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Preface

Crystal-structure analysis has become one of the most essential tools in chem-
istry and related disciplines. Several hundreds of thousands of crystal struc-
tures have been determined in the course of the years. The results obtained
from 1931 to 1990 were published year by year in Strukturbericht [1], later
Structure Reports [2]. Nowadays, crystal structures are deposited in several
large databases [3–8]. However, the mere accumulation of data is only of re-
stricted value if it lacks a systematic order and if the scientific interpretation of
the data leaves much to be desired.

Shortly after the discovery of X-ray diffraction from crystals by MAX VON

LAUE, WALTHER FRIEDRICH, and PAUL KNIPPING (1912) and the subse-
quent pioneering work by father WILLIAM HENRY BRAGG and son WILLIAM

LAWRENCE BRAGG, efforts set in to order the crystal structures found. By
1926 the number of crystal structures was already large enough for VIKTOR

MORITZ GOLDSCHMIDT to formulate the basic principles of packing of atoms
and ions in inorganic solids [9]. In 1928 LINUS PAULING set forth a number
of structural principles, essentially for ionic crystals, which he later repeated in
his famous book The Nature of the Chemical Bond, first published in 1938 [10].
Quite a few other approaches to show relationships between crystal structures
and to bring order into the constantly increasing amount of data were presented
and developed quite successfully over time. Most of these approaches, how-
ever, have one peculiarity in common: they make no or nearly no use of the
symmetry of the crystal structures.

The importance of symmetry relations in phase transitions in the solid state
was realized in 1937 by LEW LANDAU [11]. Around 1968 HARTMUT BÄR-
NIGHAUSEN developed a procedure to work out relationships between crys-
tal structures with the aid of symmetry relations [12]. Since then, chemists
have become more and more aware of the value of these symmetry relations.
Symmetry relations can be formulated mathematically. This offers a secure
foundation for their application and makes it possible to develop algorithms to
make use of computers.

The symmetry of crystals is presented in International Tables for Crystal-
lography, Volume A [13], by diagrams and with the aid of analytical geometry.
The methods of analytical geometry can be applied universally; they are based
on the techniques of matrix calculus and make use of the results of elementary
group theory. Since 2004, the supplementary volume A1 of International Ta-
bles for Crystallography has been available [14]. For the first time they contain
a complete listing of the subgroups of the space groups. This book shows how
to make use of these tables.



viii Preface

Part I of this book presents the necessary mathematical tools: the fundamen-
tals of crystallography, especially of symmetry, the theory of crystallographic
groups, and the formalisms for the necessary crystallographic calculations. As
often in the natural sciences, these tools may appear difficult as long as one
is not accustomed to their use. However, the presented calculation techniques
are nothing more than applications of simple theorems of algebra and group
theory.

Group theory has profound foundations. For its application, however, the
profoundness is not needed. The mathematical foundations are contained in the
presented formalisms. Calculations can be performed and consequences can be
drawn with these formalisms, without the need to duplicate their mathematical
background.

Those who have some familiarity with the symmetry of crystals, i.e. who
have worked with space groups, are acquainted with Hermann–Mauguin sym-
bols, know how to handle atomic coordinates, etc., may take a first look at Part
II to obtain an impression of the results that follow from the mathematical re-
lations. However, it is not recommended to skip the chapters of Part I. Don’t
be mistaken: crystallographic group theory and symbolism does have pitfalls,
and calculations are susceptible to errors if they are not performed strictly in
accordance with the rules.

Part II of the book gives an insight into the application to problems in crys-
tal chemistry. Numerous examples show how crystallographic group theory
can be used to disclose relations between crystal structures, to maintain order
among the enormous number of crystal structures, to predict possible crystal-
structure types, to analyse phase transitions, to understand the phenomenon
of domain formation and twinning in crystals, and to avoid errors in crystal-
structure determinations.

Appendix A deals with peculiarities of a certain kind of subgroup of the
space groups, the isomorphic subgroups, and discloses cross-connections to
number theory. Another appendix gives some insight into a few physico-
chemical aspects referring to phase transitions and to the theory of phase tran-
sitions.

A broad range of end-of-chapter exercises offers the possibility to apply
the learned material. Worked-out solutions to the exercises can be found in
Appendix D.

In the Glossary one can look up the meanings of special terms used in the
field.

One topic of group theory is not addressed in this book: representation the-
ory. Crystallographic symmetry does not deal with time. Representation the-
ory is needed to cover the symmetry properties of time-dependent phenomena
(such as vibrations). This is dealt with in numerous books and articles; we
could only repeat their content (see, e.g. [15–22]). However, some remarks
can be found in Chapter 15 and in Appendix C.

The book has many predecessors. It is based on earlier lectures and on
courses that were taught repeatedly since 1975 in Germany, Italy, France,
Czechia, Bulgaria, Russia, and South Africa. Lecturers of these courses were
first of all H. BÄRNIGHAUSEN (Karlsruhe), TH. HAHN (Aachen), and H.
WONDRATSCHEK (Karlsruhe), and, in addition, M. AROYO (Sofia, later Bil-



Preface ix

bao), G. CHAPUIS (Lausanne), W. E. KLEE (Karlsruhe), R. PÖTTGEN (Mün-
ster), and myself.

The text of Chapters 2–7 is due to H. WONDRATSCHEK, who allowed me
to use his material; he also revised these chapters after I had appended figures,
examples, exercises, and a few paragraphs. These chapters partly reflect lecture
notes by W. E. KLEE. Chapters 1, 10, 11, 15, and 16 essentially go back to
H. BÄRNIGHAUSEN and contain text by him; he also critically checked drafts
of these chapters. Parts of a script by R. PÖTTGEN, R.-D. HOFFMANN, and
U. RODEWALD were included in Chapter 17. I am especially grateful to all of
them. Without their manuscripts and without their consent to make use of their
texts this book could not have come into being.

Indirect contributors are G. NEBE (mathematician, Aachen), J. NEUBÜSER

(mathematician, Aachen), and V. JANOVEC (physicist, Liberec) by their sug-
gestions, and numerous discussions with H. WONDRATSCHEK. In addition, I
am grateful to further unnamed colleagues for suggestions and discussions.

Ulrich Müller
Marburg, Germany, November 2012
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Introduction 1

1.1 The symmetry principle in crystal
chemistry 2

1.2 Introductory examples 4

Crystallography is the science of crystals. The inner (atomic and electronic)
structure of crystalline solids as well as their physical properties are of central
interest. This includes the methods of structure determination and of mea-
surement of properties. A well-founded theoretical treatment is of special im-
portance to understand the connections and to find applications. In part, the
theories are strongly influenced by mathematics. Due to its strong interre-
lation with mathematics, physics, chemistry, mineralogy, materials sciences,
biochemistry, molecular biology, pharmaceutics, and metrology, crystallogra-
phy is more multidisciplinary than hardly any other field of science.

The theory of symmetry is of special importance among the theories in crys-
tallography. The symmetry of crystals, which also has influence on the physi-
cal properties, is specified with the aid of space groups.

Crystal chemistry is the branch of chemistry that deals with the structures,
properties, and other chemical aspects of crystalline solids. Geometric consid-
erations relating to the structures attract much attention in this discipline. In
this context it is a main objective to disclose relationships between different
crystal structures and to document the corresponding results in a concise but
also informative way. To this end, different approaches were presented over
time, which demonstrate the similarities and the differences of distinct struc-
tures from different points of view. For example, the main attention can be
directed to the coordination polyhedra and the joining of these polyhedra, or
to the relative size of ions, or to the kind of chemical bonding, or to similar
physical or chemical properties.

Symmetry has received attention for a long time in the description of sin-
gle structures—this is familiar to anyone who has been engaged in work with
crystal structures. However, concerning the comparison of structures, symme-
try considerations have for a long time been the exception. For certain, there
exist diverse reasons for this astonishing unbalanced development of crystal
chemistry. The main reason is likely to be that related crystal structures often
have different space groups so that their relationship becomes apparent only
by consideration of the group–subgroup relations between their space groups.
An essential part of the necessary group-theoretical material, namely a listing
of the subgroups of the space groups, became available in a useful form rather
late.

Aspects of space-group theory important to crystal chemistry were indeed
solved around 1930 by C. HERMANN and H. HEESCH and were included in
the 1935 edition of International Tables for the Determination of Crystal Struc-
tures [23]; this comprised lists of the subgroups of the space groups. However,
in the following edition of 1952 [24] they were excluded. In addition, in the
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edition of 1935 only a certain kind of subgroup was mentioned, namely the
translationengleiche subgroups, called zellengleiche subgroups at that time. A
broad application was thus hardly possible. For crystal-chemical applications
another kind of subgroup, the klassengleiche subgroups, are at least as impor-
tant. A compilation of the klassengleiche subgroups of the space groups was
presented by J. NEUBÜSER and H. WONDRATSCHEK as much as 53 years
after the discovery of X-ray diffraction [25], and the isomorphic subgroups,
which are a special category of klassengleiche subgroups, were then derived
by E. BERTAUT and Y. BILLIET [26].

For 18 years this material existed only as a collection of copied sheets of
paper and was distributed this way among interested scientists. Finally, the
subgroups of the space groups were included in the 1983 edition of Volume
A of International Tables for Crystallography [13]. And yet, the listing of the
subgroups in the 1st to the 5th edition of Volume A (1983–2005) has been
incomplete. Beginning with the 6th edition (approx. 2013) the subgroups of
the space groups will no longer be included in Volume A.

