Gannterms with terminal -e irrespective of the declension
endings that would be used in German.
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6 TREES OF GROUP-SUBGROUP RELATIONS

Scheme of the general formulation of the smallest step of symetry reduction
connecting two related crystal structures

Hermann—Mauguin symbol of the Al:la (B:2d
higher symmetric space group— P6/m2/m2/m |6/mmm 6m2

Symbol designating the higher= 0
0

symmetric crystal structures.g. the
chemical formula or mineral name | 0

Type and index of the subgroul — k2
Basis transformaticn—s a,b,2c

see note 5

— |INIPWIN W

XY, 32+ % = coordinate

G0 Sl =2 O’(:L’ 2 EL transformations
Hermann—Mauguin symbol of the Ca:d|In:4f
maximal subgroug{ —= P65/m2/m2/c | 6m2 | 3m
q . 1
Symbol designating the lowet= 0 3 see note 5
symmetric crystal structure 0 3
. : : : 7 0455
mentioned only if there is a change
Explanatory notes
1. Possible types of maximal subgroufisof a given space groug:
symbol term meaning
t translationen- G andH have the same translational lattice; the crystal class
gleiche of H is of lower symmetry than that af

k  klassengleiche G and H belong the same crystal clask; has lost transla-
tional symmetry, its primitive cell is larger than that Gf

i isomorphic G and H belong to the same or the enantiomorphic space
group type;H has lost translational symmetry, its unit cell
is larger than that ofy

2. The indexi of a subgroup is the number of cosets7fin G. The number of sym-
metry operations of{ is 1/i of those ofg.

3. Basis transformation: The three basis vectorg{ofire expressed as linear combina-
tions of the basis vectors, b, c of G.

4. Origin shift: The coordinate triplet of the origin dff is given in the coordinate
system ofG.

5. Additional information: Space permitting, the atomicsfions are given in a box next
to the space group symbol in the following way:

The coordinates are given for one atom in the

element symbol: Wyckoff label  asymmetric unit. If a numeric value is fixed by
site symmetry symmetry, it is stated as O or as a fractiang.
X 0, 7, 3. Free parameters are stated as decimal
y numbers,e.g. 0.0, 0.25, 0.53. If possible, align
z the site-symmetry symbol in one line with the

space-group symbol.
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4 Barnighausen trees 7

If the atomic coordinates of two related crystal structuddfer because of different
settings of their unit cells, the similarities of the sturets become less clear and may
even be obscured. Therefore, it is highly recommendedvoid cell transformations
whenever possibldf necessary, it is much better to fully exploit the podiiels offered
by the Hermann—Mauguin symbolism and to choose noncommaitispace-group set-
tings, i.e. to use space-group symbols that do not correspond to thdasthisettings of
International Tables for CrystallographySince they are more informative, it is advisable
to use only the full Hermann—-Mauguin symbols. For the déferes between conven-
tional and nonconventional settings see Sections 3.1.43ahé of International Tables
for Crystallography Volume Al [3].

Origin shifts often cause problems and also tend to obs@lagions. However, usually
they cannot be avoided. There is no point to deviate from thedsard origin settings of
International Tables for Crystallographyecause otherwise much additional information
would be required for an unequivocal descriptiditention: The coordinate triplet speci-
fying the origin shift in the group—subgroup arrow refershe axes system of the higher
symmetry space groupvhile the corresponding changes of the atomic coordinefs
to the coordinate system of the subgroup and therefore ahaay different. Details are
given in Section 3.1.3 ofnternational TablesVolume Al [3]. Pay also attention that in
the tables of Parts 2 and 3 of Volun#d the origin shifts are given in different ways. In
Part 2 they refer to the higher symmetry space group. In Pé&Rekations of the Wyck-
off positions) they are only given as parts of the coordinaamsformationsj.e. in the
coordinate systems of the subgroups. Unfortunately, theeseanh origin shifts themselves
(there are always different possible choices) also diffeiParts 2 and 3, which means
that a coordinate transformation taken from Part 3 does aoespond to the one given
in Part 2 for the same group—subgroup pair. In case of neegl,has to calculate the
corresponding values with the formulae of Section 3.1.3 a@fivie Al.

For some space groupsternational Tableffer two possible choices of origin (‘ori-
gin choice 1’ and ‘origin choice 2'). In these cases the chascspecified by a superscript
() or (2 after the space-group symbol, for exampid/n(?. The setting of rhombohedral
space groups is specified, if necessary, by supers@ipor (" Occasionally it may
be useful to use a nonconventional rhombohedral ‘reverstting, i.e. with the centering
vectors (1,2, 1) instead of ‘obverse’ witht(4,2,1); this is specified by superscript
(*eY) | for exampleR3("¢Y,

In a Barnighausen tree containing several group—subgroupamsatit is recommended
to keep the vertical distances between the space-group sgmpbagbortional to the loga-
rithms of the corresponding indice3his way all subgroups that are at the same hierar-
chical distance from the aristotype are at the same level.

Group-subgroup relations are of little value if the usuajstallographic data are not
given for every structure. The mere mention of the spacepgds absolutely insufficient.
The atomic coordinates are of special importance. It is efgmortant to present all struc-
tures in such a way that their relations become clearly Msim particular, all atoms of
the asymmetric units should exhibit strict correspondesoethat their positional parame-
ters can immediately be compared. Unfortunately, for ipealll space groups there exist
several different equivalent sets of coordinates deswgiloine and the same structure, so
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8 TREES OF GROUP-SUBGROUP RELATIONS

that one often is forced to transform coordinates from ortet@eanother to attain the
necessary correspondenad. (iext section).

If the space permits it, it is useful to list the site symnestrand the coordinates of the
atoms next to the space groups in thérighausen tree, such as shown in the scheme on
page 6. If the space is not sufficient, this information muestibted in a separate table.

5 Atomic positions and Wyckoff positions

The use of a standardized description of crystal structine@s been recommended to
obtain comparable sets of data [19, 20, 21]. However, theesponding rules have of-
ten been disregarded, not only because of ignorance orgeegk, but also for good
reasons. Two of these reasons are the above-mentioned meggatation to avoid cell
transformations, if possible, and to observe a strict gpwadence of atomic parameters
of structures that are to be compared. Furthermore, evdmeifstandardization rules are
observed, there often are several possibilities to des@ite and the same structure.

It is be no means a simple matter to recognize if two diffdyedbcumented structures
are alike or not. The literature abounds with examples ofv'r&ructures that in reality
had been well known. For all space groups, exdep8m andla3d, there always exist
several different equivalent sets of atomic coordinatesef@ctly the same crystal struc-
ture with an unchanged setting of the space group. For theesgeoupG the number
of equivalent coordinate sets és e is the index ofg in its Euclidean normalizeV (G)

[22, 23]. N¢(G) is a supergroup of.

A procedure to obtain one equivalent coordinate set fronthemds described in Sec-
tion 15.3 of International Tables Volume A [2]; see also [24]. One takes advantage of
the Euclidean Normalizers, using the transformation fdemugiven in Tables 15.2.1.3
and 15.2.1.4 of Volumeé\ (editions of 2002 and 2005; Table 15.3.2 in the editions of
1987 to 1995) under the heading ‘Additional generators\@f(G)’. The last column of
the tables contains the indiceof G in NV(G). Cf. example on the next pagéttention:
For chiral space groups likB3; one obtains only equivalent sets of coordinates without
a change of chirality; for chiral structures in non-chirahficke space groups [25] like
P2,2,2, the sets of coordinates include the enantiomeric pairs.

The infinitely large set of symmetry-equivalent points in @ase group is called a
(crystallographic) orbit[27, 28, 29]. If the corresponding coordinates are complete
fixed by symmetry .g. £, %, 3), the orbit is identical with thaVyckoff position(German:
Punktlagé. If, however, one or more coordinates are varialdeg.( zin 0,%,2), the
Wyckoff position comprises infinite many orbits; they diffsn the variable coordinate.
The set of points that is symmetry-equivalent to, sa,y%,(m.391 makes up one orbit.
The set of points corresponding tQ%} 0.468 belongs to the same Wyckoff position, but
to a different orbit. Therefore, the Wyckoff position mayngarise many orbits (do not
get irritated by the singular form of the words orbit, Wycdkpbsition andPunktlage.

