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Preface

The quasicrystal community comprises mathematicians, physicists, chemists,
materials scientists, and a handful of crystallographers. This diversity is re-
flected in more than 10,000 publications reporting 25 years of quasicrystal
research. Always missing has been a monograph on the “Crystallography of
Quasicrystals,” a book presenting the main concepts, methods and structures
in a self-consistent unified way; a book that translates the terminology and
way of thinking of all these specialists from different fields into that of crystal-
lographers, in order to look at detailed problems as well as at the big picture
from a structural point of view.

Once Albert Einstein pointed out: “As far as the laws of mathematics refer
to reality, they are not certain; as far as they are certain, they do not refer to
reality.” Accordingly, this book is aimed at bridging the gap between the ideal
mathematical and physical constructs and the real quasicrystals of intricate
complexity, and, last but not the least, providing a toolbox for tackling the
structure analysis of real quasicrystals.

The book consists of three parts. The part “Concepts” treats the properties
of tilings and coverings. If decorated by polyhedral clusters, these can be
used as models for quasiperiodic structures. The higher-dimensional approach,
central to the crystallography of quasicrystals, is also in the center of this part.

The part “Methods” discusses experimental techniques for the study of
real quasicrystals as well as power and limits of methods for their structural
analysis. What can we know about a quasicrystal structure and what do we
want to know, why, and what for, this is the guideline.

The part “Structures” presents examples of quasicrystal structures, fol-
lowed by a discussion of phase stability and transformations from a microscop-
ical point of view. It ends with a chapter on soft quasicrystals and artificially
fabricated macroscopic structures that can be used as photonic or phononic
quasicrystals.



VI Preface

This book is intended for researchers in the field of quasicrystals and all
scientists and graduate students who are interested in the crystallography of
quasicrystals.

Ziirich, Walter Steurer
June 2009 Sofia Deloudi
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1

Tilings and Coverings

A packing is an arrangement of non-interpenetrable objects touching each
other. The horror vacui of Mother Nature leads to the densest possible
packings of structural units (atoms, ions, molecules, coordination polyhedra,
atomic clusters, etc.) under constraints such as directional chemical bond-
ing or charge balance. Of course, in the case of real crystals, the structural
units are not hard spheres or rigid entities but usually show some flexibility.
Consequently, the real packing density, i.e. the ratio of the volume filled by
the atoms to the total volume, may differ considerably from that calculated
for rigid spheres. For instance, the packing density D, = 7v/3/16 = 0.34 of
the diamond structure is very low compared to D, = 7/ V18 = 0.74 of the
dense sphere packing. However, this low number does not reflect the high
density and hardness of diamond, it just reflects the inappropriateness of the
hard sphere model due to the tetrahedrally oriented, strong covalent bonds.
Dense packing can be entropically disfavored at high temperatures. The bce
structure type, for instance, with D, = 7v/3/8 = 0.68, is very common for
high-temperature (HT) phases due to its higher vibrational entropy compared
to hep or cep structures.

If the packing density equals one, the objects fill space without gaps and
voids and the packing can be described as tiling. nD periodic tilings can always
be reduced to a packing of copies of a single unit cell, which corresponds to
a nD parallelotope (parallelepiped in 3D, parallelogram in 2D). In case of
quasiperiodic tilings at least two unit cells are needed.

Quasiperiodic tilings can be generated by different methods such as the
(i) substitution method, (ii) tile assembling guided by matching rules, (iii)
the higher-dimensional approach, and (iv) the generalized dual-grid method
[3, 6]. We will discuss the first three methods.

Contrary to packings and tilings, coverings fill the space without gaps but
with partial overlaps. There is always a one-to-one correspondence between
coverings and tilings. Every covering can be represented by a (decorated)
tiling. However, not every tiling can be represented by a covering based on a
finite number of covering clusters. Usually, certain patches of tiles are taken
for the construction of covering clusters.
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In this chapter, we will discuss examples of basic tilings and coverings,
which are crucial for the description and understanding of the quasicrystal
structures known so far. Consequently, the focus will be on tilings with pen-
tagonal, octagonal, decagonal, dodecagonal, and icosahedral diffraction sym-
metry. They all have in common that their scaling symmetries are related to
quadratic irrationalities. This is also the case for the 1D Fibonacci sequence,
which will also serve as an easily accessible and illustrative example for the
different ways to generate and describe quasiperiodic tilings. The heptagonal
(tetrakaidecagonal) tiling, which is based on cubic irrationalities, is discussed
as an example of a different class of tilings. No QC are known yet with this
symmetry, only approximants such as particular borides (see Sect. 8.1).

The reader who is generally interested in tilings is referred to the compre-
hensive book on Tilings and Patterns by Griinbaum and Shephard [9], which
contains a wealth of tilings of all kinds. A few terms used for the description
of tilings are explained in the following [19, 23, 34, 35].

Local isomorphism (LI) Two tilings are locally isomorphic if and only if
every finite region contained in either tiling can also be found, in the
same orientation, in the other. In other words, locally isomorphic tilings
have the same R-atlases for all R, where the R-atlas of a tiling consists
of all its tile patches of radius R. The LI class of a tiling is the set of
all locally isomorphous tilings. Locally isomorphic structures have the
same autocorrelation (Patterson) function, i.e. they are homometric. This
means they also have the same diffraction pattern. Tilings, which are
self-similar, have matching rules and an Ammann quasilattice are said to
belong to the Penrose local isomorphism (PLI) class.

Orientational symmetry The tile edges are oriented along the set of star
vectors defining the orientational (rotational) symmetry N. While there
may be many points in regular tilings reflecting the orientational symme-
try locally, there is usually no point of global symmetry. This is the case for
exceptionally singular tilings. Therefore, the point-group symmetry of a
tiling is better defined in reciprocal space. It is the symmetry of the struc-
ture factor (amplitudes and phases) weighted reciprocal (quasi)lattice. It
can also be defined as the symmetry of the LI class.

Self-similarity There exists a mapping of the tiling onto itself, generating a
tiling with larger tiles. In the case of a substitution tiling, this mapping
is called inflation operation since the size of the tiles is distended. The
inverse operation is deflation which shrinks the tiling in a way that each
old tile of a given shape is decorated in the same way by a patch of the
new smaller tiles. Self-similarity operations must respect matching rules.
Sometimes the terms inflation (deflation) are used just in the opposite
way referring to the increased (decreased) number of tiles generated.

Matching rules These constitute a construction rule forcing quasiperiod-
icity, which can be derived either from substitution (deflation) rules or
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based on the nD approach. Matching rules can be coded either in the
decoration of the tiles or in their shape. A tiling is said to admit per-
fect matching rules of radius R, if all tilings with the same R-atlas are
locally isomorphic to it. A set of matching rules is said to be strong, if
all tilings admitted are quasiperiodic, but not in a single LI class. Weak
matching rules are the least restrictive ones which guarantee quasiperiod-
icity. They allow bounded departures from a perfect quasiperiodic tiling.
The diffraction pattern will show diffuse scattering beside Bragg diffrac-
tion. Non-local matching rules need some global information on the tiling.
They rather allow to check whether a tiling is quasiperiodic than to be
used as a growth rule.

Ammann lines Tilings of the PLI class have the property that, if their unit
tiles are properly decorated by line segments, these join together in the
tiling and form sets of continuous lines (Ammann lines). According to the
orientational symmetry, N sets of parallel, quasiperiodically spaced lines
form, which are called Amman N-grid or Ammann quasilattice. Contrary
to a periodic N grid with non-crystallographic symmetry, it has a finite
number of Voronoi cell shapes.

Remark The explanations, definitions, and descriptions in the gray boxes
are intended to give a simple and intuitive understanding of the concepts.
Therefore, they are not always written in a mathematically rigorous style.

1.1 1D Substitutional Sequences

Besides several quasiperiodic sequences, examples of other kinds of non-
periodic substitutional sequences will also be discussed, showing what they
have in common and what clearly distinguishes them. The quasiperiodic se-
quences treated here are the Fibonacci sequence, which plays an important
role in tilings with 5-fold rotational symmetry, and the Octonacci sequence,
also known as Pell sequence, which is related to tilings with 8-fold symmetry.

The non-quasiperiodic sequences discussed here are the almost periodic
squared Fibonacci sequence and the critical Thue-Morse sequence. The
squared Fibonacci sequence has a fractal atomic surface and a pure point
Fourier spectrum of infinite rank, while the Thue-Morse sequence shows
a singular continuous spectrum. Both are mainly of interest for artificial
structures such as photonic or phononic crystals. Finally, the properties of a
randomized Fibonacci sequence will be shortly discussed.
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1.1.1 Fibonacci Sequence (FS)

The Fibonacci sequence, a 1D quasiperiodic substitutional sequence (see, e.g.,
[26]), can be obtained by iterative application of the substitution rule o : L
LS,S — L to the two-letter alphabet {L, S}. The substitution rule can be
alternatively written employing the substitution matrix S

- e

The substitution matrix does not give the order of the letters, just their rel-
ative frequencies in the resulting words w,, which are finite strings of the
two kinds of letters. Longer words can be created by multiple action of the
substitution rule. Thus, w,, = ¢™(L) means the word resulting from the n-th
iteration of o (L): L — LS. The action of the substitution rule is also called
inflation operation as the number of letters is inflated by each step. The FS
can as well be created by recursive concatenation of shorter words according
to the concatenation rule w, 12 = w,+1w,. The generation of the first few
words is shown in Table 1.1.

The frequencies V,I; = n+1,1/§ = F,, of letters L, S in the word w,, =
o™(L), with n > 1, result from the (n — 1)th power of the transposed substi-

tution matrix to U 1
() =smm (1) (1.2)

V’I’L
The Fibonacci numbers Fj, o2 = F11 + F,, withn > 0 and Fy =0, Fy =1,
form a series with lim, . F},/F,—1 = © = 1.618..., which is called the

golden ratio. Arbitrary Fibonacci numbers can be calculated directly by
Binet’s formula

Table 1.1. Generation of words w, = ¢"(L) of the Fibonacci sequence by repeated
action of the substitution rule 6(L) = LS, ¢(S) = L. v5 and v denote the frequencies
of L and S in the words w,; F, are the Fibonacci numbers

n Wn+2 = Wn4+1Wn VTI: Us
0 L 1 0
1 LS 1 1
2 LSL 2 1
3 LSLLS 3 2
4 LSLLSLSL 5 3
5 LSLLSLSLLSLLS 8 5
6 LSLLSLSLLSLLS LSLLSLSL 13 8
ws W4

n Fn+1 Fn
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L 18

2L 28 2L

Fig. 1.1. Graphical representation of the substitution rule o of the Fibonacci se-
quence. Rescaling by a factor 1/7 at each step keeps the total length constant. Shown
is a deflation of the line segment lengths corresponding to an inflation of letters

(1+V5)" — (1= V5)"

F, =
2m\/5

(1.3)

The number 7 If a line segment is divided in the golden ratio, then this
golden section has the property that the larger subsegment is related to the
smaller as the whole segment is related to the larger subsegment (Fig. 1.1).
This way of creating harmonic proportions has been widely used in art and ar-
chitecture for millenniums. The symbol 7 is derived from the Greek noun Tou
which means cut, intersection. Alternatively, the symbol ¢ is used frequently.
7 can be represented by the simplest possible continued fraction expansion

1
r=ld— (1.4)
R v———

Since it only contains the numeral one, it is the irrational number with the
worst truncated continued fraction approximation. The convergents c¢; are just
ratios of two successive Fibonacci numbers

1 3 F n+1

1
=1, =1+4+-=2 =l4+——==,...,ca=
@il @z +1 G +1+% 2 Cn

(1.5)

This poor convergence is the reason that 7 is sometimes called the “most
irrational number.” The strong irrationality may impede the lock-in of in-
commensurate (quasiperiodic) into commensurate (periodic) systems such as
rational approximants.

The scaling properties of the F'S can be derived from the eigenvalues \; of the
substitution matrix S. For this purpose, the eigenvalue equation

det S — Al| =0, (1.6)

with the unit matrix I, has to be solved. The evaluation of the determinant
yields the characteristic polynomial

M-A—-1=0 (1.7)
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with the eigenvalues \; = (1 +/5)/2 = 2 cos /5 = 1.618... = 7, \y =
(1—-+/5)/2=—2cos 21/5 = —0.618... =1 —7 = —1/7 and the eigenvectors

() (1)

We can now explicitly write the eigenvalue equation Sv; = \;v; for the first
eigenvalue, for instance,

(o) ()= = (1) =

If we assign long and short line segments, respectively, to the letters L and S

we get the 1D Fibonacci tiling (Fig. 1.1). Relating the eigenvector (;) to

g shows that an infinite Fibonacci tiling s(r) is invariant under scaling
with the eigenvalue 7, s(7r) = s(r).

The scaling operation maps each tiling vector r to an already existing
tiling vector 7r. Consequently, the ratio of patches of the Fibonacci tiling,
which correspond to words w,, and w, 41 created by successive application of
the substitution matrix S, is given by the ratio of the eigenvector components

wper L LS LSL LSLLS T

w, 85 L IS IsL T (1.10)

The length of a word £(w,,) can be easily calculated to £(w,) = 7"L. The
mean vertex distance, d,,, results to

dyy = lim

Fn+1L+FnS_ Fn+1 Fn
n—oo n+1+Fn

- }s —(3-7S, (L1

Fn+2 Fn+2
yielding a vertex point density D, = 1/day. day = apas is also the period of

the periodic average structure (PAS) of the FS (see section 3.3). The total
length of the Fibonacci tiling for n line segments reads, in units of S,

xn:(n—l—l)(S—T)—l—l{ {”jl} mod 1}. (1.12)

T

Periodic lattices scale with integer factors, thus the eigenvalues are integers.
In case of quasiperiodic “lattices” (quasilattices), the eigenvalues are alge-
braic numbers (Pisot numbers), which have the Pisot-Vijayaraghavan (PV)
property:

>l (N <1 Vi L (1.13)
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Thus, a Pisot number is a real algebraic number larger than one and its
conjugates have an absolute value less than one. Tilings satisfy the PV prop-
erty if they have point Fourier spectra. The PV property connected to this is
that the n-th power of a Pisot number approaches integers as n approaches
infinity. The PV property is a necessary condition for a pure point Fourier
spectrum, however, it is not sufficient. The Thue-Morse sequence, for instance,
has the PV property, but it has a singular continuous Fourier spectrum (see
Sect. 1.1.4).

1.1.2 Octonacci Sequence

The Octonacci sequence, in mathematics better known as Pell sequence,
describes the sequence of spacings of the Ammann quasilattice (8-grid) of
the octagonal Ammann-Beenker tiling (see Sect. 1.2.5). The name Octonacci
is composed from “Octo-” for octagonal and “-acci” from the Fibonacci se-
quence. It can be generated in analogy to the Fibonacci sequence by a sub-
stitution rule ¢ : L — LLS,S +— L to the two-letter alphabet {L, S} [42]. It
can also be created by recursive concatenation of shorter words according to
the concatenation rule wy, 12 = Wy41Wn4+1wy. The generation of the first few
words is shown in Table 1.2. The substitution matrix S reads

-GN

The evaluation of the determinant of the eigenvalue equation yields the char-
acteristic polynomial
M —2A-1=0 (1.15)

Table 1.2. Generation of words w, = ¢"(S) of the Octonacci sequence by repeated
action of the substitution rule o(L) = LLS, o(S) = L. v5 and vj; denote the fre-
quencies of L and S, f,, are the Pell numbers

N Wnio = Wni1Wnt1Wn vE Y
0S 0 1 1
1L 1 0 1
2 LLS 2 1 3
3 LLSLLSL 5 2 7
4 LLSLLSLLLSLLSLLLS 12 5 17
5 LLSLLSLLLSLLSLLLS LLSLLSLLLSLLSLLLS LLSLLSL 29 12 41
—_———
wWa w4 ws

n o gn — [fn gn
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with the eigenvalues \; = 1 +v2 = (2 +1/8)/2 = 2.41421... = w, Ay =
1 —+/2 = —0.41421.. ., which satisfy the PV property. The eigenvalue w can
be represented by the continued fraction expansion

1

1
24 5

w=2+ (1.16)

The frequencies v = f,,v5 = g,, — f,, of letters L, S in the word w,, = ¢"(S),

with n > 1, result to
vy + v, no1 (1
(rre) = (1) (117

The Pell numbers f,, 1o = 2f,11+ fn, withn >0 and fy =0 and f; = 1, form
aseries with limy, oo fri1/fn = 14+v/2 = 2.41421 .. ., which is called the silver
ratio or silver mean. They can be calculated as well by the following equation
o — T
= 1.18

fn="0 (1.18)
The 2D analogue to the Octonacci sequence, a rectangular quasiperiodic
2-grid, can be constructed from the Euclidean product of two tilings that
are each based on the Octonacci sequence. If only even or only odd vertices
are connected by diagonal bonds then the so called Labyrinth tilings L,, and
their duals L7, respectively, result [42].

1.1.3 Squared Fibonacci Sequence

By squaring the substitution matrix S of the Fibonacci sequence, the squared
FS can be obtained

L 21 L LLS
OO
——
=52
This operation corresponds to the substitution rule ¢ : L — LLS,S +— SL
applied to the two-letter alphabet {L, S}.

The scaling properties of the squared F'S can be derived from the eigenval-
ues \; of the substitution matrix S2. For this purpose, the eigenvalue equation

det [S? — \l| = 0, (1.20)

with the unit matrix I, has to be solved. The evaluation of the determinant
yields the characteristic polynomial

M —3\+1=0 (1.21)

with the eigenvalues \; = 72, Ay = 1/72 = 2 — 7, which satisfy the PV
property, and the same eigenvectors as for the FS. The generation of the first
few words is shown in Table 1.3.
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Table 1.3. Generation of words w, = ¢™(L) of the squared Fibonacci sequence by
repeated action of the substitution rule o(L) = LLS, o(S) = SL or by concatenation.
V,I; and VTSL denote the frequencies of L and S in the words w,,, F,, are the Fibonacci
numbers

N Wy = Wp—1Wp—1Wp—1, Wy, = Wp—1Wp—1 With wg = L and wg = S 1/71: us
0L 1 0
1 LLS 2 1
2 LLSLLSSL 5 3
3 LLSLLSSLLLSLLSSLSLLLS 13 8
4 LLSLLSSLLLSLLSSLSLLLS LLSLLSSLLLSLLSSLSLLLS SLLLSLLSLLSSL 34 21

w3 w3 w3

Font1 Fon

Table 1.4. Generation of words w, = 0™ (A) of the Thue-Morse sequence by re-
peated action of the substitution rule o(A) = AB, o(B) = BA or by concatenation

W, = Wn—1Wn—1, Wpn, = Wnp_1Wyp—1 With we = A and wg = B

A

AB

ABBA

ABBABAAB

ABBABAABBAABABBA
ABBABAABBAABABBA BAABABBAABBABAAB

w4 w4

CUd W~ O =

1.1.4 Thue—Morse Sequence

The (Prouhet-)Thue-Morse sequence results from the multiple application of
the substitution rule o : A — AB,B +— BA to the two-letter alphabet {A, B}.
The substitution rule can be alternatively written employing the substitution

matrix S
CE-CI-G) e
——

=S
The frequencies in the sequence of the letters A and B are equal. The length of
the sequence after the n-th iteration is 2. The Thue-Morse sequence can also
be generated by concatenation: wy,11 = W, Wy, Wpt1 = WnpW, With wg = A
and wy = B (Table 1.4).
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The characteristic polynomial A2 —2) = 0 leads to the eigenvalues \; = 2 and
Ao = 0. Although these numbers show the PV property, the Fourier spectrum
of the TMS can be singular continuous without any Bragg peaks. If we assign
intervals of a given length to the letters A and B, then every other vertex
belongs to a periodic substructure of period A+B. This is also the size of the
unit cell of the PAS, which contains two further vertices at distances A and
B, respectively, from its origin. All vertices of the PAS are equally weighted.
The Bragg peaks, which would result from the PAS, are destroyed for special
values of A and B by the special order of the Thue—Morse sequence leading
to a singular continuous Fourier spectrum. The broad peaks split into more
and more peaks if the resolution is increased. In the generic case, however,
a Fourier module exists beside the singular continuous spectrum. Depending
on the decoration, the Thue-Morse sequence will show Bragg peaks besides
the singular continuous spectrum (see Fig. 6.2).

1.1.5 1D Random Sequences

It is not possible to say much more about general 1D random sequences than
that their Fourier spectra will be absolutely continuous. However, depending
on the parameters (number of prototiles, frequencies, correlations), the spectra
can show rather narrow peaks for particular reciprocal lattice vectors. General
formulas have been derived for different cases of 1D random sequences [15].

The diffraction pattern of a FS, decorated with Al atoms and randomized
by a large number of phason flips, is shown in Fig. 1.2. Although the Fourier
spectrum of such a random sequence is absolutely continuous, it is peaked for
reciprocal space vectors of the type m/L and n/S with m ~ n7, with m and
n two successive Fibonacci numbers.

The continuous diffuse background under the peaked spectrum of the ran-
domized FS can be described by the relation Igig ~ f(h)[1 — cos(2nh(L — S)]
(fa1(h) is the atomic form factor of Al, L, and S are the long and short inter-
atomic distances in the Al decorated F'S).

1.2 2D Tilings

The symmetry of periodic tilings, point group and plane group (2D space
group), can be given in a straightforward way (see, e.g., Table 1.7). In case of
general quasiperiodic tilings, there is no 2D space or point group symmetry
at all. Some tilings show scaling symmetry. In case of singular tilings, there is
just one point of global point group symmetry other than 1. The orientational
order of equivalent tile edges (“bond-orientational order”), however, is clearly
defined and can be used as one parameter for the classification of tilings. This
means, one takes one type of tile edge, which may be arrowed or not, in all
orientations occurring in the tiling and forms a star. The point symmetry
group of that star is then taken for classifying the symmetry of the tiling.
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Intensity (logarithmic)

1 1
0 0.1 0.2 0.3 0.4 0.5 A

Fig. 1.2. Diffraction patterns of a Fibonacci sequence before (top) and after (bottom)
partial randomization (= 25% of all tiles have been flipped). The vertices of the
Fibonacci sequence are decorated by Al atoms with the short distance S = 2.4 A; the
diffraction patterns have been convoluted with a Gaussian with FWHM = 0.001 A~!
to simulate realistic experimental resolution (courtesy of Th. Weber)

Table 1.5. Point groups of 2D quasiperiodic structures (tilings) (based on [13]).
Besides the general case with n-fold rotational symmetry, a few practically relevant
special cases are given. k denotes the order of the group

Point group type £ Conditions n =5n="Tn=8n=10n=12n=14

nmm 2n n even 8mm 10mm 12mm 1l4dmm
nm 2n n odd 5m  Tm
n n 5 7 8 10 12 14

This is related to the autocorrelation (Patterson) function. In Table 1.5, the
possible point symmetry groups of 2D quasiperiodic structures (tilings) are
given.

The general space group symmetries possible for 2D quasiperiodic struc-
tures with rotational symmetry n < 15 are listed in Table 1.6.

By taking the symmetry of the Patterson function for the tiling
symmetry, it is not possible to distinguish between centrosymmetric and
non-centrosymmetric tilings. This means that in the case of 2D tilings only
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Table 1.6. Space groups of 2D quasiperiodic structures (tilings) (based on [32]).
Besides the general case with n-fold rotational symmetry, a few practically relevant
special cases are given. The lattice symmetry is 2n for n odd

Point group Conditions n=5 n=7 n=8 n=10 n=12 n=14

nmm n even p8mm  plOmm pl2mm pldmm
n=2° p8gm

nml n odd 5ml  Tml

nlm n odd 51m  Tlm

n pb p7 p8 p10 pl2 pld

even rotational symmetries could be discriminated, both pentagonal and
decagonal tilings have decagonal Patterson symmetry, for instance. The same
is true for the Laue symmetry, which is the symmetry of the intensity weighted
reciprocal space, i.e. of the Bragg intensity distribution.

The symmetry can also be defined for the local isomorphism (LI) class of a
tiling. Then a tiling is said to admit a certain point symmetry, if this symmetry
maps the tiling onto another tiling in the same LI class. The transformed tiling
cannot be distinguished from the original one by any local means, since tilings
of the same LI class are locally indistinguishable from each other. In this
sense, the concept of point symmetry differs for quasiperiodic structures from
periodic ones. The point group of a tiling here is the point group of its LI
class. For a periodic tiling, the LI class consists of only one element, and the
definition of point symmetry reduces to the usual one.

Perhaps the best approach is based on the symmetry of the structure-
factor-weighted reciprocal lattice, which even allows to derive a kind of space
group symmetry. The full equivalence of such a Fourier space approach to a
derivation of space groups in direct space has been demonstrated for periodic
structures by [5] and applied to quasiperiodic structures by [32]. This kind of
space group symmetry corresponds to that which can be obtained from the
higher-dimensional approach (see Chap. 3).

1.2.1 Archimedean Tilings

The Archimedean tilings, which are all periodic, have been derived by Kepler
in analogy to the Archimedean solids (see Sect. 2.1). Three of them are regular,
i.e. consist of congruent regular polygons and show only one type of vertex
configuration. The regular tilings are the triangle tiling 3%, the square tiling
4% and the hexagon tiling 63. A vertex configuration n™ is defined by the kind
of polygons along a circuit around a vertex. For instance, 63 means that at a
vertex 3 hexagons meet.

The eight semiregular tilings are uniform, i.e. have only one type of ver-
tex (vertex transitive), and consist of two or more regular polygons as tiles.
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Fig. 1.3. The eight semiregular Archimedean tilings: (a) Snub hexagonal tiling 3%.6,
(b) elongated triangular tiling 3%.42, (c) snub square tiling 32.4.3.4, (d) trihexagonal
tiling 3.6.3.6, (e) small rhombitrihexagonal tiling 3.4.6.4, (f) truncated square tiling
4.8% (g) truncated hexagonal tiling 3.12%, and (h) great rhombitrihexagonal tiling
4.6.12. The unit cells are outlined by dashed lines

The Archimedean tilings are discussed here since they are quite common in
structures of intermetallic phases and soft QC approximants. Particularly in-
teresting for QC approximants are the tilings 4.8% with octagonal tiles, and
3.12 and 4.6.12, which contain dodecagonal tiles. Some characteristic data of
the semiregular tilings that are depicted in Fig. 1.3 are listed in Table 1.7.

1.2.2 Square Fibonacci Tiling

The square Fibonacci tiling is a simple example of a 2D quasiperiodic tiling
with crystallographic point symmetry (4dmm) [24]. It can be generated, for
instance, by superposition of two Fibonacci line grids, which are orthogonal
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Table 1.7. Characteristic data for the eight semiregular Archimedean tilings. The
number of vertices ny per unit cell is given; the density is calculated for a close
packing of equal circles at the vertices. In the second lines, the lattice parameter a
is given for a tile edge length of 1 and the Wyckoff positions occupied are listed [28]

Name Vertex ny Plane Group Density

Confi- a Wyckoff position

guration
Snub hexagonal 316 6 p6 ©/3/7=0.7773
tiling* a=7 6(d) =3/7,y=1/7
Elongated triangular ~ 3%.4? 4 2mm /(24 Vv/3) = 0.8418
tiling a=1 4e) y = (1+V3)/(4 +

2v/3)
b=2++3

Snub square tiling 32434 4  pdgm 7/(24+/3) = 0.8418

a=2+V3)? 4c)zr=1--1/4
(2 = V3)(2+ V32

Trihexagonal tiling® 3.6.3.6 3 pbmm m/3/8 = 0.6802

a=2 3(c)
Small rthombitri- 3.464 6 pbmm 7V/3/(4 4 2v/3) = 0.7290
hexagonal tiling a=14++3 6(e) z=1/(3++/3)
Truncated square 4.8? 4 pdmm /(3 4+ 2v/2) = 0.5390
tiling a=1++v2 d(e) z =1/(2 +2v2)
Truncated hexagonal ~ 3.122 6  p6bmm 7V/3/(7 4+ 4v/3) = 0.3907
tiling a=2++2 6(e) z = (1—1//3)
Great rhombitri- 4.6.12 12 p6mm /(3 4 2v/3) = 0.4860
hexagonal tiling a=3+3 12(f) = =1/(3v3 + 3),

=z+1/3

* Two enantiomorphs
b Kagome net; quasiregular tiling because all edges are shared by equal polygons

to each other (Fig. 1.4). The substitution rule, also depicted in Fig. 1.4, can
be written employing the substitution matrix S

111
s=|(100], (1.23)
201

with the characteristic polynom —z3 + 222 + 22 — 1 = —(1 + 2)(1 — 3z + 2?)
and the eigenvalues \; = 72 and Xy = 72 for the irreducible component
(1 — 3z + 22). Therefore, the PV property is fulfilled. The tile frequencies are
772 for the large squares, 7% for the small squares and 273 for the rectangles
(independent from their orientation).

The square Fibonacci tiling is quasiperiodic, if based on prototiles of differ-
ent sizes. In case the F'S results from a quasiperiodic distribution of two types
of atoms, or atoms and vacancies on a periodic lattice, then one periodic direc-
tion can result. In the example shown in Fig. 1.5, a square lattice is decorated
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Fig. 1.4. The square Fibonacci tiling generated by superposition of two, to each
other orthogonal, Fibonacci line grids. The minimum covering cluster is marked in
the tiling, the inflation rule is shown at right

by full circles (L) and vacancies (S) like a FS in two orthogonal directions and
with one mirror line along one diagonal. One of the two diagonal directions of
the underlying lattice then results to be periodic. This pattern has the prop-
erty that vacancies are never closer to each other than one square diagonal
and that they are fully surrounded by the filled circles with the distance of
one square edge.

Analogously, the 3D cube Fibonacci tiling can be created, which may be
of interest for vacancy ordered structures.

1.2.3 Penrose Tiling (PT)

The Penrose tiling was discovered by Roger Penrose [30] and popularized
by Martin Gardner in the popular scientific journal Scientific American [8].
There are several versions of the PT presented in the book Tilings and Pat-
terns by Griinbaum and Shephard [9]: a pentagon based tiling (P1), a kite
and dart version of it (P2) and a rhomb tiling (P3). All three of them are
mutually locally derivable and belong to the Penrose local isomorphism (PLI)
class. According to its reciprocal space symmetry, the PT is a decagonal
quasiperiodic tiling. The PLI class tilings possess matching rules that force
quasiperiodicity. If the matching rules are relaxed other tilings become possi-
ble, which may be quasiperiodic, periodic, or all kinds of non-periodic up to
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Fig. 1.5. Substitutional square Fibonacci tiling. The vertices of a square lattice
are either occupied (full circles) or unoccupied. Along the horizontal and vertical
axes as well as along one diagonal the substitutional sequence (distances between
occupied vertices) is the Fibonacci sequence. Along the other diagonal, the pattern
is periodic

fully random. The binary tiling will be discussed as an example, which may
have some importance for the description of real quasicrystals.