Instead, a finally complete listing of all subgroups of the space groups has
existed since 2004 in the supplementary Volume A1 of International Tables
for Crystallography [14]. This includes the corresponding axes and coordinate
transformations as well as the relations that exist between the Wyckoff posi-
tions of a space group and the Wyckoff positions of its subgroups. This infor-
mation, which is essential for group-theoretical considerations, can indeed also
be derived from the data of Volume A; that, however, is cumbersome and prone
to errors. In addition, since 1999 the Bilbao Crystallographic Server has been
in operation; it is accessible free of charge by internet, �www.cryst.ehu.es�. It
offers access to computer programs that display the subgroups and supergroups
of space groups as well as the corresponding Wyckoff-position relations and
other things [27–29].

International Tables for Crystallography, Volumes A and A1, will be hence-
forth referred to as International Tables A and International Tables A1. Inter-
national Tables are available in printed and in electronic form, �http://it.iucr.org�.

In this book it is shown that symmetry relations between the space groups
are a useful tool for the clear derivation and the concise presentation of facts
in the field of crystal chemistry. The presented examples will speak for them-
selves. However, it should be mentioned why the abstract framework of group
theory is so successful: it is due to the so-called symmetry principle in crystal
chemistry.

1.1 The symmetry principle in crystal chemistry

The symmetry principle is an old principle based on experience that has been
worded during its long history in rather different ways, such that a common
root is hardly discernible at first glance (see Chapter 19 for the historical de-
velopment). In view of crystal chemistry, BÄRNIGHAUSEN summarized the
symmetry principle in the following way, pointing out three important partial
aspects [12]:

www.cryst.ehu.es
http://it.iucr.org


1.1 The symmetry principle in crystal chemistry 3

(1) In crystal structures the arrangement of atoms reveals a pronounced
tendency towards the highest possible symmetry.

(2) Counteracting factors due to special properties of the atoms or atom
aggregates may prevent the attainment of the highest possible sym-
metry. However, in many cases the deviations from ideal symmetry
are only small (key word: pseudosymmetry).

(3) During phase transitions and solid-state reactions which result in
products of lower symmetry, the higher symmetry of the starting
material is often indirectly preserved by the formation of oriented
domains.

Aspect 1 is due to the tendency of atoms of the same kind to occupy equiv-
alent positions in a crystal, as stated by BRUNNER [30]. This has physical
reasons:

Depending on the given conditions, such as chemical composition, the kind
of chemical bonding, electron configurations of the atoms, relative size of the
atoms, pressure, temperature, etc., there exists one energetically most favour-
able surrounding for atoms of a given species that all of these atoms strive to
attain. The same surrounding of atoms in a crystal is ensured only if they are
symmetry equivalent.

Aspect 2 of the symmetry principle is exploited extensively in Part II of this
book. Factors that counteract the attainment of the highest symmetry include:

• stereochemically active lone electron pairs;

• distortions caused by the Jahn–Teller effect;

• Peierls distortions;

• covalent bonds, hydrogen bonds and other bonding interactions between
atoms;

• electronic effects between atoms, such as spin interactions;

• ordering of atoms in a disordered structure;

• freezing (condensation) of lattice vibrations (soft modes) giving rise to
phase transitions;

• ordered occupancy of originally equivalent sites by different kinds of
atoms (substitution derivatives);

• partial vacation of atomic positions;

• partial occupancy of voids in a packing of atoms.

Aspect 3 of the symmetry principle has its origin in an observation by J.
D. BERNAL. He noted that in the solid-state reaction Mn(OH)2 → MnOOH
→ MnO2 the initial and the product crystal had the same orientation [31].
Such reactions are called topotactic reactions after F. K. LOTGERING [32]
(for a more exact definition see [33]). In a paper by J. D. BERNAL and A. L.
MACKAY we find the sentences [34]:

‘One of the controlling factors of topotactic reactions is, of course,
symmetry. This can be treated at various levels of sophistication,
ranging from Lyubarskii’s to ours, where we find that the simple
concept of Buridan’s ass illumines most cases.’
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According to the metaphor ascribed to the French philosopher JEAN BURIDAN

(died circa 1358), the ass starves to death between two equal and equidistant
piles of hay because it cannot decide between them. Referred to crystals, such
asinine behaviour would correspond to an absence of phase transitions or solid-
state reactions if there are two or more energetically equivalent orientations of
the domains of the product. Crystals, of course, do not behave like the ass;
they take both.

1.2 Introductory examples

To get an impression for the kind of considerations that will be treated in more
detail in later chapters, we present a few simple examples. Many crystal struc-
tures can be related to a few simple, highly symmetrical crystal-structure types.
Zinc blende (sphalerite, ZnS) has the same structural principle as diamond; al-
ternating zinc and sulfur atoms take the positions of the carbon atoms. Both
structures have the same kind of cubic unit cell, the atoms in the cell occupy
the same positions, and they are bonded with one another in the same way.
Whereas all atoms in diamond are symmetrically equivalent, there must be
two symmetrically independent atomic positions in zinc blende, one for zinc
and one for sulfur. Zinc blende cannot have the same symmetry as diamond;
its space group is a subgroup of the space group of diamond. The relation is
depicted in Fig. 1.1 in a way that we will make use of in later chapters and
which is explained more exactly in Chapter 10.

In Fig. 1.1 a small ‘family tree’ is shown to the left; at its top the symmetry of
diamond is mentioned, marked by the symbol of its space group F 41/d 32/m.
An arrow pointing downwards indicates the symmetry reduction to a subgroup.
The subgroup has the space-group symbol F 43m; it has a reduced number of
symmetry operations. In particular, no symmetry operation of diamond may be

Fig. 1.1 The relation between diamond and
zinc blende. The numbers in the boxes are
the atomic coordinates.

F 41/d 3 2/m

diamond

C:8a
43m

0
0
0

F 4 3 m

zinc blende

S: 4a Zn:4c
43m 43m

0 1
4

0 1
4

0 1
4

t2

➤

➤ ➤

C

S

Zn
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retained that would convert a zinc position to a sulfur position. The multiplicity
of the C atoms in diamond is 8, i.e. the unit cell of diamond contains eight
symmetrically equivalent C atoms. Their position is expressed by the Wyckoff
symbol 8a. The 8 marks this multiplicity, and the a is an alphabetical label
according to which the positions are numbered in International Tables A [13].
Due to the symmetry reduction this position 8a splits into two independent
positions 4a and 4c in the subgroup. The point symmetry of the mentioned
atomic positions remains tetrahedral, symbol 43m.

The ‘family tree’ in Fig. 1.1 is rather small; it comprises only one ‘mother’
and one ‘daughter’. As will be shown later, larger ‘family trees’ can be used
to depict relations among numerous crystal structures, with many ‘daughters’
and ‘grandchildren’. This notion harmonizes with the term family of struc-
tures in the rather strict sense according to H. D. MEGAW [35]. For the most
symmetrical structure in the family of structures MEGAW coined the term aris-
totype.1 The derived structures are called, again after MEGAW, hettotypes.2 1greek aristos = the best, the highest

2greek hetto = weaker, inferior
These terms correspond to the terms basic structure and derivative structure
after BUERGER [36, 37].

Trees of group–subgroup relations as shown in Fig. 1.1 are called Bärnig-
hausen trees.

In reality it is impossible to substitute Zn and S atoms for C atoms in a
diamond crystal. The substitution takes place only in one’s imagination. Nev-
ertheless, this kind of approach is very helpful to trace back the large number
of known structures to a few simple and well-known structure types and to thus
obtain a general view.

On the other hand, the case that the symmetry reduction actually takes place
in a sample does occur, namely in phase transitions as well as in chemical reac-
tions in the solid state. An example is the phase transition of CaCl2 that takes
place at 217 ◦C [38–40]. It involves a mutual rotation of the coordination octa-
hedra about c, which is expressed by slightly altered atomic coordinates of the
Cl atoms (Fig. 1.2). Contrary to the diamond–zinc blende relation, the calcium
as well as the chlorine atoms remain symmetry equivalent; no atomic position
splits into several independent positions. Instead, their point symmetries are
reduced. Phase transitions of this kind are linked to changes of the physical
properties that depend on crystal symmetry. For example, CaCl2 is ferroelastic
at temperatures below 217 ◦C.3 3Ferroelastic: The domains in a crystal differ

in spontaneous strain and can be shifted by a
mechanical force.

In the literature in physics the aristotype is often called the prototype or par-
ent phase, and the hettotype the daughter phase or distorted structure. These
terms are only applicable to phase transitions, i.e. to processes in which one
solid phase is converted to another one with the same chemical composition,
with a change of symmetry.

Calcium chloride forms twinned crystals in the course of the phase transi-
tion from the high- to the low-temperature modification. The reason for this
can be perceived in the images of the structures in Fig. 1.2. If the octahedron
in the middle of the cell is rotated clockwise (as depicted), the tetragonal high-
temperature form (a = b) transforms to the orthorhombic low-temperature form
with decreased a and increased b axis. The same structure is obtained by
counter-clockwise rotation, but with an increased a and a decreased b axis
(Fig. 1.3). In the initial tetragonal crystal the formation of the orthorhombic
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Fig. 1.2 The relation between the modifica-
tions of calcium chloride. The coordination
octahedron is rotated about the direction of
view (c axis), and the reflection planes run-
ning diagonally through the cell of the rutile
type vanish.

P 42/m 21/n 2/m

CaCl2, > 490 K
(rutile type)

Ca:2a Cl:4 f
mmm m2m

0 0.304
0 0.304
0 0

P 21/n 21/n 2/m
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(CaCl2 type)
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. .2/m . .m

0 0.279
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a = b = 637.9 pm
c = 419.3 pm
at 520 K

a = 625.7 pm
b = 643.8 pm
c = 416.8 pm
at 298 K

Ca

Cl

Fig. 1.3 The orientation of the coordina-
tion octahedra in the modifications of CaCl2
and the relative orientation of the unit cells
of the twin domains of the low-temperature
modification. The marked fourfold axes of
the tetragonal modification are converted to
twofold axes in the orthorhombic modifica-
tion.
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twinsP 21/n 21/n 2/ma < b P 21/n 21/n 2/m a > b

crystals sets in in different regions, statistically with the one or the other ori-
entation. At the end the whole crystal consists of intergrown twin domains.
The symmetry elements being lost during the phase transition, for example the
reflection planes running diagonally through the cell of the high-temperature
form, are indirectly preserved by the relative orientation of the twin domains.
More details concerning this phase transition are dealt with in Chapter 15;
there it is also explained that the kind of group–subgroup relation immediately
shows that the formation of twinned crystals is to be expected in this case.