A Wyckoff position is designated by the Wyckoff label, forawrple €. The 4 is
the multiplicity; it shows how many points belonging to an orbit of the Wyckadisition

© Ulrich Muller, 2008. Symmetry Relations between Crystal Structures



5 Atomic positions and Wyckoff positions 9

Example 1
WOBI, crystallizes in the space groupt with the following atomic coordinates [26]:
X y z

W 0 0 0.078

(O0] 0 0.529

Br 0.260 0.069 0.0
The Euclidean Normalizer of4 is P14/mmmuwith the basis vectorg(a—b), 1(a+
b), ec (cf. International TablesVolume A, Table 15.2.1.4). The index d#*4/mmmin
14 is w-2-2, i.e. infinite, due to the infinitesimal small basis vectar. By addition of
0,0,t to the coordinates of all atoms one obtains one out of an infofinew equivalent
coordinate sets, becausemay have any arbitrary value. The index-2-2 expresses
that for each of these infinite many coordinate sets therdaaneequivalent sets. They
result by inversion at @,0 and by the transformatiop x, z The obtained equivalent
coordinate sets include the enantiomeric pairs:

W 0 0 0.078 1t 0 0 —0.078-t

(OIN0] 0 0.529 + 0 0 —0.529-t

Br 0.260 0.069 0,0 —0.260 -0.069 0,6-t

W 0 0 0.078 0 0 —0.078-t

O 0 0 0.529 0 0 —0.529-t

Br 0.069 0.260 0.0+ —0.069 -0.260 0.G-t with t = arbitrary

in question are contained in one unit cell. Thds an alphabetical labela( b, ¢...)
according to the listing of the Wyckoff positions International TablesVolume A [2].

A consequence of this kind of labeling is its dependence ersibe of the chosen unit
cell. For example, the multiplicities of rhombohedral spagoups are larger by a factor
of three if the unit cell is not referred to rhombohedral buthexagonal axes.

Many space groups have several equivalent Wyckoff posittbat commonly make up
a Wyckoff set These Wyckoff positions have the same site symmetries.ekample, all
positions on all twofold rotation axes of the space gro@R22 form a Wyckoff set.

Between the points of an orbit and the corresponding poihts subgroup there exists
a one-to-one relation. Both orbits have the same magnitugen symmetry reduction, a
Wyckoff position will either split into several symmetrgdependent positions, or its site
symmetry is reduced, or both happen [30]. If there is a gmljftsome or all positions
can keep their site symmetries. Atomic coordinates fixed pmtisl positions or coupled
with each other may become independent.

If atoms of an orbit are to be substituted by atoms of diffeelaments in an ordered
way, it must split. Distortions of the structure require @uetion of the site symmetry,
unless it is already low enough. Upon distortion, the camatéis of some or all atoms
may or must deviate from the ideal parameters of the undéstastructure. In addition,
usually a metric distinction of the basis vectors takes @lac

The relations between the Wyckoff positions of a group anditagup are uniquely
determined as long as the relative positions of the unisoaflgroup and subgroup are
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10 TREES OF GROUP-SUBGROUP RELATIONS

uniquely determined. Usually there are several (arbijrgmyssibilities for the relative
positions of the cells, and the relations of the Wyckoff fioas may differ.

How the Wyckoff positions of the space groups are transfdriieethe Wyckoff po-
sitions of their subgroups is completely listed limernational Tables Volume Al [3].
The listed relations are only valid for the mentioned basétformations and origin
shifts. For other basis transformations or origin shifteeichanges within the Wyckoff
sets may have to be performed. The relations of the Wyckdfitiopps can also be ob-
tained with the computer program Y&KspPLIT, which is accessible via internet at the
Bilbao Crystallographic Server [31]. It requires the inmitthe space group, subgroup,
basis transformation and origin shift; it does not work fanfconventional settings un-
less transformation matrices are given to convert to stahsettings.

6 Symmetry relations between crystal structures

In this chapter the different kinds of group-subgroup iete are explained with the aid
of simple examples.

6.1 Translationengleiche maximal subgroups

The space groupbcaof PdS is atranslationengleichenaximal subgroup oP a3, the
space group of pyrite (Fgp The threefold axes of the cubic space group are lost, the
index is 3. The twofold screw axes parallel to the edges ofctitee and the glide planes
are retained, but they no longer are equivalent in the dnthrabic subgroup, so that they
all have to be mentioned now in the Hermann—Mauguin synidj/b2,/c2,/a (short
symbol Pbcg. As shown in Fig. 1, the atomic coordinates have not changadh.
However, the two structures differ, theaxis of Pd$ being strongly stretched. This is
due to the tendency of bivalent palladium towards squaaegsl coordination (electron
configurationd®), whereas the iron atoms in pyrite have octahedral coctidima

Upon transition fromP a3 to Pbcanone of the occupied Wyckoff positions split, but
their site symmetries are reduced. Without the symmetryatoh from3 to 1 the square
coordination of the Pd atoms would not be possible.

If the positions of the sulfur atoms of pyrite or Pd8re substituted by two different
kinds of atoms in an ordered 1:1 ratio, this enforces a symymetiuction to subgroups.
These may only be subgroups in which the sulfur positioni Bpb symmetrically inde-
pendent positions. In the chosen examples NiAsS and PtGeSeymmmetry reductions
consist in the loss of the inversions centersPa3 andPbca

In both examples the site symmetries of the splitting Wytkuafsitions are kept (site
symmetry 3 for NiAsS, 1 for PtGeSe). For subgroups of index always holds that
a position either splits or suffers a site symmetry reducti@oordinate changes are not
necessary, but may occur depending on site symmetry. Inxamgles there are small
coordinate changes.

The relations between FgSPdS, NiAsS and PtGeSe are summarized in Fig. 1 ac-
cording to the scheme presented on pageP&c2; corresponds tdPca2; after inter-
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6 Symmetry relations between crystal structures 11

Fe:4a S:&
P2,/a3 | 3 3
FeS 0 |0.386[0.614
0 |0.386[0.614
o 0 |0.386[0.614

. A

P2,3 Ni:4a | S:4a|As: 4a

- 3 3 3
—0.006/0.385 0.618

Pda St —0.006/0.385 0.618
P2,/02,/c2y/a| 1 L ~0.006/0.3850.618
PdS, 0 |0.393[0.617
0 0.388(0.612
1t|2 0 o.zI125 [0.575
—z,EI]O,O lx+%,0,0 l _ _ -
th lattice parameters in pm:
Pbc2, Pt:4a|Ge:4|Se:4 a b c references
111 pyrite  541.8 541.8 5418  [32]
0.2420.633(0.876 NiAsS 568.9 568.9 568.9 [33]
0.009 0.383/0.620 PdS  546.0 554.1 753.1 [34]
0 10.3830.618 PtGeSe 607.2 601.5 599.2 [35]

Figure 1: Barnighausen tree for the structural family of pyrite. Caoaties in brackets (not stated
normally) refer to symmetry equivalent positions

change of the axea andb. Mind the origin shift from Pdg$to PtGeSe; in the conven-
tional description ofPca2;, and therefore also dPbc2,, the origin is situated on one
of the 2 axes and thus differs from that &fbca The origin shift of—%l, 0,0 in the
coordinate system dPbcainvolves a change of the atomic Coordinateswb%, 0,0, i.e.
with opposed sign. The unit cells are depicted in Fig. 2.

The substitution variants NiAsS and PtGeSe can only be aiedeby the common
supergroupP2,/a3. A direct group—subgroup relation froR2; 3 to Pbc2, is not possi-
ble, sinceP2;3 has no glide planes. The difference between NiAsS and RtGe8ue
to the different distributions of the atoms.

6.2 Klassengleiche maximal subgroups

Let us consider two variants of the AJBype as an example dflassengleichesubgroups
[36]. AIB, has a simple hexagonal structure in the space g®Gmmm In the di-

rection of ¢ aluminum atoms and sheets of boron atoms alternate; thensireets are
planar like in graphite (Fig. 3) [37]. The ZrBeSi type has mir structure [38], but
the sheets consist of Be and Si atoms. As a consequence,\Viéisiam centers in the
middles of the six-membered rings cannot be retained, velsetteose in the Al positions
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12 TREES OF GROUP-SUBGROUP RELATIONS

PdS Pbca PtGeSe Pbc2;

Figure 2: Views of the unit cells of pyrite, NiAsS, PgSand PtGeSe

are retained in the Zr positions. This enforces a symmeutyaton to theklassengleiche
subgroupP 6;/mmcwith doubledc vector.