1.2.3.1 Rhomb Penrose Tiling

The rhomb PT [29, 30] can be constructed from two unit tiles: a skinny (acute
angle a = 7/5) and a fat rhomb (acute angle a = 27/5) with equal edge
lengths a, and areas a? sin 7/5 and a? sin 27 /5, respectively. Their areas and
frequencies in the PT are both in the ratio 1 : 7. The construction has to
obey matching rules, which can be derived from the scaling properties of the
PT (Fig. 1.6). The local matching rules are perfect, that means that they
force quasiperiodicity. However, there are no growth rules, which restrain the
growing tiling from running into dead ends.

The eight different vertex configurations and their relative frequencies in
the regular PT are shown in Fig. 1.7. The letter in the symbols indicates the
topology, the upper index gives the number of linkages and the lower index
the number of double arrows [16, 29].



1.2 2D Tilings 23

Fig. 1.6. Scaling properties of the Penrose tiling. (a) The substitution (inflation)
rule for the rhomb prototiles. In (b) a PT (thin lines) is superposed by another PT
(thick lines) scaled by S, in (c) scaling by S? is shown. A subset of the vertices of
the scaled tilings are the vertices of the original tiling. The rotoscaling operation S?
is also a symmetry operation of a pentagram (white lines), mapping each vertex of
a pentagram onto another one. This is demonstrated in (¢) on the example of the
vertex A which is mapped onto A’ by S?

The set of vertices of the PT, Mpr, is a subset of the vector module M =
{r = Z?:o n;a,e;|e; = (cos 2mi/5,sin 27m'/5)}. Mpt consists of five subsets

Mprp = Ub_ M, with M, = {ﬂ'”(rk)‘wj‘(rk) €T i=0,... ,4} (1.24)

and ry = Z?:o d; (nj +k/5), n; € Z (for the definition of d; see Sect. 3.1).
The ¢-th triangular subdomain Tj; of the k-th pentagonal occupation domain
corresponds to

Ty, = {t =zie; + Tip1€i41|T; € [0, A\i], xip1 € [0, A — 331]} (1.25)

with Ax the radius of a pentagonally shaped occupation domain: Ag = 0, for
A1,... 4 see Eq. (3.138). Performing the scaling operation SMpr with the matrix

0101
0111
1110
1010

D

yields a tiling dual to the original PT, enlarged by a factor 7. The subscript
D refers to the 4D crystallographic basis (D-basis), while subscript V in-
dicates that the vector components refer to a Cartesian coordinate system
(V-basis) (see Sect. 3.1). Here S is applied to the projected 4D crystallo-
graphic basis (D-basis), i.e. the star of four rationally independent basis
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Fig. 1.7. The eight different vertex configurations of the regular Penrose tiling
shown for decorations by arrows (single and double) and by Ammann line segments.
The relative vertex frequencies are given below the vertex symbols. The configura-
tions 28, 1K, and 3Q transform into star (S), boat (B), and hexagon (H) tiles of the
HBS tiling if those vertices are omitted where only double-arrowed edges meet (see
Sect. 1.2.3.2)

vectors a; = a,€;, 1 = 1,...,4. If a 2D Cartesian coordinate system is used,
then the submatrix S/l has to be applied.

Only scaling by S*" results in a PT (increased by a factor 74") of original
orientation. Then the relationship S** Mpt = 74" Mpr holds. S? maps the ver-
tices of an inverted and by a factor 72 enlarged PT upon the vertices of the
original PT. This operation corresponds to a hyperbolic rotation in super-
space [20]. The rotoscaling operation I'(10)S? leaves the subset of vertices of
a PT forming a pentagram invariant (Fig. 1.6).

By a particular decoration of the unit tiles with line segments, infinite lines
(Ammann lines) are created forming a Fibonacci penta-grid (5-grid, “Am-
mann quasilattice” [23]) (Fig. 1.8). The line segments can act as matching
rules forcing strict quasiperiodicity. In case of simpleton flips, the Ammann
lines are broken (see Fig. 1.8). The dual of the Ammann quasilattice is the
deflation of the original PT.
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Fig. 1.8. The Penrose tiling with Amman lines drawn in. The decoration of the
unit tiles by Ammann line segments and the action of simpleton flips are shown at
the bottom

The third variant of the PT is the kite and dart tiling, denoted P2 tiling
in the book by Griinbaum and Shephard [9]. Its relationship to the rhomb
PT (P3) tiling is shown in Fig. 1.9. Starting with the kite and dart tiling
(Fig. 1.9(a)), we cut the tiles into large acute and small obtuse isosceles tri-
angles as shown in Fig. 1.9(b) and obtain the Robinson triangle tiling. The
edge lengths of the triangles are in the ratio 7. While the black dots form a
sufficient matching rule for the kites and darts, the isosceles triangles need,
additionally, an orientation marker along the edges marked by two filled cir-
cles. In case of the acute triangle, this is an arrow pointing away from the
corner where the isosceles edges meet; in case of the obtuse triangle, it is just
the opposite.

If we fuse now all pairs of baseline connected acute triangles to skinny
rhombs, and pairs of long-edge connected acute triangles together with pairs
of short-edge linked obtuse triangles to fat rhombs, then we end up with a
rhomb PT (Fig. 1.9(c)). The rhomb edge from the marked to the unmarked
vertex also gets an orientation, which is usually marked by a double arrow.
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Fig. 1.9. The interrelations between the (a) kite and dart tiling (P2), the (b)
triangle tiling and (c) the rhomb Penrose tiling (P3). The full circles form a matching
rule for the kites and darts

The remaining color decoration of the fat rhombs marks the position of the
one disappeared vertex, which was present in the kite and dart tiling.

1.2.3.2 Pentagon PT and the Dual Hexagon-Boat-Star (HBS)
Tiling

The pentagon Penrose tiling (P1) consists of pentagons, skinny rhombs, boats,
and stars (Fig. 1.10). The pentagons have three different decorations with
Amman bars and inflation/deflation rules [27]. There exists a one-to-one rela-
tionship to the Penrose rhomb tiling (P3 tiling) [16]. Note that the pentagons
show five different decorations with rhombs.

If we connect the centers of the pentagons then we obtain the HBS tiling,
which is dual to the P1 tiling. In the P1 tiling, all spiky tiles are fully sur-
rounded by pentagon tiles. Consequently, the vertices of the H tile correspond
to the centers of pentagons surrounding a rhomb tile. Analogously, the vertices
of a B tile are the centers of pentagons surrounding a boat tile of the P1 tiling,
and those of an S tile the centers of pentagons framing a star tile of the P1
tiling. The prototile frequencies are in a ratio ny : ng : ng = V57 : V5 : 1 [25].

The interrelations between the HBS tiling and the P3 tiling are as follows.
As shown in Fig. 1.10, the H tile consists of one fat and two skinny rhombs,
the B tile of three fat and one skinny rhomb, and the S tile of five fat rhombs.
These prototile decorations with rhomb tiles correspond to the vertex con-
figurations 2S, 1K, and 3Q of Fig. 1.7. If those vertices are omitted, where
only double-arrowed edges meet, the star, boat and hexagon tiles of the HBS
tiling are obtained.

1.2.3.3 The Binary Rhomb Tiling

If we relax the matching rules of the rhomb PT to the condition that at each
vertex only tile angles meet which are all odd or all even multiples of 7 /5, then
we obtain a binary tiling [22]. There are seven different vertex surroundings
possible. The binary tiling is a substitution tiling without the PV property
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Fig. 1.10. Penrose pentagon tiling (P1 tiling, black lines) with underlying Penrose
rhomb tiling (P3 tiling). At the bottom, the decoration of the rhomb prototiles is

shown that produces the pentagon tiling. Hexagon, boat, and star supertiles are
outlined by a thick white line

[33]. Its substitution rule is shown in (Fig. 1.11). The first substitution of
the fat rhomb gives a boat tile, that of the skinny rhomb creates a hexagon
tile. In further generations also star tiles appear showing the relationship to
HBS tilings. The matching rules are in agreement but do not enforce the
substitution rule. However, it is possible to define non-local matching rules
which force quasiperiodicity. This can be done, for instance, by a particular
decoration of 72 inflated Penrose rhombs which then acts as perfect local
matching rule [4].
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Fig. 1.11. The substitution rule of the binary rhomb tiling. The first substitution
leads to a boat and a hexagon tile

1.2.3.4 Gummelt Covering

Particular quasiperiodic tilings, including some with 8-, 10-, and 12-fold
symmetry that are relevant for real QC, can be fully covered by one or more
covering clusters. By covering cluster we mean a patch of tiles of the respec-
tive tiling. In Fig. 1.12, the decoration of the Gummelt decagon with patches
of the kite and dart tiling, the Robinson triangle tiling, the rhomb PT, and
the pentagon PT are shown together with the (in size) inflated tilings.

The Gummelt decagon is a single, mirror-symmetrical, decagonal cluster
with overlap rules that force perfectly ordered structures of the PLI class
[10] (Fig. 1.13). There are different ways of marking the overlap rules. In
Fig. 1.13 (a)—(e), the rocket decoration is used, in (h) directed overlap lines
are shown. For the rocket decoration, the colors of the overlap areas of two
Gummelt decagons must agree. The overlap lines in (h) form a fat Penrose
tile, which is marked by arrows (matching rule for the perfect PT) in (h) and
unmarked in (i). There are nine different allowed coordinations of a central
Gummelt decagon by other decagons possible so that all decagon edges are
fully covered. The coordination numbers are 4, 5 or 6.

The centers of the decagons form a pentagon PT (marked pentagons,
rhomb, boat, star) when the overlap rules are obeyed (Fig. 1.14). The dual to
it is the so-called 72-HBS supertiling. The H tiles contain 4 Gummelt decagon
centers, the B tiles 7 and the S tiles 10. The HBS tile edge length is 72 times
that of the decagon, which itself is equal to 7 times the edge length of the
underlying rthomb PT (Fig. 1.12(c)).

It is also possible to assign an HBS tiling to a Gummelt decagon covering
where the tiling edge length is equal to that of the decagon [41]. A decagon
is decomposed in two hexagon tiles (containing the rockets) and one boat
tile. Depending on the kind of overlap, H, B and S tiles result from merging
the original tiles. By relaxing the overlap rules (Fig. 1.13(i)) one can obtain
random decagon coverings [12] (Fig. 1.13(f) and (g)). The decagon centers
now form a random pentagon tiling and the pentagon centers a random HBS
supertiling, called two-level random PT. In Fig. 1.13(i) a fully relaxed over-
lapping rule is shown. If only the single arrows in Fig. 1.13(h) are abandoned,
then we get an intermediate overlap rule [7]. The resulting tilings are related
to random rhomb PT, which still satisfy the double-arrow condition, and are
called four-level random PT.
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Fig. 1.12. Gummelt-decagon covering patches. (a) Kite and dart tiling, (b) Robin-
son triangle tiling, (¢) rhomb PT, (d) pentagon PT, and the in size by a factor 7
inflated tilings in (e)—(h) (after [11]). In (e), the decoration with an ace is shown,
which consists of two kites and one dart, all of them inflated in size by a factor 7.
There are also the local mirror planes drawn in as well as the rotation points a—e

Y
S on

Fig. 1.13. Gummelt-decagon (a) and its overlap rules for the construction of perfect
tilings of the PLI class (b—e, h). Palrs of overlapping Gummelt decagons are related
by one of the following rotations around the points marked a—e in Fig. 1.12(e).
A: 47 /5 around the points a, b; B: 27/5 around a, b; C: 27/5 around c; D: /5
around d. With relaxed (unoriented) overlap rules random decagonal coverings can
be obtained (f, g, i). A fat Penrose rhomb tile is marked gray in (h, i)
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Fig. 1.14. Gummelt-decagon covering. The centers of the decagons of the type
shown in Fig. 1.13(a) form a marked Penrose pentagon tiling (P1 tiling). Connecting
the pentagon centers leads to a HBS supertiling (white lines)

Lord and Ranganathan [25] derived rules for the decoration of Gummelt
decagons that are consistent with a strictly quasiperiodic pattern (G pat-
tern) of these decagons. They identified the regions in the cartwheel pat-
tern inscribed in the decagon that can be equally decorated throughout a G
pattern. These regions are the dark-gray (online: blue) kites (K) and darts
(D) of Fig. 1.12(a) and the 7-inflated light-gray (online: yellow) kites (L) of
Fig. 1.12(e), which result from merging the small light-gray (online: yellow)
kites and darts of Fig. 1.12(a). The G patterns resulting from decagons dec-
orated with these prototiles are called DKL tilings. The prototile frequencies
are in a ratio np : nx : ny, = 7 : /5 : 1. DKL tilings, and therewith G patterns
as well, scale with a 72 inflation rule.

Pairs of overlapping Gummelt decagons are related by one of the following
rotations around the points marked a—e in Fig. 1.12(e). A: 47/5 around the
points a, b; B: 27/5 around a, b; C: 27/5 around ¢; D: 7/5 around d; E:
7w/5 around e. Within the overlapping regions there are local symmetries,
which can be used to classify 2D G patterns or 3D G-pattern based columnar
coverings. There are just three types of 2D G patterns, which are listed in
Table 1.8.

The number of symmetry types of 3D G patterns, where Gummelt
decagons are replaced by Gummelt columns, which are periodic along the
column axis, amounts to 165 (Table 1.9). Along the periodic directions,
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Table 1.8. Local symmetries of the overlap regions in 2D G patterns (from [25]).
The symbols m refer to the local mirror planes marked in 1.12(e), and B-E to the
rotations B: 27/5 around a, b; C: 27/5 around ¢; D: /5 around d; E: 7/5 around e.
The points a—e are marked in 1.12(e). The symbol p denotes primitive translations

mi ma D7 E B, C
pl0 - - 10 5
po5m - m 5m 5
p1l0m m m 10m 5m

there are screw axes and local glide planes possible similar as in the well
known rod groups. Based on these symmetries, which are compatible with
strictly quasiperiodic G patterns, proper decorations of columnar structures
of quasicrystals can be derived. On the other hand, experimentally obtained
structure models can be tested on whether or not they admit one of the
allowed symmetries.

1.2.4 Heptagonal (Tetrakaidecagonal) Tiling

By heptagonal (tetrakaidecagonal) tiling we refer to tilings with 14-fold
diffraction symmetry. The tilings have three rhombic prototiles with acute
angles of w/7, 27 /7, and 37 /7 (Fig. 1.15). The global rotational symmetry of
singular tilings of this kind can be 7- or 14-fold. Heptagonal symmetry is the
lowest that is associated with a cubic irrational number, and shows, therefore,
unusual properties.

A number ) is called a Pisot number, if it is a real algebraic number (a
root of an irreducible polynomial) greater than 1, and all its conjugates have
absolute values less than 1. The tilings shown here satisfy this condition as
the eigenvalues of the reducible 7D scaling matrix S are 4.04892, 1, —0.69202,
and —0.35680. The eigenvalue 1 corresponds to one redundant dimension, and
can be discarded for the 6D irreducible representation of S in 6D. The three
remaining eigenvalues are the solutions of the irreducible polynomial

23 —32% — 4z —1=0, (1.27)

related to S. According to a basis as defined in Fig. 1.16 where the scaling
symmetry is visualized, the scaling matrix can be written in 7D as

1101101
1110110
0111011
S=|1011101] . (1.28)
1101110
0110111

1011011/
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Table 1.9. Local symmetries of the overlap volumes in 3D G patterns (adapted
from [25]). The symbols m, ¢ refer to the directions of local mirror planes marked in
1.12(e), and B, C, D, E to the rotations B: 27/5 around a, b; C: 27 /5 around ¢; D:
/5 around d; E: 7/5 around e. The points a—e are marked in 1.12(e). The symbol
P denotes primitive translations along the periodic axis. Where C and E are empty,
they are the same as B and D, respectively. 5, and 10, are screw axes; p = 0 and
q = 0 refer to simple rotations

Rod symmetry my ma D B C E
P104(p) - - 104 5p 5p 102, 4
P10/m - - 10/m 10(=5/m)

Pg(p) - - 5 9p S2p 5(2’ =p)
P105/m - - 105/m TO(Z 5/m)

P5,2(p) - 2 502 5p 55 5.2
P10c2 - 2 10c2 10

P5¢(p) - c 5¢ 5p 5ap 5¢
P10/mc - c 10/me 10(=5/m)

P5m(p) - m 5m 5p 52p 5m
P10m2 - m 10m2 10

P10,22(p) 2 2 10,22 5,2 5,2 10522
P10/mce 2 2 10/mec 10c2

P51m(p) 2 m 51m 552 59p 51m
P105/mem 2 m 105 /mem 10¢2

P51c(p) 2 c 5lc 5,2 52p 5lc
P5ml m 2 5ml 5m

P105/mmc m 2 105/mmec ~ 10m2

P10mm m m 10mm 5m

P10/mmm m m 10/mmm  10m2

P105mc m c 105me 5m

P5cl c 2 5cl 5¢

P10cm c m 10cm 5c

P10cc c c 10cc 5c

The indices shown in Fig. 1.16 give the columns of the scaling matrix. This
scaling symmetry corresponds to the planar heptagrammal form of the star
heptagon with Schlafli symbol {7/3}. The irreducible representation of the
scaling symmetry is 6D and is given by

011011
012112
112202
S=|509211| - (1.29)
210210
110110/,
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Fig. 1.15. Heptagonal (tetrakaidecagonal) rhomb tiling. The alternation condition
applies and is illustrated by the lane of tiles shown below the tiling. It requires
that the three types of rhomb tiles, which are related by mirror symmetry, have to
alternate along the lane

Schlafli symbol  The Schlafli symbol is a notation of the form {p,q,r,...}
that defines regular polygons, polyhedra, and polytopes. It describes the num-
ber of edges of each polygon meeting at a vertex of a regular or semi-regular
tiling or solid. For a Platonic solid, it is written {p, ¢}, where p is the number
of edges each face has, and ¢ is the number of faces that meet at each vertex.
Its reversal gives the symbol of the dual polygon, polyhedron, or polytope.
The symbol {p} denotes a regular polygon with p edges for integer p, or
a star polygon for rational p. For example, a regular pentagon is represented
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Fig. 1.16. Scaling symmetry of a heptagonal tiling (top) which corresponds to the
planar heptagrammal form of a {7/3} heptagon (bottom). The reference basis is
shown by the black vectors, while the gray (online: red) indices give the columns of
the scaling matrix. The eigenvalues are: 4.04892, 1, —0.692021, and —0.356896
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by {5} (convex regular polygon), and a pentagram by {5/2} (nonconvex star
polygon). In case of rational p = m/n, m means a 2D object with m vertices
where every n-th vertex is connected giving an n-gram. n is also the number
of different polygons in an n-gram.

Heptagonal (tetrakaidecagonal) tilings can be generated either based on the
nD approach or by substitution rules. In the first case it can have the PV
property, in the second case it cannot. Finite atomic surfaces and, conse-
quently, a pure point Fourier spectrum on one hand, and a substitution rule
on the other hand mutually exclude each other for axial symmetries 7, 9,
11, or greater than 12. If generated based on the nD approach, a heptagonal
tiling does not exhibit perfect matching rules, it just obeys the alternation
condition, which is a kind of weak matching rule (Fig. 1.15). In Fig. 1.17, it
is illustrated that the alternation condition does not apply to approximants.

Generally speaking, canonical projection tilings with a substitution rule,
cannot have rotational symmetry of order 7, 9, 11, or greater than 12, because
their scaling would have to be an algebraic number of rank at least 3, while
canonical projection tilings with a substitution rule have quadratic scaling
[14]. It has been shown, that a PV rhomb substitution rule with cubic or
greater scaling will not have a polytope window [31].

Pisot scaling factor and the diffraction pattern If a tiling is a prim-
itive substitution tiling, it has a non-trivial Bragg diffraction spectrum only
if the scaling factor (the largest eigenvalue of the substitution matrix) is a
Pisot number. That implies that wave vectors exist for which the structure
factor does not converge to zero for an infinite volume tiling (constructive

Fig. 1.17. The alternation condition does not apply in the case of approximants.
Three different approximants to the heptagonal tiling with one and the same unit
cell size (dashed line) are shown. Below the tilings, the violation of the alternation
rule is demonstrated on one lane for each case



36 1 Tilings and Coverings

interference). For an infinite tiling one needs n substitutions with n approach-
ing infinity. The structure factor is then the product of n iterations. The n-th
substitution contributes its Fourier transform to the structure factor, with the
n-th power of the scaling factor in the exponential function. This product does
not converge to zero for n approaching infinity and we have constructive in-
terference only if the n-th power of the scaling factor converges to an integer,
as is the case for Pisot numbers. Else, every substitution leads to differently
phased waves leading to destructive interference.

All canonical projection tilings are self-similar with a Pisot scaling factor
and well defined, finite atomic surfaces. They have, therefore, always non-
trivial Bragg diffraction spectra.

All heptagonal (tetrakaidecagonal) tilings considered in this book are
canonical projection tilings and can equally be generated by the cut-and-
project method (see Chap. 3.6.2). They have Pisot scaling factors as required
for finite (non-fractal) atomic surfaces and a pure-point Fourier spectrum.

1.2.5 Octagonal Tiling

The octagonal (8-fold) tiling was first studied independently by R. Ammann
in 1977 and F. P. M. Beenker in 1981, at that time a student of the
Dutch mathematician N. G. de Bruijn. Beenker discovered an octagonal
tiling with substitution rule and derived a way to obtain octagonal tilings
by the strip-projection method [1]. The octagonal tiling shown in Fig. 1.18,
called Ammann-Beenker tiling, has perfect matching rules and belongs to
the PLI class.

It can be obtained as dual to two periodic 4-grids rotated by 7/4 against
each other. If the prototiles are decorated with line segments, quasiperiodically
spaced straight lines result when assembled to a tiling. They have been clas-
sified as primary and secondary Ammann lines. The dual to the primary Am-
mann quasilattice is the tiling itself. The ratio of the long to the short intervals
between the primary Ammann lines amounts to 14+1/w = 14 1/2/2 = 1.707.
The secondary Ammann lines extend over the tile boundaries and correspond
to a perfect matching rule [34]. They can also be obtained by local decoration
of the tiles with line segments leading to 4 different rhombs, 5 squares, and
their enantiomorphs. The secondary Ammann quasilattice is locally isomor-
phic to the primary one, rotated by 7/8 and scaled down by a factor /2. The
alternation condition is only a weak matching rule for the octagonal tiling and
enforces rather quasiperiodic tilings with only 4-fold symmetry.

The set of vertices of the octagonal Ammann—Beenker tiling Mot is a sub-

set of the vector module M = {r = Z?:o niarei‘ei = (cos 27i/8, sin 27r2'/8)},

with the tile edge length a... Scaling by the matrix S yields an isomorphic tiling
enlarged by a factor 6, = 1 + /2

S-Mor = (14 V2)Mor (1.30)
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Fig. 1.18. The octagonal Ammann—Beenker tiling with matching rules, primary
Ammann-line decoration [34] and a patch of supertiles (white) forming a covering
cluster (cf. [2]). The covering cluster exists in two different copies which are mirror-
symmetric along the long diagonal of the overlapping rhomb tile. The alternation
condition is illustrated by the lane of tiles shown below the tiling. It requires that the
two types of rhomb tiles, which are related by mirror symmetry, have to alternate
along the lane

with
1101 1+v2 0 0 0
s_|1rro| _|_0 1+v2 0 0
0111 0 0 [1-v2 0
1011 D 0 0 0 1_\/5 v

sl 0)
fr— . (1'31)
( 0 Sl 1%
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Diagonalisation of S, defined on the vector star a,e; (D basis), yields the
eigenvalues of the scaling matrix on the cartesian (V') basis, the quadratic
Pisot numbers

A1 =142 cos 27/8 = 1 +/2 = 2.41421,
Ao =1+2cos 67/8=1—2=—0.41420. (1.32)

The first eigenvalue is called silver mean or silver ratio ds, in analogy to the
golden mean 7.

The silver mean (ratio) d; Thesilver ratio s = 14++/2, can be represented
by the continued fraction expansion

0s — 24— 1.33
L (133

The convergents c¢; are just ratios of two successive Pell numbers, with Py = 0,
Py :1>Pn:2Pn—1+Pn—27

Pn+1

c1=2/1, c2=5/2, ¢c3=12/5,...,¢cnh = 2

(1.34)

The ratio of the frequencies of the square to the rhomb tiles in the tiling is
1: /2, and that of the two mirror symmetrical rhombs is the same. The ratio
of the areas of a square to a thomb tile is v/2 : 1. Consequently, the total area
of the tiling covered by squares equals that covered by rhombs.

An octagonal patch of two corner-linked squares plus four rhomb tiles can
be used as covering cluster [2]. If the edges are properly arrowed than the
Ammann—Beenker tiling can be obtained if the number of octagon clusters is
maximized at the same time. An alternative to arrowing is using the inflated
(concerning the number of tiles) unarrowed octagonal patch, which has the
same overlapping constraints.

In Fig. 1.19, we show an octagonal tiling generated by the nD approach
(see Chap. 3.6.3). The alternation condition is fulfilled in the tiling, as is shown
exemplarily on two lanes below the tiling in the figure.

1.2.6 Dodecagonal Tiling

Many different dodecagonal (12-fold) tilings have been studied so far. One of
the best investigated is the Socolar tiling. It is composed of three prototiles,
a regular hexagon (H), a square (S), and a 7/6 rhomb (R), which appear in
two enantiomorphic (mirror-symmetric) forms concerning the matching rules
[34] (Fig. 1.20). It belongs to the PLI class of tilings. The tilings scale with
the factor € = 2+ /3 = 3.73205. The ratios of tile frequencies are H: S: R =
1:/3: /3 for both enantiomorphs.
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Fig. 1.19. Octagonal tiling generated by the nD approach. The alternation condi-
tion is illustrated by the lanes of tiles shown below the tiling. It requires that the
two types of rhomb tiles related by mirror symmetry alternate along the lane

By proper decoration of the tiles with line segments, a primary and a
secondary Ammann quasilattice can be obtained. The ratio of the long to
the short intervals between the primary Ammann lines amounts to 1+ 1/ =
1.26795. The dual of the primary Ammann quasilattice is just the original
tiling itself. The secondary Amman quasilattice can only be obtained either
by non-local decoration of the prototiles with line segments or by local deco-
ration of 3 rhomb tiles, 5 squares, and 5 hexagons plus their enantiomorphs.
The secondary Ammann quasilattice is locally isomorphic to the primary one
rotated by m/12 and scaled down by a factor 2 cos w/12 = 1.93185. The do-
decagonal Socolar tiling can also be obtained as the dual of two superimposed
periodic 3-grids rotated by /6 against each other. The ordering of tiles along
each lane of tiles satisfies the alternation condition. However, this weak match-
ing rule enforces only quasiperiodic tilings with at least hexagonal symmetry.
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Fig. 1.20. Dodecagonal Socolar tiling with primary Ammann lines (cf. [34]). The
prototiles are shown in their two enantiomorphic forms. The matching rule is defined
by arrows as well as a key, which is shown enlarged at bottom right

An example for a dodecagonal rhomb tiling is shown in Fig. 1.21. This
tiling can be generated using the nD approach (see Chap. 3.6.5) and is a
canonical projection tiling. The dodecagonal rhomb tiling satisfies the alter-
nation condition, as visualized in Fig. 1.21.

Like the Socolar tiling, the dodecagonal rhomb tiling is also composed of
three prototiles. Two of them, the square and the 7/6 rhomb are also building
units of the Socolar tiling, while the third tile, the hexagon, is substituted
in the dodecagonal rhomb tiling by a /3 rhomb. The eigenvalues are the
quadratic Pisot numbers

A =142cos 27/12 = 1 + /3 = 2.73205,

1.
Ao =1—2cos 27/12 = 1 — /3 = —0.73205. (1.35)
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Fig. 1.21. Dodecagonal tiling generated by the nD approach.The alternation con-
dition is illustrated by the lane of tiles shown below the tiling. It requires that the
three types of rhomb tiles alternate along the lane in a mirror symmetric way

They are the eigenvalues of the scaling matrix

1201
1110
S=1o111 (1.36)

1021/,

according to a basis as defined in Fig. 1.22, where the scaling symmetry is
visualized. The indices shown in Fig. 1.22 give the columns of the scaling
matrix. This scaling symmetry corresponds to the planar dodecagrammal form
of the star dodecagon with Schlafli symbol {12/5}.
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Fig. 1.22. Scaling symmetry of a tiling (top) which corresponds to the planar
dodecagrammal form of a {12/5} dodecagon (bottom). The reference basis is shown

by the black vectors, while the gray (online: red) indices give the columns of the
scaling matrix. The eigenvalues are 2.73205 and —0.73205
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1.2.7 2D Random Tilings

Two-dimensional random tilings can be obtained by randomizing strictly
quasiperiodic tilings, particularly via phason flips. This has been performed
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in several studies, for instance [38, 40]. Generally, the non-geometrical
constraints forcing an on-average quasiperiodic tiling in combination with
the maximization the configurational entropy have to be much stronger than
in the 3D case.

For instance, by relaxing the overlap rules of the Gummelt covering
(Fig. 1.13(i)) one can obtain random decagon coverings [12] (Fig. 1.13(f), (g)).
The decagon centers form a random pentagon tiling and the pentagon centers
a random HBS supertiling, called two-level random PT. In Fig. 1.13(i) a fully
relaxed overlapping rule is shown. If only the single arrows in Fig. 1.13(h)
are abandoned, then we get an intermediate overlap rule [7]. The resulting
tilings are related to random rhomb PT, which still satisfy the double-arrow
condition, and are called four-level random PT.

1.3 3D Tilings

There is just a single 3D tiling relevant for serving as quasilattice of real qua-
sicrystals. This is the 3D Penrose or Ammann tiling, which underlies icosahe-
dral QC as it is known so far. Another useful tiling for model calculations is
the 3D cube Fibonacci tiling, which is just an extension of the 2D square FS
(see Sect. 1.1.3).

1.3.1 3D Penrose Tiling (Ammann Tiling)

The 3D analogue to the Penrose tiling is called 3D Penrose tiling (3D PT) or
Ammann tiling [21, 23, 35, 37]. It consists of two kinds of unit tiles: a prolate
and an oblate rhombohedron with equal edge lengths a, (Fig. 1.23).
The acute angles of the rhombs covering these rhombohedra amount to
o, = 0 = arctan (2) = 63.44°. The volumes of the unit tiles are given by
2m 4 4 ™ V,

4
Vo = 3ai’ sin 5 V,=—-a; sin— = — (1.37)

Fig. 1.23. The two unit tiles of the Ammann tiling: a prolate (left) and an oblate
(right) rhombohedron with equal edge lengths a,
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and their relative frequencies in the Ammann tiling are 7 : 1. Therefrom the
point density Dy, results to

T+1 T 2
= ——— = — sin— . 1.38
PV, +V, @ S (1.38)

T

The set of vertices of the Ammann tiling M a7 is

Myr = {7r” (r)

() €T, i = 1,...,60} (1.39)

with r = Z?Zl n;d;,n; € Z. The 60 trigonal pyramidal subdomains T; of the
triacontahedron correspond to

3
T = t:ZZ'jejH"El € [0,)\],%2 € [0,)\ — xl],(Eg € [0,)\ — X1 —.’EQ] (140)

Jj=1

with A the central distance of the vertices and e; vectors pointing to adjacent
vertices of the triacontahedron.