The occurrence of twinned crystals is a widespread phenomenon. They can
severely hamper crystal-structure determination. Their existence cannot al-
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ways be detected on X-ray diffraction diagrams, and systematic superposition
of X-ray reflections can cause the deduction of a false space group and even
a false unit cell. In spite of the false space group, often a seemingly plau-
sible structural model can be obtained, which may even be refined. Unfor-
tunately, faulty crystal-structure determinations are not uncommon, and un-
detected twins are one of the causes. The most common consequences are
slight to severe errors of interatomic distances; but even wrong coordination
numbers and polyhedra up to a false chemical composition may be the result.
Applications that rely on certain physical properties such as the piezoelectric
effect can be impeded if twinned crystals are employed. Knowledge of the
group-theoretical relations can help to avoid such errors.

Another kind of phase transformation occurs when statistically distributed
atoms become ordered. This is a common observation among intermetallic
compounds, but it is not restricted to this class of substances. Cu3Au offers an
example. Above 390 ◦C the copper and gold atoms are statistically distributed
among all atomic positions of a face-centred cubic packing of spheres (space
group F 4/m32/m; Fig. 1.4). Upon cooling an ordering process sets in; the
Au atoms now take the vertices of the unit cell whereas the Cu atoms take the
centres of the faces. This is a symmetry reduction because the unit cell is no
longer centred. The F of the space group symbol, meaning face-centred, is
replaced by a P for primitive (space group P4/m32/m).

F 4/m 3 2/m

HT -Cu3Au
> 663 K

Cu,Au:4a
m3m

0
0
0

P 4/m 3 2/m

LT -Cu3Au
< 663 K

Au:1a Cu:3c
m3m 4/mmm

0 1
2

0 1
2

0 0

k4

➤

➤ ➤

Cu, Au

Au

Cu Fig. 1.4 The relation between misordered and
ordered Cu3Au. See margin note No. 2 in
Section 15.1.2 (page 199) for a remark refer-
ring to the term ‘misorder’.
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2.1 Introductory remarks

Matter consists of atoms of diverse elements. These atoms do not occur as iso-
lated particles, but in organized arrays: Finite arrays of interest are molecules
(N2, H2O, CH4, NH3, C6H6, . . .); large arrays are crystals that consist of equal
parts that are periodically repeated in (nearly) any number.

Molecules and crystals are two kinds of appearance of matter. Molecules
can assemble to crystals. However, crystals do not necessarily consist of mole-
cules; the crystal components may be simple ions like Na+ and Cl−, complex
ions like CO2−

3 and NH+
4 , and many others. Henceforth, molecules and other

such components will be called building blocks if they are components of crys-
tals.

Other forms of appearance of matter, such as gases, liquids, glasses, partially
ordered structures, modulated structures, or quasicrystals will not be consid-
ered.

2.2 Crystals and lattices

Crystals are distinguished by the property that a shift called translation results
in a perfect superposition of all building blocks of the crystal.

Naturally occurring crystals (quartz, rock salt, garnet, . . . ) and synthetically
produced crystals (sugar, SrTiO3, silicon, . . . ) can be regarded as finite blocks
from infinite periodic structures. Replacement of the finite real crystal by the
corresponding periodic, infinite array usually allows an excellent description
of the real conditions and, therefore, is of great value, even though the infi-
nitely extended ideal crystal does not exist. The crystal structure is the spatial
distribution of the atoms in a crystal; usually, it is described with the model of
the infinite crystal pattern. Hereafter, when we address a crystal structure, we
always assume this kind of description.

Definition 2.1 The infinite, three-dimensional periodic array corresponding
to a crystal is called the crystal pattern (or infinite ideal crystal). The lengths
of the periodicities of this array may not be arbitrarily small.

The periodicity of a crystal structure implies that it comes to coincidence
with itself after having been shifted in certain directions by certain distances.
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The dimension d = 3 can be generalized to d = 1,2,3, . . .. This way, planar
arrangements (d = 2) can be included: periodic patterns of wall paper, tilings,
brick walls, tiled roofs,1 cross-sections and projections of three-dimensional1Only the patterns are two dimensional;

tilings, brick walls, etc. themselves are three-
dimensional bodies; their symmetries are
layer groups (Section 7.4).

crystals, etc. Dimensions d = 4,5,6, . . . serve to formally describe incom-
mensurate crystal structures and quasicrystals in higher-dimensional spaces
(‘superspaces’).

The condition that periodicity lengths may not be arbitrarily small excludes
homogeneous continua among crystal structures. Due to the finite size of the
building blocks in real crystals there always exists a lower limit of the period-
icity distances (>0.1 nanometres).

The building blocks of the crystal structure may not only be points, figures,
tiles, atoms, molecules, ions, etc., but also continuous functions such as elec-
tron density.

A macroscopic (ideal) crystal is a finite block out of a crystal pattern. Macro-
scopic crystals do not really exist. A real crystal not only has, like the macro-
scopic (ideal) crystal, a finite size, but is also defective. In addition, the atoms
are not located at the exact positions like in the macroscopic crystal, but per-
form vibrational motions about these positions. The periodic pattern of atoms
of the macroscopic crystal is fulfilled only by the positions of equilibrium of
the vibrations.

Definition 2.2 A shift which brings a crystal structure to superposition with
itself is called a symmetry translation (or simply translation) of this crystal
structure. The corresponding shift vector is a translation vector.

Due to the periodicity, all integral multiples of a translation vector are also
translation vectors. With two non-parallel translation vectors t1 and t2 all inte-
gral linear combinations are translation vectors:

t = qt1 + rt2 q,r = integers

Definition 2.3 The infinite set of all translation vectors ti of a crystal pattern
is its vector lattice T. The translation vectors are called lattice vectors.

The vector lattice is often simply called the lattice. In chemistry (not in
crystallography) the expression ‘crystal lattice’ is common. Frequently, the
term ‘lattice’ has been used as a synonym for ‘structure’ (e.g. diamond lat-
tice instead of diamond structure). Here we distinguish, as in International
Tables, between ‘lattice’ and ‘structure’, and ‘lattice’ is something different
from ‘point lattice’ and ‘particle lattice’, as defined in the next paragraph.22The terms ‘lattice’ and ‘structure’ should

not be mixed up either. Do not say ‘lattice
structure’ when you mean a framework struc-
ture consisting of atoms linked in three di-
mensions.

Two-dimensional lattices are sometimes called nets in crystallography (not in
chemistry).

The vector lattice T of a crystal structure is an infinite set of vectors ti. With
the aid of the vector lattice T it is possible to construct other more expressive
lattices. Choose a starting point Xo with the positional vector xo (vector point-
ing from a selected origin to Xo). The endpoints Xi of all vectors xi = xo + ti

make up the point lattice belonging to Xo and T. The points of the point lattice
have a periodic order, they are all equal and they all have the same surround-
ings. If the centres of gravity of particles are situated at the points of a point
lattice, this is a particle lattice. All particles of the particle lattice are of the
same kind.
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An infinity of point lattices exists for every (vector) lattice, because any
arbitrary starting point Xo can be combined with the lattice vectors ti. The
lattice vectors may not be arbitrarily short according to Definition 2.1.

Definition 2.4 Points or particles that are transferred one to the other by a
translation of the crystal structure are called translation equivalent.

Avoid terms like ‘identical points’, which can often be found in the litera-
ture, when ‘translation-equivalent points’ are meant. Identical means ‘the very
same’. Two translation-equivalent points are equal, but they are not the very
same point.

2.3 Appropriate coordinate systems, crystal
coordinates

To describe the geometric facts in space analytically, one introduces a coordi-
nate system, consisting of an origin and a basis of three linearly independent,
i.e. not coplanar basis vectors a,b,c or a1,a2,a3. Referred to this coordinate
system, each point in space can be specified by three coordinates (a coordi-
nate triplet). The origin has the coordinates 0,0,0. An arbitrary point P has

coordinates x,y,z or x1,x2,x3, the vector
→

OP (the position vector) being:
→

OP= x = xa+ yb+ zc = x1a1 + x2a2 + x3a3

In the plane, points P have coordinates x,y or x1,x2 referred to an origin (0,
0) and the basis a,b or a1,a2.

Often a Cartesian coordinate system is suitable, in which the basis vectors
are mutually perpendicular and have the length of 1 (orthonormal basis). Com-
monly, the angles between a,b, and c are denominated by α (between b and c),
β (between c and a), and γ (between a and b) or correspondingly by α1,α2,α3.
With an orthonormal basis we then have

a = |a | = b = |b | = c = |c | = 1; α = β = γ = 90◦

or |ai | = 1 and angles (ai,ak) = 90◦ for i,k = 1,2,3 and i 	= k.
Generally, as far as the description of crystals is concerned, Cartesian coor-

dinate systems are not the most convenient. For crystallographic purposes, it
is more convenient to use a coordinate system that is adapted to the periodic
structure of a crystal. Therefore, lattice vectors are chosen as basis vectors.
With any other basis the description of the lattice of a crystal structure would
be more complicated.