The doubling ofc is the essential aspect of the symmetry reduction. The inslex
2: Half of all translations are lost, half of the inversionnters, half of the symmetry
axes perpendicular to and half of the mirror planes perpendicular do Instead of the
mirror planes perpendicular to [210] (lastin the Hermann-Mauguin-Symbol) there are
glide planesc. The Wyckoff position & of the boron atoms of AIB splits into the
two symmetry-independent positions and 21 of the subgroup (Fig. 4 left), rendering
possible the occupation with atoms of two different eleraent

Figs. 3 and 4 show us another peculiariB6/mmmhas twodifferent klassengleiche
subgroups of the same tyf6;/mmcwith doubled basis vectar. The second one cor-
responds to Caln[39, 40]. Here the graphite-like sheets of the AlBpe have become
puckered layers of indium atoms; the In atoms of adjacergriajpave shifted parallel to
¢ and have come close to each other in pairs, so that the resaltthree-dimensional
network as in lonsdaleite (‘hexagonal diamond’). The aking shift of the atoms no
longer permits the existence of mirror planes in the layéi®yever, neighboring lay-
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6 Symmetry relations between crystal structures 13
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Figure 4: Two hettotypes of the AIB type having the same space-group type and a doubled
axis, but different origin positions. Due to the doubling othe z coordinates are halved. The
origin shift of 0,0r% in the right branch refers to the lattice of the aristotypg;aaconsequence,
;11 has to be added to thecoordinates of the hettotype
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14 TREES OF GROUP-SUBGROUP RELATIONS

ers are mutually mirror-symmetrical. The calcium atoms @rethe mirror planes, but no
longer on inversion centers. The difference between theswagroupsP 6;/mmcconsists
in the selection of the symmetry operations that are losh Wit doubling ofc.

The conventional description of the space groups accortininternational Tables
requires an inversion center to be at the origin of spacemPBy/mmc The position
of the origin in an Al atom of the AIB type can be kept when the symmetry is reduced
to that of ZrBeSi {e. it is on a Zr atom). The symmetry reduction to Cglimowever,
requires an origin shift to the center of one of the six-memabeings. In terms of the
unit cell of the aristotype that is a shift by 0,01, and this way it is marked in the
group—subgroup arrow in Fig. 4. For the new atomic coorématvhich are referred
to the axes system of the subgroup, the origin shift resultshe addition oer;l1 to
the z coordinates,i.e. with oppositesign, compared to the value given in the group—
subgroup arrow; in addition, due to the doublingafthe z coordinates of the aristotype
have to be halved. The newcoordinate of the In atom therefore is approximatgly:
%z+%1 = % . % + ;11. It cannot be exactly this value, because then there wouke baen
no symmetry reduction and the space group would stilPlBgmmm

In the relation AIB, — ZrBeSi the site symmetrgm?2 of the boron atoms is main-
tained and the Wyckoff position splits. In the relation AlB-> Caln, it is the other way,
the position does not split, the atoms remain symmetryvedgmt, but their site symmetry
is reduced to &1 and thez coordinate becomes independent.

Among klassengleichasubgroups of index 2 there often exist two or four differeu-s
groups of the same space-group type which differ in themiorpositions. It is important
to choose the correct one of them, with the correct origirft.sim International Tables
Volume Al [3], all of these subgroups are listed, but not so in Volung].

6.3 Isomorphic maximal subgroups

Isomorphic subgroups are a special kindkidssengleichesubgroups. The main partic-
ularity is that each space group has infinite many isomorghiegroups. Their indices
may be prime numberp or powersp? or p3, but often only certain prime numbers are
permitted [3]. The index agrees with the factor by which timét gell has been enlarged.

A classical example concerns the trirutile structure. Tipacs group of rutile,
P4,/mnm has an isomorphic subgroup of index 3, but none of index 2. trijica-
tion of ¢ it becomes possible to substitute the titanium atom pastiof rutile by two
different kinds of atoms in a ratio of 1: 2, as for example inSB0O, (Fig. 5). Since
the space group4,/mnmhas no isomorphic subgroup of index 2, a ‘dirutile’ with this
space-group type cannot exist.

Note that rutile and trirutile havdifferentspace groups of the same space-group type.
A space group includes a specific translational lattice @&ndsied to designate the sym-
metry of a given crystal structure. The space group type,elew is independent of the
lattice metrics.
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Figure 5: The group—subgroup relation rutile—trirutile. The twafalotation axes depicted in the
unit cells show that only one third of them are retained upgun dymmetry reduction

6.4 The space groups of two structures have a common supergno

Two crystal structures can be intimately related even wheret is no direct group—
subgroup relation between their space groups. Insteatk thay exist a common super-
group. The above-mentioned structures of NiAsS and PtGé8e an example. In that
case, the pyrite type corresponds to the common supergiewgn if there is no known
representative, it can be useful to look for a common supemr

B-K,CO; and B-Na,CO; have similar structures and unit cells (Fig. 6). The planes
of the carbonate ions are not aligned perpendiculac; toompared to the perpendicular
orientation, inp-K,CO;, they are rotated about by 22.8 and those of3-Na,CO; are
rotated abouta by 27.3. There is no group—subgroup relation between the spacegrou
C12/c1 andC2/m11 of the two structures (the nonconventional set@®m11l chosen for
B-Na,CO; ensures a correspondence between the cells of both stsjtur

Looking for common minimal supergroups €f12/c1 andC2/m11 one can find two
candidatesCmcmand Cmce Since the atomic coordinates pfK,CO; and 3-Na,CO,
are very similar, any origin shifts in the relations from ttemmon supergroup t612/c1
as well asC2/m11 must be the same. In the listings of the supergroups tlgnoshifts
are not mentioned, neither in Volunfenor VolumeAl of International Tables One has
to look up the subgroups @mcmandCmcein Volume Al and check in which cases the
origin shifts coincide. One finds that the relati@mce— C12/c1 requires an origin shift
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Figure 7: Group—subgroup relations among some modifications of tkaliahetal carbonates [41]
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of 3,2,0 (or -1,—3,0), while all other relationsGmem— C12/c1, Cmem— C2/mil,
Cmce— C2/ml1) require no origin shifts. As a consequence, ddiwycmand notCmce
can be the common supergroup (Fig. 7).

No structure with space groupmcmis known that can be related to the discussed
carbonate structures. Could there be any other structute am even higher symmetry?
A supergroup ofCmcmis P6;/mmc and, in fact, a-K,CO; and a-Na,CO; are high-
temperature modifications that crystallize in this spacaugr They have the carbonate
groups perpendicular to. In this case there exists a higher-symmetry structure ¢hat
be chosen as the common aristotype. In other cases, howheecommon supergroup
refers to a hypothetical structure.

6.5 Large families of structures

Using the modular way to put together symmetry relationsfegh in the scheme of
page 6 and in the preceding sections, large family trees earobstructed. Headed by an
aristotype, they show structural relationships among ndifigrent crystal structures. As
an example, Fig. 8 shows structures that can be derived oRé&t@® type [42]. The left
part of Fig. 8 refers to only one compound, WW@nd shows relations between different
polymorphic forms of this compound. The right part of Fig. iStd relations between
substitution derivatives of Reand their distorted variants due to the Jahn-Teller effect,
hydrogen bonds, differing atom sizes etc. Many other trfethie kind have been set
up, e.g. hettotypes of perovskite [5, 43], rutile [44], Caf45], NaCl [46], hexagonal
closest-packed structures [47], zeolites [48]. For motaticinscf. [6].