There are several sets of matching rules known for the 3D Penrose tiling.
The perhaps most relevant one for the growth of real icosahedral quasicrystals
have been derived by [35]. They are not based on the two prototiles, the oblate
and the prolate rhombohedron, but on four zonohedra: (a) a triacontahedron
(10 oblate 4 10 prolate tiles), (b) a rhombic icosahedron (5 oblate 4+ 5 prolate
tiles) (c¢) a rhombic dodecahedron (2 oblate + 2 prolate tiles), (d) a single
prolate rhombohedron (see Fig. 2.6). These new prototiles, properly decorated
by segments of planes, produce infinite, quasiperiodically spaced planes that
run throughout the tiling. In analogy to the Ammann lines in the case of the
2D Penrose tiling, these planes are called Ammann planes. This matching rule
produces just a single LI class, which is different from that obtained from the
6D approach.

1.3.2 3D Random Tilings

Due to geometrical constraints, 3D random tilings can be on average quasiperi-
odic. However, the stabilization by high configurational entropy is only pos-
sible at high temperatures. Geometrically, random tilings can be obtained by
starting from a strictly ordered tiling and subsequent randomization of the
tiling by phason flips (Fig. 1.24). This can be performed by Monte Carlo sim-
ulations flipping the interior of rhombic dodecahedra consisting of two prolate
and two oblate rhombohedra. The diffraction pattern of a 3D random tiling,
constituted by the right ratio of Penrose rhombohedra without matching rules,
was shown to exhibit sharp Bragg-like peaks and strong phason diffuse scat-
tering [39].

Geometrically, the average structure of a random tiling can be described to
some extent by the nD approach, if the sharp reflections are taken for Bragg
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Fig. 1.24. Characteristic dodecahedron of two prolate and two oblate Penrose rhom-
bohedra illustrating the action of a phason flip

reflections. Then the resulting atomic surface will not be dense and will not
obey the closeness condition. For the consequences for structure analysis see
[18]. For a general discussion of random tiling models see [17].
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2

Polyhedra and Packings

Ideal crystal structures are characterized by their space group, metrics of the
unit cell and the kind of atoms occupying the Wyckoff (equipoint) positions.
Depending on the structure type, it may be useful to describe a structure as
packing of atoms or larger structural units such as chains, columns, bands,
layers, or polyhedra. We will focus in this chapter on polyhedra and their
space-filling packings. This can be very useful for analyzing and understanding
the geometry of quasiperiodic structures. One has to keep in mind, however,
that these polyhedra may just be geometrical units and not necessarily crystal-
chemically well-defined entities (atomic clusters; for a detailed discussion see
Sect. 10.3).

In physical space, the geometry of quasiperiodic structures can be likewise
discussed based on tilings or coverings, which are decorated by atoms or by
larger structural subunits (clusters). All quasicrystal structures known so far
can be well described based on polyhedral clusters. Whether these clusters
are more than just structural subunits is not clear yet. Anyway, a discus-
sion of the most important polyhedra and their space-filling properties will
be crucial for understanding the structures of quasicrystals and their approx-
imants.

The group—subgroup relationships between polyhedra and their pack-
ings with icosahedral and those with cubic point group symmetry are
shown in Fig. 2.1. The first obvious but remarkable property of icosahe-
dral clusters is that they are invariant under the action of the cubic point
groups 23 or 2/m3, depending on whether or not they are centrosymmet-
ric. Consequently, from a geometrical point of view, there is no need to
distort an icosahedral cluster for fitting it into a cubic unit cell without
breaking the cubic symmetry. Distortions may only be necessary if we con-
sider the densest packings of icosahedral clusters on a periodic (cubic)
lattice.
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Fig. 2.1. Group-subgroup relationships between the holohedral icosahedral point
group 2/m35 and some of its subgroups arranged according to the group order k

In the following sections, we present the well known regular and semireg-
ular polyhedra and discuss their packings.'

2.1 Convex Uniform Polyhedra

A convex polyhedron is called reqular if its faces are all equal and regular
(equilateral and equiangular) surrounding all vertices (corners) in the same
way (with the same solid angles). In other words, regular polyhedra are face-
transitive and wvertex-transitive. Without the second condition, one obtains
the non-uniform face-regular (face-transitive) polyhedra, such as the rhombic
dodecahedron, triacontahedron, or the pentagonal bipyramid. In 3D, there are
exactly five regular polyhedra, the Platonic solids (Fig. 2.2). These are the
tetrahedron, 43m: {3,3}; the octahedron, 4/m32/m: {3,4}; the hexahedron
(cube), 4/m32/m: {4,3}; the icosahedron, 2/m35: {3,5}; and the dodecahe-
dron, 2/m35: {5,3}. The orientational relationship to the cubic symmetry is
indicated by a cubic unit cell in each case (Fig. 2.2). The Schlafli symbol
{p,q} denotes the type of face (p-gon), where p is its number of edges and ¢
the number of faces surrounding each vertex. A polyhedron can also be char-
acterized by its vertexr configuration, which just gives the kind of polygons
along a circuit around a vertex. A polyhedron {p, ¢} has the vertex configu-
ration p9.

! We will use the notion introduced by Lord, E. A., Mackay, A. L., Ranganathan,
S.: New Geometries for New Materials. Cambridge University Press, Cambridge
(2006)
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Fig. 2.2. The five Platonic solids inscribed in cubic unit cells to show their orien-
tational relationships to the 2- and 3-fold axes of the cube: tetrahedron, {3,3} 33,
octahedron, {3,4} 3%, hexahedron (cube), {4,3} 4% icosahedron, {3,5} 3°, dodeca-
hedron, {5,3} 5%

The dual {q, p} of any of the Platonic solids {p, ¢} is a Platonic solid again.
The tetrahedron is its own dual, cube and octahedron are duals of each other,
and so are the icosahedron and the dodecahedron. The circumspheres of the
Platonic solids pass through all vertices, the midspheres touch all edges and
the inspheres all faces.

The other kind of convex uniform polyhedra, i.e. with one type of vertex
surrounding only (vertex-transitive), are the semi-regular polyhedra. Their
characteristic is that their faces are all regular polygons, however, of at least
two kinds, i.e. they are facially regular but not face-transitive. They include
the 13 Archimedean solids (Table 2.1 and Fig. 2.3) and infinitely many prisms
and antiprisms with n-fold symmetry.

The prisms consist of two congruent n-gons plus n squares, 42.n, and have
point symmetry N/mmm. The antiprisms consist of two twisted congruent
n-gons plus n equilateral triangles, 33.n, with point symmetry 2Nm2. Conse-
quently, the only antiprism with crystallographic symmetry is the octahedron,
3*. The square antiprism, 32.4, has point symmetry 8m2 and the hexagonal
antiprism, 33.6, 12m2.

The Archimedean solids can all be inscribed in a sphere and in one of the
Platonic solids. In Table 2.1 some characteristic values of the Archimedean
polyhedra are listed. The snub cube and the snub dodecahedron can occur in
two enantimorphic forms each. The cuboctahedron and the icosidodecahedron
are edge-uniform as well and called quasi-reqular polyhedra. The truncated
cuboctahedron and the icosidodecahedron are also called great rhombicuboc-
tahedron and great rhombicosidodecahedron, respectively. The syllable rhomb
indicates that one subset of faces lies in the planes of the rhombic dodecahe-
dron and rhombic triacontahedron, respectively.

The duals of the Archimedean solids are the Catalan solids. Their faces
are congruent but not regular, i.e. they are face-transitive but not vertex-
transitive. While the Archimedan solids have circumspheres, their duals have
inspheres. The midspheres, touching the edges are common to both of them.
The two most important cases for quasiperiodic structures are the rhombic
dodecahedron V(3.4)?, i.e. the dual of the cuboctahedron, and the rhombic tri-
acontahedron V(3.5)2, i.e. the dual of the icosidodecahedron (Fig. 2.3 (n) and
(0)). The face configuration is used for the description of face-transitive poly-
hedra. It corresponds to a sequential count of the number of faces that exist
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Table 2.1. Characteristic data for the thirteen Archimedean solids and of two of
their duals (below the horizontal line). Faces are abbreviated tri(angle), squ(are),
pen(tagon), hex(agon), oct(agon), dec(agon), rho(mb). In the last column, the ratio
of the edge length as of the faces to the edge length of the circumscribed polyhe-
dron (Platonic solid) a, is given, where p = c(ubic), ¢(etrahedron), o(ctahedron),
i(cosahedron), d(odecahedron), m(idsphere radius)

Name Vertex Faces Edges Vertices Point Typical Ra-
Config- Group tios p: as/ap
uration

Truncated tetrahedron 3.6 4 tri, 18 12 43m  t:1/3

4 hex
Cuboctahedron (3.4)% 8 tri, 24 12 m3m  c:1/y/2
6 squ
Truncated cube 3.8°  8tri,6o0ct 36 24 m3m c:v2—1
Rhombicuboctahedron 3.4% 8 tri, 48 24 m3m c:vV2-1
18 squ
Truncated cubo- 46.8 12squ, 72 48 m3m  c:2/7(v/2—-1)
ctahedron 8 hex,
6 oct
Truncated octahedron 4.62 8 tri, 6 oct 36 24 m3m  c:1/2V2
Snub cube® 34 32 tri, 60 24 432 c:0.438
6 squ
Icosidodecahedron (3.5)% 20 tri, 60 30 m35  i:1/2
12 pen

Truncated dodecahe- 3.10% 20 tri, 90 60 m35 d: 1/\/5

dron 12 dec

Truncated icosahedron 5.62 12 pen, 90 60 m35  i:1/3

20 hex
Rhombicosi- 3.4.5.4 20 tri, 120 60 m35  d:\V5+1/6
dodecahedron 30 squ,

12 pen

Truncated icosidodeca- 4.6.10 30 squ, 180 120 m35  d:V5+ 1/10
hedron 20 hex,

12 dec
Snub dodecahedron®  3*5 80 tri, 150 60 235 i:0.562

12 pen
Rhombic dodecahedron V(3.4)? 12 rho 24 14 m3m  m: 3v2/4
Rhombic triaconta- V(3.5)% 30 rho 60 32 m35  m:(5—+/5)/4

hedron

“Two enantiomorphs

at each vertex around a face. For instance, V(3.4)? means that at the vertices
of the 4-gon, which is a rhomb in this case, 3 or 4 faces, respectively, meet.
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a b c d

eLCE
&€ 4C

Fig. 2.3. The 13 Archimedean solids: (a) truncated tetrahedron, 3. 62, ) cuboc-
tahedron, (3.4)%, (c) truncated cube, 3. 82 (e) (small) rhomblcuboctahedron 3.4%
(f) truncated cuboctahedron (great rhombicuboctahedron), 4.6.8, (d) truncated oc-
tahedron, 4.6%, (g) snub cube, 3*.4, only one enantiomorph shown, (h) icosido-
decahedron, (3.5)%, (i) truncated dodecahedron, 3.10%, (j) truncated icosahedron,
5.62, (k) (small) thombicosidodecahedron, 3.4.5.4, (1) truncated icosidodecahedron
(great rhombicosidodecahedron), 4.6.10, (m) snub dodecahedron, 3*.5, only one
enantiomorph shown. The rhombic dodecahedron, V(3.4)% (n), and the rhombic
triacontahedron, V(3.5) (o), are duals of the cuboctahedron (b) and the icosido-
decahedron (h) and belong to the Catalan solids
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2.2 Packings of Uniform Polyhedra with Cubic
Symmetry

The cube is the only regular polyhedron that can tile 3D space without gaps
and overlaps. The space group symmetry of the resulting tesselation is just
that of a cubic lattice and denoted as P4/m32/m : 43. The truncated octahe-
dron (Kelvin polyhedron, Voronoi cell of the bee lattice), Im3m : 4.62, is the
only semi-regular polyhedron which can be packed space-filling, i.e. without
gaps and overlaps, yielding a body-centered cubic (bec) tiling. In all other
cases, at least two types of (semi-)regular polyhedra are needed for space
filling (Table 2.2).

Truncated cubes can be packed sharing the octagonal faces, the remain-
ing voids are filled by octahedra (Fig. 2.4(b)). Octahedra are also needed to
make the packing of square-sharing cuboctahedra space filling (Fig. 2.4(c)).
The gaps left in an edge connected framework of octahedra can be filled by
tetrahedra (Fig. 2.4(d)). The same is true for a packing of hexagon sharing
truncated tetrahedra (Fig. 2.4(e)).

A bce packing of truncated cuboctahedra, which touch each other with
their hexagonal faces, need octagonal prisms for filling the gaps (Fig. 2.4(f)).
Three polyhedra are needed for the following six packings. Square-sharing

Table 2.2. Space-filling packings of regular and semi-regular polyhedra with cubic
symmetry

Polyhedra Fig. 2.4 Space group: Symbols

Im3m : 4.6°
Pm3m : 3.82 + 3%
Pm3m :3.4.3.4 + 3*

Truncated octahedra )

)

) sm 3,

) Fm3m : 3% + 3*
)

)

(
Truncated cubes 4 octahedra (
Cuboctahedra + octahedra (
Octahedra + tetrahedra (
(
(

oo T

Fd3m :3.62 + 33
Im3m :4.6.8 +42.8

Truncated tetrahedra + tetrahedra
Truncated cuboctahedra +
octagonal prisms

= @D

Rhombicuboctahedra + (g) Pm3m : 3.4° + 3.4.3.4 + 4°
cuboctahedra + cubes

Rhombicuboctahedra + cubes + (h) Fm3m : 343 +4% 4+ 3°
tetrahedra

Truncated cuboctahedra + (i) Pm3m : 4.6.8 4+ 4.6% 4+ 4°
truncated octahedra + cubes

Truncated octahedra + )] Fm3m : 4.6% 4 3.4.3.4 + 3.6
cuboctahedra + truncated (Friauf)

tetrahedra

Truncated cuboctahedra + (k) Fm3m : 4.6.8 4 3.8% 4 3.6
truncated cubes 4 truncated

tetrahedra

Rhombicuboctahedra + truncated D Pm3m : 3.4% + 3.8% 4 42.8 4 4°

cubes + octagonal prisms + cubes
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c

Fig. 2.4. Packings of regular and semi-regular polyhedra with resulting cubic sym-
metry (see also Table 2.2). (a) Truncated octahedra, (b) truncated cubes + octa-
hedra, (c) cuboctahedra + octahedra, (d) octahedra + tetrahedra, (e) truncated
tetrahedra + tetrahedra, (f) truncated cuboctahedra + octagonal prisms, (g) rhom-
bicuboctahedra + cuboctahedra + cubes, (h) rhombicuboctahedra + truncated
cubes + octagonal prisms + cubes, (i) truncated cuboctahedra + truncated oc-
tahedra + cubes, (j) truncated octahedra + cuboctahedra + truncated tetrahedra,
(k) truncated cuboctahedra + truncated cubes + truncated tetrahedra (1) rhom-
bicuboctahedra + truncated cubes + octagonal prisms + cubes

rhombicuboctahedra in a primitive cubic arrangement leave holes which can
be filled by cubes and cuboctahedra in the ratio 1:3:1 (Fig. 2.4(g)). The gaps
in a face-centered cubic packing of square sharing rhombicuboctahedra can
be filled by cubes and tetrahedra (Fig. 2.4(h)).
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Truncated cuboctahedra, in contact with their octagonal faces, form gaps
to be filled with cubes and truncated octahedra (Fig. 2.4(i)). Truncated octa-
hedra are fully surrounded by cuboctahedra, sharing the square faces, and by
truncated tetrahedra linked by the hexagonal faces (Fig. 2.4(j)). This com-
pound can be packed without gaps. Square-sharing truncated cuboctahedra
form a fec packing with voids, which can be filled with truncated cubes and
truncated tetrahedra (Fig. 2.4(k)). Finally, a packing that needs four types of
uniform polyhedra to be space filling: Truncated cubes linked via octagonal
prisms form a primitive cubic tiling with rhombicuboctahedra in the center
of the cubic unit cell and cubes filling the residual gaps (Fig. 2.4(1)).

2.3 Packings and Coverings of Polyhedra
with Icosahedral Symmetry

There is no way to pack semi-regular polyhedra with icosahedral symmetry in
a space-filling way, neither periodically nor quasiperiodically. However, allow-
ing slight distortions (a few degrees) opens the way to numerous packings. For
instance, four slightly deformed face-sharing pentagondodecahedra can form a
tetrahedral cluster. Such clusters can be arranged in a diamond-structure-type
network. Slightly distorted face-sharing pentagondodecahedra can also deco-
rate the vertices and mid-edge positions of prolate and oblate Penrose rhom-
bohedra forming the basic units of hierarchical (quasi)periodic structures.

Due to their group-subgroup relationship to cubic symmetry, edge or face-
sharing icosahedra or pentagondodecahedra can be arranged on the vertices
of cubic lattices in a non-space-filling way. It is also possible to create helical
structures by face-sharing icosahedra or pentagondodecahedra.

3D coverings are gapless space-filling decorations of 3D tilings with par-
tially overlapping polyhedra. The simplest case is a covering with tetrahedra.
The tetrahedra overlap in small tetrahedral regions close to the corners. In
other words, this covering corresponds to the packing of truncated tetrahedra
and tetrahedra (Fig. 2.4(e)).

Triacontahedra can overlap by sharing a part of their vertices and volumes
in two ways. Along the 5-fold direction, their shared volume corresponds to
a rhombic icosahedron (Fig. 2.5(a)), and along the 3-fold direction just to an
oblate golden rhombohedron (Fig. 2.5(b)). The vertices inside of two triacon-
trahedra interpenetrating along the 2-fold direction form a rhombic dodeca-
hedron (Fig. 2.5(c)). The shared volume, however, is larger. Two faces of the
rhombic dodecahedron are capped due to two additional vertices generated at
the intersection of two edges each (Fig. 2.5(c)). The triacontahedron, as well
as the rhombic icosahedron and dodecahedron are zonohedra. The edges of
zonohedra are oriented in n directions. The number of faces equals n(n — 1).
Starting with the triacontahedron (Fig. 2.6(a)), with n = 6, and removing
one zone of faces, we get the rhombic icosahedron (Fig. 2.6(b)). Again re-
moving one zone yields the rhombic dodecahedron (Fig. 2.6(c)), although a
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Fig. 2.5. Triacontahedra overlapping along the (a) 5-, (b) 3- and (c) 2-fold direc-
tions. The shared volumes, a rhombic icosahedron (a), an oblate golden rhombohe-
dron and a rhombic dodecahedron (c), respectively, are marked

b c d
Fig. 2.6. The sequence of zonohedra resulting after repeated removal of zones

(marked yellow): (a) Triacontahedron, (b) rhombic icosahedron, (¢) rhombic do-
decahedron, and (d) prolate golden rhombohedron

a

zonohedron as well, it is different from the one resulting as the dual of the
cuboctahedron. While the first one is oblate, the latter one is more isometric.
Finally, we obtain the prolate golden rhombohedron, one of the two prototiles
of the 3D Penrose tiling (Ammann tiling) (Fig. 2.6(d)).

The rhombic triacontahedron is an edge- and face-transitive zonohedron
(Catalan solid), dual to the icosidodecahedron. It is composed of 30 golden
rhombs which are joined at 60 edges and 32 vertices, twelve 5-fold, and twenty
3-fold ones. The short diagonals of the rhombs form the edges of a pentagon-
dodecahedron, the long diagonals an icosahedron. The faces of the triaconta-
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hedron are rhombs with edge length a, and with acute angle a,

1
o, = arccos(—). 2.1
( \/5) (2.1)
The long and short diagonals are
dlong = 2a, 2 —iio\/g = Tdshorta dshort = 20 > _10\/5 (22)

The volume of the triacontahedron amounts to V = 4a>v/5 + 2\/5, the surface
to A = 12a*y/5. The dihedral angle between two faces is 27/5. The rhombic
triacontahedron forms the hull of the projection of a 6D hypercube to 3D. A
cube can be inscribed sharing 8 vertices of the subset of 20 of the dodeca-
hedron. The edge length of the cube equals the long diagonal of the golden
rhomb and any of the dodecahedron. The radius of the circumsphere is 7a..

The icosahedral cluster shell is the optimum polyhedron for 12-fold
coordination and a size ratio of 0.902 of the central atom to the coordinating
atoms. In case of uniform spheres (size ratio 1), there is 12-fold coordination
as well, leading to a cuboctahedron in the ccp case and to an anticubocta-
hedron (triangular orthobicupola) in the hcp case. Larger clusters that are
typical for quasicrystals and their approximants, usually contain icosahedral
and dodecagonal shells which then form triacontahedral clusters. Therefore,
it is important to know the way such clusters can be packed periodically as
well as quasiperiodically.

Packing triacontahedra along their 2-fold axes by sharing one face leads
to a primitive cubic packing (Fig. 2.7(a)). In the center, between eight tria-
contrahedra, there is an empty space left with the shape of a dimpled tria-
contahedron. The vertices in the centers of the dimples form a cube (see Fig.
2.7(a)). This packing can also be seen as covering of triacontahedra located at
the vertices of a bce lattice. The triacontahedra share an oblate rhombohedron
along each space diagonal (3-fold axis) of the cubic unit cell.

Since icosahedral quasicrystals show close resemblance to cluster-decorated
Ammann tilings, it is worthwhile to discuss the way the prototiles can be
decorated by triacontahedra. Along the face diagonals of the golden rhombs
as well as along the edges, the tricontahedra share one face, along the 3-fold
diagonals one oblate thombohedron. Face sharing triacontahedra decorating
the 30 vertices of an icosidodecahedron and the 12 vertices of an icosahedron
form a cluster, the envelope of which is again a rhombic triacontahedron.?

2 Séndor Kabai: 30+12 Rhombic Triacontahedra. The Wolfram Demonstrations
Project http://demonstrations.wolfram.com/3012RhombicTriacontahedra/
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a b c

Fig. 2.7. (a) Packing of triacontahedra by sharing a face along each of the eight
2-fold directions. (b) The remaining empty space has the shape of a dimpled triacon-
tahdron, i.e. a triacontahedron with eight oblate rhombohedra removed. (c) Packing
of a triacontahedron into one of the twelve pentagonal dimples of a rhombic hexe-
contahedron

The formation of a compound of a triacontahedron with a stellated
triacontahedron is shown in Fig. 2.7(c). The stellated triacontahedron, called
rhombic hexecontahedron, consists of 20 prolate golden rhombohedra. The 12
vertices closest to the center of the star-polyhedron form an icosahedron.
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Higher-Dimensional Approach

The nD approach elegantly restores hidden symmetries and correlations of
quasiperiodic structures. Since it is based on reciprocal space information,
it is directly accessible from experimental diffraction data. nD crystallogra-
phy is an extension of the well developed 3D crystallography and many well-
established powerful 3D methods can be adapted for nD structure analysis.
The nD approach is also a prerequisite for understanding phason modes and
the structural relationships between quasicrystals and their approximants.
In this chapter, the nD embedding of 1D, 2D and 3D quasiperiodic tilings
presented in Chap. 1 will be discussed.

Aperiodic crystals such as quasicrystals lack lattice periodicity in par-
space. Their Fourier spectrum Mj = {F (H)} consists of d-peaks on a
Z-module (an additive Abelian group)

M= {H = ihiaz‘

i=1

h; € Z} s (31)

of rank n (n > d) with basis vectors af, i = 1,...,n. In the embedding
approach, n determines the minimal dimension of the embedding space and
d that of the aperiodic crystal. In our considerations, the dimension d of the
aperiodic crystal usually equals the dimension of 3D par-space V.

The dimension of the space in which n-fold rotational symmetry gets
compatible with mD lattice periodicity is shown in Table 3.1. Only even di-
mensions open up new possibilities. For existing quasiperiodic structures with
5-, 8-, 10- and 12-fold symmetry, embedding space dimensions up to four are
sufficient. For the description of artificial quasiperiodic structures, which may
be of interest for photonics, for instance, higher symmetries can be beneficial.
Then, embedding spaces with even higher dimensions will be needed.

With increasing number of dimensions, the number of symmetry groups
grows drastically (Table 3.2). Fortunately, only a rather small number of sym-
metry groups is needed for the description of quasicrystals. The restriction
that the projection of the nD point symmetry group onto 3D par-space has to
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Table 3.1. Dimension m of the space in which n-fold rotational symmetry gets
compatible with mD lattice periodicity ([12], [14])

m n

0 1

1 2

2 3,4,6

4 5,8, 10, 12

6 7,9, 14, 15, 18, 20, 24, 30

8 16, 21, 28, 36, 40, 42, 60

10 11, 22, 35, 45, 48, 56, 70, 72, 84, 90, 120

Table 3.2. Numbers of symmetry groups in dimensions up to D = 6 [41]. The
number of enantiomorphic groups to be added for the total number of symmetry
groups are given in parentheses

D
Symmetry group 1 2 3 4 5 6
Crystal systems 1 4 7 33 (+7) 59 251
Bravais lattices 1 5 14 64 (+10) 189 841
Point groups 2 10 32 227 (4-44) 955 7104
Space groups 2 17 219 (+11) 4783 (+111) 222018 (+79) 28 927 922

(+7 052)

be isomorphous to the point group of the 3D quasiperiodic structure decreases
the number of relevant symmetry groups drastically. The point groups for ax-
ial quasiperiodic structures for the general and a few special cases are listed
in Table 3.3. The orientation of the symmetry elements in nD space is defined
by the isomorphism of the 3D and the nD point groups. One has to keep in
mind, however, that the action of an n-fold rotation can be different in the
two orthogonal subspaces VIl and V+. There are only two point groups for
quasicrystals with icosahedral diffraction symmetry m35, of order k = 120,
and 235, of order 60.

What is the physics behind the nD approach? A crystal structure
can be fully described by its lattice parameters, space group, and the con-
tent of the asymmetric unit. Of course, the symmetry of a structure is the
consequence and not the origin of its order. The existence of a lattice is the
usual consequence of packing copies of a finite number of structural building
units as dense as possible. For instance, the densest packing of a single layer
of uniform spheres automatically obeys the 2D space group symmetry p6mm.
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Table 3.3. 3D Point symmetry groups of axial quasicrystals [36]. Besides the general
case with n-fold rotational symmetry, a few practically relevant special cases are
given. k denotes the order of the group. Under ‘Type’ the corresponding periodic
crystal symmetry type is given

Point Group n=>5 n="17 n =38 n =10 n =12
Type k  Conditions trigonal trigonal tetragonal hexagonal dodecagonal
n 2 2 8 2 2 10 2 2 12 2 2
——— 4n  n even —_——— ——— ———
mmm mmm mmm mmm
n2m 2n  n even 82m 102m 122m

2 _2 =2
n— 4n  n odd 5— T—

m m m
nmm 2n  n even 8mm 10mm 12mm
nm 2n  n odd 5m ™
n22 2n  n even 822 1022 1222
n2 2n  n odd 52 72
n 8 10 12
— 2n  n even — — —
m m m m
n 2n  m even 8 10 12
n n  nodd 5 7
n n 5 7 8 10 12

The same is true for quasicrystals. Let us assume that a quasiperiodic
structure can be described as covering based on one or more clusters with
non-crystallographic symmetry. Then, the cluster centers form a subset of a
Z module. A Z module can be seen as proper projection of an nD lattice onto
physical space. The hard constraint, to have a minimum distance between
cluster centers, means that only a part of the nD lattice is to be projected
onto physical space. This bounded region is called strip or window (= strip-
projection method) (see Fig. 3.3).

This means that the condition of a minimum distance is the only physics
hidden in the nD approach. Thus, it is just a brilliant visualization of geo-
metrical constraints. Some physical interactions in quasiperiodic structures,
however, may be more vividly described based in the nD approach.

3.1 nD Direct and Reciprocal Space Embedding

The nD embedding space V' can be separated into two orthogonal subspaces
both preserving the point group symmetry according to the nD space group

v=vlgvt (3.2)
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with the par(allel) space VI = span(vy, v, v3) and the perp(endicular) space
VL = span(vy,...,v,). If not indicated explicitly, the basis defined by the
vectors v; (V-basis) will refer to a Cartesian coordinate system. The n-star of
rationally independent vectors defining the Z-module M* can be considered
as appropriate projection af = nl (d) (i = 1,...,n) of the basis vectors d}
(D-basis) of an nD reciprocal lattice X* with

M*=ql (2. (3.3)

As simple illustration of the nD embedding, the relationship between the
1D reciprocal space of the Fibonacci sequence and its 2D embedding space
is shown in Fig. 3.1(c). For comparison, the ways of embedding other kinds
of aperiodic crystals such as incommensurately modulated structures (IMS)
(Fig. 3.1(a)) and composite structures (CS) (Fig. 3.1(b)) are shown as well
(for a more in-depth description see [48]). Additionally, beside the standard
way of embedding a quasiperiodic structure (QC-setting), an alternative way,
the IMS-setting is shown (Fig. 3.1(d)). The latter one can be particularly

a VAR

Fig. 3.1. Reciprocal space embedding of the 3D aperiodic structures shown in
Fig. 3.2. (a) Incommensurately modulated structure (IMS), (b) composite structure
(CS), (c) Fibonacci sequence in the standard QC-setting and in the (d) IMS-setting.
Dashed lines indicate the projections, vectors d; refer to the nD reciprocal basis (D-
basis), a* and a; are the lattice parameters in reciprocal par-space, ¢ = aa” is the
modulus of the wave vector of an incommensurate modulation
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useful for the study of structural phase transitions of QC. The IMS-setting
can also be seen as approximant structure in perp-space contrary to the usual
approximants in par-space.

Characteristic features of quasicrystals are their non-crystallographic point
group symmetry and their reciprocal-space scaling symmetry SM* = sM*. S
denotes a scaling symmetry matrix acting on a Fourier module and s is its
eigenvalue. In the case of quasiperiodic structures with crystallographic point
symmetry, the structures may be described either as quasicrystals or as IMS
or CS, respectively. In practice, the embedding technique applied will depend
on the intensity distribution. If large Fourier coefficients exist on a subset
A* C M*, the description as IMS may be preferable. However, if the major
Fourier coefficients are related by scaling, the quasicrystal will be the more
appropriate description.

The hyperspace decomposition equation (3.2) has to keep the orthogonal
subspaces invariant under the symmetry operations I'(R) of the nD point
group K™ of X*. These restrictions have the important consequence that
only a small subset of all nD symmetry groups is necessary to describe the
symmetry of aperiodic crystals in the nD approach.

The two invariant subspaces are defined by the eigenvectors of the sym-
metry operations. The reduced symmetry operations are obtained by the sim-
ilarity transformation

WI(RW™ = 1"*Y(R) = ' (R) ® I'*(R), Re K™ . (3.4)

The reduced symmetry matrix is block-diagonal consisting of the symmetry
operations of each subspace. The columns of W are the vectors dj, with
components given on the V-basis, spanning the reciprocal space, while the
blocks of rows can be considered as projectors «ll and 7+ onto VI and V-,
respectively. The rows of W—! are the components, defined on the V-basis, of
the vectors d; spanning the direct space.