Definition 2.5 A basis which consists of three lattice vectors of a crystal
pattern is called a crystallographic basis or a lattice basis of this crystal
structure.3 3The term ‘basis’ was used erstwhile with an-

other meaning, namely in the sense of ‘cell
contents’.Referred to a crystallographic basis, each lattice vector t = t1a1 + t2a2 + t3a3

is a linear combination of the basis vectors with rational coefficients ti. Every
vector with integral ti is a lattice vector. One can even select bases such that
the coefficients of all lattice vectors are integers.
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Among the infinity of crystallographic bases of a crystal structure, some
permit a particularly simple description and thus have turned out to be the
most convenient. Such bases are the foundation for the description of the space
groups in International Tables A. These bases are selected whenever there is
no special reason for another choice.

Definition 2.6 The crystallographic bases used in International Tables A are
called conventional bases.

Definition 2.7 A crystallographic basis a1,a2,a3 of a vector lattice is called
a primitive (crystallographic) basis if its basis vectors are lattice vectors and
if every lattice vector t can be expressed as a linear combination with integral
coefficients ti:

t = t1a1 + t2a2 + t3a3 (2.1)

For any vector lattice there exist an infinite number of primitive bases.
One could always choose a primitive basis. However, this would not be

convenient for many applications. Therefore, the chosen conventional crys-
tallographic basis is often not primitive, but such that as many as possible of
the angles between the basis vectors amount to 90◦; the coefficients ti in eqn
(2.1) can then also be certain fractional numbers (mostly multiples of 1

2 ). Fre-
quently, the lattice is called primitive if the conventional basis of the lattice
is primitive; if it is not primitive, it is called a centred lattice, or one says ‘the
setting is centred’.4 Well-known examples are the face-centred cubic lattice cF4For the sake of precise terminology, the term

‘centred’ should not be misused with a differ-
ent meaning; do not call a cluster of atoms
a ‘centred cluster’ if you mean a cluster of
atoms with an embedded atom, nor say, ‘the
F6 octahedron of the PF−

6 ion is centred by
the P atom’.

as in the cubic-closest packing of spheres (copper type) and the body-centred
cubic lattice cI of the tungsten type. Lattice types are treated in Section 6.2.

After having selected a crystallographic basis and an origin, it is easy to
describe a crystal structure. To this end one defines:

Definition 2.8 The parallelepiped in which the coordinates of all points are

0 ≤ x, y, z < 1

is called a unit cell of the crystal structure.

The selection of a basis and an origin implies the selection of a unit cell.
Every point in this unit cell has three coordinates 0 ≤ x, y, z < 1. By addition or
subtraction of integral numbers to the coordinates one obtains the coordinates
of translation-equivalent points which are located in other cells. The transfor-
mation of numerical values to values 0 ≤ x, y, z < 1 is called standardization.
We can now construct a crystal structure in two different ways:

(1) One takes a unit cell and adds or subtracts integral numbers to the co-
ordinates of its contents. This corresponds to a shift of the unit cell by
lattice vectors. In this way the complete crystal structure is built up sys-
tematically by joining (an infinity of) blocks, all with the same contents.

(2) One takes the centre of gravity of a particle in the unit cell and adds equal
particles in the points of the corresponding (infinite) point lattice. If
there are more particles to be considered, one takes the centre of gravity
of one of the remaining particles together with its point lattice, etc. Due
to the minimum distances between particles in the finite size of the cell,
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the number of particles to be considered is finite. In this way one obtains
a finite number of interlaced particle lattices that make up the crystal
structure.

In the first case, the structure is composed of an infinity of finite cells. In
the second case, the structure is composed by interlacing a finite number of
particle lattices which have an infinite extension. Both kinds of composition
are useful. A third kind of composition is presented in Section 6.5 on page 82.

A crystal structure can now easily be described completely by specifying
the metrics of the unit cell (lengths of the basis vectors and the angles between
them) and the contents of the cell (kind of particles and their coordinates within
one unit cell).

In order to be able to compare different or similar structures, their descrip-
tions have to refer to equal or similar cells. The conditions for conventional cell
choices are often not sufficient to warrant this. Methods to obtain a uniquely
defined cell from an arbitrarily chosen cell are called reduction methods. Com-
mon methods are:

(1) derivation of the reduced cell, see Section 8.4 (page 110) and Interna-
tional Tables A, Chapter 9.2 [13];

(2) the Delaunay reduction, see Zeitschrift für Kristallographie 84 (1933)
page 109; International Tables for X-ray Crystallography, Volume I
(1952), pages 530–535 [24].

The cells obtained by these methods may or may not be identical. Therefore,
the method of reduction should be specified.

The geometric invariants of a crystal structure, for example, the distances
between particles and the bond angles, are independent of the chosen coor-
dinate system (basis and origin). How atoms are bonded with each other is
manifested in these quantities. In addition, these data are useful for the direct
comparison of different particles in the same crystal structure or of correspond-
ing particles in different crystal structures.

2.4 Lattice directions, net planes, and reciprocal
lattice

A lattice direction is the direction parallel to a lattice vector t. It is designated
by the symbol [uvw], u,v,w being the smallest integral coefficients of the lat-
tice vector in this direction; u,v, and w have no common divisor. [100], [010]
and [001] correspond to the directions of a1, a2, and a3, respectively; [110] is
the direction of the vector −a1 +a2.

A net plane running through points of a point lattice is one out of a set of
equidistant, parallel planes. The net plane is designated by the symbol (hk l) in
parentheses; h,k, l are the integral Miller indices. From the set of planes, that
one is selected which is closest to the origin without running itself through the
origin. It intersects the coordinate axes at distances of a1/h, a2/k, a3/l from
the origin (Fig. 2.1). A plane running parallel to a basis vector obtains a 0 for
this direction.
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Fig. 2.1 A set of planes running through a
point lattice. The third basis vector is perpen-
dicular to the plane of the paper.
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In order to facilitate the calculus with planes, it is convenient to represent
each set of net planes by a vector t∗hkl = ha∗1 +ka∗2 + la∗3 in the reciprocal lattice.
The reciprocal lattice T∗ is a vector lattice with the reciprocal basis vectors
a∗1,a

∗
2,a

∗
3 (or a∗,b∗,c∗). t∗hkl is perpendicular to the net plane (hkl) and has

the length 1/dhkl , dhkl being the interplanar distance between neighbouring net
planes. For more details see textbooks of crystal-structure analysis (e.g. [41–
44]).

2.5 Calculation of distances and angles

Crystallographic bases are convenient for a simple description of crystals. How-
ever, the formulae for the computation of distances and angles in the crystal
structure become less practical than with Cartesian coordinates.

Definition 2.9 The lengths a,b,c of the basis vectors and the angles α,β , γ

between them are called the lattice constants or (better) the lattice parame-
ters of the lattice.

Let Q and R be two points in a crystal structure having the coordinates
xq,yq,zq and xr,yr,zr. Then the distance rqr between Q and R is equal to the

length of the vector xr − xq =
→

QR, where xq and xr are the position vectors
(vectors from the origin) of Q and R. The length rqr is the root of the scalar
product of xr −xq with itself:

r2
qr = (xr−xq)

2 = [(xr− xq)a+(yr− yq)b+(zr− zq)c]
2

= (xr− xq)
2a2 +(yr− yq)

2b2 +(zr− zq)
2c2 +2(xr− xq)(yr− yq)abcosγ

+2(zr− zq)(xr− xq)accosβ +2(yr− yq)(zr− zq)bccosα

The (bond) angle ψ at the apex P between the connecting lines PQ and
PR (Fig. 2.2) can be calculated with the following formula, using the scalar
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product of the vectors (xq −xp) and (xr −xp) (xp is the position vector of P):

(xq−xp) · (xr−xp) = rpqrpr cosψ

= (xq− xp)(xr− xp)a
2 +(yq− yp)(yr− yp)b

2 + (zq− zp)(zr− zp)c
2

+[(xq− xp)(yr− yp)+(yq− yp)(xr− xp)]abcosγ

+[(zq− zp)(xr− xp)+(xq− xp)(zr− zp)]accosβ

+[(yq− yp)(zr− zp)+(zq− zp)(yr− yp)]bccosα

Every angle α j = 90◦ strongly simplifies the formula. This is an advantage of
an orthonormal basis; for this reason it is commonly used in crystal physics.
The simplified formula then is (e = unit of length of the basis, e.g. e = 1 pm):

r2
qr =

[
(xr− xq)

2 +(yr− yq)
2 +(zr− zq)

2]e2

cosψ = r−1
pq r−1

pr [(xq− xp)(xr− xp)+(yq− yp)(yr− yp)+(zq− zp)(zr− zp)]e
2

➤

➤

➤ψ

P R

Q

→
PR

→
QR

→
PQ

Fig. 2.2 Triangle of the points P, Q, and R
with distances PQ, PR, and QR and angle ψ.

The volume V of the unit cell is obtained from the formula:

V 2 = a2b2c2(1+2cosα cosβ cosγ − cos2 α − cos2 β − cos2 γ)

The lattice parameters a,b,c,α,β , γ appear in the combinations gii = a2
i or

gik = ai ·ak = aiak cosα j, i 	= j 	= k 	= i.
For calculations, the specification of the shape of the cell by the gik values is

more important than the usually quoted lattice parameters ai and α j , since the
gik are needed for all calculations. From the ai and α j one can calculate all gik,
conversely from the gik the ai and α j.

Definition 2.10 The complete set of the coefficients gik is called the metric
tensor, formulated in the following way:

G =

⎛⎝ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞⎠=

⎛⎝ a2 abcos γ accosβ

abcosγ b2 bccosα

accosβ bccosα c2

⎞⎠
gik = gki holds, since ai ·ak = ak ·ai.