In addition to show relations between known structure tymese can also find sub-
groups of an aristotype for which no structures are knownis Tan be exploited in a
systematic manner to search for new structural possdslitie. one can predict crystal
structure types [46, 49]. For this purpose, one starts froma@stotype in conjunction
with a structural principle and certain additional redtons. For example, the aristotype
can be a hexagonal closest-packing of spheres and theus&uptinciple can be the par-
tial occupation of octahedral voids in this packing. Adafil restrictions can be such as
the chemical composition, a given molecular configuratiora anaximal size of the unit
cell. Of course, one can only find such structure types thattrtteese starting condi-
tions. Two examples of predictions are presented in Sedtibh. For every space group
appearing in the Brnighausen tree, one can calculate how many differenttatel types
are possible for a given chemical composition [50, 51, 52].

7 A warning and appeal to use group—subgroup relations
with circumspection

Using the tables ofnternational TablesVolume Al, or using computer programs as of-
fered by the Bilbao Crystallographic Server, it may be easgdarch for group—subgroup
relations between space groups of crystal structufeg should only be done bearing in
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Figure 8: Family tree of hettotypes of ReQOFor the atomic parameters and other crystallographic
datacf. [42]

mind and explicitly stating a crystallographic, physical chemical contextlt is sense-
less to construct relations in a purely formal manner, withe sound crystal-chemical or
physical foundation. Crystallographic, chemical and jtalscommon sense and knowl-
edge should always be kept in mind.

Group theory is a useful tool, but don't try to subordinateygibs and chemistry under
formal conceptions, inventing relations that don't readlyist. It has to be the other
way: Experimental evidence always has priority, and grchgonty may then be used to
interpret the results with circumspection. In Section Qgeal, | mention an example of
how group theory may not be applied.
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In addition, by experience we know that setting up trees olgrsubgroup relations
is susceptible to pitfalls. Some sources of errors are: Bking into account necessary
origin shifts; wrong origin shifts; wrong basis and/or odioate transformations; unnec-
essary basis transformations for the mere sake to cling anmdatd space-group settings;
lack of distinction between space groups and space-grqugsiylack of keeping track of
the development of the atomic positions from group to sulygréhis is a frequent and
serious error); skipping intermediate space groups; udliffgrent space-group or coor-
dinate settings for like structures. If the group—subgroeiptions are correct, but origin
shifts or basis transformations have not been stated, #risbe the cause for subsequent
errors and misunderstandings.

© Ulrich Muller, 2008. Symmetry Relations between Crystal Structures



20 SYMMETRY AT PHASE TRANSITIONS, DOMAINS, TOPOTACTIC REACDNS

Part 2: Symmetry Relations at Phase Transitions,
Domain Structures and Topotactic Reactions

8 Phase transitions in the solid state

A phase transition is an event which entails a discontinuguslden) change of at least
one property of a material.

If the sudden change concerns the volume or the entiamyif one of the first deriv-
atives of the free enthalpy is not zewy # 0, AS# 0, AH =TAS#0, it is termed, after
Ehrenfest, dirst order phase transition. First order phase transitions alwaysb#xtys-
teresis; they proceed in a more or less sluggish manner amadgdine transition the old
and the new phases coexist. It proceeds by nucleation amdhgréll structural changes
occur at and only at an advancing interface between the iregerdd and the growing
new phase. If crystalline, the two phases may be related hy@pgsubgroup relation of
their space groups, but often this not the case.

Reconstructive phase transitions, which involve the breplnd rejoining of chemical
bonds, always are first-order transitions.

If the first derivatives of the free enthalpy show no discomity, but the second deriva-
tives do, the phase transition is termed to besefond order There is no sudden volume
change and no latent heat\( =0, AS=0, AH =TAS=0). Structural changes at second
order phase transitions are continuous. Driven by certiticé vibrations, the so-called
soft modes, the atoms are displaced in a synchronous @mjljtfashion in all unit cells
of the crystal. It is mandatory that the space groups of the plvases are related by a
group—subgroup relation (not necessarily a maximal ona@ndau theory has been very
successful at the interpretation of second order tramsitio

Calcium chloride undergoes a second-order phase tramsitidl, = 490 K (Fig. 9)
[53, 54]. At T >490K it is tetragonal, rutile type, space grdeg,/m2/n2/m. When cooled
from higher temperatures, at 490 K, a mutual rotation of therdination octahedra sets
in. The rotation angle increases continuously the more ¢nepéerature is lowered. As
soon as the slightest rotation has taken place, the symroatryno longer be tetragonal,
among others, the reflection planes that run diagonal tlirdhg unit cell cannot be re-
tained. The symmetry is reduced to that of an orthorhombisaup of P4,/m2/n2/m
in which these reflection planes are not present; this suipgis P2,/n2,/n2/m. The
tetragonal-to-orthorhombic symmetry reduction involeedifferentiation of the lattice pa-
rametersa andb. If we keep the labels of the directions, eitteex b or a > b holds.

Inevitable temperature and pressure gradients in the atyyte mosaic structure of
real crystals, crystal imperfections, and fluctuationg tezur close to the transition point
cause that even in a second-order transition in reality hatf ahe crystal transforms uni-
formly at the same moment. Rather, we obtain different damasome of them having
a< b, othersa>b. The result is a twinned crystal of the low temperature form.
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Figure 9: Group-subgroup relation between two modifications of catctchloride and the mutual
rotation of the coordination octahedra.

9 A first-order phase transition via a common subgroup,
is that possible?

When pressure is exerted upon silicon, it first transforma toodification with thes-tin
structure (Si-ll,14,/amd). Then it is transformed to silicon-XI [55]. At even higher
pressures it is converted to silicon-V which has been desdrivith a primitive hexagonal
structure P6/mmn). The space group of Si-XI,mmag is a subgroup of both,4,/amd
andP6/mmm and the structure of Si-XI can be related to either, Si-l &V (Fig. 10).
If there were no atomic displacements, the calculated ¢oates of a silicon atom of Si-
XI would be 0,1,-0.125 when derived from Si-Il, and ,0.0 when derived form Si-
V. The actual coordinates are half-way between. The mesigations of the lattices are
small; taking into account the basis transformations giveRig. 10, the expected lattice
parameters for Si-XI, calculated from those of Si-V, wouleldy, = a,/3 = 441.5 pm,
by, = 2cy = 476.6 pm ancy, = a, = 254.9 pm.

The mentioned phase transitions of silicon displacive with small atomic displace-
ments. The coordination of a Si atom shows this (contacadégs< 340 pm):

Si-Il 4 % 243 2x 259 4x304  14;/amd
<N ! SN
Si-XI 2x 239 2x 246 2x 255 2x 275 2x327 Imma
l N
Si-VI 2 x 238 6x 255 P6/mmm
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Figure 10: Symmetry relations among three high-pressure modificatafrsilicon.

The lattice parameter of the hexagonal structure is approximately half the valia of
tetragonal Si-ll. The volume jumps are small (0.2 % and 0.5 Phlere are two separate,
experimentally observable phase transitions. In a cepgegssure range, the whole crystal
actually consists of stable Si-XI; it is not just a hypotbatiintermediate. Taken all these
facts (and assuming that Si-V really has the ascribed uhsswale hexagonal structure),
a group-theoretical relation between Si-Il and Si-V exigis the common subgroup of
Si-XI.

However, the situation is completely different at recomstive phase transitions when
there is no group—subgroup relation between the space grofithe two phases. The
success of Landau theory in the treatment of second-ordesitions has lead, with some
success, to extend the theory to first-order transitions. haatory requirement of Lan-
dau theory is the existence of a group—subgroup relatiorthdfe is no such a relation,
a way out seems to be to assume a two-step mechanism. Simithe ttransformation
of Si-ll to Si-V via Si-Xl|, two consecutive transitions vianantermediate phase have
been assumed. The hypothetical intermediate is supposeavoa space group that is a
common subgroup of the initial and the final phase.

Reconstructive phase transitions are always first-orgersitions and exhibit hystere-
sis. Hysteresis completely rules out a synchronous (mjlitenotion of the atoms. The
transition proceeds by nucleation and growth. Any interiatedstate is restricted to the
interface between the growing new and the receding old phase
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On either side of the interface the space groups are diffefldrere exists no symmetry
operation that can map one space group onto another oneefdrerat the interface,
there can be no symmetry and, much less, a three-dimensipaak-group. In addition,
a space group is something static. In a snapshot of, say, éefetoseconds duration, no
crystal ever fulfills a space group because nearly all of ibeating atoms are displaced
from their equilibrium positions. It is only after a longefew that one can recognize
mean atomic positions which allow the assignment of a spaioapg During a phase
transition, the interface advances through the crystal,atoms are in motion; there, no
mean atomic positions exist.