In direct space, the aperiodic crystal structure results from a cut of a peri-
odic nD hypercrystal with dD physical (parallel) space VIl [17] (Fig. 3.2). An
nD hypercrystal corresponds to an nD lattice X decorated with nD hyper-
atoms. The basis vectors of X are obtained via the orthogonality condition of
direct and reciprocal space

d,d; =3y . (3.5)

The atomic positions in par-space thus depend on the embedding and
the shape of the atomic surfaces (occupation domains). Atomic surfaces
are the components of hyperatoms in (n — d)D complementary (perpendicu-
lar) space V+ (Fig. 3.2). Cutting a hypercrystal structure with par-space at
different perp-space positions will result in different par-space structures. This
is a consequence of the irrational slope of the par-space section with respect
to the m-dimensional lattice. All sections with different perp-space compo-
nents belong to the same local isomorphism class (i.e. they are homometric)
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Fig. 3.2. Direct-space embedding of the three fundamental types of 3D aperiodic
structures: (a) modulated structure, (b) composite structure with modulated sub-
systems (marked 1 and 2), and quasiperiodic sequences in the (c) QC-setting and
(d) IMS-setting. Vectors d; mark the nD basis vectors while a and a”*¥ refer to
the lattice parameters of the average structures. L and S denote the long and short
unit tiles of the Fibonacci sequence

and will show identical diffraction patterns. Consequently, only quasicrystals
belonging to different local isomorphism classes can be distinguished by
diffraction experiments.

The various types of aperiodic crystals differ from each other by the charac-
teristics of their atomic surfaces. Quasicrystals show discrete atomic surfaces
(which may also be of fractal shape) while those of IMS and CS are essentially
continuous. Essentially continuous means that they may consist also of dis-
crete segments in the presence of a density modulation. However, their atomic
surfaces can always be described by modulation functions. With the ampli-
tudes of the modulation function going to zero, a continuous transition to a
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periodic structure (basis structure) will be performed. Composite structures
consist of two or more substructures which themselves may be modulated. In
reciprocal space, the characteristics of IMS and CS are the crystallographic
point symmetry of their Fourier modules M* and the existence of large Fourier
coefficients on a distinct subset A* C M™ related to the reciprocal lattice of
their periodic average structures (PAS) (see Sect. 3.3).

The embedding method discussed so far is called cut-and-project method.
The par-space cut through the nD hypercrystal corresponds to a reciprocal
space projection onto the par-space. This is a consequence of the mathemati-
cal relationship between direct and reciprocal space, i.e. the Fourier transform.
This nD approach has originally been introduced by de Wolff for the descrip-
tion of IMS and has been later extended for CS ([16] and references therein)
and, eventually, adopted and adapted for the description of QC [16].

Originally, Nicolaas G. de Bruijn [5] laid the foundation of the nD approach
for quasicrystals by defining vertex selection rules (occupation domains) for
the Penrose tiling. Embedding his occupation domains (windows) in 4D space,
he created the method later called strip-projection method. Thereby, the win-
dow (strip, occupation domain) cuts selected points out of a lattice which
then are projected onto the boundary of the window. In reciprocal space, the
Fourier transform results as the convolution of the Fourier transform of the
lattice, which is a point lattice again, with the Fourier transform of the win-
dow (Fig. 3.3). If the embedding is performed in a way that the resulting nD
lattice is hypercubic and the projection of the nD unit cell onto V+ gives the
acceptance window, it is called canonical embedding and the generated tiling
is denoted as canonical projection tiling.

a b
VJ.L . . . VJ_
RV ° . * .
. . . . .
w
ShAL LTSI LIS LISILIL Vi

Fig. 3.3. 2D embedding of the 1D Fibonacci sequence according to the strip-
projection method. (a) A strip with the irrational slope 1/7 relative to the 2D lattice
acts as window with width w. The lattice points inside the strip projected onto its
boundary, the par-space, yield the Fibonacci sequence. (b) In reciprocal space, each
lattice point is convoluted with the Fourier transform (FT) of the strip (indicated
as density plot). The Fourier transform of the 1D FS is obtained by cutting the FT
of the window (indicated by the white double line)



68 3 Higher-Dimensional Approach

Hyperatom An ideal nD hypercrystal is an nD periodic arrangement of nD
objects, the hyperatoms. The 3D par-space component of a hyperatom is
described in the same way as an atom for a 3D periodic crystal structure.
The (n—3)D perp-space component is called atomic surface or occupation
domain.

Atomic surface An atomic surface is a kind of probability density distribu-
tion function. Each point on an atomic surface gives the probability to
find an atom in the respective par-space intersection. It contains informa-
tion on the atomic species and other atomic parameters as well. Atomic
surfaces can be partitioned into subdomains.

Atomic surface partition An atomic surface is partitioned into subdo-
mains that contain all vertices with the same coordination (atomic envi-
ronment type, AET). Equal AET means equal Wigner—Seitz cell (Voronoi
domain) and, with some restrictions, the same local physical (e.g., mag-
netic moment) and chemical (e.g., bonding) properties.

3.2 Rational Approximants

The nD approach allows an illustrative representation of the relationships
between aperiodic crystals and their rational approzimants [9, 10]. The ana-
logue to the lock-in transition of an IMS to a commensurately modulated
structure (superstructure) is the transition of a quasicrystal to a rational ap-
proximant (Fig. 3.4). While in the case of an IMS the modulation vector
changes from an irrational to a rational value, for a QC the number of n ra-
tionally independent reciprocal basis vectors changes to d, i.e. the dimension
of the par-space. In hyperspace, the irrational slope of the cut of the nD lattice
with par-space turns into a rational one. This means, that the corresponding
lattice nodes lie exactly in the par-space and determine the lattice parameters
of the three-dimensional periodic approximant.

This transition can be described by a shear deformation (linear phason
strain) of the hypercrystal parallel to V+ [10]. Thereby, a position vector r of
the nD hypercrystal is transformed to the vector r’ of the approximant:

r' =Alr (3.6)

with the shear matrix
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Fig. 3.4. Embedded Fibonacci chain ...LSLSLL... (semi-opaque in the back-
ground) and its rational (LSL) approximant. The encircled lattice node is shifted to
par-space by shearing the 2D lattice along the perp-space. Thereby, one par-space
cut disappears in the drawing and a new one appears changing locally SL into LS
(phason flip marked by a horizontal arrow)

Fig. 3.5. Embedding of a FS approximant (LSL) with discrete atomic surfaces
(online: red dots) overlaid the atomic surfaces of the sheared FS (gray). The size of
the par-space unit cell is marked by an arrow

The determinant of A is equal to one. Thus, the volume of the nD unit cell
does not change during the transformation. However, due to the rational slope
of par-space the atomic surfaces are not dense anymore but consist of discrete
points (Fig. 3.5). The point density of quasicrystals and their approximants
differ and shifting par-space parallel to V+ can change the structure of the
approximant. The symmetry group of the approximant is a subgroup of the
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symmetry group of the quasicrystal. The eliminated symmetry elements can
appear as twin laws [25], as observed, e.g., in 10-fold twinned orthorhombic
approximants of decagonal Al7gCoy5Niy5 [24].

In reciprocal space, the phason strain leads to a shift of the diffraction
vectors H as a function of their perp-space components:

HI' = HI + AH* . (3.8)
The nD reciprocal lattice vectors transform according to
H =(A"YH)"H (3.9)
with

1 0]—-Ap - —Am

o
—_

o
o

—Aya - —A 114
—INT _ 43 n3 .
(A7) = 3 = (0 1>V : (3.10)

%

Since the approximant structure results from a rational cut of the nD lattice
with par-space, its diffraction pattern corresponds to a projection of nD recip-
rocal space along rational reciprocal lattice lines. Consequently, the Fourier
coefficients of the approximant correspond to the sum of the Fourier coeffi-
cients (structure factors) that project onto one and the same diffraction vector
of the approximant, HAP_ in physical reciprocal space.

3.3 Periodic Average Structure (PAS)

The PAS of an IMS can be obtained by orthogonal projection of the mod-
ulation function onto par-space (see Fig. 3.2(a)). In case of QC, this would
give a dense structure. To obtain the PAS of a QC in the usual setting, an
oblique projection in a proper direction has to be performed (see Fig. 3.2(c))
([45], and references therein). The reciprocal-space point group symmetry of
the PAS of an IMS is equal or higher to that of the IMS while it is equal or
lower in case of a quasiperiodic structure.

The oblique projection is not the only way to obtain a PAS. As shown in
Figs. 3.1 and 3.2, quasiperiodic structures can be embedded in different ways.
The standard way, denoted by QC-setting, is the symmetry adapted way of
embedding. The alternative embedding, called IMS-setting, selects a subset of
reflections on a 3D point lattice as main reflections and deals with all others
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as satellite reflections. Since main reflections lie in par-space by definition, the
reciprocal hyperlattice has to be sheared parallel to the perp-space, Xjyq =
AJ-E(EC7 to achieve this condition. In direct space, this corresponds to a shear
of the hyperlattice parallel to par-space, Xs = A”EQC, Al = (/:\l)_l7 leav-
ing the par-space intersection with the hyperstructure invariant.

Once the unit cell parameters of the PAS of a quasiperiodic structure are
known, the PAS can as well be obtained by taking the structure modulo the
unit cell. All atomic positions are mapped into the projected atomic surfaces.
This means that the boundaries of the projected atomic surfaces give the
maximum distance of an atom of the quasiperiodic structure from the next
atomic site of the PAS.

The point-group symmetry of the PAS, which always is a crystallographic
one, is necessarily lower than that of the QC with its non-crystallographic
symmetry (except for 1D QC). Therefore, a one-to-one mapping of the atoms
of a quasiperiodic structure to the projected atomic surfaces of the PAS is not
possible due to topological reasons. This means that some of the projected
atomic surfaces may contain none, or more than one atomic position if one
superposes the quasiperiodic structure with its PAS.

Since for a single quasiperiodic structure an infinite number of different
PAS is possible, one needs to find the most relevant one. This will be the PAS
with the smallest possible projected atomic surfaces which have occupancy
factors closest to one. The total Bragg intensity in the respective reciprocal
space section is a direct measure for this property. By using the set of strongest
Bragg reflections as reciprocal basis of the PAS, one usually obtains the most
representative PAS.

The occupancy factor can be calculated comparing the point densities of
the quasiperiodic structure and its PAS. It is also related to the ratio of the
total area of the projected atomic surfaces in one unit cell of the PAS to the
area of this unit cell. The relevance of a PAS can be estimated by the ratio of
the total intensity of the reflections related to the PAS to the total intensity
of all reflections.

The size of the projected atomic surface is a measure for the maximum
displacement of an atom on a PAS site that is necessary to move it to its
position in the quasiperiodic structure. This can be seen as the amplitude of
a displacive modulation which transforms the PAS into the respective QC.
Since the occupancy factor cannot be exactly one for topological reasons,
except in the 1D case, this displacive modulation is always accompanied by a
substitutional (density) modulation.

These concepts are of particular interest for the study of geometrical as-
pects of quasicrystal-to-crystal phase transformations, growth of quasicrystal—
crystal interfaces, as well as the intrinsic band-gap behavior of photonic or
phononic quasicrystals. The PAS allows to (loosely) classify quasiperiodic
structures regarding their “degree of quasiperiodicity,” depending on how close
their structures are to periodicity.
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3.4 Structure Factor

The structure factor F' (H) of a periodic structure is defined as the Fourier
transform (FT) of the electron density distribution function p (r) of the m
atoms within its unit cell (UC)

_ r e2‘Il'iHI‘ r= - eZ7riHr;C ) )
F(H*/Uc”” e = 3T 80 o (11 (3.11)

For discretely distributed atoms, the FT can be performed for each atom sep-
arately yielding the atomic scattering factors fi (|H|). The same is true for the
average displacements of the atoms from their equilibrium positions due to
phonons (thermal vibrations). The FT of the probability density function to
find an atom in a given volume gives the temperature factor Ty (H). This al-
lows to replace the Fourier integral by a sum over the n atoms in the unit cell.

The temperature factor is called Debye-Waller (DW) factor if it describes
the effect of thermal vibrations of atoms (due to phonons) on the intensi-
ties of Bragg reflections. In the course of structure refinements, however, this
factor subsumes also contributions from static displacements (due to disor-
der) of the atoms from their equilibrium positions. Consequently, the more
general term “atomic displacement factor (ADF)” should be used, and in-
stead of “atomic thermal parameters” rather the term “atomic displacement
parameters (ADP)” should be used.

3.4.1 General Formulae

In a similar way, the structure factor of a quasicrystal can be calculated within
the nD approach. In case of a dD quasiperiodic structure, the FT of the
electron density distribution function p(r) of the m hyperatoms within the
nD unit cell can be separated into the contributions of the dD par- and (n—d)D
perp-space components and we obtain

m

FHE) =Y T (H”,Hl) i (|H“|) gr (HL) e2mHre (3.12)
k=1

In par-space one gets the conventional atomic scattering factor f (|H” |) and
the atomic displacement (temperature) factor Ty, (HIl). In perp-space, the FT
of the atomic surfaces, called geometrical form factor g (H*), results to

1 .
g (HY) = —— [ &2™H gl (3.13)
AUC Ay

with Aéc the volume of the nD unit cell projected onto V+, and A the
volume of the k-th atomic surface. For polygonal, polyhedral, or polychoral
domains, which can be decomposed into triangles, tetrahedra, or pentachora,
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the geometrical form factor is calculated from their unique parts using the
site symmetry. Since the Fourier integral is linear, the geometrical form factor
results from the summation of the Fourier integrals of these fundamental units.

The perp-space component 7}, (HL) of the atomic displacement (temper-
ature) factor describes the effect of phason fluctuations along the perp-space.
These fluctuations, originate either from phason modes or from random pha-
son flips. Assuming harmonic (static or dynamic) displacements in nD space
one obtains in analogy to the usual expression [50]

Tk: (H) — Tk (HH’HL) _ e—27‘r2HHT(quJHT)HH e—27’r2HLT<uLuLT>HL, (314)

with
LT (uf) (urug) (urus)
(wjug™) = | (ugur) (u3) (uguz) (3.15)
(ugur) (ugug) (u3) )
and
<u421> "'<u4un>
(uju; ™) = Do : (3.16)
(upus) -+ (uz) /)

The elements of type (u;u;) represent the mean displacements of the hyper-
atoms along the i-th axis times the displacements of the atoms along the j-th
axis on the V-basis. This model excludes phonon—phason interactions as no
coupling is defined.

3.4.2 Calculation of the Geometrical Form Factor

In the following, the calculation of the geometrical form factor is illustrated
for the most important classes of quasicrystals. In case of pentagonal, octag-
onal, decagonal, and dodecagonal structures, the FT has to be performed for
2D atomic surfaces, in case of icosahedral structures for 3D atomic surfaces,
and in the case of heptagonal and tetrakaidecagonal structures 4D atomic
surfaces have to be Fourier transformed. As already mentioned, this problem
is essentially reduced to the calculation of the FT of triangles, tetrahedra, and
pentachora, respectively.

Although the general solution for this problem is well known [13], some spe-
cial cases, leading to singularities in these general formulae have to be calcu-
lated explicitly. In the following, the formulae for the different cases are given.

3.4.2.1 2D Atomic Surfaces

The FT of a triangle defined by two vectors e, ez, can be calculated based
on an oblique coordinate system: x = x1e; + xoe2 and 2rq = q1€] + €5,
where ¢; = 2rH e; and eie;f = ;5. With

Fy(H) = /exp(27riq~x)dV (3.17)
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and dV =V dzy dxo, where V is the volume of the parallelogram defined by
e1,es, V =le; X esl, it follows for the Fourier integral:

1 1—w1
Fo(H) = V/ exp(iqlxl)dxl/ exp(igaws)das. (3.18)
0 0
The direct calculation of the above integral leads to

Fo(H) = V(qi(exp(ig2) — 1) — ga(exp(iqi) — 1))/(q1g2(q1 — q2)).  (3.19)

To avoid singularities in (3.19), a case differentiation must be done before
integration of (3.18). In the following, the special cases and the corresponding
formulae are given.

Case 1 q1 =0,¢2 =0: Fo(H) =1V,

Case 2 ¢1 = 0,02 = q/q1 = q,q2 = 0: Fy(H) = V(1 + g — exp(iq))/q*.

Case 3 q1 = ¢,q2 = q: Fo(H) = V(exp(iq)(1 —iq) — 1)/¢*.

3.4.2.2 3D Atomic Surfaces
The FT of a tetrahedron defined by three vectors ey, es, e3, can be calculated

based on an oblique coordinate system: x = xie; + xses + x3e3 and 2nq =
qi1e] + qze5 + gzez, where g; = 2rHe; and eiej» = ;5. With

Fy(H) = /exp(27riq -x)dV (3.20)

and dV = Vdx; dxy dxs, where V' is the volume of the parallelepiped defined
by e1,e2,e3, V =e; - |ex X e3], it follows for the Fourier integral

1 1—x1
Fy(H) = V/ eXp(iQ1$1)d$1/ exp(iger2)dzs
0 0
llefzg
/ exp(igszs)des. (3.21)
0
The direct calculation of the above integral leads to

Fo(H) = =iV (q2g3qa exp(iq1) + q3q195 exp(ig2) + q1q2q6 exp(ig3)
+014596) /(414243049596) (3.22)

with ¢; = 2rHe;, (j =1,2,3), 4 = ¢2 — 43,95 = g3 — q1, and g6 = q1 — g

To avoid singularities in (3.22), a case differentiation must be done before
integration of (3.21). In the following, the special cases and the corresponding
formulae are given.
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Case 1 q1 =0,q0 =0,¢93 =0: Fy(H) = %V.
Case 2 q1 =0,92=0,3 =q¢/q1 = 0,92 = ¢,q3 = 0/q1 = ¢,q2 = 0,q3 = O:

Fo(H) = V(a(1 + 5ig) + iexplia) — i)/". (3.23)

Case 3 1=¢,02=¢,33=0/01=¢,2=0,03=q/q1 = 0,02 = ¢,q3 = ¢:
Fo(H) = V(2i — ¢ — exp(iq) (2i + q)) /" (3.24)
Case 4 1=¢,92=¢,93=0/1=¢,02=0,03 =¢' /1 = 0,2 = q,q3 = ¢"
Fo(H) = V((—1+exp(iq))i¢' * + q¢'?
+(1—exp(ig') +1q')i¢*) /(¢°¢'*(a — ¢')) (3.25)

Case 5 (1 =¢,02 =4, 43 = q:

Fo(H) = Viesp(ia)(1 +ia(gig — 1)~ /(@) (326)

Case 6 (1 =¢.2=¢@B=4¢/0=¢0=¢.3=q¢u0=49w=q903=q¢

Fo(H) = V((exp(ig) — 1)i¢'* + (exp(iq’) + exp(iq) ig’ — 1)i¢?
—(exp(ig)(2 +1¢") — 2) -igq)/(¢*d’ (a — ¢’ )?). (3.27)

3.4.2.3 4D Atomic Surfaces

The FT of a pentachoron defined by four vectors ey, es, e3, €4, can be calcu-
lated based on an oblique coordinate system: x = zi1e; + xo€2 + T3€3 + T4€3
and 2mq = g1e] +¢2€5 +gse} +qsej, where ¢; = 2rH e; and e;e] = d;;. With

Fy(H) = /exp(27riq -x)dV (3.28)

and dV = V dz; das dzs dzy, where V is the Volume of the parallelotope
defined by eq,es,e3,e4, V = 1/det(G), and G the metric tensor, which is
the symmetric matrix of inner products of the set of vectors ey, --- ,e4, and
whose entries are given by G;; = e; - e;. It follows for the Fourier integral

1—11

1
Fy(H) = V/ eXP(iQﬂEl)diﬂl/ exp(igaxs)das
0 0

17%17I2 17%17I27I3
/ exp(iQ3m3)da:3/ exp(igqry)day. (3.29)
0 0
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The direct calculation of the above integral leads to:

Fy(H) = V(gsquexp(iqn)(a1(q1 — ¢2) (a1 — ¢3) (g1 — qu)) ™"
+ g3q4 exp(ig2)(g2(g2 — q1)(g2 — q3) (g2 — Q4))71
+ qaexp(igs) (g3 — q1) (a3 — q2) (g3 — qu)) ™"

)

—1(3.30)

\_/

+ g3 exp(igs) (¢4 — @1)(qa — ¢2) (a1 — g3)) ™" + (q1g2) ") (304

with ¢; = 2nHe;j, (j = 1,2,3,4). To avoid singularities in (3.30) a case dif-
ferentiation must be done before integration of (3.29). In the following, the
special cases and the corresponding formulae are given.
Case 1 ¢1 = 0,02 =0,q3 =0,q4 = 0: Fp(H) = ﬁV.
Case 2 ¢1 =0,q2=0,q3 =0,q04 = q/q1 = 0,q2 = 0,q3 = ¢, ¢4 = 0/q1 = 0,
g2 =¢,93 = 0,94 =0/q1 = ¢,q2 = 0,q3 = 0,44 = O:
Fo(H) = V(exp(ig) — 1 —ig + 54 + gl )/q*. (3.31)
Case 3 1 =0,¢2=0,93=¢, 2 =q/q1 = 0,42 = ¢, 3 = ¢, 94 = 0/q1 = ¢,
2=0¢93=0,q4=0/¢1 =¢,42=0,93 =q,94 = 0/q1 = ¢, ¢2 = 0,43 = 0,
u=q¢/1=0,2=¢,q3=0,q4 = ¢

Fo(H) = V(3 + 2ig — %q2 +iexp(iq)(3i+q))/¢" (3.32)

Case 4 1 =0, =4, 3= Uu=0q/01=¢ 0 =0,¢3=q,q1 = q/q1 = q,
©=03=0,4=q¢/01=0¢490 =949 =4¢q =0:

. . . 1
Fy(H) = =V (ig + 3 + exp(ig)(2ig — 3 + 5612))/(14 (3.33)
Case 5 q1 =q¢,92=q,q3 = q,q4 = ¢:

Fo(H) = V(1 + explia) (-1 +iq + 5¢° — cia®)/a* (3.34)

Case 6 1 =0,02=0,3=¢,01=7/01 =0,2 = q,3=¢',qa =0/q1 = ¢,
©=4¢,63=0,=0/01=¢,¢0=0,¢3=¢,92=0/q1 =¢q,¢q2 =0,
3=0,01=0¢/01 =0,2=q,q3=0,q4 = ¢":

. , 1
Fo(H) = V((exp(iq) — 1)¢'® —iqq'® + §q2q’3

Plesplic) ~1-id + 3d D)@ a-d)  (3.3)

Case 7 1 =0,0=q.¢3=¢ 04 =4¢"/r =¢.¢2=0,3 =¢,qa = ¢"/
1=0¢¢e=4¢a=0u=4¢/a=0¢0=49¢3=4¢",9=0:
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Fo(H) = V(=1 —iq— q(¢*((~1 +exp(i¢” )¢’ * —
(—1+exp(iq’))q" ) + (1 +exp(iQ)q" (¢'* — ¢ ¢"?) +
q((1 —exp(ig” )¢ ® + (1 — exp(iq))q' *¢" +
(=1 +exp(iq))q' ¢" % + (=1 + exp(iq' )" ?)))

/(@d d" ((g—d')d (a—q")d" (" —q')) —iexp(q) (3.36)

Case 8 1=0,2=¢,03=¢,0a =4 /01 =0,02=¢,93 = ¢ 91 = q/q1 = 0,
©=03=0¢u=q9/0=0¢0=0,3=q¢u=4¢/0=4qq¢=0,
B=00u=90=00w=0,¢3=q¢0u=q9qa=q¢q0p=qq=0,
w=4d/01=0¢0=403=0u=q9/00=40¢=q,49p=q¢q¢ =0/
N=¢00=03=0u=0/0=¢0=q093p=¢9u=0/0=4¢q¢=q,
43 =q,q4 = 0:

Fo(H) = V(¢* (-1 +exp(ig’) — i¢" ) +1(2 + exp(iq))¢*¢'* +
a(3 +exp(iq)(—3 —i¢") —iq’ )¢ * + 2(—1 + exp(iq))q' )
/(d"*¢*(qg—q')?) (3.37)
Case 9 1 =¢,2=¢B=0¢U=q¢/01=00=00B=q,0=q/q=q,
=0 63=0u=q¢0=4¢.¢2=0¢09p=q¢qu=q
Fo(H) = V(exp(i)g*(¢ —¢' ) " +(¢—d )¢ ' —
exp(iq)(¢ — ¢' )?q¢ " +exp(iq’ )¢* (¢ —q) " +
1 . . .
5 exp(ie)d (—* +2i¢ +q(-4i+¢))/(d *(a—d")*)  (3.38)

Case 10 1 = ¢,¢2 = ¢,q3 = ¢ ,q4a = ¢ /q1 q,q2 = q’,qs ¢ q =
"Jon=d . e=¢i=0qu=4¢/a=4q.0= 0,43 = " a1 =q/q1 =
¢ o= s=¢u=qa=0¢0=4,63=4¢",0u=q¢

Fy(H) = V((exp(iq) + exp(i¢” ))q(q —¢' )¢ (¢ —¢")~
+(1—exp(iQ)(¢— ' )a—q" g —q")a " + (exp(iq) — exp(lq )
qla—q")d" (¢ —q)~ " —iexp(iq)d ¢" (¢" —q"))

[(ad' ¢" (a—d" ) a—d")d —d")) (3.39)

1

/!

Case 11 1 =¢,2=¢B=¢.a=d/0=0¢0=4¢,3=4¢ 0 =q/q =
G2=4q¢,3=¢qu=q":
Fo(H) = V(q(3 4 exp(iq)(—3 — i¢' )¢’ * + (—1 + exp(iq))q
¢ (=3 +exp(i¢ )(3 —iq") +1i exp(iq)q’)
¢ (L+iexp(ig )i+q))/(@d *(a—q)%)  (3.40)

+
+
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3.5 1D Quasiperiodic Structures

Structures with 1D quasiperiodic order and 2D hyperlattice periodicity (1D
quasicystals) are the simplest representatives of QC. A few phases of this struc-
ture type have been observed experimentally ([43] and references therein).

A fundamental model of a 1D quasiperiodic structure is the Fibonacci
sequence (FS). Since its embedding space is only 2D, it is frequently used to
illustrate the principles of the nD approach. However, since in 1D there is only
crystallographic point symmetry possible (1 and 1), it can be described as IMS
as well. One has to keep in mind, however, that 1D quasiperiodic structures
exist which need an embedding space of dimension n > d + 1. These are, for
instance, all quasiperiodic sequences formed by substitution rules based on n
letters with n > d + 1 [29].

Generally, 1D quasiperiodic structures are on the borderline between
quasiperiodic structures and IMS. They can be described in either of the
two approaches. The description as quasiperiodic structure (QC-setting) is
advantageous if some kind of scaling symmetry is present or if there is a close
structural relationship with 2D or 3D QC. This is the case for 1D QC oc-
curring as intermediate states during quasicrystal-to-crystal transformations.
The description as IMS (IMS-setting) may be helpful in the course of struc-
ture analysis. The diffraction pattern can then be separated into a set of main
reflections and a set of satellite reflections. The main reflections are related to
the 3D periodic average structure, which can be determined with conventional
methods. However, indexing a typical 1D quasicrystal as IMS may be difficult
as the intensity distribution does not allow main reflections to be determined
easily (see Sect. 3.1).

In the following, the FS will be used as an example to describe the
quasiperiodic direction of 3D structures with 1D quasiperiodic stacking of
periodic atomic layers. We discuss the general triclinic case and define the
z-direction as the quasiperiodic direction with aj aligned parallel to it.

3.5.1 Reciprocal Space

The electron density distribution function p(r) of a 1D quasicrystal is given
by the Fourier series

p(r) = % 3 F(H)e2miHr (3.41)

The Fourier coefficients (structure factors) F(H) are functions of the scat-
tering vectors H = E?Zl hy a; with h!, h! € Z, hg € R. Introducing four re-
ciprocal basis vectors, all scattering vectors can be indexed with integer
components: H = Zle h;a; with aj = caj, o an irrational algebraic number
and h; € Z. The set M* of all diffraction vectors H forms a vector module
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(Z-module) of rank four. The vectors a} can be considered as par-space
projections of the basis vectors d} of the corresponding 4D reciprocal lattice
2% with

T To 0 0
d*:|a*| Y1 d*:|a*| Y2 d*:|a*| 0 d*:\a*| 0
1 1 2 ’ 2 2 29 ’ 3 3 1 ) 4 3 a
0 v 0 v —ca) ., c)y
(3.42)

The subscript V' indicates that the vector components refer to a Cartesian
coordinate system (V-basis). The direct 4D basis vectors, spanning the 4D
lattice X, result from the orthogonality condition (3.5), i.e. as the columns of
(W_l)T

Y2 —h
—T2 1 T
dy= ——L dy= ——L
1 (z1y2—w2y1)|af] 0 ) 2 (z1y2—22y1)|al] 0 ’
0 v 0 v
Y1z2—Y221 a(y1z2—y221)
L1Y2—T2Y1 T1Y2—T2Y1
1 T221-T122 a(xroz1—x122)
= —_— T1Y2—T2Y1 = —— T —x
ds = Tramyg » da = FraayEy wa—wayn |, (3.43)
(%
_a 1
c \% - v

with 22 4+ y2 + 2?2 = 1. The vectors a; = 7lld;,i = 1...3, span the reciprocal
basis of the periodic average structure and the basis structure. The basis
vectors d; determine the 4D metric tensor G defined as

dd; did; d;d3 d;dy
dod; dad; dpds dady
dsd; dzd; dzds dsdy
dyd; d4d; dyds dydy

G=w1lwhHT = (3.44)

and the volume of the 4D unit cell results to V' = v/det G. The point density
D, in par-space, the reciprocal of the mean atomic volume, is determined by
the size of the atomic surfaces A;

1 n
Dy = > oA (3.45)
i=1

Weighting each atomic surface in (3.45) with its atomic weight M, the mass
density Dy, can be expressed as

1 n
D, = — A;Ma. . 3.46
v ;:1 A (3.46)
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3.5.2 Symmetry

The possible Laue symmetry group K°3P of the intensity weighted Fourier
module (diffraction pattern)

4
M} = {I(H) - |F(H)\2’H:Zhiaf,hi ez} (3.47)

i=1

results from the direct product K3P = K2P @ K'® @ 1. K?P is one of the ten
crystallographic 2D point groups, K'P = 1 or 1. Consequently, all 3D crys-
tallographic Laue groups except the two cubic ones (they would mix periodic
and aperiodic directions) are permitted: 1, 2/m, mmm, 4/m, 4/mmm, 3, 3m,
6/m, 6/mmm. If one distinguishes between symmetry operations R € K?2P
and R' € K'P the Laue group 2/m can occur in two different orientations
with regard to the unique axis [0010],,: 2’/m and 2/m/’. Thus, there are 10
different Laue groups.