With pi, qi, and ri, i = 1,2,3, as the coordinates of the points P, Q, and R one
obtains the formulae:

• Distance QR = rqr: r2
qr = ∑

i,k
gik(ri −qi)(rk −qk) (2.2)

• Distance from the origin O: OQ = rq; r2
q = ∑

i,k
gikqiqk

• Angle QPR (apex P):

cos(QPR) = (rpq)
−1(rpr)

−1 ∑
i,k

gik(qi − pi)(rk − pk) (2.3)

• Volume V of the unit cell: V 2 = det(G) (2.4)

Application of G with the independent quantities gik instead of the six lattice
parameters a,b,c,α,β ,γ has the advantage that the gik are more homogeneous;
for example, they all have the same unit Å2 or pm2.

The importance of the metric tensor G is not restricted to the calculation of
distances and angles:
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• With the aid of G one can decide whether a given affine mapping leaves
invariant all distances and angles, i.e. whether it is an isometry, see Sec-
tion 3.5.

• If T∗ is the reciprocal lattice of the lattice T, then G∗(T∗) = G−1(T) is
the inverse matrix of G: The metric tensors of the lattice and the recip-
rocal lattice are mutually inverse.
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3.1 Mappings in crystallography

3.1.1 An example

The following data can be found in International Tables A in the table for
the space group I 41/amd, No. 141, ORIGIN CHOICE 1, under the heading
‘Coordinates’ as a first block of entries:

(0,0,0)+ ( 1
2 , 1

2 , 1
2 )+

(1) x,y, z (2) x + 1
2 ,y+ 1

2 , z+ 1
2 (3) y,x+ 1

2 ,z + 1
4 (4) y+ 1

2 ,x,z+ 3
4

(5) x+ 1
2 ,y,z+ 3

4 (6) x,y + 1
2 ,z+ 1

4 (7) y+ 1
2 ,x + 1

2 ,z+ 1
2 (8) y,x,z

(9) x,y+ 1
2 , z+ 1

4 (10) x + 1
2 ,y, z+ 3

4 (11) y,x,z (12) y+ 1
2 ,x+ 1

2 , z+ 1
2

(13) x+ 1
2 ,y+ 1

2 , z+ 1
2 (14) x,y,z (15) y+ 1

2 ,x,z + 3
4 (16) y,x+ 1

2 ,z + 1
4

Following the common practice in crystallography, minus signs have been set
over the symbols: x means −x. These coordinate triplets are usually interpreted
in the following way: Starting from the point x,y,z in three-dimensional space,
the following points are symmetry equivalent:

(0, 0, 0)+ ( 1
2 , 1

2 , 1
2 )+

(1) x, y, z x+ 1
2 , y+ 1

2 , z + 1
2

(2) −x + 1
2 , −y+ 1

2 , z + 1
2 −x,−y,z

(3) −y, x+ 1
2 , z + 1

4 −y+ 1
2 , x, z + 3

4
. . . . . . . . .

One can also interpret these entries in International Tables A directly as
descriptions of the symmetry operations of the space group. In the following,
we will mainly adopt this kind of interpretation.

3.1.2 Symmetry operations

Definition 3.1 A symmetry operation is a mapping of an object such that

(1) all distances remain unchanged,

(2) the object is mapped onto itself or onto its mirror image.

If the object is a crystal structure, the mapping is a crystallographic symmetry
operation.
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‘Mapped onto itself’ does not mean that each point is mapped onto itself;
rather, the object is mapped in such a way that an observer cannot distinguish
the states of the object before and after the mapping.

According to this interpretation, the entries in International Tables A for the
space group I 41/amd mean:

x,y,z → x,y,z; x,y,z → x + 1
2 , y+ 1

2 , z+ 1
2 ;

x,y,z → x+ 1
2 , y+ 1

2 , z+ 1
2 ; x,y,z → x,y,z;

. . . . . .

or

x̃, ỹ, z̃ = x,y,z; x̃, ỹ, z̃ = x + 1
2 , y+ 1

2 , z+ 1
2 ;

x̃, ỹ, z̃ = x+ 1
2 , y+ 1

2 , z+ 1
2 ; x̃, ỹ, z̃ = x, y, z;

. . . . . .

The data of International Tables A thus describe how the coordinates x̃, ỹ, z̃ of
the image point result from the coordinates x, y, z of the original point.

Mappings play an important part in crystallography. A mapping is an in-
struction by which for each point of the space there is a uniquely determined
point, the image point. The affine mappings and their special case, the isomet-
ric mappings or isometries, are of particular interest. Isometries are of funda-
mental interest for the symmetry of crystals. They are dealt with in Section
3.5.

Definition 3.2 The set of all symmetry operations of a crystal structure is
called the space group of the crystal structure.

These symmetry operations are classified with the aid of affine mappings.
Since isometries are a special case of affine mappings, we will address them
first.

3.2 Affine mappings

Definition 3.3 A mapping of space which maps parallel straight lines onto
parallel straight lines is called an affine mapping.

After having chosen a coordinate system, an affine mapping can always be
represented by the following set of equations (x1, x2, x3 are the coordinates of
the original point; x̃1, x̃2, x̃3 are the coordinates of the image point):

in the plane

{
x̃1 = W11x1 +W12x2 +w1

x̃2 = W21x1 +W22x2 +w2

in space

⎧⎨⎩
x̃1 = W11x1 +W12x2 +W13x3 +w1

x̃2 = W21x1 +W22x2 +W23x3 +w2

x̃3 = W31x1 +W32x2 +W33x3 +w3

(3.1)

In matrix notation this is:



3.2 Affine mappings 21

in the plane(
x1

x2

)
= x;

(
x̃1

x̃2

)
= x̃;

(
w1

w2

)
= w;

(
W11 W12

W21 W22

)
= W

in space⎛⎝ x1

x2

x3

⎞⎠ = x;

⎛⎝ x̃1

x̃2

x̃3

⎞⎠ = x̃;

⎛⎝ w1

w2

w3

⎞⎠ = w;

⎛⎝ W11 W12 W13

W21 W22 W23

W31 W32 W33

⎞⎠ = W (3.2)

Equation (3.1) then reads:⎛⎝ x̃1

x̃2

x̃3

⎞⎠=

⎛⎝ W11 W12 W13

W21 W22 W23

W31 W32 W33

⎞⎠⎛⎝ x1

x2

x3

⎞⎠+

⎛⎝ w1

w2

w3

⎞⎠ (3.3)

or for short

x̃ = Wx+w or x̃ = (W,w)x or x̃ = (W|w)x (3.4)

The matrix W is called the matrix part, the column w is the column part of the
representation of the mapping by matrices. The symbols (W,w) and (W|w)
are called the matrix–column pair and the Seitz symbol of the mapping.

If two affine mappings are performed one after the other, the result is again
an affine mapping. If the first mapping is represented by x̃ = Wx+w and the
second one by ˜̃x = Vx̃+ v, the result is:

˜̃x = V(Wx+w)+ v = VWx+Vw+ v = Ux+u (3.5)

or ˜̃x = (VW,Vw+ v)x = (U,u)x

This can also be written ˜̃x = (V,v)(W,w)x and, therefore:

(U,u) = (V,v)(W,w) = (VW,Vw+ v) (3.6)

or U = VW and u = Vw+ v (3.7)

How does one calculate U and u from V, v, W, and w? Let Uik by the
element of U in the ith row and kth column; i is called the row index, k is the
column index. Corresponding denominations apply to V and W. On closer
inspection of eqns (3.7) one obtains:

Uik = Vi1W1k +Vi2W2k +Vi3W3k

One says: ‘Uik is the product of the ith row of V with the kth column of W ’
because all elements of V belong to the ith row and all those of W to the kth
column.

The ith element ui of the column u is calculated by multiplication of the ith
row of V with the column w and addition of the ith element of the column v
(being a column, of course, u has only a row index):

ui = Vi1w1 +Vi2w2 +Vi3w3 + vi

This way, matrices are multiplied with other matrices or matrices with columns.
The number of columns of the left matrix must be equal to the number of rows
of the right matrix (or right column).
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The identity mapping (I,o) is represented by

the unit matrix I =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ and the zero column o =

⎛⎝ 0
0
0

⎞⎠
x̃ = (I,o)x = Ix+o = x

It maps every point onto itself. (I, t) with t 	= o represents a translation.
The mapping (V,v) = (W,w)−1 which reverses a mapping (W,w) is called

the inverse mapping of (W,w), such that:

(V,v)(W,w) = (W,w)−1(W,w) = (I,o) (3.8)

Using eqn (3.6), we obtain:

(V,v)(W,w) = (VW,Vw+ v) = (I,o)

Therefore, VW = I or V = W−1 as well as o = Vw+ v or v = −Vw = −W−1w.
It follows that:

(W,w)−1 = (W−1,−W−1w) (3.9)

(W,w) can be inverted if W−1 exists, i.e. if det(W) 	= 0 holds. These map-
pings are called regular mappings or non-singular mappings. If det(W) = 0,
the volume of the image is zero; this is called a projection. Projections are not
considered in the following. The volume of the image of a body, for example
of a unit cell, is W times as large as the original volume, with det(W) =W 	= 0.

A change of the coordinate system generally causes a change of the ma-
trix and the column of an affine mapping. Thereby the matrix W depends
only on the change of the basis, whereas the column w depends on the ba-
sis and the origin change of the coordinate system, see Section 3.7, page 30.
The determinant det(W) and the trace tr(W) = W11 +W22 (in the plane) or
tr(W) = W11 +W22 +W33 (in space) are independent of the choice of the co-

Wk = W ·W · . . . ·W︸ ︷︷ ︸
k times

= I (3.10)
ordinate system. This is also valid for the order k; that is the smallest positive
integral number, for which Wk = I holds. Wk is the product of k matrices. The
determinant, trace, and order are the invariants of a mapping.

Definition 3.4 A point XF that is mapped onto itself is called a fixed point
of the mapping.