Invented “transformation paths” for reconstructive phassnsitions via hypothetical
intermediate structures having common crystallographlgeoups do not reflect physical
reality. Nevertheless, quite a few papers were published plostulate such paths. In
some papers, detailed pictures of the assumed atomic rsati@nshown, depicted in one
cell. However, since the synchronous atomic displacememtled out for a first-order
transition, the depicted one cell should not be confounded with a cigstaphic unit
cell. The assumed displacements can take place only in one or adlsvat a time,
followed one by one by more cells like in a row of falling doro@s,i.e. by nucleation
and growth. The assignment of a space group to a short-lratsient state existing in
only one cell is in contradiction to the definition of a spaceup.

10 Domain structures

The domain structure of crystalline phases that often resulsolid-state phase transitions
and during topotactic reactions can be transparentlypreéed with the aid of symmetry
considerations [5, 56, 57, 58].

A domain structure is the result of nucleation and growthcpsses. If the crystal
lattices of the two phases are not too different, the orteriaof the new phase depends
on the orientation of the old one. The orientational relaid®etween the phases before
and after the transformation, as a rule, are not the resuét bbmogeneous process in-
volving a simultaneous (military) motion of the atoms in aglé crystal. The crystalline
matrix of the substrate rather governs the preferred aimmt adopted by the nuclei
that are formed in the course of the nucleation process. Tysatlites that result from
the subsequent growth of the nuclei maintain their oriéoniat The resulting system of
intergrown crystals is called topotactic textureafter W. Kleber [59]. Under these cir-
cumstances, aspect 3 of the symmetry principle, as stategaga 4, is fully effective.
A phase transition that is connected with a symmetry rednatiill result in new phases
that consist of

twin domains
if the formed phase belongs to a crystal class with reducethsstry,

antiphase domaintranslational domains),
if translational symmetry is lost.

The total number of domains, of course, depends on the nuwiberucleation sites.
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The number of different domain kinds, however, is ruled bg thdex of the symmetry
reduction. At atranslationengleichesymmetry reduction of index 3 (t3 group—subgroup
relation) we can expect twins with three kinds of domains. i8omorphic subgroup
of index 5 (i5 relation), since it is &lassengleichesymmetry reduction, will entail five
kinds of antiphase domains. If the symmetry reduction idekiseveral steps (in a chain
of several maximal subgroups), the domain structure witlonee more complicated. With
two t2 group—subgroup relations, we can expect twins of swiith two kinds of domains
each. The actual number of observable domain kinds may lsethes expected if a
domain kind is not formed during nucleation. This can be iied by the nucleation
conditions; for example, an external electric field can sepp the formation of more
than one kind of differently oriented ferroelectric dormsin

In the physical literature, phase transitions betwé&anslationengleichespace groups
sometimes are calleterroic transitions, those betweddassengleichespace groups are
non-ferroic

Among phase transitions induced by a change of temperaasrea rule, the high-
temperature modification has the higher symmetry. No suchle can be stated for
pressure-induced phase transitions.

11 Twinned crystals

An intergrowth of two or more macroscopic individuals of te@me crystal species is a
twin, if the orientation relations between the individuatsform to crystallographic laws.
The individuals are called twin components or twin domaifisey are related by awin
operationwhich is a symmetry operation that does not belong to thetpwispace group
of the crystal.

Growth and transformation twins have to be distinguishear. twins that are formed
during the growth of the crystal from a solution or melt, thenditions of nucleation
determine how the individuals are intergrown. Group-sabgrrelations are of no impor-
tance in this case. For example, the ubiquitous growth twinthe cubic mineral fluorite
(CaF,) show two cubes rotated exactly by t8&bout the twin axis [111] (obverse-reverse
twins). They started growth from a common nucleus, but tlis hothing to do with a
group—subgroup relation.

Transformation twins arise from phase transitions in thkdsstate when there is a
symmetry reduction with @ranslationengleichesubgroup. The twinning operation is one
of the symmetry operations that are lost during the symmedyiction.

Usually, chemical reactions in the solid state require highperatures. If a substance
forms several polymorphic forms, at first a high-tempemafiorm is obtained. Subsequent
cooling may then result in unnoticed phase transitions witmmetry reductions. If this
involves atranslationengleichegroup—subgroup relation, twinned crystals may result. In
X-ray diffraction, the reflections of the twin domains wiletsuperposed in such a way
that the higher symmetry of the high-temperature form mayfdigned. The structure
determination, assuming a space group of too high symmeitlyyield a faulty struc-
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Figure 11: Structure of the compounds CaGrFCaMnk; and CdMnE and group—subgroup rela-
tions derived from the presumable high-temperature forwp [Eft: section of a chain of vertex-
sharing octahedra; in the high-temperature form the cteaimeéar. Bottom left: mutual orientation
of the unit cells of the twins

tural model. However, as the following example shows, it edso occur that the lower
symmetry of a subgroup is feigned.

Taken from literature, the following table lists the spaceups and lattice parameters
of three compounds; all three have the same structure (Eig. 1

a/pm b/pm c/pm B/° ref.

CaCrk C2/c 900.5 647.2 753.3 115.9 [60]

CaMnk P2/c
CdMnF; P2y/n

893.8 636.9 783.0 116.2 [61]
884.8 629.3 780.2 116.6 [62]

The occurrence of three different space groups for the saruetgre, with nearly equal
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Figure 12: The relation between disordered and ordegeldrass

lattice parameters, is absolutely improbable. It shouldebsy to distinguish the three
space group€2/c, P2/c and P2,/n from their X-ray reflection extinctions. There seems
to be a fundamental error. Twins are the cause, and grougreu relations help to
resolve the problem. The actual space grou@ 2sc [63].

The structure contains I\/@F zigzag chains. With linear chains, the symmetry increases
to 1 2/m2/m2/m with half the unit cell size. This seems to be the symmetryhathigh-
temperature preparation conditions. Upon cooling, a pligsesition with symmetry re-
duction toC2/c takes place (Fig. 11). Thieanslationengleicheelation of index 2 shows
the appearance of twins with two orientations. Correspumndo the orthorhombic cell of
the supergroup, the metric relations of the monoclinicscate such that X-ray reflections
of one twin domain are superposed on those of the other omt.oPthe reflections of
one domain appear exactly at the places of extinct reflectainthe other domain. As
a consequence, th@ centering of the space group2/c cannot be recognized by the
extinction conditionh+k =2n+1.

The refinement of the structure of CaMptith the wrong space group2/c, a sub-
group ofC2/c, yielded unreliable atomic coordinates and bond lengths.

12 Antiphase domains

At high temperaturesg-brass has a disordered structure with the space grou@m.
Upon cooling, the atoms become ordered, resulting irkthssengleichsubgroupP m3m
of index 2 (Fig. 12). Therefore, we can expect the formatibamiphase domains.
Consider a nucleus of crystallization of the ordered phas# its growth. Let us
assume copper atoms at the vertices and zinc atoms in thergeoft the unit cells of
the growing nucleus. At some other place in the crystal armtauicleus forms and
grows, but let it have a shifted origing. a copper atom in the center of the initial cell.
At some place the growing domains will meet. Even thoughrtheit cells have the same
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Figure 13: The vernier structure of TRCl 5. In the upper part seven pseudo-face-centered ‘cells’
of Tm atoms are shown. The Cl atoms are located at the knotseofitawn nets; in the lower part
only the nets are depicted. Seven rows of Cl atoms in the pssgdare array are on top of eight
rows in the pseudo-hexagonal array

orientation and size, they do not harmonize because thigiinerare mutually shifted by
half of the cube diagonal. The result is a domain boundary litlwcopper atoms are
aside copper atoms or zinc atoms aside zinc atoms. This isitgghase boundary.

Contrary to twins, antiphase domains cause no problems iayXdiffraction (unless
the domains are very small, causing diffuse scatteringe@tstof Bragg reflections). An-
tiphase boundaries are visible in the electron microscope.