Thirty-one point groups result from the direct products K3P = K?P @ KP
and their subgroups of index 2. These are all twenty-seven 3D crystallographic
point groups except the five cubic point groups. Four additional point groups
are obtained by considering the different settings in 2, 2, m, m’, 2/m/, 2/ /m,
2'mm/ and 2mm. The necessity to distinguish between primed and non-primed
operations is based on reduced tensor symmetries of physical properties. A ta-
ble of the eighty 3D space groups compatible with 1D quasiperiodicity has
been derived by [49]. These space groups contain no symmetry operations
with translation components along the unique direction [0010],,. The 80 sym-
metry groups leaving the 4D hypercrystal structure invariant are a subset of
the (34+1)D space groups (superspace groups) given by [21]. This subset cor-
responds to all superspace groups with the basis space group being one of the
eighty 3D space groups mentioned above marked by the bare symbols (007),
(af0), or (afBy). In the last two cases, only one of the coefficients «, 3,7 is
allowed to be irrational.

According to the scaling symmetry the choice of the basis vectors ds, d4,
and therewith the indexing of the quasiperiodic axis is not unique. Even if
all Bragg peaks can be indexed, a set of a”-times (in case of the FS a = 7)
enlarged or decreased basis vectors will again describe their positions equiv-
alently well. A first attempt to solve the problem of indexing was given by
[8]. In the case of a primitive QC having a simple atomic surface the intensity
distribution is a simple function of the geometrical form factor (3.13) and
consequently a monotonically decreasing function of |[H*|. If the intensity
of scaled scattering vectors decreases monotonically in the same way as pre-
dicted the proper basis has been selected. However, given a more complicated
structure this approach may fail. It has been shown by [4] that a detailed
analysis of the Patterson function (autocorrelation function) depending on
perp-space components allows the basis vectors of more complex structures
to be determined properly.
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3.5.3 Example: Fibonacci Structure

If the Fibonacci sequence (see Sect. 1.1.1) is chosen for the quasiperiodic
direction of a 1D quasicrystal, it may simply be called a Fibonacci structure.
In the following, the Fibonacci structure is geometrically defined as layer
structure: layers with 2D lattice periodicity in the (110) plane are stacked
quasiperiodically in the [001] direction. The distances between the layers follow
the Fibonacci sequence ... LSLLS ... . Based on the scaling symmetry matrix
n (1.1), the 4D reciprocal lattice X* is spanned by basis vectors according
0 (3.43) with a = 7. Without loss of generality we can further set ¢ = 1.
For clarity we choose a 4D hypercubic basis. Then, the embedding matrix
W = (dj,d5,d3,d;) (see (3.4)) and its transposed inverse one, (W~1)T =
(dl, d2, dg, d4), read

10 0 0 10 0 0
|0t o0o0 or_ lal {0100
W=lallgo 1 -0 W) =57 001+ (348)
00—-71 00—71

According to the strip-projection method, the par-space structure (“quasilat-
tice”) of the Fibonacci structure is a subset M of the vector module M
defined by the window A

—{r—ZnW nzeZ}

FS _ cA_ 0+l
M —{ Zml )|m € Z, |t Zmz i 5 2(2+7_)}
(3.49)

In the cut-and-project method, the Fibonacci structure can be obtained in
the par-space section of a decorated 4D hyperlattice X' spanned by the basis
vectors according to (3.43)

1 0
0 1
d; = |a‘ 0 , de = |a| 0 )
0/, 0/,
0 0
_Ja| | O a| |0
=gy | 1 | 2 d=am |, (3.50)
-7 1



82 3 Higher-Dimensional Approach

The volume of the 4D unit cell amounts to V = v/det G = |a|*/(2 + 7). The
point density D, in par-space, i.e. the reciprocal of the mean atomic volume,
equals

A T 3
Vo a3
This value can also be obtained as the reciprocal of the average distance
daw = (3—7)S of the vertices (see (1.11)), where S = wlds = |a|/(2 + 7).

The 4D hyperlattice is decorated with 4D hyperatoms. The atomic surfaces
along the 1D perp-space are line segments of length (1+7)]a|/(2+7). They are
centered at positions x1, x2, 0,0 relative to the origin of the 4D unit cell (see
Fig. 3.6). The atomic surface can be decomposed into sections, which show
the same local environment (Voronoi domains) in par-space. Projecting all
nearest neighbors of the hyperatom of interest onto V+ encodes all different
environments as shown in Fig. 3.6.

If the par-space VIl cuts the hyperatom, e.g. in the region marked a, the
central atom is coordinated by one atom at a distance S on the left side and
another one at distance L on the right side. Consequently, all hyperatoms that
share a distinct region of the atomic surface in the projection onto perp-space
determine all bond distances and angles in par-space.

D, = (3.51)

VJ_

1]
A v

Fig. 3.6. By projecting all nearest neighbors along V!l onto one hyperatom (marked
by arrows), the segments (partitions) with the three different coordinations can be
obtained. Cutting the hyperatom in the light-gray (online: yellow) area a leads to
vertices at distances L to the left and S to the right, in the dark-gray (online:blue)
area b to L and L, and in the other light-gray (online: yellow) area c to S and L.
The lengths of the segments give the frequencies of these coordinations. The nearest
neighbors of the hyperatom show the closeness condition
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The point density has to be invariant for any shift of par-space along the
perp-space. This leads to the closeness condition: when the atomic surfaces
are projected onto perp-space each boundary of an atomic surface has to
fit exactly to another one (the uppermost and lowest hyperatoms in Fig. 3.6
fit exactly to the central one). The structures resulting from par-space cuts at
different perp-space positions all belong to the same local isomorphism class.

3.5.3.1 Scaling Symmetry

The point and space group symmetry of the Fibonacci structure is as described
for the general case in Sect. 3.5.2. The scaling symmetry has been already
discussed and the scaling matrix S shown in (1.1). If we block-diagonalize this
matrix, we obtain the scaling factors acting on par- as well as on perp-space

10 0 0 1000 100 0
e w1 _ e l0t 00| [0100] Ja o100 |_
W-s- W =latl g g, 0001 2470017~

00—71 0011 007 1

NEa) )

The loci of the scaled lattice points lie on hyperbolae of the type x4 = +¢/x3
(Fig. 3.7). Consequently, the scaling operation can be seen as hyperbolic rota-
tion by multiples of ¢ = arcsinh1/2 = 0.4812, n € Z (see [15] and references
therein)

T Z1
T2 | €2
z3| | cosh ng + sinh ng (3.53)
Ty — sinh n¢ + cosh no
Scaling the diffraction vector S"H, with H = 2?21 h;d} yields
1000\" (/I 10 0 0 hy hy
0100 |haf_101 O 0 o he | ha
0001 hs | |00 F, Fo hs | F,hs + Fn+1h4
0011 hy 00 Fry1 Frye hy Fot1hs + Friohyg
(3.54)

with the Fibonacci numbers F,,. For n > 0, the perp-space component of the
diffraction vector is continuously decreased leading to increased norms of the
structure factors due to the shape of g; (H*) (see Sect. 3.5.3.2)

|F(S"H)| > |F(S"'H)| > --- > |F(SH)| > |F(H)|. (3.55)
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Fig. 3.7. Scaling the reciprocal lattice of the Fibonacci sequence by S corresponds
to a hyperbolic rotation. Reflection 1 0011 is mapped to the reciprocal lattice points
2 0010 — 3 0001 — 4 0011 +— 5 0012 +— 6 1123

3.5.3.2 Structure Factor

The structure factor of the Fibonacci structure can be obtained by substi-
tuting the value for g, (H*) (3.8) into (3.12). Since there is only one atomic
surface per unit cell, a line segment of length (1 4 7)|a|/(2 + 7) centered at
x1,22,0,0 (see Fig. 3.2(c)), we obtain by Fourier transformation

2471 sin 772 (—Ths + hy)
772 (—Ths + hy) 2471

g (HY) = (3.56)

Thus, the geometrical form factor gy (H') is of the form sin 2+ /z*. The upper
and lower envelopes of this function are hyperbolae +1/z. Hence, the enve-
lope of the diffracted intensity is proportional to (1/x1)? and convergent. In
Fig. 3.8, the structure factors as function of the par- and perp-space compo-
nent of the diffraction vector are shown. Since the F'S is centrosymmetric, the
structure amplitudes can adopt phases 0 and 7, i.e. the signs + and —, only.

The intensity statistics for the basically experimentally accessible re-
ciprocal space has been calculated for total 161,822 reflections along the
quasiperiodic direction [00hghys] with —1000 < hs,hy < 1000 and 0 <
sin 0/A < 2A~1 ie. a resolution of 1A (Table 3.4). Tt turns out that the
strongest 44 reflections add up to 92.57% of the total diffracted intensity, and
the strongest 425 reflections total 99.25%.

The scaling symmetry, s(ra) = 7s(x), can be used for the derivation of
phase relationships between structure factors. If s(x) is the 1D par-space Fi-
bonacci structure then we can write the structure factor as
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a b

0 05 1 15 2 25
c d
1 1
0 roinin s 0
0 05 1 15 2 25 0 05 1 15 2 25

Fig. 3.8. Structure factors of a Fibonacci structure as function of (a), (c) the
par- and (b), (d) perp-space components of the diffraction vectors. In (a), (b) the
vertices are decorated with equal point atoms. In (¢), (d) the vertices were occupied
by aluminum atoms with an overall ADP of (u?)ll = 0.005 A% Short distance S
= 2.5A, all structure factors within 0 < [H| < 2.5A7" have been calculated and
normalized to F(0) =1

F(h) = Ze%ihmky xE = mygS + n L. (3.57)
k

The set of coordinates xj, defining the vertices of the FS s(x), multiplied
by a factor 7 coincides with a subset of vectors defining the vertices of the
original sequence (Fig. 1.1). The residual vertices correspond to a particular
decoration of the scaled sequence 72s(x). We obtain the original sequence
s(x) by merging the sequence 7s(x) with the sequence 72s(x) shifted by the
distance L. By Fourier transform is obtained

Z eQﬂ'i}Ll‘Tk _ Z eQﬂ'ihTzk + ZGQWihq—z (;ck-i-L). (358)
k k k

This can be reformulated in terms of structure factors as

F(h) = F(rh) + e*™hL F(72h). (3.59)
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Table 3.4. Intensity statistics for the Fibonacci structure with the vertices deco-
rated by aluminum atoms ((u?)! = 0.0127 A?) for a short distance S = 2.5 A S
(from [42]). In the upper lines, the number of reflections in the respective intervals
is given, in the lower lines the partial sums Y I(H) are given as percentage of the
total diffracted intensity (without 7(0))

I(H)/I(H)max >0.1 >0.01and <0.1 >0.001 and < 0.01 < 0.001
0.0 <sin /X <0.2 A1 17 148 1505 14 511
S I(H) 52.53% 2.56% 0.27% 0.03%
0.2 <sin O/A<04A' 11 107 1066 14 998
S I(H) 27.03% 2.03% 0.19% 0.02%
0.4 <sin@/A<06A"" 9 64 654 15 456
S I(H) 9.84% 0.96% 0.12% 0.01%
0.6 <sin /A <0.8A~' 6 27 326 15 823
ST I(H) 2.94% 0.34% 0.07% 0.01%
0.8 <sin @/A<2.0A! 1 35 338 96 720
ST I(H) 0.23% 0.79% 0.06% 0.01%

3.5.3.3 The Fibonacci Structure in the IMS Description

The nD embedding of quasiperiodic structures is not unique. On one side, the
absolute perp-space scale is arbitrary (factor ¢ in (3.42) and (3.43)), on the
other side, the atomic surfaces do not necessarily need to be parallel to perp-
space. They may have a par-space component making them similar to mod-
ulation functions of incommensurately modulated structures (IMS). In the
following, the standard embedding will be called QC-setting and the alterna-
tive one IMS-setting. The two variants are shown in Fig. 3.1(c) and (d) for
the reciprocal space and in Fig. 3.2(c), and (d) for the direct space.

The transformation from the QC- to the IMS-setting is performed by a
shear operation. In direct space, the hyperstructure is sheared parallel to the
par-space leaving the par-space structure invariant. The goal is to orient the
vector d}MS parallel to the perp-space. In reciprocal space, the shear direction
is parallel to the perp-space bringing d{M° parallel to the par-space. While
in the QC-setting the set of reflections cannot be separated into main and
satellite reflections, this is possible in the IMS setting. Reflections of type
hi1hohshy are main reflections for hy = 0 and satellite reflections else with the
satellite vector q = wlldMS,

There are infinitely many ways to embed the Fibonacci structure in the
IMS-setting; however, only a very few make sense from a crystal-chemical
point of view. The criterion is the intensity ratio between main and satellite
reflections. The higher the total intensity is of main reflections compared to
that of satellite reflections, the more physical relevance has the IMS-setting for
the description of structure and properties. The best choice for the Fibonacci
structure is to apply the shear transformation Al (3.60) to a basis with one

newly defined vector d;QC = d?c +dg°.
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100 0
|_ 1010 O
Al = 001 73 (3.60)
000 1 /,,
Then we obtain the following new direct and reciprocal basis
0 0
C C a 0 a |0
d{Ms:d? 7d£MS:d(2Q ’dgMSZQ\JTIT . dflMS:JT‘T 0
T /v /v
0 0
* *QC * *QC * * 0 % % 0
dllMs — de ’dQIMS — d2Q 7dSIMS = |a*| S d4IMS = |a*| -
0/ 3=7/)
(3.61)

3.5.3.4 Periodic Average Structure

As mentioned above, 1D quasicrystals can equivalently be treated as IMS
showing a periodic average structure (PAS). The PAS of a Fibonacci structure
can also be derived by an oblique projection onto par-space V|l (Fig. 3.9) as
demonstrated in [46].

Fig. 3.9. (a) Oblique projection (marked gray, online: yellow) onto reciprocal space
leads to the average structure of the Fibonacci sequence. The bold (online: red)
horizontal bars represent the projected atomic surfaces. The unit cell length a™™S of
the average structure is marked with a brace. (b) An oblique section (marked gray,
online: yellow) of par-space leads to the diffraction pattern of the PAS of the FS
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Based on the projection with

100 0 10 0 O
alxy={010 0 ry=(01 0 0 rp (3.62)
-2 -2
0013-27/,, 0077 °r D
the basis vectors of the average periodic structure result to al*S = aj,
al?S = a,, al®® = 772a; and ajP% = ai, a;P*S = a}, aj™S = 72a3.

The oblique projection in par-space results in an oblique section in reciprocal
space (Fig. 3.9). Consequently, all reflections of type (hihaohshs), are main
reflections. Of course, there is an infinite number of different PAS possible [3],
only a few of them are of physical relevance, however.

3.5.3.5 Superstructures of the Fibonacci Structure

Real quasicrystal structures consist of more than one kind of atoms. This
means that they can be described in terms of a decoration of a basic quasiperi-
odic structure (tiling). In the nD description this can be a decoration (par-
tition) of an atomic surface, of the unit cell or the formation of a supercell.
Therefore, in the following the principle of superstructure formation is dis-
cussed on three examples of 2-color superstructures of the F'S (Fig. 3.10). Only
substitutional superstructures are considered, i.e. there are no additional ver-
tices created, there is only a “chemical” ordering on the existing vertices of
the FS.

While the structures shown in Fig. 3.10(a) and (c) are proper superstruc-
tures in the sense that they obey the chemical closeness condition between

VL | Vi . | Vi 1

N ds | o Lspids | s

VII — VII

o |/Ik|I I

Fig. 3.10. Two-color superstructures of the FS. (a) and (c) are proper superstruc-
tures, which obey the chemical closeness condition between like atoms. In case (b)
a par-space shift along the perp-space would transform via phason flips black into
gray (online: red) atoms and vice versa
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like atoms, that depicted in (b) is not. A par-space shift along the perp-space
would, via phason flips, transform black into gray (online: red) atoms and
vice versa. However, from a chemical point of view it is more physical than
the example shown in Fig. 3.10(a), where A-B distances can be both, L and
S, and no A~A and B-B neighbors exist. On the contrary, in Fig. 3.10(b),
the atomic distances between like atoms, A—A or B-B, are of length L. and
between unlike atoms, A-B, of length S. The structure, with composition AB,
is just a 2-fold superstructure of the F'S. This 2-color FS can be generated by
the substitution rule

SAB s LAASABLBB, SBA — LBBSBALAA7 (364)

applied to the two-letter alphabet {L, S}. If the short distance S = SAB = §BA
links LA4 and LBB independently from their order, then the substitution rule
can be alternatively written employing the substitution matrix S

122 LAA LAA 4 21BB 4 28
212 LBB | = | 2LA% 4 1BB 1925 |. (3.65)
111 S LAA 4+ IBB 4§
N—_——
=S

The characteristic polynom 1+ 5z + 322 — 22 can be reduced to —1 — 4z + 2.

The resulting eigenvalues 73 and —7 3 fulfill the PV property. Consequently,
a pure point Fourier spectrum results on the Z module of rank 2

{H' Zha lay = *Tal,h ez} (3.66)

Compared to the diffraction pattern of the FS, there appear superstructure
reflections of the type ho = n/2 referring to the original unit cell of the FS.
According to (3.65), the 2-color FS scales with a factor of 3.

Concerning the example shown in Fig. 3.10(a), all next neighbors are of
different kind and a 4-fold centered supercell is needed for the 2D description.
This gives rise to a reflection condition of the type hiho : hy + hy = 2n based
on the supercell lattice parameters.

In the example depicted in Fig. 3.10(c), the composition is AB, (A corre-
sponds to red atoms, B to green ones). The closeness condition is fulfilled for
the gray (online: red) atoms with a flip distance S/7 and for the black ones
with S. There are no neighboring A atoms. A-B and B-B distances can be of
length S or L. Since no supercell is needed in the 2D description, no additional
reflections appear compared to the basic FS.
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3.5.3.6 Approximant Structures

The (m,n)-approximant (m,n € N) of a Fibonacci structure can be obtained
applying the shear matrix of (3.7) with A43 #0 to r

0
_ _ a3 0
r—md3+nd4— 2+ 7 m+ nr (367)
n—mt

14

From the condition that the perp-space component of the approximant basis
vector has to vanish

0 0
|as] 0 L a3 0
Ar = = :
YT ohr m+nT 247 | m+nr | 7 (3.68)
Ag(m+nt)n—mt ), 0 v

the shear matrix coefficient results to

mr—n
Aya = 3.69
o=t (369
The basis vectors apr =1,---,3 of the (m, n)-approximant result to
m+n
afp =a;,i=12, a3Ap = Mag. (3.70)

24T

All peaks are shifted according to (3.8). Projecting the 4D reciprocal space
onto par-space results in a periodic reciprocal lattice. Thus, all reflection in-
dices hihahshy of the quasicrystal are transformed to hiho(mhs + nhy) =
hAPhyPha® on the basis of the (m,n)-approximant. Consequently, all struc-
ture factors F(H) for reflections with hiho(hs — on)(hy + om), 0 € Z are
projected onto each other.

3.5.3.7 The Klotz construction

The Klotz construction [26] is an alternative way for the generation of tilings
and their approximants. In case of the Fibonacci tiling, two squares, called
Klotze (plural of the German word Klotz), are arranged to a fundamental
domain, the copies of which form a 2D uniform, dihedral, periodic tiling under
translation (Fig. 3.11).

The set of all translations constitutes a 2D square lattice. The edge lengths
of the squares define the lengths of the prototiles resulting from the cut along
VII. The extension of the fundamental domain along V* defines the window,
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Fig. 3.11. Klotz construction based on two fundamental domains (squares). The
ratio of their edge lengths is 1 in (a), 2 in (b) and 7 in (c). Along the cutting
line V!, this corresponds to 1D periodic approximant sequences (LS), (LSL), and the
quasiperiodic FS, respectively. The thick (online: red) lines mark the projections of
the unit cell of the 2D lattice upon V! and V. This gives the Delone cluster (LS) and
the window, respectively. Vertices of 2D rectangular or square lattices are marked
by open circles

which will be relevant for the nD description (see Sect. 3.5.3). The projection
of the 2D unit cell onto V!l defines the Delone cluster (LS), which is a covering
cluster for the Fibonacci tiling. It covers the Fibonacci tiling, with sometimes
overlapping S, in the following way

. (L(S)L)(LS)(L(S)L)(L(S)L)(LS) ... (3.71)

The ratios of the edge lengths of the squares and the window give the rela-
tive frequencies of the prototiles in the tiling. The ratio of the areas of the
squares gives the fraction of the Fibonacci tiling covered by the one and by
the other prototile. If the edge lengths of the two squares are chosen in the



92 3 Higher-Dimensional Approach

ratio of successive Fibonacci numbers then rational approximants result from
the cut. In Fig. 3.11, the 1/1- and the 2/1-approximants are shown beside the
Fibonacci tiling.

If VI runs through a lattice point then the resulting Fibonacci tiling will
have an inversion center since the whole Klotz tiling itself is centrosymmetric.
A symmetric sequence can also be obtained from the words w,, generated by
the substitution rule (1.1) by just removing the last two letters [23].

3.6 2D Quasiperiodic Structures

The 3D structures to be discussed in this section are quasiperiodic in two
dimensions. They can be subsumed under the category of axial quasiperiodic
structures, which can be seen, only geometrically (!), as periodic stackings
of 2D quasiperiodic layers. The examples gone through in the following are
mainly based on the 2D tilings presented in Chap. 1. The derivation of the
proper nD embedding is best performed in reciprocal space.

The first step is to define a symmetry adapted set of reciprocal basis
vectors af, ¢ = 1...,n. The vector components are given on a 3D Cartesian
basis (V-basis). The set of all diffraction vectors H = Y  h;a¥ forms a
Z-module M* of rank n. The vectors af, ¢ = 1,...,n can be considered as
par-space projections of the basis vectors d}, 7 = 1,...,n of the nD reciprocal
lattice X*. These vectors span the nD D-basis. The par-space components
of the nD vectors d} = (21,2, - ,zy)y are x1, T2, x3, with xg the periodic
direction. The n-fold axis (n > 2) is always oriented along [0 010 --- 0]y.

The second step is to decompose the, in 3D reducible, symmetry-adapted
representation of the n-fold rotation into its irreducible representations. This
can be done using the property that the trace of a transformation matrix is in-
dependent from the basis used. Then the proper irreducible representations
can be identified in the character tables of the respective symmetry groups.
For our purpose it is sufficient to consider the point groups of type Nm (Cny)
with the generating elements o = N, with IV an N-fold rotation, and 8 = m,
with m the reflection on a vertical mirror plane. With the identity operation
¢ = 1 the following relations hold: oY = 3% = ¢ and o8 = Ba~!. The general
form of the character table is given in Table 3.5 for odd orders p of N and in
Table 3.6 for even orders.

The 2D irreducible representations can be written without loss of gener-

ality in the form

2 : 2
cos(r=l) — 5111(7“2?)
sin(r<r) cos(r<t)

01
, ﬁ»—>‘10’. (3.72)

Based on the decomposition of the reducible representation of the N-fold
rotation operation, the perp-space components of the nD basis can be de-
rived. The matrix W = (dj,...,d})y contains the nD reciprocal basis vec-
tors as columns. Consequently, the columns of the transposed inverse matrix
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Table 3.5. General form of the character table for point groups of type Nm(Cny)
for odd order p of N (see, e.g., [2]). € denotes the identity operation, a™ the rotation
around 2n7/N, and (3 the reflection on a vertical mirror plane (i.e., the normal to
the mirror plane is perpendicular to the N-fold rotation axis)

Elements € «@ e a 2 =B
I 1 1 1 1

Is 1 1 -1
Is 2 2 cos(%’;) 2 cos(pT_l%Tr)2 0

Iy 2 2 cos(277) 2 cos((p—1)=F) 0
F(p+3)/2 2 2 COS(%%) 2 COS((%)2%) 0

Table 3.6. General form of the character table for point groups of type Nm(Cny)
for even order p of N (see, e.g., [2]). € denotes the identity operation, a™ the rotation
around 2n7 /N, B and [/ the reflection on vertical mirror planes with the normal to
the mirror plane along or between 3D reciprocal basis vectors and perpendicular to
the N-fold axis

ya
Elements € « o rg rg
I 1 1 1 1 1
I3 1 1 1 -1 1
I3 -1 1 (71)% 1 1
Iy -1 1 (—1)% 1 1
Is 2 2cos(2?”) 2008(%%") 0 0
Ts 2 2COS(22?7[) QCos(p%“) 0 0
Loy 2 2eos(B-1)Z) ... 2eos(3(3-1)Z) 0 0

(W=HT = (dy,...,d,)y are made up by the nD direct basis vectors. Denoting
the matrix W for short by its coefficients w;j, its inverse by Wj;, their trans-
posed matrices by w;; and W;;, and using the Einstein summation convention
the transformation between D- and V-bases of basis vectors, coordinates and
indices can be performed as following:

(d})v=wi;(d})p, (d7)p=Wi;(d])v, (hi)v=Wji(h;)p, (hi)p=w;i(h;)v
(di)v=Wji(d;)p, (di)v=w;i(dj)p, (:i)v=wij(zj)p, (xi)p=Wij(z;)v
(3.73)
For the 2D quasiperiodic substructure, there is a minimum embedding

dimension n given by the condition that the N-fold rotational symmetry has
to leave the nD lattice invariant (see Table 3.1). n equals 4 in case of 5-, 8-,
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10- and 12-fold symmetry, and 6 for 7- and 14-fold, for instance. It may be
helpful, however, to use the canonical hypercubic description which is based
on the full star of basis vectors. The embedding dimension n results to n = N
if N is odd and n = N/2 for N even. In the hypercubic case, the derivation
of atomic surfaces may be simpler.

3.6.1 Pentagonal Structures

There are two ways of embedding pentagonal tilings, which can be used as
basic quasilattices for pentagonal structures. The 4D minimum embedding di-
mension leads to a hyperrhombohedral unit cell, the 5D canonical embedding
to a hypercubic unit cell. Adding a third, periodic dimension allows to model
axial quasicrystal structures.

3.6.1.1 (4+1)D Embedding

Here, the case is described where only the four rationally independent re-
ciprocal basis vectors out of the five related to the 2D quasiperiodic sub-
structure are used for embedding. Each of the five reciprocal basis vectors
can be described as linear combination of the four other ones, for instance,
aj = —(aj +aj +aj +aj}). This minimum-dimensional embedding leads to a
hyperrhombohedral unit cell of the quasiperiodic substructure.

The embedding matrix is derived from the reducible representation I"(«)
of the 5-fold rotation, o = 5, which can be written as 5 x 5 matrix with integer
coeflicients acting on the reciprocal space vectors H. The 5D representation
can be composed from the irreducible representations Iy, I3, and I; shown
in the character table below (Table 3.7).

The 2D representation I'5 describes the component of the 5D rotation in
the 2D quasiperiodic physical subspace, the 2D representation I’y the compo-
nent of the rotation in perp-space, and the 1D representation I'; that along the
5-fold axis (Fig. 3.12). The sum of the corresponding characters 1+7—1—7 =0
equals the trace of the reducible rotation matrix given in (3.74). Based thereon,
the 5-fold rotation matrix can be block-diagonalised in the following way

Table 3.7. Character table for the pentagonal group 5m (Cs,) [20]. € denotes the
identity operation, o™ the rotation around 2n7/5, and 3 the reflection on a vertical
mirror plane

Elements € « a? I5)
I 1 1 1

Is 1 1 1 —

I35 2 T —-1-7 0
Iy 2 —1—-7 T 0
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Fig. 3.12. Illustration of a 4D 5-fold rotation by the par- and perp-space projections
of the trajectory of the point P during its rotation to P’

00010 cos 2X —sin 28 0| 0 0
10010 sm%7r c05257T 0ol 0 0

I'(5) = 01010 = 0 0 1] 0 0 =
00110 0 0 Ocos%’rfsm%7r
00001/ .. 0 0 Osm%’r cos%’r v

(T o -
- ﬂm T

3.6.1.2 Reciprocal Space

The electron density distribution function p(r) of a 3D quasicrystal can
be represented by the Fourier series given in (3.41). All Fourier coeffi-
cients, i.e. the structure factors F(H), can be indexed with integer in-
dices based on five reciprocal space vectors: H = ZZ 1 hsal with aj =
a* (cos(2mi/5),sin(27i/5),0) ,i =1,...,4, a* = |af| = |a}| = \ag\ |a4|,a5 =
lat] (0,0,1) and h; € Z (Fig. 3.13).

The vector components refer to a Cartesian coordinate system in par-space
VI, The set of all diffraction vectors H forms a Z-module M* of rank five.
The vectors a}, ¢ =1,...,5 can be considered as par-space projections of the
basis vectors d}, ¢ =1,...,5 of the 5D reciprocal lattice X* with

27t

cos =+ 0
5 sm% 0
dj:a*\/> 0 , i=1,...,4 di=ai]| 1 (3.75)
J C COs 45' 0
csindft ) 0/ .

¢ is an arbitrary constant which is usually set to 1 (as it is also done in the
following). The subscript V' denotes components referring to a 5D Cartesian
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* £
a b «=rld C a=n‘d]
al* as
a2* al*
* *
&5 * as *
a4 a
a3
¥
as a4*
¥
ay a,
_ Y
d a=n'd; e a~=nd;
a; as
a, a)
as as
as ay
a, a,

Fig. 3.13. Reciprocal basis of the pentagonal phase shown in perspective view (a)
as well as in projections upon the parallel (b) and the perp-space (c). The vector
aj = —(aj + a3 +a3 +aj)) is linear dependent. The corresponding projections of the
direct basis are depicted in (d) and (e)

coordinate system (V-basis), while subscript D refers to the 5D crystallo-
graphic basis (D-basis). The embedding matrix W (3.76), which contains the

reciprocal space vectors d}, i = 1,...,5 as columns, results to
27 47 67 81
cos - cos =+ cos £ cosF 0
sin %’r sin %’r sin 6—” sin %’T 0
2
W = \/; 0 0 0 0 ﬁ . (3.76)
cos == 4“ cos 8“ cos 127 16“ 0
4771' si 12w 167r
sin % sin sin =% 0 Ve

The direct 5D basis is obtained from the orthogonality condition (3.5) as
column vectors of the transpose (W17 of the inverse embedding matrix W

cos@fl 0
smm 1 0
\/7 , i=1,...,4 ds=—]1 (3.77)
cos@—l % 10
sln@ 0

5 \%4 14
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The metric tensors G and G* are of type

ABBB O
BABBO
BBABO (3.78)
BBBAO
0000C

with A =4/5a*%, B = —1/5a*?, C = a3?, for reciprocal space and A = 2/a*?,
B =1/a*?, C = 1/a%?* for direct space. Therefrom, the direct and reciprocal
lattice parameters can be derived as

2
di = —=a*, di =af, «;; =104.48°, ;5 =90° 4,j=1,...,4 (3.79)
7 \/5 5 5 J
and
d 2 d ! 60° 90°, 4,5=1 4 (3 80)
i = > 5= &%, Q45 = , Q5 = , )y =1,...,4. .
V5a* ag !