Fixed points of affine mappings can be obtained from the equation:

x̃F = xF = WxF +w (3.11)

Let Wk = I. If (W,w)k = (I,o), the mapping has at least one fixed point. In
this case, the number of points Xi with the coordinate columns

(W,w)x, (W,w)2x, . . . , (W,w)k−1x, (W,w)kx = (I,o)x = x

is finite, and a finite number of points always has its centre of gravity as a fixed
point. If (W,w)k = (I, t) with t 	= o, the mapping has no fixed point.

An affine mapping that does not include a translation, (W,o), leaves the
origin unchanged, because õ = Wo+o = o. Every affine mapping (W,w) can
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be composed by the successive execution of a mapping (W,o) and a translation
(I,w):

(W,w) = (I,w)(W,o) (3.12)

The mapping represented by (W,o) is called the linear part. (I,w) represents
the translation part.

3.3 Application of (n + 1)× (n + 1) matrices

Equations (3.6) and (3.9) are difficult to memorize. A more transparent and
more elegant way to write down general formulae is to use 4×4 matrices and
four-row columns (correspondingly, in the plane, 3×3 matrices and three-row
columns):

x → x=

⎛⎜⎜⎝
x
y
z
1

⎞⎟⎟⎠ x̃ → x̃=

⎛⎜⎜⎝
x̃
ỹ
z̃
1

⎞⎟⎟⎠ (W,w) → W=

⎛⎜⎜⎝ W w

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

x̃
ỹ
z̃
1

⎞⎟⎟⎠=

⎛⎜⎜⎝ W w

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

x
y
z
1

⎞⎟⎟⎠ or x̃ = Wx (3.13)

The three-row columns have been augmented to four-row columns by append-
ing a 1. The 3×3 matrix W has been combined with the column w to form a
3×4 matrix and then supplemented by a fourth row ‘0 0 0 1’ to form a square
4×4 matrix. These columns are called augmented columns, and the matrices
are called augmented matrices and are designated by open-face letters.

The vertical and horizontal lines in the matrices have no mathematical mean-
ing and can be omitted. They are simply a convenience for separating the
matrix part from the column part and from the row ‘0 0 0 1’.

The 4×4 matrix corresponding to (U,u) = (V,v)(W,w) then is the product
of the 4×4 matrices of (V,v) and (W,w):⎛⎜⎜⎝ U u

0 0 0 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝ V v

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝ W w

0 0 0 1

⎞⎟⎟⎠ (3.14)

or U = VW (3.15)

W
−1

W = I (3.16)

I = 4×4 unit matrix

The reverse mapping is represented by the inverse matrix W
−1:

W
−1 =

⎛⎜⎜⎝ W−1 −W−1w

0 0 0 1

⎞⎟⎟⎠ (3.17)

An advantage of the use of augmented matrices is the replacement of the
unpleasant eqns (3.6) and (3.9) by eqns (3.15) and (3.17), which require only
matrix multiplications. Another advantage is presented in the next section.
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3.4 Affine mappings of vectors

The mapping of a point P onto the point P̃ by a translation with the translation
vector t, x̃ = x+ t, causes a change of its coordinates. Of course, a translation
of two points P and Q by the same translation leaves their mutual distance
invariant. Point coordinates and vector coefficients are represented by three-
row columns that cannot be distinguished. Therefore, some kind of distinctive
mark is desirable. It is an advantage of the augmented columns to possess this
mark.

In a given coordinate system, let xp and xq be the augmented columns:

xp =

⎛⎜⎜⎝
xp

yp

zp

1

⎞⎟⎟⎠ and xq =

⎛⎜⎜⎝
xq

yq

zq

1

⎞⎟⎟⎠
Then the distance vector has the augmented column with the vector coeffi-
cients:

r = xq −xp =

⎛⎜⎜⎝
xq − xp

yq − yp

zq − zp

0

⎞⎟⎟⎠
It has a 0 in its last row since 1− 1 = 0. Columns of vector coefficients are
thus augmented in a different way than columns of point coordinates.

A translation is represented by (I, t). Let r be the column of coefficients of
a distance vector and let r be its augmented column. Using 4×4 matrices, the
distance vector becomes:

r̃ = Tr or

⎛⎜⎜⎝
r̃1

r̃2

r̃3

0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
t1

I t2
t3

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

r1

r2

r3

0

⎞⎟⎟⎠=

⎛⎜⎜⎝
r1

r2

r3

0

⎞⎟⎟⎠ (3.18)

By the matrix multiplication, the coefficients of t are multiplied with the 0 of
the column r and thus become ineffective.

This is not only valid for translations, but for all affine mappings of vectors:

r̃ = Wr = Wr+0 ·w = Wr (3.19)

Theorem 3.5 Whereas point coordinates are transformed by x̃ = (W,w)x =
Wx+w, the vector coefficients r are affected only by the matrix part of W:

r̃ = (W,w)r = Wr

The column part w is ineffective.

This is also valid for other kinds of vectors, for example, for the basis vectors
of the coordinate system.
Consequence: if (W,w) represents an affine mapping in point space, W repre-
sents the corresponding mapping in vector space.1

1In mathematics, ‘space’ has a different
meaning from in everyday life. ‘Point space’
is the space of points; ‘vector space’ is the
space of vectors. In point space every point
has its positional coordinates. Vector space
can by imagined as a collection of arrows
(vectors), all of which start at a common ori-
gin, each one with a length and a direction.
However, vectors are independent of their lo-
cation and can be shifted arbitrarily in par-
allel; they do not need to start at the origin.
A point as well as a vector is specified by a
triplet of numbers; however, there exist math-
ematical operations between vectors, but not
between points. For example, vectors can be
added or multiplied, but not points.
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3.5 Isometries

An affine mapping that leaves all distances and angles unchanged is called
an isometry. Isometries are special affine mappings that cause no distortions
of any object. In crystallography, in principle, they are more important than
general affine mappings. However, we have discussed the more general class
of affine mappings first, the mathematical formalism being the same.

If the image of a body is not distorted as compared to the original body,
then it also occupies the same volume. The change of volume under a map-
ping is expressed by the determinant det(W) of the matrix of the mapping W.
Therefore, for isometries one has:

det(W) = ±1

This condition, however, is not sufficient. In addition, all lattice parameters
have to be retained. This means that the metric tensor G (Definiton 2.10,
page 17) has to remain unchanged.

Because of (W,w) = (I,w)(W,o), the matrix W alone decides whether the
mapping is an isometry or not; (I,w) always represents a translation, and this
is an isometry.

Let W be the matrix of an isometry (W,w) and let a1,a2,a3 be the basis of
the coordinate system.

It is convenient to write the basis vectors in a row; the vector x can then
be formulated as the matrix product of the row of the basis vectors with the
column of the coefficients:

(a1,a2,a3)

⎛⎝ x1

x2

x3

⎞⎠ = x1a1 + x2a2 + x3a3 = x (3.20)

In the matrix formalism a row is interpreted as a 1× 3 matrix, a column as
a 3× 1 matrix. In crystallography, elements of such matrices are designated
by lower case letters. A matrix W that has been reflected through its main
diagonal line W11,W22,W33 is called the transpose of W, designated WT; if Wik

is an element of W, then this element is Wki of WT.
Consider the images ãi of the basis vectors ai under the isometry represented

by (W,w). According to Theorem 3.5, vectors are transformed only by W:

ãi = a1W1i +a2W2i +a3W3i or ãi =
3

∑
k=1

akWki.

In matrix notation this is:

(ã1, ã2, ã3) = (a1,a2,a3)

⎛⎝ W11 W12 W13

W21 W22 W23

W31 W32 W33

⎞⎠
or (ã1, ã2, ã3) = (a1,a2,a3)W (3.21)

Note that this multiplication, contrary to the multiplication of a matrix with
a column, is performed by multiplying the aks by the elements of a column
of W, i.e. for each basis vector of the image ãi the column index i of W is
constant.
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The scalar product (dot product) of two image vectors is:

ãi · ãk = g̃ik =

(
3

∑
m=1

amWmi

)
·
(

3

∑
n=1

anWnk

)
=

=
3

∑
m,n=1

am ·an WmiWnk =
3

∑
m,n=1

gmnWmiWnk (3.22)

G̃ = WTGW (3.23) This can be written in matrix form if one takes the transpose of W, eqn (3.23).
An isometry may not change the lattice parameters, therefore, G̃ = G. FromCondition for an isometry:

G = WTGW (3.24)
this follows eqn (3.24), which is the necessary and sufficient condition for
(W,w) to represent an isometry. Equation (3.24) serves to find out whether
a mapping represented by the matrix W in the given basis (a1,a2,a3) is an
isometry.

Example 3.1
Are the mappings W1 and W2 isometries if they refer to a hexagonal basis
(a = b 	= c,α = β = 90◦, γ = 120◦) and if they are represented by the matrix
parts W1 and W2?

W1 =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ W2 =

⎛⎝ 1 1 0
1 0 0
0 0 1

⎞⎠
The metric tensor of the hexagonal basis is:

G =

⎛⎝ a2 −a2/2 0
−a2/2 a2 0

0 0 c2

⎞⎠
According to eqn (3.22), for W1 one has:

g̃11 = g11(−1)(−1)+g12(−1)(0)+g13(−1)(0)

+g21(0)(−1)+g22(0)(0)+g23(0)(0)

+g31(0)(−1)+g32(0)(0)+g33(0)(0)

= g11;

g̃12 = 0+g12(−1)(+1)+0+0+0+0+0+0+0

= −g12 = a2/2 	= g12; . . .

Therefore, G̃ 	= G; W1 does not represent an isometry.