13 Topotactic reactions

A chemical reaction that takes place in a solid in such a way tie orientation of the
product crystal is determined by the orientation of theiahitrystal, is called a topotactic
reaction. In many topotactic reactions, there existscrystallographic group—subgroup
relation between the educt and the product. The orienttioglation in the topotactic
texture results from the orientation of the nuclei of crilstation which have a preferred
orientation in the matrix of the starting crystal.

Mg(OH),, brucite, is homeotypic to Cdl it has a hexagonal closest packing of O
atoms in the space groip3m1. Upon thermal dehydration, a single crystal of Mg(@H)
is transformed to MgO (periclase), NaCl type, space gréupdm, with cubic closest
packing of O atoms. The topotactic texture obtained camsi$ta very large number
of MgO crystallites. They are strictly oriented like the dams of cubic [111] growth
twins, with the [111] direction pointing in the direction of the initial Mg(OH) (obverse-
reverse twins) [64]. This is due to the nucleation procesas;lai of the orientations
obverse and reverse are formed randomly on energeticallivadqnt sites in the initial
crystal. There is no group—subgroup relation between tawand periclase.

In other cases of topotactic reactions, there exist graupgeup relations. The re-
duction of rare earth trihalides with the correspondingaiseat high temperatures yields
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Figure 14: The crystal structures of DyGI(SrBr, type) and TmCJ (Srl, type). Six pseudo-face-
centered ‘cells’ of metal atoms are shown for DyCind two for TmC}. The Cl atoms are located
at the knots of the drawn nets

Dy,Cl;5 and Tm,Cl5 with their own structure typeRcmn

"0

DyCl,, SrBr, type P4/n)
TmCl,, Srl, type Pcab

Figure 15: Structural relations between strontium halides and theigeistructure LaClys. Only
the metal atom positions of the CaBype are shownt~ c¢” =~ ¢ ~ c are in the direction of view

subhalides of the general formula Xy, . 1. Their crystal structures are so-called vernier
structures. The halogen atoms alternate in more and lessedemws like in a vernier.
The metal atoms are arranged approximately like in a faogeoed cubic lattice (Fig. 13)
[65, 66]. The structures of the dihalides DyQBrBr, type, P4/n) (Fig. 14) [67, 68, 69]
and TmC}, (Srl, type, Pcab [70, 71] and of the vernier structures can be derived from
the Cak type. The vernier compounds, however, have a slight excekalogen atoms.

How their unit cells are related to the Cafype is shown in Fig. 15. The correspond-
ing lattice parameters (in pm) can be calculated as foll@agsuminga = b = ¢ = 682
pm (Dy compounds) and = b = ¢ = 678 pm (Tm compounds) for the Cakype:
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DyCl, P4/n J Dy,Clis Pcmn 4 Tm,Cl;s Pcmn 4 TmCl, Pcab

calculated obs.[65]calculated obs.[66]calculated obs.[66]calculated obs.[71]
a :%\@a = 1078 1077.%5a'= a = 682 667.4a =a=678 657.1a"= 2a = 1356 1318.1
b=3v10a = 1078 1077.5b'= 7b = 4774 4818 |b' = 7Tb = 4746 4767.7b'=b=678  671.4

& =c=682 664.3¢=c=682  709.7¢=c=678 700.1¢"=c = 678 697.7
Upon heating, the partial structure of the anions melts rieefioe proper melting point;
i.e. there is a phase transition, the cations retaining theiitipos as in the Caftype,
while the anions in between begin to float. The quasi-liqtédesof the anions at the high
preparation temperatures of the vernier compounds peanitsnstoichiometric composi-
tion. When cooled, the anions become ordered within theyarfahe cations. Depending
on composition, several compounds crystallize simultaslp with intergrown crystals in
definite orientations. For example, starting from a higinfierature phase of the compo-
sition DyCl, g, DyCl, and Dy,Cl,5 (= DyCl, 1,) crystallize simultaneously .

The X-ray diffractogram of such a crystal, at a first glanse¢onfusing (Fig. 16, top).
However, with the orientation relations according to Fi§. dnd the group—subgroup re-
lations (Fig. 17), the diagram can be interpreted as angrdeith of DyCl and Dy,Cl;g
(Fig. 16, bottom). The tetragonal axis of DyCl, coincides exactly with a reciprocal
axis of Dy,Cl;5, which therefore has been chosen ascitsixis; this is the reason for the
unconventional setting of the space grd@pmn(conventionalPnm3.

The strong reflections in Fig. 16 result from a superposifiam both compounds;
they correspond to the CaRype, which, however, is not present.

A similar topotactic intergrowth occurs with TmChnd TmyCls. The relative posi-
tions of the unit cells shown in Fig. 15 can be discerned tteir the diffractograms
(Fig. 18). The basis vectors of both compounds have exak#lysame directions. Pay
attention to the reflections 040 and 440 of Tm@I Fig. 18 nextto 028 0 and 2 28 0
of Tm,Cl;5. They do not coincide exactly becaus€rmCl,) = 671.4 pm< %b(Tm7CI15)
=681.1 pm.%a(TmCIz) = 659.05 pm is marginally larger thaaTm,Cl;5) = 657.1 pm,
cf. the slight horizontal shift of 840 of Tmglvs. 4 28 0 of TmClys.
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Figure 16: Buerger precession diffractograrhkQ reflections) of a ‘single crystal’ of DyClwith
X~ 2.08 [65]

Bottom: interpretation as a topotactic texture of Dy@hd Dy,Cl;5. Small circles: DyCJ, SrBr,
type P4/n); rectangles: DyClys, Tm,Cly5 type Pcmi); large circles: superimposed reflections of
both substances. Due to tineglide planes all reflections with+k=2n+1 are extinct
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Figure 17: Derivation of the crystal structures of some rare earthdesli[65, 66]
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Figure 18: Simulated precession diagram of the reflectibh® of a topotactic texture of Tmgl
and Tm,Clys. Top left quadrant: reciprocal grid lines of TmCIBottom left quadrant: reciprocal
grid lines of Tm,Clyg. Simulation deduced from measured data of a ‘single cryfi8]. Reflec-
tions h+k=2n+1 of Tm,Cl,5 (Pcmp) are extinct; Reflectionk=2n+-1 andh00 withh=2n+1
of TmCl, (Pcab are extinct. Miller indices in italics refer to Tyl
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Part 3: Symmetry Aspects of Close-packed Structures
and Molecular Structures

14 Occupation of voids in closest packings of spheres

To comprehend the huge amount of known crystal structurestyphemists very success-
fully have developed quite a few concepts. One of them is tliespread description of
structures as packings of spheres with occupied intesstiGeoup—subgroup relations can
help to rationalize this. This requires that unoccupieerstices be treated like atoms,
that the occupation of voids is treated like a substitutibrzero atoms’ by real atoms.

The topotactical occupation of voids can actually be penfd in diverse cases. Ex-
amples are the intercalation compounds and the large nuafbeetal hydrides MH that
can be prepared by diffusion of hydrogen into the metals. él@n in many cases the
occupation of voids, just like the substitution of atoms ircrgstal, is not a real but a
mental process. It is a very helpful descriptive approach.

Many inorganic crystal structures can be derived from dbpackings of spheres in
which a part of the octahedral or tetrahedral voids have loeenpied. Consider a hexag-
onal closest-packing of spheres with a partial occupatibthe octahedral voids. In all
closest-packings of spheres the number of octahedral veidsjual to the number of
spheres. The chemical composition determines what fractfahe voids is occupied. In
a trihalide AX; whose halogen (X) atoms form the packing of spheres, with dfnatin
its octahedral voids, exactly one third of the voids must beupied. The unit cell of the
hexagonal closest-packing of spheres contains two splaer@swo octahedral voids. In
order to be able to occupy one third of the voids, the unit bael to be enlarged by a
factor of three or a multiple of 3. Cell enlargement means lofstranslational symmetry,
and further symmetry elements may have to be removed. Thahsneghe space groups
of the derived structures are subgroups of the space grotipegbacking of spheres.

14.1 Rhombohedral hettotypes of hexagonal closest-packjn

The Barnighausen tree in Fig. 19 shows the derivation of certairmbohedral structures
from a hexagonal closest-packing of spheres. Fig. 20 depia corresponding section
of the packing of spheres. A triplication of the primitiveiugell is necessary.