The volume of the 5D unit cell results to

V= Jaet@) = Y5 2BV (3.81)

a*taf 16

3.6.1.3 Symmetry

The diffraction symmetry of pentagonal phases, i.e., the point symmetry group
leaving invariant the intensity weighted Fourier module (diffraction pattern)
M7, is one of the two Laue groups 52/m or 5. The space groups leaving the
5D hypercrystal structure invariant are that subset of all 5D space groups,
the point groups of which are isomorphous to the 3D pentagonal point groups
(Table 3.8).

The orientation of the symmetry elements of the 5D space groups is defined
by the isomorphism of the 3D and 5D point groups. The 5-fold axis defines
the unique direction [00100],, or [00001],, which is the periodic direction.
The 5D reflection and inversion operations m and 1 reflect and invert in both
subspaces VIl and V1 in the same way. The 5-fold rotation has the component
27/5 in VIl and 47/5 in V+ (Fig. 3.13) as already found in (3.74). The same
decomposition can be obtained from W - I'(5)-W 1.

The symmetry matrices for the reflections on mirror planes, with normals
along and between reciprocal basis vectors, respectively, read for the examples
with the normal of the mirror plane ms along a3 and of the mirror plane mq4
along aj — aj:

00110 00010

01010 00100
I'(my)=110010 , I'(mig)=[01000 , (3.82)

00010 10000

00001 00001

V* V*
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Table 3.8. The five 3D pentagonal point groups of order k and the twenty-two corre-
sponding 5D pentagonal space groups with extinction conditions [36]. The notation
is analogous to that of trigonal space groups. The first position in the point group
and the second position in the space group symbols refer to generating symmetry
elements oriented along the periodic direction, the second position to the symmetry
elements oriented along reciprocal space basis vectors and the third position to those
oriented between them. S means staggered lattice in analogy to R in the trigonal
case

3D Point Group k 5D Space Group  Reflection Conditions
-2 =2 .
5— 20 P5—1 No condition
m m
Pf)%l Odd layers along
P5 13 No condition
m
P5 1g Odd layers between
c
553 No condition
m
Sgg 0Odd layers between
c
5m 10 P5ml No condition
Pb5cl 0Odd layers along
P51m No condition
P5l1c Odd layers between
S5m No condition
Shc Odd layers between
52 10 P512 No condition
P5;12 0000h; : jhs = d5n
P521 No condition
P5;21 0000h; : jhs = dn
552 No condition
5 5 P5 No condition
S5 No condition
5 5 P5 No condition
P5j OOOOhj 2jh5 =5n
S5 No condition

The five possible 3D point groups and the twenty-two 5D space groups of
pentagonal quasiperiodic structures are listed in Table 3.8. The translation
components of the 5-fold screw axes and the c-glide planes are along the pe-
riodic direction. The capital letter S marks staggered lattice types in analogy
to the rhombohedral Bravais lattice in the trigonal case.

A typical property of the reciprocal space of quasiperiodic structures is
its scaling symmetry (Fig. 3.14). The scaling operation is represented by the
matrix S*, which can be diagonalized by W - S*. ]/ ~!
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a,"=(00110) b
(11100)

(01100)

a

01110) ¢
(11000)

Fig. 3.14. Reciprocal and direct space scaling by the matrices S* (a) and S (b),
respectively. The scaled basis vectors (marked gray) keep their orientation and are
increased or decreased in length by a factor 7 (a) or 1/7 (b). Explicitly shown is
the scaling of the vectors aj and as: aj’ = a3 + aj + aj with aj = — Zle aj, and
ah,=az —au

01010 700 O 0

01110 070 O 0

— Il *
S*=111100 =]1001] O 0 —<F(()S)FLOS*)

10100 000|-1/7 0O ‘1( ) Vi

00001/ . 000 0 -—-1/7 v

(3.83)

The eigenvalues of the scaling matrix are the Pisot numbers Ay = 1 +

2 cos m/b =7 = 1.61803, Ay = 1+ 2 cos 47/5 = —1/7 = —0.61803, which
are the solutions of the characteristic polynomial 1+z — 322 — 23 +32% —2° =
(1—2)(—1—2z+2?)?. The scaling symmetry matrix for the direct space basis
vectors and the reflection indices S = [(5*)71]T results to

10110 1/ 0 00 0

10100 0 1/70[0 0 !
S=(01010 = 0o 010 o0 :(FO(S)FOS> )

11010 0 0 0-70 i)y

00001/, 0 000 -7/,

(3.84)

3.6.1.4 (5+1)D Embedding

The following nD description is based on the full set of five reciprocal ba-
sis vectors related to the quasiperiodic substructure plus one in the periodic
direction. The 5-fold reducible 6 x 6 rotation matrix can be block-diagonalised
in the following way
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27

000010 COS?—SHI*O 0 0
100000 sin2* cos2® 0| 0 0
010000 0 0 1] 0 0

& =1001000| = |0 0  0|cos?F —sinir B
000100 0 0 Obm%’r 0054;
000001/ . 0 0 ol 0 0 1/,

_ (M) 9 3.85
=) (3.85)

Both par- and perp-subspaces are 3D in this case. The set of all diffraction
vectors H forms a Z-module M* of rank six. The vectors a;, i = 1,...,6,
with a* = a} = a} = a} = af = of (aj, = af), can be con51dered as par-space
projections of the basis vectors df, i« = 1,...,6 of the 6D reciprocal lattice

7

2* with
COS % O
sin % 0
di = afy/ CCOS% Ci=1.05 di=ag |, (3.86)
4771 0
<’ 0
V2 V= Vx

Without loss of generality ¢ can be set to 1. Then the W matrix for 6D
reciprocal space reads

2 ar 67 8

COS - COS - COS Z- €08 %~ 1 0
sin 2—” sin %’T sin %’“ sin %” 0 0
00 0 0,3
W = s 12 16 (3.87)

cos & cos ?” cos Tﬂ cos Tﬂ 1 0
sin ? sin %’T sin HT” sin 1(;” 0 0

1 1 1 RIS B

V2 V2 V2 V2 V2 v

The direct 6D basis is obtained from the orthogonality condition (3.5) as
column vectors of the transpose (W~1)T of the inverse embedding matrix W

271'2

0
271'1
1 /2 0 ’ (1)
i:E g CO§475” 5 ’Lzl,...,5; d6:;g 0 (388)
gin 4z 47” 0
1/[ v 0/,
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The metric tensors G and G* are of type

(3.89)

NN o oNolhN
SO oo MmO
ococooxmo o
oSO Mmoo O
o oo oo
Wooocoo

with A = a*?, B = aj?, for reciprocal space and A = 1/a*?, B = 1/a}? for
direct space. Therefrom, the direct and reciprocal lattice parameters can be
derived as df = aj,d; = 1/a},af; = a;; = 90°,i,j = 1,...,6. The volume of
the 6D unit cell results, with d = d; = dy = d3 = dy = d5, to

V = y/det (G) = L d°dg. (3.90)

*5 %
a*ag

3.6.1.5 Example: Pentagonal Quasicrystal

The 6D hyperlattice X' of the pentagonal structure possesses decagonal sym-
metry. The symmetry can be lowered to pentagonal by a proper decoration
with atomic surfaces breaking the decagonal lattice symmetry. For instance,
if an atomic surface with just pentagonal symmetry is put at the origin of the
5D subunit cell. This can be a superstructure of the pentagonal Penrose tiling,
when the decagonal atomic surface is decorated in a proper way. Basically,
the description of a pentagonal structure is analogous to that of the decagonal
case and will be treated in Sect. 3.6.4, consequently.

3.6.2 Heptagonal Structures

Axial quasicrystals with heptagonal diffraction symmetry, i.e., with Laue
groups 72/m or 7, possess heptagonal structures. So far, there are only a
few approximants known and no quasicrystals. The embedding matrix can be
derived from the reducible representation I'(«) of the 7-fold rotation, o = 7,
which can be written as 7 X 7 matrix with integer coefficients acting on the
reciprocal space vectors H. The 7D representation is reducible to par- and
perp-space components, which can be combined from the irreducible repre-
sentations I, I, I'y, and I'5 shown in the character table below (Table 3.9).

Consequently, a 27 /7 rotation in VIl around the 7-fold axis has component
rotations of 47 /7 and 67 /7 in the two 2D orthogonal V+ subspaces (Fig. 3.15).
The decomposition of the reducible symmetry matrix « yields (3.91)
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Table 3.9. Character table for the heptagonal group 7m (C7,). € denotes the iden-
tity operation, a™ the rotation around 2n7 /7, and 3 the reflection on a mirror plane

Elements ¢ « a? ol Jé]
I 1 1 1 1 1
15 1 1 1 1 —1
I 2 2cos 2w/7 2 cosdw/T 2 cos 67/7 0
I, 2 2cos dn/7 2 cos8n/T 2 cos 12n/7 0
I 2 2cos 6m/7 2 cos 12n/T7 2 cos 47 /T 0
a a;=nld; b a=n'd c a;=mnyd;
az* al* a3*
al* ay as*
a3* (l5* “1*
a;”
a4* aZ* a()*
- a6 ay” a”
as ag a,”
d a;=n'd; e a;=mn,"d; f a;=ny"d;
a, a a3
a; a, as
as as a
a;
a, a, ag
a6 a3 @
as ag ay

Fig. 3.15. 7D reciprocal (a—c) and direct (d-f) space bases dj and d;,i =1,...

777

respectively, projected onto the par-space (a, d) and the two 2D perp-subspaces (b,
e) and (c, f). The vectors a7 and a7 along the periodic direction are perpendicular

to the plane spanned by the vectors aj,i =1,...,6 and a;,i = 1,...,6, respectively
0000010 cos Z —sin 2% 0| 0 0 0 0
1000010 sin2% cos2 0| 0 0 0 0
0100010 0 0 1] 0 0 0 0

I'a)=[0010010| =] 0 0 Ofcos T —sin®Z| 0 0
0001010 0 0 Ofsin? cosi | 0 0
0000110 0 0 0] 0 0 |cos®F —sin&F
0000001/ . 0 0 0l 0 0 sin%7r (:08677r v
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| o 0
= 0 || o
0 0 |15 (7)

(3.91)

\%

3.6.2.1 Reciprocal Space

The electron density distribution function p(r) of a 3D quasicrystal can be
represented by the Fourier series given in (3.41). All Fourier coefficients, i.e.,
the structure factors F'(H), can be indexed based on seven reciprocal basis
vectors with integers: H = 21-7:1 h;af with al = a* (cos(27i/7),sin(27i/7),0),

=laf|,i=1,...,6,a% = |a|(0,0,1) and h; € Z (Fig. 3.15).

The vector components refer to a Cartesian coordinate system in par-space
VI, The set of all diffraction vectors H forms a Z-module M* of rank seven.
The vectors a}, ¢ = 1,...,7 can be considered as par-space projections of the
basis vectors df, ¢ = 1,...,7 of the 7D reciprocal lattice 2 with

2mi

N

2mi
7

cos
sin
0
df =a* | ccos 2zt 1=1,...,6,
4mi
csin =2
ccos 2Lt
67

671
csin 22 -

(3.92)

o
3%
I
S
3
S o= OO

1%

The coupling factor between par- and perp-space rotations equals 2 and 3,
respectively, for the two 2D perpendicular subspaces, ¢ is an arbitrary constant
which is usually set to 1 (as it is also done in the following). The subscript
V' denotes components referring to a 7D Cartesian coordinate system (V-
basis), while subscript D refers to the 7D crystallographic basis (D-basis).
The embedding matrix W (3.93) results to

2 4m 6m 81 107 127r
cos - cos =& €os 2 oS S cos =+ cos “= ()
27 47 67 81 107 1271'
sin & sin = sin = sin = sin = sin ==X 0
0 0 0 0 0 0 1
W = | cos 47” cos 87” cos 127” cos 167” cos 2(%” cos =8 24” 0 (3.93)
47 81 iy 12w i, 167 207 247r
sin =% sin &% sin <2F sin =F sin =5 sin =% 0
cos 67” cos 1%” cos 187” cos 247” cos 3(%” cos 2% 36” 0
6 127 187 1. 247 307 367r
sin = sin =% sin =% sin =% sin %5 sin 5F 0
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The direct 7D basis is obtained from the orthogonality condition (3.5)

cos%fl 0
sin@ 0
9 0 1 1
dj=-—|cos? -1 ,i=1,...,6, dy=—]0 (3.94)
Ta; - g ar | ¢
sin =7
COSL;—Z*l 0
i 61
sin 22+ v 0 v
The metric tensors G and G* are of type
ABBBBBO
BABBBBO
BBABBBO
BBBABBO (3.95)
BBBBABO
BBBBBAO

000000C

with A = 3a*?, B = —1/2a*2, C = a%?, for reciprocal space and A = 4/7a*?,
B =2/7a*?, C = 1/a%? for direct space. Therefrom the direct and reciprocal
lattice parameters can be derived as

d; = V3a*, dd; = a3, o =arccos1/6 =99.59°, ;7 =90°, i,j=1,...,6
(3.96)
and

2 1
i=1,...,6, dy=—

di = ) )
V7a* az

a;; =60%, ;i =90° di,j=1,...,4.
(3.97)

This means that the 6D subspace orthogonal to the periodic direction has
hyperrhombohedral symmetry. The volume of the 7D unit cell results to

V= /et (G) = — > (3.98)

 49VTa*Saz

3.6.2.2 Symmetry

The diffraction symmetry of heptagonal phases, i.e., the point symmetry group
leaving the intensity weighted Fourier module (diffraction pattern) M; invari-
ant, is one of the two Laue groups 72/m or 7. The space groups leaving the
7D hypercrystal structure invariant are that subset of all 7D space groups,
the point groups of which are isomorphous to the 3D heptagonal point groups
(Table 3.10). The orientation of the symmetry elements of the 7D space groups
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Table 3.10. The five 3D heptagonal point groups of order k and the twenty-two
corresponding 7D heptagonal space groups with reflection conditions [36]. The no-
tation is analogous to that of trigonal space groups. The first position in the point
and space group symbols refers to generating symmetry elements oriented along the
periodic direction, the second position to the symmetry elements oriented along re-
ciprocal space basis vectors and the third position to those oriented between them.
S means staggered lattice in analogy to R in the trigonal case

3D Point Group &k 7D Space Group  Reflection Conditions

73 28 P731 No condition
m m
P7%1 Odd layers along
P7 13 No condition
m
P7 1% Odd layers between
373 No condition
m
S 7% Odd layers between
™™ 14 P7ml No condition
PT7cl 0Odd layers along
P7lm No condition
PTlc Odd layers between
STm No condition
ST7c Odd layers between
72 14 P712 No condition
P7j1 2 OOOOhj Zjh7 =Tn
P721 No condition
P7j21 OOOOh]‘ Zjh7 =Tn
ST72 No condition
7 7 P7 No condition
ST No condition
7 7 P7 No condition
P7; 0000h; : jhy = Tn
ST No condition

is defined by the isomorphism of the 3D and 7D point groups. The 7-fold axis
defines the unique direction [0010000],, or [0000001],, which is the periodic
direction. The 7D reflection and inversion operations m and 1 reflect and
invert in both subspaces VIl and V* in an analogous manner. The 7-fold ro-
tation has the component 27/7 in VIl and 47 /7, 67/7 in the two 2D subspaces
of V+ (Fig. 3.15) as already described in (3.91). The same decomposition can
be obtained from W - I'(7)-W~1.
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The symmetry matrices for the reflections on mirror planes with normals
along and between reciprocal basis vectors, respectively, read for the examples
with the normal of the mirror plane m; along aj and of the mirror plane mqs
along aj — af:

1100000 0000110

0100000 0001010

0100010 0010010
r(m)=|0100100| . I'(mis)=|0100010 (3.99)

0101000 1000010

0110000 0000010

0000001/ . 0000001/ .

The five possible 3D point groups and twenty-two 7D space groups of heptag-
onal quasiperiodic structures are listed in Table 3.10. The translation compo-
nents of the 7-fold screw axes and the c-glide planes are along the periodic
direction. The capital letter S marks staggered lattice types in analogy to the
rhombohedral Bravais lattice in the trigonal case.

The scaling symmetry leaving the reciprocal space lattice invariant
(Fig. 3.16) is represented by the matrix S*

a az*’= (1110000) b
(0011110)
(0111000) a,
a2’= (0101100)
a a - =
_ ™~ 1\ (0170170)
(0TTT700) m N

(0000170)s 77 _
a,<70170100) /(”0”00)
4 /
/a

6
a5

(0011100)

(1111000)

(0001110)

Fig. 3.16. Reciprocal (a) and direct (b) space scaling by the matrices S* and S,
respectively. The scaled basis vectors (marked gray) keep their orientation and are
scaled by a factor 1 4 2 cos 27/7 = 2.24698 in (a) or by —2 cos 47 /7 = 0.44504.
The examples shown explicitly are a3’ = aj 4+ aj + a5 with a§ = — E?:1 a; in (a)
and a5 = as — a4 + as in (b)
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0100010
0110010
1111010
1011110
1001100
1000100
0000001/ .
1+2cos 32X 0 0 0 0 0 0
0 1+2cos 32X 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0[1+2 cos 4& 0 0 0
0 0 0 0 1+2cos & 0 0
0 0 0 0 0 1+2cos 3F 0
0 0 0 0 0 0 1+2cos 8/ .
ris=|) o 0
01y (SH] 0 (3.100)
0 0 |56/ .
The eigenvalues of the scaling matrix are the cubic Pisot numbers
A1 =142 cos 2m/7 =2.24698, Xy =1+ 2 cos 47/7 = 0.55496,
A3 =14 2 cos 87/7 = —0.80194 (3.101)

which are the solutions of the characteristic polynomial 1—3z—z2+92% —4x*—
625 + 52% — 27 = (1 — 2)(1 — 2 — 222 + 23)%. The scaling symmetry matrix

for the direct space basis vectors and the reflection indices, S = [(S*)71]T,
results to
0010010
1110110
1000100
S=|[0100010
1101110
1001000
0000001/
—2cosZ™ 0 0 0 0 0 0
0 —2cos?0 0 0 0 0
0 0 1] 0 0 0 0
= 0 0 0[-2cos®Z 0 0 0 =
0 0 0 0 —2cos% 0 0
0 0 0o 0 0 [2cosZ 0
0 0 0 0 0 0  —2cos? ),
rs)y o 0
= 0 [IfF(S)] 0 (3.102)
0 0 [I5(8/,
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3.6.3 Octagonal Structures

Axial quasicrystals with octagonal diffraction symmetry possess octagonal
structures. There are only a few examples known, all of them metastable. The
embedding matrix can be derived from the reducible representation I'(«) of
the 8-fold rotation, e = 8, which can be written as 5 x 5 matrix with integer
coeflicients acting on the reciprocal space vectors H. The 5D representation
The 5D representation is reducible to a par- and a perp-space component. It
can be composed from the irreducible representations I'5, Iy, and I7 shown
in the character table (Table 3.11) under the condition that the trace of the
5D matrix does not change.

The 8-fold rotation a can be described in its action by the reducible matrix
with trace 1. If we consider the 8-fold rotation taking place in 5D space (D-
basis) then we can also represent it on a Cartesian basis (V-basis). By this
transformation the trace must not change. Since the characters correspond to
the traces of the respective symmetry matrices we can identify the characters
I5(a) = /2 and I'7(a) = —/2 as traces of the symmetry matrices

(cos‘“ —sin28’f> 1 (x/i —ﬁ) 7

2]

sin &L cos 2F V_§ V2 V2

(3.103)
cos%ﬁ—sin%’r 1 \/i—\/ﬁ
sin%r COS%T Vi 2\v2 V2 V'

Consequently, in 5D space the then irreducible integer representation of I'(«)
(3.104) can be composed of the two 2D representations I's(«) and I’7(«) plus
I («), for the periodic direction.

Table 3.11. Character table of the octagonal group 8mm (Cs,). € denotes the
identity operation, a™ the rotation around 2n7/8, and [ the reflection on a mirror
plane

Elements ¢ « o? a® at I¢]
I 1 1 1 1 1

Iy 1 1 1 1 1 —1
I3 1 -1 1 —1 1 1
Iy 1 -1 1 —1 1 —1
I 2 V2 0 - -2 0
Is 2 0 2 0 2 0
Iy 2 -2 0 V2. -2 0
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1

_ 1
00010 e 170 0 0
10000 5 500 0 Is8)) 0 | 0
r@e)=|ot1o000| =|0 o0 [1] 0 0 =0 [=®] 0
T T
00100 0 0 [0-% % 0 0 [I7(®)/
00001 D 0 0 |o] L —L
V2 v2/l v
(3.104)

3.6.3.1 Reciprocal Space

The electron density distribution function p(r) of a 3D quasicrystal can be rep-
resented by the Fourier series given in (3.41). All Fourier coefficients, i.e., the
structure factors F'(H), can be integer indexed based on five reciprocal basis
vectors: H = Z?Zl h;af with af = a* (cos 2mi/8,sin 27i/8,0), i = 1,...,4,

= |aj| = |a}| = |aj| = |a}|, ai = |aZ| (0,0,1), and h; € Z (Fig. 3.17).

The vector components refer to a Cartesian coordinate system in par-space
VI, The set of all diffraction vectors H forms a Z-module M* of rank five.
The vectors a}, ¢ = 1,...,5 can be considered as par-space projections of the
basis vectors df, ¢ = 1,...,5 of the 5D reciprocal lattice X* with

21

cos =g+ 0
sm% 0
di =a" 0 ,i=1,...,4; di=ai| 1 (3.105)
c cos 6;” 0
csm% v 0 v

The coupling factor between par- and perp-space rotations equals 3, ¢ is an
arbitrary constant which is usually set to 1 (as it is also done in the following).
The subscript V' denotes components referring to a 5D Cartesian coordinate

a b c
a; —TCHd * a; —ﬂ;ld.*

a," a,'e >

Fig. 3.17. 5D reciprocal space basis dj, i = 1,...,5 projected onto the (a,b) par-
and (c) perp-space. The basis vectors spanning the hyperlattice in direct space have
the same orientation
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system (V-basis), while subscript D refers to the 5D crystallographic basis
(D-basis). The embedding matrix W (3.4) results to

1 17
cos%cos%cos%”cos%”() ? 0_ﬁ10
sm%’r sm%r sin%’r sin%"() 73 1 \% 00
W = 0 0 0 0 11|= 0 0 0 01 (3.106)
61 27 81 4 1 1 T
COs =%+ €os <+ cos = cos = 0 ——=0 —= 10
smésmﬁsmﬁsméo fi f 00
8 8 8 8 V2 V2

The direct 5D basis is obtained from the orthogonality condition (3.5) as
column vectors of (W—1)T

27w
COS =3~

271

1 sin e 1
0 : . _

2a* ’ o a
t | cos 6;3”
67

S v v

d; = (3.107)

(181

~

I

[y

=

a

ot

Il
OO = OO

The metric tensors G and G* are of type

AO0O0

o OO
oo o

00
00
00 (3.108)
A0
0B

o O o o

with A = 2a}?, B = a}?, for reciprocal space and A = 1/2a*?, B = 1/a}? for
direct space. Therefrom, the direct and reciprocal lattice parameters can be
derived as

df =V2ai, di=a%, ;=90° i,j=1,...,5 (3.109)

and

1
=—dij=1,...,4, d3=—, a;=90° a;=90°, ij=1,...,4.
\/ia* ] 5 a; J 5 ]
(3.110)

This means that the unit cell has hypertetragonal symmetry and the 4D
subspace orthogonal to the periodic direction is hypercubic. The volume of
the 5D unit cell results to

det (G = d*ds. (3.111)

*4a

3.6.3.2 Symmetry

The diffraction symmetry of octagonal phases, i.e., the point symmetry group
leaving the intensity weighted Fourier module (diffraction pattern) M; invari-
ant, is one of the two Laue groups 8/mmm or 8/m. The 62 space groups [36]
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leaving the 5D hypercrystal structure invariant are that subset of the 5D space
groups, the point groups of which are isomorphous to the seven 3D octagonal
point groups (Table 3.12). The orientation of the symmetry elements of the
5D space groups is fixed by the isomorphism of the 3D and 5D point groups.
The 8-fold axis defines the unique direction [00100],, or [00001],,, which is the
periodic direction. There are two different orientations of mirror planes and
2-fold axes possible with respect to the phys-space star of reciprocal basis
vectors. If the normal to the mirror plane, or the 2-fold axis, is oriented along
a reciprocal basis vector it gets the symbol m, or d, and it is denoted “along”,
otherwise it is “between” and the symbols get primed, m’ and d’. Examples
for the action of these two types of mirror planes are shown in eqs. 3.112
and 3.113. The normal to the mirror plane my is along to a3, that of mqo is
between aj and aj.

The reflection and inversion operations are equivalent in both subspaces
VIl and VL. I (8), a 27/8 rotation in VIl around the 8-fold axis corresponds
to a 67/8 rotation in V+ (Fig. 3.17):

00100
01000
I'(mgy)=10000 (3.112)
00010
00001
01000
10000 -
I'(mp)=|00010]| = (3.113)
00100
00001/, y
ra = (3.114)

v
The translation components of the 8-fold screw axis and the c-glide planes are
along the periodic direction.

The set of reciprocal space vectors M™ is invariant under scaling with the
matrix S*, S*"M* = s*™M*, with s* = 1+ /2 (Fig. 3.18). This scaling
matrix also applies to the direct space coordinates. It reads

11010 1+v2 0 0 o0 0
11100 0 1++v20 0 0
S =101110 = 0 0 1/ 0 0 . (3.115)
10110 0 0 01—-v2 o0
00001/ ,. 0 0 0 0 1-v2/ .
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Table 3.12. The seven 3D octagonal point groups of order k£ and the sixty-two
corresponding 5D octagonal space groups with extinction conditions [36]. The nota-
tion is analogous to that of tetragonal space groups. The first position in the point
and space group symbols refers to generating symmetry elements oriented along the
periodic direction, the second and third position to the symmetry elements oriented
along and between reciprocal space basis vectors, respectively

3D Point Group k 5D Space Group Reflection Conditions
8 22 -
822 32 PEEE No condition
mmm
Péz—12 All layers, odd parity, along
mbm
822
——— Odd layers, along and between
mecec
8 92,2 Odd layers, even par‘ity, along
— = Even layers, odd parity, along
mnc Odd layers, between
21 2
821 Zero layer, odd parity
mmm
P 822 All layers, odd parity, along
mbm Zero layer, odd parity
8212 Odd layers, along and between
L Zero 1 dd pari
m c ¢ ero layer, odd parity
Odd layers, even parity, along
p 822 Even layers, odd parity, along
mnc Odd layers, between
Zero layer, odd parity
8122 0Odd layers between
mmc
P84 212 Odd layers between
mbe All layers, odd parity, along
2 2
Pé -— Odd layers along
mecm
P84 2: 2 Odd layers, even parity, along
mnom Even layers, odd parity, along
P84 212 Odd layers, between
mme Zero layer, odd parity
8,292 Odd layers, between
pP——- All lalyers7 odd parity, along
nbec Zero layer, odd parity
P84 21 2 0Odd layers, along
necm Zero layer, odd parity
8,2 2 Odd layers, even par'ity along
——— Even layers, odd parity, along
nnm Zero layer, odd parity
2 2
Sé —— No extinctions
mmm

(continued)
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Table 3.12. (continued)

3D Point Group k 5D Space Group  Reflection Conditions
2 2
S 822 Odd layers, between
mm c
842 2 2 mod 4 layers, even parity, along
S—g— 0 mod 4 layers, odd parity, along
mam Zero layer, odd parity
2 mod 4 layers, even parity, along
8422 0 mod 4 layers, odd parity, along
mdc 0Odd layers, between
Zero layer, odd parity
8 16 P 8 No extinctions
m m
P§ Zero layer, odd parity
n
8 16 Pg kz when k odd
m m
P84 Zero layer, odd parity
n kz when k odd
S 8 No extinctions
m
S82 Zero layer, odd parity
n 2kz when k odd
822 16 P822 No extinctions
P82,2 Zero layer, odd parity, along
Pg8;22 kz when jk not a multiple of 8
Zero layer, odd parity, along
P8;2:2 kz when jk not a multiple of 8
5822 No extinctions
S8;22 2kz when 2jk not a multiple of 8
8mm 16 P8mm No extinctions
P8bm All layers, odd parity, along
P8cc 0Odd layers, along and between
Odd layers, even parity, along
P8nc Even layers, odd parity, along
0Odd layers, between
P8sme Odd layers between
Odd layers between
P81be All layers, odd parity, along
P8scm 0Odd layers along
0dd layers, even parity, along
P 8ynm Even layers, odd parity, along
S8mm No extinctions

(continued)
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Table 3.12. (continued)

3D Point Group k 5D Space Group Reflection Conditions
S8mec Odd layers between
S8, dm 2 mod 4 layers, even parity, along
2 0 mod 4 layers, odd parity, along
2 mod 4 layers, even parity, along
S 82 dc 0 mod 4 layers, odd parity, along
Odd layers, between
8m?2 16 P8m?2 No extinctions
P8b2 All layers, odd parity, along
P8c2 0Odd layers along
P8n2 Even layers, odd parity, along
Odd layers, even parity, along
P82m No extinctions
P821m Zero layer, odd parity, along
P82c Odd layers between
P32 ¢ Odd layers between.
Zero layer, odd parity, along
S8m?2 No extinctions
S8d2 2 mod 4 layers, even parity, along
0 mod 4 layers, odd parity, along
S82m No extinctions
S82¢ Odd layers between
8 8 P38 No extinctions
S8 No extinctions
8 8 P8 No extinctions
P8; kz when jk not a multiple of 8
S8 No extinctions
S8; 2kz when 2jk not a multiple of 8

The scaling symmetry matrix for the direct space basis vectors and the reflec-

tion indices S = [(S*)~!]T results to

11010 —14+v2 0 0 0 0
11100 0 1420 0 0
S=|01110 = 0 0o 1 0 0
10110 0 0 0—-1-v2 0
00001/ . 0 0 o 0o -1-v2/,

(3.116)
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a A a,"=(11100) b

(01110) (11010)

a,=(11100) %

al« a, ‘\\\
(10TI0) (01T10)

" = a4, 4a— —ea.

a,"=(00010) 7 :

(T01T02/ l \

(11010)

o110y &

Fig. 3.18. Reciprocal (a) and direct (b) space scaling by the matrices S* and S.
The scaled basis (marked gray) vectors keep their orientation and are scaled by a
factor 1 + 2 cos 27/8 = 1 4 +/2 = 2.4142 in reciprocal space (a) and by a factor
—1 42 cos 27/8 = —1 + /2 = 0.4142 in direct space (b). The examples shown
explicitly are a3’ = a3 + aj + a3 in (a) and a5 = a; — a> + a3 in (b)

3.6.3.3 Example: Octagonal Quasicrystal

A characteristic section through the 5D unit cell of an octagonal structure,
with a single octagonal atomic surface in the origin, together with its projec-
tions onto par- and perp-space is shown in Fig. 3.19. The closeness condition
between the atomic surfaces is fulfilled along the [1 1 0 0 0] direction and its
permutations. The relationship between the different types of vertices of the
octagonal tiling and the partitioning of the atomic surface is shown below
(Fig. 3.20).