For W2 we have:

G̃ = WT
2 GW2 =

⎛⎝ 1 1 0
1 0 0
0 0 1

⎞⎠⎛⎝ g11 g12 0
g12 g11 0
0 0 g33

⎞⎠⎛⎝ 1 1 0
1 0 0
0 0 1

⎞⎠
This results in the six equations:

g̃11 = g11 +2g12 +g22 = a2 = g11; g̃12 = −g11 −g12 = −a2/2 = g12;

g̃13 = g13 +g23 = 0 = g13; g̃22 = g11 = a2 = g22

g̃23 = −g13 = 0 = g23; g̃33 = g33

Condition (3.24) is fulfilled; W2 represents an isometry in this basis.
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Condition (3.24) becomes rather simple for an orthonormal basis G = I (unit
matrix). In this case one obtains the condition:

WTIW = I or WTW = I (3.25)

This is exactly the condition for an inverse matrix. Theorem 3.6 follows:

Theorem 3.6 An affine mapping, referred to an orthonormal basis, is an
isometry precisely if WT = W−1 holds.

Remark. WT = W−1 are the known conditions of orthogonality. Conditions of orthogonality:

3

∑
k=1

WikWmk =

{
1 for i = m
0 for i 	= m

3

∑
k=1

WkiWkm =

{
1 for i = m
0 for i 	= m

Example 3.2
If the matrices W1 and W2 of Example 3.1 were to refer to an orthonormal
basis, the mapping W1 would be an isometry. Then, WT

1 = W1 holds, and so
does WTW = I due to W2

1 = I. However, for W2 one obtains:

W−1
2 =

⎛⎝ 0 1 0
1 1 0
0 0 1

⎞⎠ 	= WT
2

Therefore, W2 does not represent an isometry.

Regarded geometrically, the mapping (W1,o) of Example 3.1 is a distorting,
shearing reflection in the y-z plane, while (W2,o) is a rotation by 60◦. In
Example 3.2, (W1,o) represents a reflection through the y-z plane, and (W2,o)
represents a complicated distorting mapping.

The question remains, what do mappings mean geometrically? Given a
matrix–column pair (W,w), referred to a known coordinate system, what is
the corresponding type of mapping (rotation, translation, reflection, . . .)?

The next section deals with the types of isometries. The question, how to
deduce the geometric type of mapping from (W,w), is the subject of Section
4.3. Finally, in Section 4.4 it is shown how to determine the pair (W,w) for a
given isometry in a known coordinate system.

3.6 Types of isometries

In space, the following kinds of isometries are distinguished:2

2We denominate mappings with upper case
sans serif fonts like I, T, or W, matrices
with bold italic upper case letters like W or
G, columns (one-column matrices) with bold
italic lower case letters like w or x, and vec-
tors with bold lower case letters like w or x.
See the list of symbols after the Table of Con-
tents.

1. The identical mapping or identity, 1 or I, x̃ = x for all points. For the identity
we have W = I (unit matrix) and w = o (zero column):

x̃ = Ix+o = x

Every point is a fixed point.

➤

➤

➤

b

a

c

x1

x2

x3 starting point x

x =

⎛⎝ x1
x2
x3

⎞⎠ x̃1

x̃2 x̃3

image point x̃

x̃ =

⎛⎝ x1 +w1
x2 +w2
x3 +w3

⎞⎠
➤

w

Fig. 3.1 A translation.

2. Translations T, x̃ = x + w (Fig. 3.1). For translations W = I also holds.
Therefore, the identity I can be regarded as a special translation with w = o.
There is no fixed point for w 	= o, because the equation x̃ = x = x+w has
no solution.

3. Rotations and screw rotations:

x̃ = Wx+w with det(W) = +1
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In a Cartesian coordinate system and rotation about the c axis, (W,w) has
the form:

W =

⎛⎜⎜⎝
cosϕ −sinϕ 0 0
sinϕ cosϕ 0 0

0 0 +1 w′
3

0 0 0 1

⎞⎟⎟⎠
The angle of rotation ϕ follows from the trace tr(W) of the 3×3 matrix W
(i.e. from the sum of the main diagonal elements):

1+2cosϕ = tr(W) = W11 +W22 +W33 (3.26)

or cosϕ =
tr(W)−1

2

(a) If w′
3 = 0, the isometry is called a rotation R (Fig. 3.2).

➤

➤ a

b

x1

x2

x̃2

x̃1

➤ image point

x̃ =

⎛⎝ x̃1
x̃2
x̃3

⎞⎠

starting point x =

⎛⎝ x1
x2
x3

⎞⎠
ϕ

Fig. 3.2 A rotation about the c axis (direction
of view); x̃3 = x3. For a screw rotation, the
rotation is followed by a shift w′

3 parallel to
c, i.e. x̃3 = x3 +w′

3.

Every rotation through an angle of rotation ϕ 	= 0◦ has exactly one
straight line of fixed points u, the rotation axis. One obtains its direction
by solving the equation:

Wu = u

The order N of a rotation follows from

ϕ =
360◦

N
j

with j < N and j, N integral with no common divisor. The symbol of
such a rotation is N j . The order k of the mapping is k = N. The identity
can be regarded as a rotation with ϕ = 0◦.

(b) If w′
3 	= 0, the isometry is called a screw rotation (Fig. 3.2). It can always

be regarded as a rotation R by the angle ϕ, coupled with a translation T
parallel to the rotation axis:

(W,w) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 w′

3
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

cosϕ −sinϕ 0 0
sinϕ cosϕ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠
The order N of R is the order of the screw axis. However, the order k
of the symmetry operation, i.e. of the screw rotation, is always infinite
because the N-fold execution does not result in the identity, but in a
translation. A screw rotation has no fixed point.

4. An inversion 1 or I is an isometry with W = −I: x̃ = −x+w.
Geometrically it is a ‘reflection’ of space through a point with the coordi-
nates 1

2 w. This one point is the only fixed point. The fixed point is called
a point of inversion, centre of symmetry, or inversion centre. The relations
W2 = I and 1×1 = 1

2
= 1 hold.

In space, det(−I) = (−1)3 = −1 holds; therefore, the inversion is a special
kind of rotoinversion. However, in the plane det(−I) = (−1)2 = +1 holds,
which corresponds to a rotation with 2cosϕ = −2 and ϕ = 180◦.
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➤

➤ a

b

x1

x2

x̃2

x̃1

➤

➤

image point x̃ =

⎛⎝ x̃1
x̃2
x̃3

⎞⎠ with x̃3 = −x3

starting point x =

⎛⎝ x1
x2
x3

⎞⎠
ϕ

•�

Fig. 3.3 A rotoinversion about the c axis (di-
rection of view) with fixed point at the ori-
gin �. Shown is the coupling R I , i.e. a ro-
tation immediately followed by an inversion;
the same results from a coupling I R.

5. An isometry of space with det(W) = −1 is called a rotoinversion R. It
can always be interpreted as a coupling of a rotation R and an inversion
I : R = I R = R I (Fig. 3.3). The angle of rotation ϕ of R and thus of R is
calculated from

tr(W) = −(1+2cosϕ)

Special cases are:
• The inversion I as a coupling of the inversion with a rotation of 0◦ (or

360◦).

• The reflection m through a plane as a coupling of I with a rotation
through 180◦; the reflection is dealt with in item 6.

With the exception of the reflection, all rotoinversions have exactly one fixed
point. The corresponding axis is called axis of rotoinversion. This axis is
mapped onto itself as a whole; it runs through the fixed point, where it is
reflected. The rotoinversion is called N-fold, if the corresponding rotation R
has the order N. If N is even, then the order of the rotoinversion is k = N,
just as in the case of rotations. If N is odd, the order is k = 2N: For I the
order is k = 2; for 3 it is k = 6, because 3 3 is not I, but I .

x1
x2

x3

–x3

➤

➤

➤

➤

•�

c starting point x =

⎛⎝ x1
x2
x3

⎞⎠

image point x̃ =

⎛⎝ x1
x2

−x3

⎞⎠

x1
x2

x3

–x3➤

➤

➤

➤

➤

•�

c starting point x =

⎛⎝ x1
x2
x3

⎞⎠

image point

x̃ =

⎛⎝ x1 +g
x2
−x3

⎞⎠
g

Fig. 3.4 A reflection and a glide reflection
with the mirror plane and the glide plane be-
ing perpendicular to c and running through
the origin �.

6. Reflections and glide reflections. In a Cartesian coordinate system and rota-
tion about the c axis, the matrix W of a twofold rotoinversion is:

W =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
Therefore, det(W) = −1, tr(W) = 1, W2 = I, and W 	= I. If it is performed
twice, the result is a translation:

(W,w)2 = (W2,Ww+w) = (I, t)

If t = o, the operation is called a reflection; for t 	= o it is a glide reflection
(Fig. 3.4).

(a) Reflection. A reflection leaves all points of a particular plane unchanged,
the mirror plane or plane of reflection. It runs through the point X with
x = 1

2 w.



30 Mappings

(b) Glide reflection. A glide reflection has no fixed point. However, it has a
glide plane, which is obtained by the reduced mapping:

(I,−g)(W,w) = (W,w−g) with g = 1
2 t = 1

2 (Ww+w)

g is the column of coefficients of the glide vector; due to Wg = g it
is oriented parallel to the glide plane. The point with the coordinates
x = 1

2 w is situated on the glide plane.

Symmetry operations with det(W) = −1, i.e. inversion, rotoinversion, reflec-
tion, and glide reflection are called symmetry operations of the second kind.

3.7 Changes of the coordinate system

Sometimes it is necessary to change the coordinate system:

(1) If the same crystal structure has been described in different coordinate sys-
tems, the data of one of them (lattice parameters, atomic coordinates, pa-
rameters of thermal motion) have to be transformed to the other coordinate
system if they are to be compared. For the comparison of similar crystal
structures, the data also have to be referred to analogous coordinate sys-
tems, which may require a transformation of the coordinates.

(2) In phase transitions, the phases are often related by symmetry. Commonly,
the data of both phases have been documented in conventional settings, but
the conventional settings of both may differ from one another. This case
requires a change of the coordinate system, if the data of the new phase are
to be compared with those of the old phase.