The unit cell of the aristotype contains two spheres at theckaff position 2,
+(%,1,1), and two octahedral voids aB20,0,0 and Q0, 3. After triplication, the unit
cell contains six octahedral voids. They are representeBign 19 by little boxes and
labeled by their Wyckoff letters. Symmetry-equivalentd@ihave the same letter. Boxes
next to each other correspond to octahedra having a commge, dwxes one on top
of the other to face-sharing octahedra, and diagonallycadfaboxes to vertex-sharing
octahedra.

With the successive symmetry reduction the number of symicadly independent oc-
tahedral voids increases, as can be seen by the increasmbenwof different Wyckoff
symbols.
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Figure 19: Barnighausen tree for rhombohedral hettotypes of a hex&gdnaest-packing of
spheres. Boxes represent the octahedral voids, the letter8Vyckoff letters. The scheme in the
upper left shows the corresponding coordinats the octahedral voids marked], [] and [] in
Fig. 20). Different orbits of the same Wyckoff position aristohguished by indicesag, a,, ...).
Gray boxes refer to occupied voids

If we are interested in compounds of the composition;AX atoms form the packing
of spheres), then two of the six octahedral voids have to lmeimed by A atoms. We
express this by the formula,81,Xg or AO,X5. The corresponding known structure types
are:

Bil3, R3. It is a layer structure; occupied octahedra share edgestigm c,
in Fig. 19).
RhF;, R32/c. All occupied octahedra share vertices (positibm Fig. 19).
If we exchange occupied and vacant octahedral voids of thie; Rype, the space

group R32/c is not altered. Now, four voids are occupied (positignand two are va-
cant; the composition i§JA,X5, and this corresponds to the structure type of corundum
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rhombohedrat/ = 3c

la’:2a+b

Figure 20: Section from a hexagonal closest-packing of spheres. Guajt cell, space group
P65/m2/m2/c. Large cell: triplicated cell witht’ = 3c for rhombohedral subgroups (hexagonal axis
setting). Thez coordinates of the spheres refer to the small hexagonal Takk dots marked ],

[1 and [] indicate six octahedral voids at=0 andz= % of the hexagonal cell oz= % of the
rhombohedral cell

(a-Al,0;). Regarded this way, RiFand a-Al,O5 formally have equivalent structures.
Crystal-chemically they are not equivalert:Al,O5 has face- and edge-sharing octahe-
dra, while they only share vertices in RhF

All aluminum positions ofa-Al,O5 are symmetry-equivalent. By symmetry reduction
from R32/c to R3 the corresponding Wyckoff positiansplits; the two resulting indepen-
dent positions can be occupied by different elements. litegReTiO;, has this structure.
It has edge-sharing octahedra (boxes side by side) thatcatied by atoms of the same
element. Occupation of the edge-sharing octahedra byréliffeelements is possible in
R3c (positionsa, andag in Fig. 19); this is the structure of LiNbO

The structures of some more compounds correspond to spamgpsgrof this
Barnighausen tree. Wglhas one sixth of the octahedral voids occupied with W atoms
in a hexagonal closest-packing of chlorine atoms. The sgemep R3 is the only appro-
priate one of this tree; the Wyckoff positianis occupied, the others remain vacant.

Except for the RhE and Bil; type, there is a further possible structure for the com-
position AX;, namely in the space grouR32, marked WX in Fig. 19; it has the orbit
C, occupied, and:; andc; remain vacant. This structure has pairs of occupied octahe-
dra sharing a face, and these pairs share vertices (Fig. Td48)s far, no representative
is known for this structure type. A compound that could adiby$ structure is WGL
Trivalent tungsten is known for its tendency to form struetuwith face-sharing octahe-
dra, as in the WCI3~ ion. May be it is worthwhile to search for such a modificatidn o
WCl; (another modification having ¥Cl,g clusters is known).
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The space groulR32 also allows a structural
variant of ilmenite, which could be adopted by
the yet unknown compound AITiO With Ti on
c, and Al onc; the octahedra joining would be
like in ilmenite. The Ti atoms would be located
in pairs of face-sharing octahedra. In AIHQi-
tanium would be trivalent and still would have a
valence electron per atom; this would favor the
occupation of face-sharing octahedra, with forma-
tion of Ti—Ti bonds.

The examples of the postulated possible
structures of WG and AITiO; show how
Barnighausen trees can be used to predict struc-
ture types. Fig. 21 Octahedra linking in the

predicted structure of WGl

15 Crystal structures of molecular compounds

The treatment of inorganic compounds in the previous chspthould not give the im-
pression that group—subgroup relations may not be appmtepfor compounds consist-
ing of complicated molecules. In fact, crystals of such commis frequently have low-
symmetry space groups, with molecules occupying positigitls the site symmetries 1
oder 1. The most frequent space group R2,/c (Table 1), and for chiral molecules,
which may only adopt one of the 65 Sohncke space groups [R8,R2,2,2,. For this

reason, a principle of ‘symmetry avoidance’ has even beetufaied for molecular com-
pounds. As the following examples show, this is not true.hBatthe symmetry principle

Table 1: Frequency of the space groups among known crystal strisctfrenolecular compounds
and frequency of the occurring point symmetries of the mdés: (only organic compounds with
only one kind of molecule, approx. 96000 compounds) [77]

space groupfrequency symmetry of occupied sites point frequency
% in this space group % groy@mmong molecules %
P2,/c 40.0 1 8 |1 14 1 709
P1 17.4 1 81 |1 19 1 8.1
P2,2,2,* 116 1 100 2 7.5
C2/c 7.1 1 48 |1 10| 2 42 m 6.5
P2,* 5.8 1 100 2/m 21
Pbca 4.8 1 88 |1 12 mm2 17
Pna2; 16 1 100 3 0.6
Pnma 13 1 2|1 1|my97 mmm 0.5
Pbcn 1.0 1 361 4]|260 222 0.3
146 others 9.4 1 55 4 0.3

* Sohncke space group
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also holds for these compounds. However, aspect humber 2tatsd on page 4, has
primary importance. The low molecular symmetry often does permit packings with
molecules occupying special positions and enforces a soreling symmetry reduction.

According to experience and detailed studies [78, 79, 8@Qjlenules strive to attain
the densest packing possible. The statistics also showrosgmmetrical molecules in
more than 99 % of all cases adopt centrosymmetrical spaagpgrand predominantly
occupy centrosymmetrical positions [81]. If the molecués la twofold rotation axis, this
is retained in the crystal in 59 % of all cases. Space groufls mirror planes, as a rule,
occur only if at least one kind of molecule is situated on areniplane [77].

15.1 Molecules packed as in closest-packings of spheres

Some molecules have an approximately spherical shape. fBmelyto pack themselves
like in a packing of spheres. (& molecules arrange themselves as in a cubic closest-
packing of spheres, space gro&®/m32/m [82]. The molecules rotate in the crystal,
although with a preferred orientation that correspondshto dite symmetry /3. 2/m3

is the common subgroup of the molecular symmetfy25 (icosahedral symmetry) and
the site symmetry #n32/m of F 4/m32/m. If all molecules were ordered, the space group
would beF 2/m3, a maximal subgroup dof 4/m32/m [83]. Below 249 K the molecules
become ordered in the subgro®®/a3 and the site symmetry is reduced3d84].