3.6.3.4 Periodic Average Structure

In the following, different PAS are discussed on the example of a 2D octagonal
tiling, omitting the third dimension for clarity. The embedding space is 4D and
consists of the two 2D orthogonal subspaces VIl and V+. The atomic surfaces
are of regular octagonal shape and occupy the nodes of the 4D hypercubic
lattice.

The 4D basis d; for the octagonal tiling is hypercubic and defined by

cos %

1 sin 2zt

d; = 8 . i=1 4 (3.117)
. 67i 5 I I .

2| 9

Sln?

%
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X, 00110 01110
0001 010 1011 1110
00100, 1100
10010) 11010
0000 1000 1010p 1100
10000 11000
XS
1.0
10110 10100 <0
1001 10000, 00110 0100 0000
11110} 1100 {100
0001 00000 00000 T
1.0 X,
1101 T000 0TTI0 01100 11000
Xs
E 01000
Vi 01010 01000
X, N

Fig. 3.19. Characteristic (02200x5) section through the 5D unit cell (lower right)
together with its projections onto par- (lower left) and perp-space (upper right). The
16 corners of the unit cell are indexed on the D-basis. The atomic surface is just the
projected 4D subunit cell (gray, online: pink shaded octagon) in cases of a canonical
tiling. The light-gray atomic surfaces belong to the section (v/2 2 0 — v/2 x5). The
vertices generated along x2 are marked on the octagonal tiling (upper left)

with par-space spanned by the vectors {(1,0,0,0), (0,1,0,0)}y. The length
of the 2D reciprocal basis vectors a* is related to the unit tile’s edge length
a, by a* = 1/2a,. The reciprocal basis can be obtained by the condition
d; - d;f = ;5. The atomic surface is defined by the perp-space vectors

0
1 0
AS _ L , .
al'” =apq |1+ 75 | cos (2f—1)7‘r , 1=1,...,8. (3.118)
sin (21—81)7r v

The octagonal tiling generated in this way is depicted in Fig. 3.20, with ver-
tices colored according to their coordination. At the bottom of Fig. 3.20 the
atomic surface is shown of the tiling embedded in 4D space. The partition of
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LAl ]
KO
{.‘i\o
LAY
..\."’ s "’. .. )

Fig. 3.20. Octagonal tiling with the six different vertex types, A—F, which are color
coded. Below the tiling, the partitioning of the atomic surface is shown together
with the six vertex configurations. The colored filled circles on the atomic surface
correspond to the lifted vertices of the tiling

the atomic surface is made visible by keeping the color code of the tiling. The
tiling shown corresponds to that described by [39].

As discussed in Sect. 3.3, the reciprocal lattice of a PAS of a 2D quasiperi-
odic tiling is best defined by the origin and two strong reflections (cut plane).
In direct space, this corresponds to a projection of the hyperstructure onto
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par-space, along the directions perpendicular to the cut plane in reciprocal
space. The lattice parameters of the PAS are given by the selected reflec-
tions. The PAS can be easily obtained sticking to par-space by taking the
quasiperiodic tiling modulo the unit cell of the PAS.

Figure 3.21 shows the structure factors as a function of [H*|, and of the
intensities as a function of HI. The reflections chosen for the derivation of
the different PAS shown in Figs. 3.22 and 3.23 are indexed in 3.21. Letters

0343 .
' )

Fig. 3.21. Structure factors F(JH"|) of the octagonal tiling as a function of |H™*|
(lower left part) and diffraction pattern in par-space (upper right part). The absolute
value of F'(|[H*|) decreases with increasing |H*| and oscillates around zero. There is
only one branch as expected for a atomic surface positioned on the origin of the hy-
percrystal structure. On the diffraction pattern, the reflections of the PAS shown are
denoted. Symmetrically equivalent Bragg reflections are marked by letters a—f. For
reflections of type b, the linear combinations of two chosen reflections are marked
on grids (online: red and blue). Reflections on these grids lie on the corresponding
cut-planes in nD reciprocal space
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Fig. 3.22. Vertices of the octagonal tiling modulo one unit cell of the different PAS
denoted with black and (online: blue) indices (i.e., along the horizontal and vertical
directions) in Fig. 3.21, lying on circles a—f (indicated in the upper right corner of
each unit cell). The projected atomic surfaces are shown as well as the vertices of the
tiling that have been projected into the unit cell by the modulo operation. For each
PAS, the lattice parameter/occupancy factor is a, 1.4142/2.4142; b, 0.8284,/0.8284;
¢, 0.5858/0.4142; d, 0.4142/0.2071; e, 0.3431/0.1421; f, 0.2426,/0.0711

a b

Fig. 3.23. Vertices of the octagonal tiling, modulo one unit cell of the PAS de-
noted with black and gray (online: red) indices (i.e., along the diagonal and vertical
directions) in Fig. 3.21, lying on circles a—f (indicated in the upper right corner of
each unit cell). The projected atomic surfaces are shown as well as the vertices of
the tiling that have been projected into the unit cell by the modulo operation. For
each PAS, the lattice parameter/occupancy factor is a, 2/3.4142; b, 1.1716,/1.1716;
¢, 0.8284/0.5858; d, 0.5850/0.2929; e, 0.4853/0.2010; f, 0.3431/0.1005

a—f denote symmetrically equivalent reflections on a circle with a given radius
|H!| in par-space. They all have the same intensity and |H*|. There are
two non-equivalent ways of choosing the pairs of reflections. One leads to a
rhombic unit cell of the PAS, the other to a quadratic one. The reflection
indices defining each PAS are given in Fig. 3.21.
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The reflections are denoted by two letters, the first one corresponds to
one of the circles a—f, the second to the unit cell, with r for rhombic (online:
red) and s for square (online:blue). For one case (br/bs) a (online: red/blue)
reciprocal lattice is drawn in the figure. All the PAS that are denoted in Fig.
3.21, are shown in Figs. 3.22 and 3.23.

While a PAS is unambiguously defined by the cut-space that is spanned
by the two chosen reflections in higher dimensions, this is not the case for a
PAS that is generated remaining in par-space only. Here, each choice of two
reflections which all lie in the same cut-space, will result in a PAS with the
same size and shape of projected atomic surfaces, but different edge lengths
and occupancy factors.

The fact, that PAS exist with exactly the same maximal deviation of
the tiling vertices from the lattice nodes of the PAS (size of the projected
atomic surfaces) but different corresponding occupancy factors demonstrates
how important it is to select the most reasonable PAS to a given tiling. In
general, a quasiperiodic tiling has infinitely many possible PAS [3]. The best
PAS will have lattice parameters comparable to the edge length of the unit
tiles and occupancy factors close to one. The best PAS for our octagonal
tiling is defined by the strong reflections br/bq, consequently. The relationship
between the PAS and the tilings is illustrated in Figs. 3.24 and 3.25 for these
cases.

Y N N
o~
S
S ZENAN ZENN PN

[ 2 S Vs S )

ZZNAN ZEEAN ZINAN VRN

N A D N /)

ZEEAN ZEES VAN ZEEAN
a4
<

Fig. 3.24. Octagonal tiling with overlaid PAS of type bq, defined by the reflections
0111 and 1101 (Fig. 3.21). The small (online: blue) octagons on the square grid
correspond to projected atomic surfaces. Every vertex of the octagonal tiling lies
within such an octagon, but 17% of the octagons are not occupied. The PAS lattice
parameter amounts to 2/(v/2 + 1) * a,, with a, the edge length of the octagonal
tiling
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Fig. 3.25. Octagonal tiling, with overlaid PAS of type br, defined by the reflections
0111 and 1110 (Fig. 3.21). The small (online: red) octagons positioned on each lattice
node of the periodic grid, correspond to projected atomic surfaces. Every vertex of
the octagonal tiling lies within such an octagon. The occupancy factor of this PAS
amounts to 1.1716

3.6.4 Decagonal Structures

Quasicrystals that exhibit decagonal diffraction symmetry are called decago-
nal phases. Many stable and metastable representatives of this class of qua-
sicrystals have been observed experimentally ([44] and references therein).
The Penrose tiling will be used as an example for the 2D quasiperiodic atomic
layers in a decagonal structure. The embedding matrix can be derived from
the reducible representation I'(«) of the 10-fold rotation, o = 10, which can
be written as 5 x 5 matrix with integer coefficients acting on the reciprocal
space vectors H. The 5D representation can be composed from the irreducible
representations I, I's, and I'; shown in the character table below (Table 3.13).

The 2D representation I's = 7 describes the component of the 5D rotation
in the 2D quasiperiodic physical subspace, the 2D representation I7=1— 71
the component of the rotation in perp-space, and the 1D representation I'7 = 1
that along the 5-fold axis. The sum of the corresponding characters 7+ 1 —
T+ 1 = 2 equals the trace of the reducible rotation matrix given in (3.119).
Based thereon, the 10-fold rotation matrix can be block-diagonalised in the
following way
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Table 3.13. Character table for the decagonal group 10mm (Cios). € denotes the
identity operation, " the rotation around 2nm/10, and 3, 3 the reflection on the
two different types of mirror planes

Elements & « o? a? ot a® 58 548
I 1 1 1 1 1 1 1 1
I 11 1 1 1 1 -1 -1
I 1 -1 1 ~1 1 -1 1 -1
I 1 -1 1 —1 1 -1 -1 1
Iy 2 T 147 1-7 -7 —2 0 0
Is 2 147 -7 -7 -1+ 2 0 0
Iz 2 1-—-7 -7 T —1+7 =2 0 0
Iy 2 -7 —14+7 —-147 -7 2 0 0
_ 2m o o2m
00010 cosF —sing5 0/ 0 0
10010 sin %’T cos%r 0 0 0
ra)=1,101010 = 0 0 1 0 0 =
00110 0 0 Ocos%—sin%
00001/ p. 0 0 Osin% cos% .

_ (Ao o 3.119
B 0 [rtaoy),. (3.119)

The 5D decagonal lattice can be fully equivalently described on a pentag-
onal basis as well (pentagonal setting) (see Sect. 3.6.1.1). This can be seen in
analogy to the usual description of hexagonal lattices on a trigonal (rhombo-
hedral) basis. Then the matrix for the 10-fold rotation and the unitary matrix
Mgp for the transformation of direct and reciprocal basis vectors as well as of
coordinates and indices from the decagonal basis to the pentagonal basis read

01100 01000
01010 00010
I'(10)pent = | 01000 |, Mg=1]10000, |. (3.120)
11000 00100
00001 00001

3.6.4.1 Reciprocal Space

The electron density distribution function p(r) of a 3D quasicrystal can
be represented by the Fourier series given in (3.41). All Fourier coeffi-
cients, i.e., the structure factors F(H), can be integer indexed based on
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Fig. 3.26. Reciprocal basis of the decagonal phase. The projections upon the parallel
(a, b, d) and the perp-space (c, e) are shown. The gray vectors illustrate how the
direct space vectors are composed of unit vectors e;

*

five reciprocal basis vectors: H = 25:1 h;a; with af = a'e; = a
(cos(2mi/10),sin(27i/10),0), i = 1,...,4, a* = |aj| = |aj| = |aj| = |aj|,af =
|ag| (0,0,1) and h; € Z (Fig. 3.26).

The vector components refer to a Cartesian coordinate system in par-space
VI, The set of all diffraction vectors H forms a Z-module M* of rank five.
The vectors a}, ¢ =1,...,5 can be considered as par-space projections of the
basis vectors d}, ¢ = 1,...,5 of the 5D reciprocal lattice X* with

L 27
COS 0

* * Slnﬁ . * *
d =a 0 yi=1,...,4; s =a

6mi
C COS 10

(3.121)

csingg /o v

S o= OO

¢ is an arbitrary constant which is usually set to 1 (as it is also done in the
following). The subscript V' denotes components referring to a 5D Cartesian
coordinate system (V-basis), while subscript D refers to the 5D crystallo-
graphic basis (D-basis). The embedding matrix W results to
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27 4 6 81

cos 75 cos 35 cos1g cos 75 O
sin %r sin %r sin % sin %r 0
W = 0 0 0 0 1 (3.122)
cos % cos 112—0” cos 1% cos 214—57 0
sin% sinlf—gT sinllg—ér sin214—5T 0

The direct 5D basis is obtained from the orthogonality condition (3.5)

o + 1) 0
9 sin =5
i = 0 _ yi=1,...,4; ds=—|1 . (3.123)
@ cos 61—76” + (—41)1_1 % | o
sin%Z v 0/
The metric tensors G and G* are of type
A B -B B 0
B A B —-BO0
-B B A B0 (3.124)
B -B B A0
0 0 0 0C

with A = 2a*2, B = —1/2a*?, C = a3?, for reciprocal space and A = 4/(5a*?),
B = —2/(5a*%), C = 1/a3? for direct space. Therefrom the direct and recip-
rocal lattice parameters can be derived as

df = a*V?2, df =a, i =1045° a;;=90° i,j=1,....4 (3.125)

and

2 1
ds = —, o =60° ;=90 i,j=1,

d: = d—= , ey
' a*\/5 as

4.
(3.126)

The volume of the 5D unit cell results to

4 V5d*ds
V = 4/det (G) = = . 3.127
(S] ( ) 5\/5@*4a§ 4 ( )

3.6.4.2 Symmetry

The diffraction symmetry of decagonal phases, i.e., the point symmetry group
leaving the intensity weighted Fourier module (diffraction pattern) M} invari-
ant, is one of the two Laue groups 10/mmm or 10/m. The 18 space groups
leaving the 5D hypercrystal structure invariant are that subset of the 5D
space groups, the point groups of which are isomorphous to the 7 possible
3D decagonal point groups (Table 3.14). The orientation of the symmetry el-
ements of the 5D space groups is defined by the isomorphism of the 3D and
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Table 3.14. The seven 3D decagonal point groups of order k and the nineteen cor-
responding 5D decagonal space groups with reflection conditions [36]. The notation
is analogous to that of hexagonal space groups. The first (second) position in the
point (space) group symbols refers to generating symmetry elements oriented along
the periodic direction, the second (third) position to the symmetry elements ori-
ented along reciprocal space basis vectors and the third (fourth) position to those
oriented between them

3D Point Group k 5D Space Group Reflection Conditions
10 2 2 ..
Ezz 40 PEEE No condition
mmm
]3Egg h1h2h2h1h5 : h5 =2n
mec h1h2]_7,2illh5 : h5 =2n
P105 zg h1h2712711h5 : h5 =2n
m mc
P&gz h1h2h2h1h5 : h5 =2n
m cm
10m?2 20 P10m?2 No condition
PTOCQ h1h2h2h1h5 : h5 =2n
P102m No condition
PTOZC h1h2ﬁ2h1h5 : h5 =2n
10mm 20 P10mm No condition
P10cc h1h2@2@1h5 . h5 =2n
hihahohihs : hs = 2n
P105mc h1h2712il1h5 : h5 =2n
P105cm h1h2h2h1h5 : h5 =2n
1022 20 P1022 No condition
P10;22 0000h; : jhs = 10n
1—0 20 Pl—0 No condition
m m
1
P& 0000h5 : h5 =2n
m
10 10 P10 No condition
10 10 P10 No condition
P10, 0000h; : jhs = 10n

5D point groups. The 10-fold axis defines the unique direction [00100],, or
[00001] ;,, which is the periodic direction. The reflection and inversion opera-
tions I' (m) and I" (1) are equivalent in both subspaces VIl and V+. " (10), a
27/10 rotation in VI around the 10-fold axis corresponds to a 67/10 rotation
in V+ (c.f. (3.119) and Fig. 3.13). The translation components of the 10-fold
screw axes and the c-glide planes are along the periodic direction.

The symmetry matrices for the reflections on mirror planes with normals
along and between reciprocal basis vectors, respectively, read for the examples
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a b
a,"=(10100)
(01010)

(11010) . .\ (10110) “

4 \ Z(11100
‘\_ i1 a3 § ,/) Z
(10100) (01010)

as

Fig. 3.27. Reciprocal and direct space scaling by the matrices S* (a) and S (b),
respectively. The scaled basis vectors (marked gray) keep their orientation and are
changed in length by a factor 7 (a) or 1/7 (b). Explicitly shown is the scaling of the
vectors a5 and a3: a3’ = aj +aj and a5 =a; +az — a3

with the normal of the mirror plane my along a3 and of the mirror plane mq2
along aj — aj:

00110 01100

01010 10100
I'(mg)=]10010 , I'(mia)=[00100 . (3.128)

00010 00110

00001/ . 00001/ .

A typical property of the reciprocal space of quasiperiodic structures is its
scaling symmetry (Fig. 3.27).

The scaling operation is represented by the matrix S*, which can be diag-
onalized by W - S*- W1

11010 700 O 0
00110 070 O 0
I (s*
S*=111000 =001 O 0 =<F(()S)FJ_OS*> .
10110 000/—-1/7 O ‘1( )/ v
00001/ . 000/ 0 -1/7 Ve
(3.129)
The eigenvalues of the scaling matrix are the Pisot numbers Ay = 1 +

2cos /b =7 = 161803, Ay = 1+ 2 cos 4n/5 = —1/7 = —.61803, which
are the solutions of the characteristic polynomial 1+x — 322 — 23 +32% —2° =
(1—2)(=1—z+2?)2. The scaling symmetry matrix for the direct space basis
vectors and the reflection indices S = [(S*)~!]T results to



3.6 2D Quasiperiodic Structures 127

00110 1/ 0 00 0
11100 0 1/70/0 0 !

S=|01110 = 0o 010 0 :(FO(S)FOS>'
11000 0 0 0—7 O )y
00001/ , 0 000 -7/,

(3.130)

Invariance of tilings under scaling of the basis and atomic surfaces
The embedding space for a given tiling is unique only up to scaling, which
results in scaled and permutated atomic surfaces while leaving the tiling un-
changed.

The Penrose tiling, for instance, can be generated by four pentagons of two
sizes and two orientations positioned at /5,7 = 1, .. ., 4, of the 4D hypercrystal
diagonal. We denote these pentagons according to their positions and sizes as
s1 (small pentagon at ¢ = 1), lo (large pentagon at ¢ = 2), I3 and s4. Their
orientations and relative sizes are as defined in (3.138), and we start with a
tiling that is generated by this classical embedding. Now we keep the metrics
of the tiling unchanged, but embed it on a 4D basis which is scaled by a factor
7. Then the circumradius r of the corresponding atomic surfaces is scaled
by a factor 72 and their positions are permutated along the diagonal from
s1—1la— 13— 54 to l3 — s1 — 84 — l2. Scaling the 4D basis by 72 instead, scales r
by 7 and we get the arrangement s4 — ls — lo — s1. For scaling by 72, r scales
with 7% and we get lo — s4 — s1— 3, while for 7% r scales with 7° and the atomic
surfaces are back to their original positions. The closeness condition is fulfilled
in all these cases, but in different ways. Since the tiling is invariant under the
described scaling, this is also the case for its periodic average structures and
its Fourier transform (diffraction pattern).

3.6.4.3 Example: Decagonal Quasicrystal Built
From Layers of Penrose Tilings

In the following the frequently used pentagonal setting is employed. The Pen-
rose tiling, PT, (see Sect. 1.2.3.1) [33, 34] can be constructed from two unit
tiles: a skinny (acute angle o = 7/5) and a fat rhomb (acute angle o« = 27/5)
with equal edge lengths a, and areas a?sin 7/5 and a2 sin 27 /5, respectively.
Their areas and frequencies in the PT are both in a ratio 1 : 7. The con-
struction has to obey matching rules, which can be derived from the scaling
properties of the PT (Fig. 3.28).

The set of vertices of the PT Mpr is a subset of the vector module

M = {r = Z?:o niarei‘ei = (cos 27i /5, sin 277@'/5,0)}. Mpt consists of five
subsets

Mpyp = Ub_yM; with My = {w”(rk)’nl(rk) €Thi=0,... ,4} (3.131)

and v = Z?:o d; (n; + k/5),n; € Z. The i-th triangular subdomain Tj;, of
the k-th pentagonal atomic surface corresponds to
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Fig. 3.28. Scaling properties of the Penrose tiling. In (a), a PT (thin lines) is
superposed by a PT (thick lines), which is dual to the original PT and results from
scaling by S. In (b), the scaling by S is shown, which yields a PT congruent to
the original one but enlarged by a factor 72 and rotated by 27/10. The scaling
operation by S*" leaves a pentagramm invariant, mapping P° to P? to P* in (c).
(d) Pentagrammal scaling applied to the diffraction pattern of the PT decorated

with point atoms

Ty, = {t =xi€ +Ti11€i11

xT; € [0, )\k],xi+1 S [0, AL — 1’1]}

(3.132)

with Ay the radius of a pentagonally shaped atomic surface: \g = 0, for Aq ... 4
see (3.138). Performing the scaling operation S*Mpr with the matrix

01010 700l 0 0
01110 070, 0 0
S*=]111100 —loo1l o o0
10100 000[—1/r 0
00001/ . 000/ 0 —1/r

_ <FII (()S*)F%?S*)>V* _
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X4 ]

)» A L

Fig. 3.29. Hyperbolic rotation in superspace. A given point P° of the first atomic
surface is successively mapped upon the sites marked by P!, P2, P3, P* P° In
each step its zs-component is decreased by a factor —1/7 and its z1-component
is increased by a factor 7. The drawing corresponds to the characteristic (10010),,
section of the Penrose tiling

yields a tiling dual to the original PT and enlarged by a factor 7. Only scaling
by S%" results in a PT (increased by a factor 74™) of original orientation (Fig.
3.28). Then the relationship S**Mpt = 74" Mpr holds. S? maps the vertices
of an inverted and by a factor 72 enlarged PT upon the vertices of the original
PT. This operation corresponds to a hyperbolic rotation in superspace [15]
(Fig. 3.29).

The rotoscaling operation I'(10)S? leaves the subset of vertices of a PT
forming a pentagram invariant [15] (Fig. 3.28(c)).

Characteristic sections and projections of the embedded decagonal struc-
ture are shown in Figs. 3.30 and 3.31. In Fig. 3.30 the direction of oblique
projection is shown for obtaining the most important PAS.

In the (5+1)D description, the atomic surfaces of the PT correspond
to four equidistant planes. These are cut out of the 3D polytope, which
results from the projection of the 5D hypercubic subunit cell onto 3D
perp-space (Fig. 3.32). The long diagonal of this rhombicosahedron runs along
000010}y, from 000000 to the vertex 111110 (D-basis). By projection
of the (5+1)D lattice onto the (441)D one, the atomic surfaces can be ob-
tained in the minimum embedding space. This has to be done so that the
vertex 111110, with the coordinates (0000+/50) (V-basis), is mapped onto
11110, with the coordinates —+/5/2(20020) (V-basis). The projection ma-
trix reads
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Fig. 3.30. Characteristic (10010),, section of the Penrose tiling together with the
parallel (above) and perp-space (left) projections of one 5D unit cell. In the lower
right unit cell, the oblique projection direction [11110] is highlighted. The PT in the
bottom right corner indicates the orientation of the characteristic section

10000 —v2
01000 0
P50 — 00100 0 : (3.134)
00010 —+2
00001 0 /,

3.6.4.4 Structure Factor

The structure factor of a decagonal phase with Penrose tilings as layers can
be calculated according to (3.12). The geometrical form factors gx for the
PT correspond to the Fourier transforms of four pentagonally shaped atomic
surfaces (3.13) with the volume of the projected unit cell

4 2 4
fo = 5o |(T+7)sin = + (24 r)sin = . (3.135)
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Fig. 3.31. Characteristic (01010),, section of the Penrose tiling together with the
parallel (above) and perp-space (left) projections showing the surrounding of vertices
lying in the section. In the perp-space projection, two out of the 10 symmetrically
equivalent projected 5D unit cells have been omitted for the sake of clarity

Integrating the pentagons by triangularisation yields

1 2
gr (HY) = e sin (571-) X
4 A; (eiA.7'+1>\k _ 1) —Aj (eiAjAk _ 1)

jz::o AjAjp (A — Aj)

(3.136)

with j running over five triangles of a pentagon with radius A, 4; = 2rH'e;
and

0
4 0
H™ =7 (H)=a") by 0 : (3.137)
j=0 cos 6%
sin 824

5 14
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Fig. 3.32. (a) 5D hypercubic subunit cell of the Penrose tiling in the (5+1)D
embedding projected onto the 3D perp-space gives a rhombicosahedron. Since the
(54+1)D embedding uses a redundant basis vector, the atomic surfaces of the Penrose
tiling are just a subset of this rhombicosahedron, i.e. five equidistant pentagonal
planes (light-gray, online:yellow). The fifth plane intersects the polytope in the origin
in just one point. Shifting the set of cutting planes along the long diagonal gives
another set of atomic surfaces corresponding to one of the generalized Penrose tilings
(dark-gray, online: blue) [33]. In (b), the set of atomic surfaces is scaled by a factor
772 which inflates the corresponding Penrose tiling by a factor 72

The radii of the pentagons are

2 2
— A fr—
57—20,* ) 2,3

A1g = (3.138)

5Ta*
The edge length a, of the rhombic unit tiles is for this size of the atomic
surfaces a, = 272/(5a*). The point density D, of the PT in par-space is
according to 3.45

Z tan 2?” =72 /{a?[sin (7 /5) + 7sin (27/5)]}. (3.139)

The atomic surfaces of the Penrose tiling can be partitioned into sections that
correspond to vertices with the same local coordination in par-space. Pro-
jecting all nearest neighbors of a hyperatom onto V+ determines all different
Voronoi polyhedra in par-space (Fig. 3.33).

Any point within a special region is determined by the neighboring hy-
peratoms that share this region. The central small pentagon, for instance, is
related to atoms in par-space with five neighbors located at the vertices of a
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el

P

Fig. 3.33. Partitioning of the atomic surfaces corresponding to the eight different
vertex coordinations of the PT. The atomic surfaces in p(11110)p with p = 1/5 and
p = 2/5 are depicted. Those in p = 3/5 and p = 4/5 are related by an inversion
center [33]

pentagon. Depending on the atomic surface, the edges originating from the
vertex are single or double arrowed.

Schematic diffraction patterns of the centrosymmetric PT decorated with
point atoms in par- and perp-space as well as the radial distribution func-
tions of the structure factors as a function of H!l and H+ are shown in Fig.
3.34. The number of weak reflections increases with the power of 4, that of
strong reflections quadratically (strong reflections always have small H* com-
ponents). It is remarkable that the phases of strong reflections are mostly zero
(sign +). Three branches of reflections are clearly seen (Fig. 3.34(d)), which
result from particular phase relationships of the four atomic surfaces.

To illustrate the origin of the branches, several cases of centrosymmet-
ric structures are shown in Fig. 3.35. According to (3.12), we can write
the structure factor for a centrosymmetric structure with one hyperatom
in the asymmetric unit located on the body diagonal of the 4D unit cell,
F(H) = f (HI|) g (H*) cos 2nHr. Since we use point atoms, f (|HI|) = 1,
and Hr can be replaced by k(h1 + ha + hs + hy).

In Fig. 3.35(a), there is a decagonal atomic surface in the origin, k = 0;
therefore, the phase factor equals one, and just one branch results. If the
decagon is located at the inversion center at k = 1/2, two branches with
opposite phase result for the reflection classes with (hy + he + hs + hy) even
or odd (d). For k = 1/5, the phase term can adopt the values 1, cos 27i/5,
i = 1,2 (b) corresponding to three branches. Analogously, the number of
branches in the other cases can be derived. It should be kept in mind, that
in the cases (b), (c), (e) and (f) the number of hyperatoms is always two,
sitting in positions related by a center of symmetry. The number of branches
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Fig. 3.34. Schematic diffraction patterns of the Penrose tiling decorated with
point atoms (a, = 4.04A) in (a) par- and (b) perp-space. The radial distribu-
tion functions of the structure factors are shown as a function of H! (¢) and H*
(d). Three branches of reflections are clearly seen, which result from particular
phase relationships of the four atomic surfaces. All reflections are depicted within
10721(0) < I(H) < I(0)and 0 < H!' < 2.5 A™". The axes in (a) and (b) are lettered
in A™?

is not directly related to the number of hyperatoms, it mainly depends on the
positions, if there are at least two hyperatoms per unit cell.

3.6.4.5 The Penrose Tiling in the IMS Description

Alternative to the QC embedding discussed above, the IMS setting can be
used. This can be quite useful for the geometrical description of phase tran-
sitions or for the derivation of periodic average structures (PAS) of the PT.
For that purpose, the 5D hyperstructure has to be sheared parallel to the
par-space in a way that the structure along the par-space cut remains invari-
ant (Fig. 3.36). This can be done applying the shear matrix Al to the basis
d2° i=1...5
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Fig. 3.35. Radial distribution functions of structure factors of different tilings as
a function of H. The same 4D lattice parameters have been used as in Fig. 3.34.
In (a) one decagonal atomic surface is placed on the origin, in (d) at 1/2(1 1 1 1).
One small pentagonal atomic surface is placed each at k(1 11 1) and the respective
centrosymmetric position; (b) k =1/5, (c) k = 1/10, and (e) k = 1/4, (f) 1/8. All
reflections are depicted within 10727(0) < I(H) < I(0) and 0 < Hl < 2.5 A™'. The
axes in (a) and (b) are lettered in A~*

100 0 O
010-7"2 0
Al=fo01 0 -7
000 1 0
000 0 1

v

(3.140)
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The new basis d%MS, i=1...5, of the sheared lattice X™S reads

571
QC ¢ 2 0
d™MS — _Al(dQC +d3°) = | 0 :
3—71
0 /v
0
o e 5(3—7)71/2
dMS = —Al(d$C — dP°) = e 0 ;
0
V24T v
0
0
dMS = _All(@Q¢ + 9% = — 0 ;
24T
0 /v
0
9 0
dMS = Al(@RC — d9°) = 0 , (3.141)
Sa* 0
3-7 )

with d15MS = d?c. The vectors dgMS and dM5 have only perp-space compo-
nents unequal to zero.

The par-space projection of the sheared 5D hyperstructure gives one of the
infinitely many possible periodic average structures (PAS). The 16 corners
of the 4D subcell related to the quasiperiodic plane project onto the four
corners of a rhombic unit cell, which are part of an orthorhombic C-centered
lattice.The C face is perpendicular to [00100]"" and the basis vectors a2V, i =
1...3, read

2
a®v = 7ll(aIM%) = s 0 ;
0 /v
9 0
o = = 2 ((s-rir )
a 0 .
1 0
ag" = 7ll(alMS) = -~ 0] . (3.142)
1
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Fig. 3.36. The PT in the IMS setting. The 5D hyperstructure set up in the QC
setting (Fig. 3.30) has been sheared by the shear matrix Al (3.140). The indexing
of vertices corresponds to that of the QC setting
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3.6.4.6 Periodic Average Structure from the QC-Setting

Fully equivalently, a periodic average structure can be directly obtained from
the QC-setting by oblique projection. In the following example, the 5D hyper-
structure is projected along [11110],, and [41110],, onto VI (Figs. 3.30 and
3.37) [45].

The projector 7!l can be easily obtained from a transformation of the
basis d;, i = 1,...,5 to a new basis spanned by the vectors dj = (11110)p,
d, = da, d = (41110) p, and d; = d4. The projector

1 —7v3— =1 74l
1001 —7/3—171 2\/502 — 10

rl={0100 -7 =S [ Ocosf5 —cos 500 |, (3.143)
a
0010 0 v 0 0 0 01/,
maps the basis of the 5D hyperlattice d;, ¢ = 1,...,5, onto a monoclinic
reference lattice spanned by the vectors a®, i =1,...,3,
1 sin {5
av __ _ 2 av __ H — 2 T
ar =ald) =2 (0] . ay=aldy) = 2 [cosh | |
v v
0 0
ag" :Tl'”(d5) = ai* 0 W‘l(dl) =10 y ﬂ'”(dg) = 7Tl'”(dg+d4).
1) 0/
(3.144)
Thus, the lattice parameters of the PAS result to af¥ = a3 = 2 (27— 1) =
ar(3—17)/7, and a§¥ = 1/as, a3 = 2= (Fig. 3.37). Since the true symmetry of

Fig. 3.37. Unit cell of the PAS of the Penrose tiling. All vertices of a PT project
into the projected atomic surfaces. By the projection, the pentagons are scaled by
factor 72 (1/7) along the long (short) diagonal of the unit cell. The boundaries of
the projected atomic surfaces give the maximum distance of a tiling vertex from the
reference lattice node
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the PAS is orthorhombic, the monoclinic unit cell should be transformed to a
C centered orthorhombic unit cell with lattice parameters

3 T
9 sin {5 +1
COoS =

- % 10 )
\/ga 0

al¥ = 7l(d3) =

14
av ”(d d ) 2 sin 110 71'_ !
ay” = 4—dz) = —=— oS 75 ,
\/SCL 0 v
1 0
ay' =7lds) == (0] , (3.145)
a5 1 y

and a¥ = a,(3 —17), a§" = a¥(v/3 —7)/7, and a§’ = 1/as. A general lattice
node (ny nan3ngns)p is projected on a node (M1 man3)ay = (—nz +ng Ny —
n3 ns)p of the PAS. Consequently, all atomic surfaces linked to nodes that
differ only by vectors (njnsmnsngns)p are projected onto each other (see
Fig. 3.38).

With the constraint of equal densities of the QC and its average structure
an occupancy factor of (3 — 7)/7 = 0.854 results for the averaged atoms, i.e.,
the distorted pentagons (Fig. 3.37). Thus, every vertex of the PT lies within
a different projected atomic surface. However, 14.6% of all projected atomic
surfaces contain no vertex at all (see Fig. 3.38). This is similar to an average
structure of an IMS with displacive and density modulation. The packing
density of the PAS, i.e., the fraction of the unit cell covered by the projected
atomic surfaces equals 2/(37 + 1) = 0.342.

There are overlap regions, D of each large pentagonal atomic surface, Q
and K of the small ones (Fig. 3.38). These overlaps correspond to the cases
where the short diagonal of a skinny unit rhomb (connecting vertices of types
D and K or D and Q) lies fully inside a projected atomic surface. The overlap-
ping regions cover a fraction of 1/(572) = 0.076 of the total area of the atomic
surfaces. This corresponds to one fifth of the frequency of skinny rhombs in
a Penrose tiling. Each doubly occupied averaged atomic surface is accom-
panied by two unoccupied ones. The frequency of singly occupied averaged
hyperatoms is 0.7236, of doubly occupied ones 0.0652 and of unoccupied ones
0.2112. Each fat unit tile along all worms (chains of fat and skinny PT unit
rhombs with parallel edges) propagating perpendicular to the aforementioned
short diagonals contains one empty averaged hyperatom. Thus, we have to
sum up the frequencies of the vertices connected with such configurations.
The worms propagating along the four other directions contain empty aver-
aged hyperatoms only at the crossings with the first one.
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Fig. 3.38. (a) Perp-space projection of two unit cells of the PT related by the
vector (10000)p. The thick line marks one unit cell of the structure that is mapped
into one averaged atomic surface by oblique projection. The overlapping regions of
the atomic surfaces of type D, K, and @ are marked dark gray. (b) PT overlaid by
its PAS. Every vertex of the PT is located inside a projected atomic surface. The
vertices marked D and @, generated from the dark gray regions in (a), share one
projected atomic surface. Each fat unit tile along the shaded worm (lane of tiles)
contains one empty projected atomic surface. (¢) Schematical diffraction pattern of
the PT with reciprocal lattice of the PAS drawn in. The main reflections are located
on the lattice nodes [45]
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The reciprocal lattice of the average structure is spanned by the vectors

cos 75 0
aj =a"V3—7| —sinqj , asV=a"v3—-7|1 , a3’ =aj.
0 v 0/

(3.146)

In case of the monoclinic lattice, all reflections of type H = (hy ha h3)ay =
(0 hg — (hy + h2) hy h3)p are main reflections (all others are satellite reflec-
tions) according to

0 0 00
ho 0 10 hy
—(hl + hg) =1 -1-10 ho . (3147)
h1 1 00 hs .
e ), \o0 01/,

The weight of the PAS relative to that of the actual QC structure can be
estimated by the ratio of the integrated intensity of main reflections to all
reflections (see Fig. 3.38). For realistic conditions, it amounts to 12.6% in the
zero-layer with hs = 0 (X-ray diffraction, all vertices of the PT decorated
with Al atoms, a, = 4A, isotropic ADP B = 1A% 0 < sinf/\ < 1A%,
—13 S hl S 1371 = O7 [N ,4 with ho = 7(h1 +h2+h3+h4), 182 972 reflections
within 14 orders of magnitude). If the fact that at the same time this average
structure is virtually present at five different orientations is taken into account,
the weight increases to 37.5%.

Since there are always five symmetrically equivalent ways of oblique pro-
jection, each vertex of the PT must lie at the intersection point of the five
projected images of the respective atomic surface where the vertex is resulting
from by a par-space cut (Fig. 3.39). This intersection point is located in the
barycenter of the lattice nodes Ly ... L4 of the five monoclinic PAS lattices,
the union of which we call 5-lattice in the following.

Periodic average structure (PAS) and dual-grid method Each recipro-
cal lattice vector H is perpendicular to a set of net planes (lattice planes) of the
direct lattice, and its norm is inversely proportional to their distances. The
intensity I(H) of the respective Bragg reflection depends on the integrated
scattering power of the atoms located on these net planes (atomic planes).

The same is true for nD hypercrystals, resulting from embedding of tilings,
where the net planes of the nD lattice are occupied by hyperatoms. The traces
of each set of symmetrically equivalent nD net planes, when cut by the par-
space, form N-grids, with N the rotational symmetry of the nD lattice. In
par-space, the tiling is dual to each N-grid. This is illustrated in Fig. 3.39, on
the example of the Penrose tiling.

An N-grid is the superposition of N lattices of a particular PAS. By appro-
priate oblique projections, the hyperatoms are projected along each net plane
giving the projected hyperatoms that form the PAS.
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Fig. 3.39. Set of five projected atomic surfaces resulting from the five symmetrically
equivalent oblique projections of one atomic surface centered in My (inset upper left).
The point P at the edge of the atomic surface generates the tiling vertex P where
cut by par-space. P is located in the barycenter of the lattice nodes Lo, ..., L4 of
the five monoclinic PAS lattices

3.6.4.7 Approximant Structures

The symmetry and metrics of rational approximants of 2D decagonal phases
with rectangular symmetry have been discussed in detail by [31], and for some
concrete 3D approximants by [52] and [7]. However, the authors use different
approaches. In the sequel we will derive the shear matrix on the settings and
nomenclature introduced in Sect. 3.5.3.6. According to the group-subgroup
symmetry relationship between a quasicrystal and its rational approximants,
the approximants of the decagonal phase may exhibit orthorhombic, mono-
clinic or triclinic symmetry. Since only orthorhombic rational approximants of
the decagonal phase have been observed so far, we will focus on that special
case. Preserving two mirror planes orthogonal to each other allows only matrix
coeflicients A1 and Ass besides the diagonal coefficients A;; = 1,i=1,...,5
in the shear matrix (3.7) to differ from zero. The action of the shear matrix is
to deform the 5D lattice in a way to bring two selected lattice vectors into the
par-space. If we define these lattice vectors along two orthogonal directions
(P- and D-direction, respectively (Fig. 3.40), according to
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d| D

4

Fig. 3.40. Basis vectors in direct par-space of a decagonal QC. Pairwise combination
defines the P and D direction

p+q
2(3—1)

rp=—{p(dy+ds) +q(di +d4)} = S

0 (3.148)
p+7%q
0 v
and
0
20y3—7 | TS

PDZ{T(dl—d4)+S(d2—d3)}:T 0
0

—r+7s5/)y

with p,q,r, s € Z the mm2 point group symmetry is retained.
From the condition that the perp-space components of the approximant
basis vectors have to vanish

ot (I‘p) =gt (— {p(d2+d3)+q(d1 +d4)}):0 (3149)
7t (rp) =7t ({r(di —dy) +s(dy —d3)}) =0 (3.150)
we obtain with (3.123)
1 0000 2p+q
0 1 000 0
y 0 0100 0 =
a Ay 0 010 p+12q
0 A5001) 0 v
p+q p+q
0 ' 0
A 0 = 20-7) 0 (3.151)
Ap (TPp+4q) +p+ 7% 0
0 0
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and
1 0 000 0
0O 1 000 Tr + 8
2./3 _
% 0 0100 0 —
“ Ay 0 010 0
0 A52 001 % —r 4+ T8 %
0 0
‘ T+ s ’ T + S
R 0 = () . (3.152)
0 0
Asap(Tr+s)—r+7s /), 0 v
Therefrom, the coefficients A4; and Ass result to
P+ 7'2q r—TS
Ay = — Agy = 3.153
41 sz i q7 52 r+s ( )

and the basis vectors spanning the unit cell of the (p/q, r/s)-approximant are
given by

2
23—7) (TP 1Y

ay? =l (rp) = o 0 :
0
14
0
Ap H - 2\/3—7
32 s (I‘D) = 57 T + 8 s
0
1%
Ap _ ] _1 0
a;? =7l (ds) = o 0 . (3.154)
5\ 1

\4

For the most common approximants the coefficients p,q,r, s correspond to
Fibonacci numbers F),, defined as

Foyw=F,+F,—1, Fh=0 F=1. (3155)
If we set p = Fri0,q = —F,, 7 = Fyy1,s = F, then we obtain the

(=Fpi2/Fn, Fi1/ Fu)- or, for short, n/n’-approximants (Fig. 3.41) with
lattice parameters

2(3—
‘a?p — (5a* T) T7),+2 = a, (3 _ 7_) Tn7
2v3 — / / 1
‘aép =~ T+l = /3 —rrm - ‘aSAp == (3.156)

5
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Fig. 3.41. Characteristic [10010]y section of the Penrose tiling (light gray) super-
imposed on its rational approximant (black) with p = 3,¢ = —1. The lattice point
A is mapped upon A’ by shearing the 5D lattice

using the equality 7F, 11+ F, = 7""! and a, = 27%/(5a*). The approximants
of this type are centered orthorhombic if n mod 3 = (n’ + 1) mod 3. In this
case, not only rp and rp are lattice vectors but also (rp + rp)/2 as shown
by [7].

All Bragg peaks are shifted according to (3.8). Projecting the 5D reciprocal
space onto par-space results in a periodic reciprocal lattice. All reflections
H = (hyhohshyhs) are transformed to HAP = (h{'P hy'P hiP) with

(RP hy® 1) = ([~p(ha + hs) — q(hy + ha)] [r(h1 — ha) + s(ha — h3)] hs) .

3.6.4.8 Example: Periodic Average Structure of a Pentagon Tiling

In the following, we derive the PAS of a 2D decagonal pentagon tiling gen-
erated from a 4D hyperlattice, which is decorated by one decagonal atomic
surface at the origin of each unit cell (Fig. 3.42). The tiling as well as the
size and partitioning of the atomic surface correspond to the case DT /VT;
according to [30].

The 4D basis is given by

cosw—l

2 sin Giix .
i = cos E-Dr 1 ,oi=1,...,4. (3.157)
gin (6=

5 \%
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Fig. 3.42. The pentagon tiling consists of copies of five different kinds of Delone
tiles. A small and a large pentagon, an equilateral and an isosceles triangle, and
a trapezoid. On the right side, the tiling is overlaid with two different PAS. The
decagonal atomic surfaces have been distorted in the oblique projection. The upper
(online: blue) PAS has an occupancy factor of 0.9102, the lower (online: red) PAS
of 1.4727

If we set for simplicity a* = 2/5, then the atomic surface is defined by the
vectors

0

s V5= VB+VE+VE | 0 .

al” =~ ; i
v V2 cos T ’ ’

t I
S 5 %

with 1 < v < 7(7 4+ 2)/5. A tiling generated with v = 1.117 is depicted in
Fig. 3.42. It is constituted of copies of five different kinds of Delone tiles: a
small and a large pentagon, an equilateral and an isosceles triangle, and a
trapezoid.

Among all possible PAS resulting from strong Bragg peaks that have been
investigated (denoted by the letters a—f in Fig. 3.43), the most significant one
is based on the reflections 0001 and 0010. In this PAS (black (online: blue) grid
in Fig. 3.43, upper (online: blue) PAS in Fig. 3.42), only 9% or all projected
atomic surfaces are not occupied by tiling vertices. The PAS resulting from
other symmetrically equivalent reflections, defining the thick outlined gray
(online:red) grid in Fig. 3.43, has a much large occupancy factor of 1.4727
(lower (online: red) PAS in Fig. 3.42).
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\ .
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Fig. 3.43. Structure factors of the decagonal pentagon tiling as a function of |HJ‘|
(lower left part) and diffraction pattern in par-space (upper right part). The absolute
value of F(JH"|) decreases with increasing |[H*| and oscillates around zero. There
is only one branch as expected for a atomic surface positioned on the origin of
the hypercrystal structure. On the diffraction pattern, reflections are denoted that
have been chosen to create PAS. Symmetrically equivalent reflections are marked
by letters a—f. For a, the linear combinations of two chosen reflections are shown
as grids (online: red and blue). Reflections on these grids lie on the corresponding
cut-planes in nD reciprocal space

3.6.5 Dodecagonal Structures

Axial quasicrystals with dodecagonal diffraction symmetry possess dodecago-
nal structures. There is only a small number of examples known, most of them
are metastable. The embedding matrix can be derived from the reducible rep-
resentation I'(«) of the 12-fold rotation, ov = 12, which can be written as 5 x 5
matrix with integer coefficients acting on the reciprocal space vectors H. The
5D representation can be composed from the irreducible representations I,
Iy, and Iy shown in the character table below (Table 3.15).



148 3 Higher-Dimensional Approach

Table 3.15. Character table for the dodecagonal group 12mm (C12v) [20]. € denotes
the identity operation, @™ the rotation around 2nm/12, and 3, 3’ the reflection on
mirror planes

Elements & @ a? o? at o ol 3 o4
I 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 -1 -1
I 1 -1 1 -1 1 -1 1 1 -1
Iy 1 -1 1 -1 1 -1 1 -1 1
I 2 V3 1 0 -1 —/3 =2 0 0
Ts 2 1 -1 -2 -1 1 2 0 0
I- 2 0 -2 0 2 0 -2 0 0
Iy 2 -1 -1 2 -1 -1 2 0 0
Ty 2 -3 1 0 —1 V3 -2 0 0

The 12-fold rotation « can be described in its action by the reducible
matrix

00010
10000

ra2=,01010 (3.159)
00100

00001/,

with trace 1. If we consider this rotation taking place in 5D space (D-basis)
then we can also represent it on a Cartesian basis (V-basis). By this transfor-
mation the trace must not change. Since the characters correspond to the
traces of the respective symmetry matrices we can identify the character
Is(a) = /3 and I'y(a) = —/3 as traces of the symmetry matrices

cos 35 —sinff) 1 (V3 -1 cos F —sinF\ 1 /-3 —1
sin 2% cos 2% T2\ 1 V3) 0 \ginlor (o lom 2\ 1 —v3) -
12 12 /)y v 12 12 /)y v
(3.160)

Consequently, in 5D space the then irreducible integer representation of I'(«)
in (3.159) can be composed of the two 2D representations I'5(a) and I'y(«)
plus, for the periodic direction, I («)

B

00010 5 —300 00
10000 1 ¥l o o I5(12)] 0 0
ra2=|oto1o0|l =0 o1l o o |=| 0 [Ii(12)] o0
00100 0 0lo—¥8 _1 0 0 |Iy(12)/
00001 5
D 0 0 [0 5 — 75 Vv
(3.161)

This gives a coupling factor 5 for the components of the 12-fold rotation in
perp-space and allows the definition of a suitable basis in reciprocal space.
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3.6.5.1 Reciprocal Space

The electron density distribution function p(r) of a 3D quasicrystal can be rep-
resented by the Fourier series given in (3.41). All Fourier coefficients, i.e., the
structure factors F'(H), can be integer indexed based on four reciprocal basis
vectors: H = 1| h;af with aF = a* (cos 2mi/12,sin 27i/12,0), i = 1,...,4,
a* = |aj| = |aj| = |aj| = |a}|,aZ = |a}] (0,0,1) and h; € Z (Fig. 3.44).

The vector components refer to a Cartesian coordinate system in par-space
VI, The set of all diffraction vectors H forms a Z-module M* of rank five.
The vectors a}, ¢ = 1,...,5 can be considered as par-space projections of the
basis vectors df, i = 1,...,5 of the 5D reciprocal lattice 2 with

2mi
COS T3

(3.162)

o
|
)
*
o
o~
|
—
~
="
O ¥
|
)
ot
cor oo

12 |4 14

The coupling factor between par- and perp-space rotations equals 5, ¢ is an
arbitrary constant which is usually set to 1 (as it is also done in the following).
The embedding matrix W (3.4) results to

g PENET
a b a=7 di C a=" di
« @’
a4* a, N 3
a,
. *
al al
i
5
a, a,
— ol — ol
d e a=r1'd, f a=1'd
a
a, R a,
a
a, 4 a,
a
4
a,
a al al
1 a
a a,

Fig. 3.44. 5D reciprocal and direct space bases dj,d;,i = 1,...,5 projected onto
the (a, b, d, e) par- and (c, f) perp-space
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(:0521—’2T cos%cos?—;T COS%O ? % 0 —% 0
sin%r sin%r sin%r sin%T 0 % § 1 § 0
W = 0 0 0 0 1|= 0 0 0 0 1
cos%cos%cos%cos%o _§ % 0 _% 0
sin%7r sin%r sin%r sinlf;O % _gl_éo
(3.163)
The direct 5D basis is obtained from the orthogonality condition (3.5)
2m(i—1) 27 (i+1)
COS =5 Cos 53—
sin 270—1) sin 27041
L= 1 0 =12 L= 1 0
d; V3at 27 (5i+1) , t=12 d V3a; 27 (5i411) 7
COS —12 CcOS 1
. 2m(5i41) . 2m(5i411)
SN ——=5— sin =—=—r=--/
1 12 v ! 12 v
0
0
i=34, ds=2L|1 (3.164)
“lo
0/ v
The metric tensors G and G* are of type
A0BOO
0A0BO
B0OAOO (3.165)
0B0AO
0000C

with A = 2a}?, B = a3?, C = a%? for reciprocal space and A = 2/3a}?, B =
—1/3a3%, C = —1/a%? for direct space. Therefrom, the direct and reciprocal
lattice parameters can be derived as

df =V2a%, di=ai, ;=060 @s=90°ij=1,....4 (3.166)

and

2 1
V2 ,j=1,...,4, ds=—

di: )
V3a* a

s ai_j:1200, ai5:900’ Zm] = 17.“74 .

(3.167)

This means that the unit cell has hyperhexagonal symmetry and the 4D sub-
space orthogonal to the periodic direction is hyperrhombohedral. The volume
of the 5D unit cell results to

V= \/det (G) = — (3.168)

LZP
3a*tag

Ut x
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Fig. 3.45. Characteristic (x100240) section through the 5D unit cell together with
its projections onto par- and perp-space. The 16 corners of the unit cell are indexed
on the D-basis

A characteristic section through the 5D unit cell together with its projections
onto par- and perp-space is shown in Fig. 3.45.

3.6.5.2 Symmetry

The diffraction symmetry of dodecagonal phases, i.e., the point symmetry
group leaving the intensity weighted Fourier module (diffraction pattern) My
invariant, is one of the two Laue groups 12/mmm or 12/m. The 15 space
groups [36] leaving the 5D hypercrystal structure invariant are that subset of
the 5D space groups, the point groups of which are isomorphous to the seven
3D dodecagonal point groups (Table 3.16).

The orientation of the symmetry elements of the 5D space groups is defined
by the isomorphism of the 3D and 5D point groups. The 12-fold axis defines the
unique direction [00100],, or [00001],, which is the periodic direction. There
are two different orientations of mirror planes and dihedral axes possible with
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Table 3.16. The seven 3D dodecagonal point groups of order k and the fifteen
corresponding 5D dodecagonal space groups with reflection conditions [36]. The
notation is analogous to that of hexagonal space groups. The first position in the
point and space group symbols refers to generating symmetry elements oriented
along the periodic direction, the second position to the symmetry elements oriented
along reciprocal space basis vectors and the third position to those oriented between
them

3D Point Group k 5D Space Group  Reflection Conditions
122 2 ..
Ezz 48 Paa% No condition
mmm
126 2 2
p=Lz2 One of the two families of
m ecm . . .
mirror lines in odd layers
extinct
PE g 2 Both families of mirror lines in
mec odd layers extinct
12 24 PE No condition
m m
12
p=s 0000hs : he = 2n
m
122m 24 P122m No condition
P122¢ Mirror lines in odd layers
extinct
12mm 24 P12mm No condition
P12gem One of the two families of
mirror lines in odd layers
extinct
P12cc Both families of mirror lines in
odd layers extinct
1222 24 P1222 No condition
P12;22 0000h; : jhe = 12n
12 12 P12 No condition
12 12 P12 No condition
P12; 0000h; : jhe = 12n

respect to the phys-space star of reciprocal basis vectors. If the normal to the
mirror plane, or the dihedral axis, is oriented along a reciprocal basis vector it
gets the symbol m, or d, and it is denoted “along”, otherwise it is “between”
and the symbols get primed, m’ and d’. Examples for the action of these two
types of mirror planes are shown in eqs. 3.113 and 3.113. The normal to the
mirror plane my is along to a3, that of mis is between aj and aj.

The reflection and inversion operations are equivalent in both subspaces
VIland V4. I (12), a 27/12 rotation in VIl around the 12-fold axis corresponds
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to a 107 /12 rotation in V1 (see Fig. 3.44):

00100 1 —olo o
01010 Y3 _10l0 0
I'(my)=|10000| =| 0 0 1/0 0 (3.169)
00010 0o 0 0} ?
00001
D- 0 0 0¥-1/,
01010 —v3 L oo[-¢ -1
To S U S I
101(_)0 2 T 3/3 2 2V3
I'(myp)=]00010]| =] 0 0 10 0 (3.170)
00100 ¥3 1 g 38 _1
00001/ . SO S I
2 23 2 2v3/ vy

The translation components of the 12-fold screw axis and the c-glide planes
are along the periodic direction. The set of reciprocal space vectors M* is
invariant under scaling with the matrix S,S™M* = s M*, with s = 1 + /3
(Fig. 3.46). The scaling matrix reads

A 4,"=(01110)
(10210) (11100)

(12010)

(02110)
a,"=(01010)

Fig. 3.46. Reciprocal space scaling of the dodecagonal structure by the matrix S.
The scaled basis vectors keep their orientation and are increased in length by a factor
1+ 2cos 21/12 = 1 ++/3 = 2.7321 (marked gray). The example shown explicitly is
a3’ = aj + a3 + a3
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11010 1+v3 0 0l o0 0
21100 0 1430 0 0
S=|o01120 - 0 0 1 0 0 (3.171)
10110 0 0 01—-v3 o0
00001/ . 0 0 0 0 1-v3

\%4

3.6.5.3 Example: Periodic Average Structure of a Dodecagonal
Tiling

In the canonical description, the V' basis for a 2D dodecagonal tiling (Fig. 3.47)
in respect to the D basis is given by

A4l 1 ¢ —cg —c3 ¢4 Co
W1 0 s —Sy —s3 84 s
v L1 vy L1 1 ¢ ¢4 —c3 —co ¢y (3.172)
= aq — = a4 — . .
V3| we N I T
G ETYRE A
W I s S S e
3/ b vV2ov2 ov2 V2 V2 V2 /) p

Therein, the vectors vi and w; span the 2D par-space VI, v, and wy span
V-, and vs and ws span Vit with V =Vl vVt =VIig Vo Vi, ¢ =
cos(2mk/12) and s = sin(2wk/12). The D basis is given by D = V~1. The
length of the basis vectors D is 1/a*. A tiling edge length of 1 is obtained
with a* = 1/v/3. The acceptance window is given by the orthogonal projection
of the hyperlattice unit cell upon perp-space.

The 2D atomic surfaces are given by six equidistant cuts of the window
perpendicular to (111111)p and (111111)p at i/6,1 = 1,...,6 along the cell
diagonal in direction vg + wj. For the atomic surfaces and tiling originating
from an unshifted acceptance window (window origin at lattice origin), see
[39]. Here, we look at a tiling which is generated by an acceptance window
positioned with its center at the origin of the hyperlattice. The resulting 2D
atomic surfaces are shown in Figs. 3.48 and 3.49. They have a volume in V;*
and are 0D in VI and V3.

The best PAS for the dodecagonal tiling is shown in Fig. 3.50. The corre-
sponding reciprocal vectors are (012100) and (210001). The unit cell parame-
ter of the centered PAS is 0.9282 and only 7% of the projected atomic surfaces
do not contain to tiling vertex. The distribution of vertices is homogenous in
each projected atomic surface, and the deviation density adds up with the
number of overlapping projected atomic surfaces within their boundaries.

A PAS without centering and with small maximal deviation of the vertices
from the PAS nodes is given in Fig. 3.51. Here, all atomic surfaces project onto
each other. The corresponding reciprocal vectors are (012100) and (210001),
the unit cell parameter of the PAS is 0.4641, and the occupancy factor is very
small with 0.2679. The symmetry of the atomic surfaces is preserved by the
oblique projections in both PASs.
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Fig. 3.47. Dodecagonal tiling, as generated by the canonical projection method,
with the acceptance window centered at the origin of the nD lattice

3.6.6 Tetrakaidecagonal Structures

Axial quasicrystals with tetrakaidecagonal diffraction symmetry possess
tetrakaidecagonal structures. There are only a few approximants known and
no quasicrystals so far. To find the embedding matrix one has to consider the
generating symmetry operations, i.e., the 14-fold rotation v = 14, a mirror m,,
and the inversion operation 1. These symmetry operations can be written as
7 x 7 matrices with integer coeflicients acting on the reciprocal space vectors
H. The 7D representation is reducible to par- and perp-space components,
which can be combined from the irreducible representations 17, I7, I'y shown
in the character table Table 3.17 under the condition that the trace of the 6D
matrix does not change.

For instance, the 14-fold rotation o and the reflections on the mirror planes
B = mgy (with normal parallel to a}) and S = mqs (with normal between aj
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Fig. 3.48. Atomic surfaces (online: blue) resulting from cuts of an acceptance window
centered at the origin of the hyperlattice. As they have no extension in V", their
positions in this perpendicular subspace are plotted by their occupation of nodes
on the black grid spanned by v3 and ws. Gray lines connect the atomic surfaces
resulting from one cut space perpendicular to Vs-. The points are lifted vertices of
the dodecagonal tiling

and a}) can be described in their action in 3D reciprocal space by the reducible
matrices

0000010 0011000
1000010 0101000
0100010 1001000
r(14)=10010010| , I'(my)=|0001000
0001010 0001010
0000110 0000100
0000001 0000001

D*

D*
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Fig. 3.49. Orthogonal 3D projections of the atomic surfaces upon the subspace
spanned by va, w2, and vs (middle and right part) and upon the subspace spanned
by va,ws, and vs + w3 (on the left). Each plane on the left part of the figure
represents a single cut space (perpendicular to vs and ws) and one set of resulting
2D atomic surfaces

Fig. 3.50. Centered PAS with overlapping projected atomic surfaces. The corre-
sponding reciprocal vectors are (012100) and (210001). The unit cell parameter is
0.9282. Only 7% of the PAS nodes do not correspond to a lattice vertex

0110000
1010000
0010000
I(m2)=]0010010 (3.173)
0010100
0011000

0000001/ .
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Fig. 3.51. PAS with complete overlap of the atomic surfaces belonging to one
lattice node and small maximal deviation of the tiling vertices from the PASL. The
corresponding reciprocal vectors are (012100) and (210001). The unit cell parameter
is 0.4641 and the occupancy factor is 0.2679

Table 3.17. Character table for the tetrakaidecagonal group 14mm (Ciay) [2]. €
denotes the identity operation, a™ the rotation around nz/14, and 8 the reflection
on a mirror plane

Elements &  «,a'? o? a'? e B,a%B ... aB,a’B ...
I 1 1 1 1 1
15 1 1 1 —1 —1
I3 1 -1 1 1 —1
Iy 1 -1 1 —1 1
Iy 2 2 cos 2r/14 2 cos 47 /14 0 0
Is 2 2cosdn/14 2 cos 87/14 0 0
I 2 2cos 6w/14 2 cos 127/14 0 0
Is 2 2cos8r/14 2 cos 167/14 0 0
Iy 2 2cos 10m/14 2 cos 20m/14 0 0
Io 2 2 cos 127r/14 2 cos 247/14 0 0

3.6.6.1 Reciprocal Space

The electron density distribution function p(r) of a 3D quasicrystal can be
represented by the Fourier series given in eq. 3.41. All Fourier coefficients,
i.e., the structure factors F(H), can be indexed with reciprocal space vectors
H= Z?Zl hy a; with h!, h! eR, hg € Z. Introducing in total seven reciprocal
basis vectors, all possible reciprocal space vectors can be indexed with integer
components: H = 21'7:1 h;af with af = a* (cos 2mi/14,sin 27i/14,0), i =
1,...,6,a% = |a3| (0,0,1) and h; € Z (Fig. 3.52).
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*_ * #_ o L g*
a a;*=nld, b a;=m,~d; c a*=nytd;
* * * *
. a; ag”  a
.
as ay” a” ag
* *
ag a’ @t as®  ay, a
a *
* 7
4 ;"
* a *
as 4 © act
a, s
a;=nld, a;=m,d; a;=my"d;

Fig. 3.52. 7D reciprocal (a—c) and direct (d—f) space bases dj and d;,i =1,...,7,
respectively, of the tetrakaidecagonal structure projected onto the par-space (a,d)
and the two 2D perp-subspaces (b,e) and (c,f). The vectors a; and a7 along the
periodic direction are perpendicular to the plane spanned by the vectors a}, ¢ =
1,...,6 and a;, 1 =1,...,6, respectively

The vector components refer to a Cartesian coordinate system in par-space
VI, The set of all diffraction v