In crystals of the fullerene £, obtained by sublimation, the molecules adopt a hexag-
onal closest-packing of sphereBf;/m2/m2/c) with the idealc/a ratio of 1.63; in the
mean, the rotating molecules are spherical [85]. Upon ngoplat~ 50°C, a first-order
phase transition takes place; the structure retains thadogal space group, now with

P6;/m2/m2/c = P63/m2/m2/c
| Cyo T>323 K| ‘ Cyq, 273-323 K‘

b seudohex
AP |c/a =1.63 |c/a:1.82

s
éﬁ%}?&j;e —E a, a{—lij, c a, ajjzb, c
ﬁ&zﬁ;’}gﬁﬁ b C2/m2/c2;/m C2/m2/c2;/m
. s |
x\:j

“:,C‘W 0
LR S i

95 T~ a2 nzym
S e

Figure 22: The low-temperature modification of;g space grouf2,/b2,/n2;/m. a=10016 pm,
b=1735 pm= a3, c= 1853 pm. View along the pseudo-hexagonal axis. Symmetatioals
between the &, modifications
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c/a=1.82. There is no group—subgroup relation. The slightly edded molecules now
are aligned parallel to the hexagonal axis and only rotatathis direction. At~ 20°C
this rotation freezes. Due to the molecular symmetf2m (Dg,), the crystal symmetry
cannot continue to be hexagonal, it becomes orthorhompiages groupP2,/b2;/n2;/m
(Fig. 22). The symmetry reduction includestranslationengleichesubgroup relation of
index 3, and accordingly twinned crystals with thee kindsdofmains are formed. The
intermediate space group2/m2/c2,/m is not adopted because the molecules are rotated
about their pentagonal axis in such a way that the oriemtatfotheir twofold axes does
not coincide with those o2/m2/c2;/m. However, the space group2/m2/c2,/m is
adopted by polymeric £&; this is obtained by a topotactic polymerization (underspre
sure at 300C), the G, molecules being joined in the direction [86].

The less spherical cage molecules ofSp P,Se; and AsS; crystallize like in a
hexagonal closest-packing of spheres. Several polymorginins occur, which is an ex-

P6y/m2/m2/c |2c 6m2
lattice parameters in pm: hex. closest-g. |3 2 %
a b c | |
y-P,S; 646 1092 984 i N
a-As,S; 799 1010 912 b 2Y: 2¥:
a-P,S, 1369 1060 967 8 a+2b, ¢ l
a-P,Se; 2626 1178 973 EL
4c nm2m
C2/m2/c2,/m |0 0.333%
|
/ k2 \kz
2 330 3o
/ b \s
P2,/b2,/n2;/m 4c .m P2b2,/c2;/m| 4d .m P2,/m2,/c2;/n| 4c .m
1 1
y-P,S; 0.0 0333% i2’ \ 025 0583 3 a-As,S; 7 0.583 025
|obs.—0.047 0413 1| 2ab,c K2 obs.: 1 0.571 0199
2a,b,c
P2b2,/c2;/m| 4d .m 4d .m P2,/b2,/n2;/m| 4c .m 4c .m
| 0.125 0583 %|0.625 0583 % a-P,S; 0.125 0583 #|0.625 0583 %
k2 |obs.: 0147 0548 $[0.611 0613
2a,b,c
b
P2,/b2,/n2;/m 4c .m 4c .m 4c .m 4c .m
a-P,Se, 0.0625 0583 £(0.3125 0583 #|0.5625 0583 7 [0.8125 0583 3
\obs.: 0057 Q595 7/0.290 0589 7|0.576 0540 1|0.831 0583 %

Figure 23: Barnighausen tree relating a hexagonal closest-packingleéres with polymorphic
forms of B,S; and AgS; [87]. Only coordinates of the molecular centers are mertiolP mcn
and Pbnmare nonconventional settings Bfhma
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Figure 24: Packing of four modifications of cage-like moleculegXg. Dotted lines: pseudo-
hexagonal unit cells. Numberg:coordinates of the centers of the molecules.

pression that no good packing of the molecules is possibky are somewhat jammed
in each of the modifications. The four modifications mentérie Fig. 23 have four
different space groups, all of which belong to the spaceygrtype Pnma The non-
spherical shape of the molecules is taken care of in diffenays: Slight shifts from the
ideal positions at-P,S; (cf. y coordinates in Fig. 23; Fig. 24), distortion of the lattice
at a-P,S; and a-As,S; (elongation alonga) with two different molecular orientations.
a-P,Se has the least deviations from the ideal packing of sphernessjttrequires four
symmetry-independent, mutually rotated molecules [87].
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Figure 25: Piles of P(QHS)I ions in columns

15.2 The packing in tetraphenylphosphonium salts

The P(GHs)4 ions in crystalline tetraphenylphosphonium salts fredjyeare piled to
columns parallel toc (Fig. 25). The distance between neighboring ions is 740 1@ 80
pm. The most frequent packing is tetragonal, space gf®dfm. The positions of the
P(GHs); ions have site symmetrd, whereas the anions are located on fourfold rotation
axes (site symmetry 4). This kind of packing is observed wthenanions have a four-
fold rotation axis, namely with square anions like AjClkquare-pyramidal anions like
VOCI, or octahedral anions like SbCI(Figs. 26 and 27).

What happens if the symmetry of the anions is not compatilite the site symmetry
4? Then the symmetry is reduced, the space group being aaubgf P4/n with the
correspondingly reduced site symmetry for the anions [§, BRamples:

SnCE ions have a trigonal-bipyramidal structure, point grdspn. This symmetry
is compatible with the packing if the space-group symmesryreduced fromP4/n to
P2/n, the SnC] ions being aligned with one of their twofold axes along thevjusly
fourfold axis [89]. If the anions have no twofold axes, themsyetry must be reduced
even more. With SnGl ions the packing remains essentially unchanged, but theespa
group symmetry is reduced @1 (Fig. 26) [90].

The [TiCl5(NCCH,;)]~ ion still has a fourfold axis (point grouprdm not taking into
account the H atoms). However, it is 1060 pm long and does hatiding the fourfold
rotation axis, the translation period being restricted @ ®m by the columns of PEh
ions. Nevertheless, the packing remains, but with inclifB@lg(NCCH;)]~ ions. This
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P:2a| V:2c
4| 4
P4/n(? 3 1
1] 1
ASPPRIRUNCI] | | 3 | 2 AsL2a|Mol2c
VZ 0 |0,122 7 4
ab 5(2: t|2 \iz % 711
1 A a, b, 2c
300 | ~__ i 4
p P:2f [Sn.® 0 | o118
2 | 2 : .
P4Mn(2) P112n 3 T P4/n(2) AS‘2T.2b MOj.ZC
4 4
| PPh[SNCL] 11 (AsPhy),[MoOCI] |3 1
k2 | 0.0580.084/ | [MoOCI,NCMe] 1 1
ab, a+b, 2c o \ 1 | 0580
119 ab, 2c ) —
2" 20 1
EI] 0,0.—3 \@
o P:2e|Ti:2e _ P:2 | Ti:2i
14,/a? P112/n 1)1 P1 1] 1
| PPh[CoBr;NCMe] | [PPR[TICINCMe]| [0.7410.128 | PPRITICISNCMe]; | 10.8140.297
-MeCN 0.2450.222 PPh[SnCl] 0.2330.240
P18 P2:8 Co:16f 0.2620.296 0.0240.217
2 2 1
3 3 0765
3 7 | 0494
-0.009/0.505| 0.069

Figure 26: Barnighausen tree relating diverse tetraphenylphosphosaits.

ruins the fourfold rotational symmetry, the space group mtny is reduced té1 (Figs.
26 and 27) [91].

Even PPR[TICl;(NCCH,;)]-CH5;CN keeps the same packing principle. To accommo-
date the additional acetonitrile molecules, the columnsPBfy ions move apart and
the [TiClI5(NCCH;)]~ ions move away from the 4 axes. After the symmetry reduction
P4/n — P2/n —2c— P2y/n, the[TiClI;(NCCH;)]~ ions are located alternately on two
sides of a 2 axis [91].

P1 and P2,/n are the most common space group types for molecular comgound
Both, PPR[TiCl5(NCCH;z)] and PPR[TICl5(NCCH;)]-CH,CN, have no particle on a spe-
cial position, and the metrics of the unit cells are way offnfr being tetragonal. And yet,
in both cases the intimate relation to the tetragonal ayigtois obvious, the molecular
packing still is pseudo-tetragonal. We cannot state a giple of symmetry avoidance’.
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Q@&G AsPh,[RUNCI,] OBK’E\ZOﬁ g
PPh[SNCL] ° ©
O\©§) P112n ﬁ O\(Q)

P4/n

—0

J al i

0

A PPhHTICI;NCCH;] @

- CH5CN Q.

P112,/n S,

¢ doubled O‘O

PPh[TiCIsNCCHg]
P1
similar: PPR[SnCL]

only two out of four cations

PPh[CoCrNCCH;] and one out of four anions
| 4,/a lying behind each other
are shown

¢ quadrupled

Figure 27: Unit cells of diverse tetraphenylphosphonium salts
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