(3) In crystal physics, it is common to use orthonormal bases (e.g. for the de-
termination of the thermal expansion, the dielectric constant, the elasticity,
the piezoelectricity). For corresponding crystal-physical calculations, the
point coordinates as well as the indices of directions and planes have to be
transformed from the conventional bases to orthonormal bases.

In all of these cases, either the origins or the bases or both differ and have to
be converted. The corresponding formulae are derived in the following.

3.7.1 Origin shift

Let (cf. Fig. 3.5):

O origin of the old coordinate system

x =

⎛⎝ x
y
z

⎞⎠ coordinate column of the point X in the old coordinate
system

O′ origin of the new coordinate system

x′ =

⎛⎝ x′

y′

z′

⎞⎠ coordinate column of the point X in the new coordinate
system
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p =

⎛⎝ xp

yp

zp

⎞⎠ shift vector
−−→
OO′ of the origin = coordinate column of the

new origin O′ in the old coordinate system.
➤

➤

➤

O′

O

X
x′ =

−−→
O′X

x =
−→
OX

p=
−−→
OO′

Fig. 3.5 Shift of the origin O to the new origin
O′.

Then one has:
x′ = x−p (3.27)

Formally, this can be written:

x′ = (I,−p)x = (I,p)−1x (3.28)

Using augmented matrices, eqn (3.28) reads:

x
′ = P

−1
x with P =

⎛⎜⎜⎝
1 0 0 xp

0 1 0 yp

0 0 1 zp

0 0 0 1

⎞⎟⎟⎠ and P
−1 =

⎛⎜⎜⎝
1 0 0 −xp

0 1 0 −yp

0 0 1 −zp

0 0 0 1

⎞⎟⎟⎠
Written in full, this is:⎛⎜⎜⎝

x′

y′

z′

1

⎞⎟⎟⎠=

⎛⎜⎜⎝
1 0 0 −xp

0 1 0 −yp

0 0 1 −zp

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

x
y
z
1

⎞⎟⎟⎠
or x′ = x− xp, y′ = y− yp, z′ = z− zp.
An origin shift of (xp,yp,zp) (in the old coordinate system) causes coordinate
changes by the same amounts, but with opposite signs.

t =

⎛⎜⎜⎝
t1
t2
t3
0

⎞⎟⎟⎠The transformation t
′ =P

−1
t causes no change to a distance vector because

the column p remains ineffective due to the zero of t.

3.7.2 Basis change

A change of the basis is usually specified by a 3×3 matrix P which relates the
new basis vectors to the old basis vectors by linear combinations:

(a′,b′,c′) = (a,b,c)P or (a′)T = (a)TP (3.29)

For a given point X let:

ax+by + cz = a′x′ +b′y′ + c′z′ or for short (a)Tx = (a′)Tx′

By insertion of eqn (3.29) one obtains:

(a)Tx = (a)TPx′ or x = Px′ (3.30)

x′ = P−1x = (P,o)−1x (3.31)

Equations (3.29), (3.30), and (3.31) show that the matrix P transforms from
the old to the new basis vectors, whereas the inverse matrix P−1 transforms
the coordinates. For the reverse transformation it is the other way around: P−1

transforms from the new to the old basis vectors and P from the new to the old
coordinates.
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Example 3.3
➤

➤

➤

ahex

aort

bhex
= bort

Consider the transformation from a hexagonal to the corresponding (or-
thorhombic) orthohexagonal basis. According to the figure in the margin,
the formulae for the conversion are:

(aort, bort, cort) = (ahex,bhex,chex)P

= (ahex, bhex, chex)

⎛⎝ 2 0 0
1 1 0
0 0 1

⎞⎠
= (2ahex +bhex, bhex, chex)

The coordinates are transformed according to:

xort = P−1xhex⎛⎝ xort

yort

zort

⎞⎠ =

⎛⎝ 1
2 0 0

− 1
2 1 0
0 0 1

⎞⎠⎛⎝ xhex

yhex

zhex

⎞⎠=

⎛⎝ 1
2 xhex

− 1
2 xhex + yhex

zhex

⎞⎠
Instead of inverting P by calculation, P−1 can be deduced from the figure by
derivation of the matrix for the reverse transformation of the basis vectors
from the orthohexagonal to the hexagonal cell.
Note that the components which are to by multiplied with the basis vectors
ahex, bhex, and chex are mentioned column by column in the matrix P, whereas
the components for the coordinates are mentioned row by row in the inverse
matrix P−1.

3.7.3 General transformation of the coordinate system

Generally both the basis and the origin have to be transformed. Since the origin
shift p is referred to the old basis (a)T, it must be performed first. Therefore,
(I,p)−1x is calculated first according to eqn (3.28), which is then multiplied
on the right side of (P,o)−1 according to eqn (3.31):

x′ = (P,o)−1(I,p)−1x

= ((I,p)(P,o))−1 x

= (P,p)−1x = (P−1,−P−1p)x or x
′ = P

−1
x (3.32)

[ ((I,p)(P,o))−1 = (P,o)−1(I,p)−1 and (P,p)−1 =P
−1 = (P−1,−P−1p), see

eqn (3.17), page 23].
The column part in eqn (3.32) is:

p′ = −P−1p (3.33)

It corresponds to the position of the old origin in the new coordinate system;
this becomes evident if one inserts x = (0, 0, 0)T in eqn (3.32).
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Example 3.4

➤

➤

bcubccub

acub

bhex

ahex

Consider the transformation from a cubic to a rhombohedral unit cell with
hexagonal axis setting, combined with an origin shift by 1

4 , 1
4 , 1

4 (in the cubic
coordinate system). As can be inferred from the figure in the margin, the new
basis vectors are:
ahex = acub −bcub, bhex = bcub − ccub, chex = acub +bcub + ccub

or (ahex, bhex, chex) = (acub, bcub, ccub)P

= (acub, bcub, ccub)

⎛⎝ 1 0 1
−1 1 1

0 −1 1

⎞⎠
The reverse transformation hexagonal → cubic corresponds to:
acub = 2

3 ahex + 1
3 bhex + 1

3 chex, bcub = – 1
3 ahex + 1

3 bhex + 1
3 chex,

ccub = – 1
3 ahex − 2

3 bhex + 1
3 chex

or

(acub, bcub, ccub) = (ahex, bhex, chex)P−1 = (ahex, bhex, chex)

⎛⎝ 2
3 – 1

3 – 1
3

1
3

1
3 – 2

3
1
3

1
3

1
3

⎞⎠
The column part in eqn (3.32) is:

−P−1p = −

⎛⎝ 2
3 – 1

3 – 1
3

1
3

1
3 – 2

3
1
3

1
3

1
3

⎞⎠⎛⎝ 1
4
1
4
1
4

⎞⎠=

⎛⎝ 0
0

– 1
4

⎞⎠
Combined with the origin shift, the new coordinates result from the old ones
according to:

xhex = P
−1
xcub =

⎛⎜⎜⎝
2
3 – 1

3 – 1
3 0

1
3

1
3 – 2

3 0
1
3

1
3

1
3 – 1

4
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

xcub

ycub

zcub

1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
2
3 xcub − 1

3 ycub − 1
3 zcub

1
3 xcub + 1

3 ycub − 2
3 zcub

1
3 xcub + 1

3 xcub + 1
3 zcub − 1

4
1

⎞⎟⎟⎠
Numerical examples: (0, 0, 0)cub → (0, 0, – 1

4 )hex;
(0.54, 0.03, 0.12)cub →
( 2

3 0.54 – 1
3 0.03 – 1

3 0.12, 1
3 0,54 + 1

3 0,03 – 2
3 0,12,

1
3 0.54 + 1

3 0.03 + 1
3 0.12 – 1

4 )hex = (0.31, 0.11, –0.02)hex

3.7.4 The effect of coordinate transformations on mappings

If the coordinate system is changed, the matrix (W,w) of a mapping (isometry)
is also changed. For a mapping, the following relations hold according to eqn
(3.4), page 21:
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x̃ = (W,w)x in the old coordinate system (3.34)

and x̃′ = (W′,w′)x′ in the new coordinate system (3.35)

For a general transformation of the coordinate system (origin shift and change
of basis), by substitution of eqn (3.32) into eqn (3.35) one obtains:

x̃′ = (W′,w′)(P,p)−1x

The transformation matrix (P,p)−1 is valid for all points, including the image
point x̃; therefore, by analogy to eqn (3.32), x̃′ = (P,p)−1x̃ holds. From the
preceding equation we thus obtain:

(P,p)−1x̃ = (W′,w′)(P,p)−1x

Multiplication on the left side with (P,p):

x̃ = (P,p)(W′,w′)(P,p)−1x

Comparison with eqn (3.34) yields:

(W,w) = (P,p)(W′,w′)(P,p)−1

Multiplication on the left side with (P,p)−1 and on the right side with (P,p):

(W′,w′) = (P,p)−1(W,w)(P,p) (3.36)

By computation this results in:

W′ = P−1WP (3.37)

and w′ = −P−1p+P−1w+P−1Wp (3.38)

Equation (3.38) can also be formulated as:

w′ = P−1(w+(W− I)p) (3.39)

If (P,p)−1 = P
−1, (W,w) = W and (P,p) = P are written down as 4×4 ma-

trices, and eqn (3.36) simply becomes:

W
′ = P

−1
WP (3.40)

This is a more transparent and more elegant formula. However, the matrix–
column pair formalism according to eqns (3.37) and (3.38) is, in general, ad-
vantageous for practical calculations.

The complete formalism can be depicted as shown in the diagram in Fig. 3.6.
The points X (left) and X̃ (right) are specified by the initial coordinates x and
x̃ (top) and the new coordinates x′ and x̃′ (bottom). The transformations are
given next to the arrows. From left to right this corresponds to a mapping
and from top to bottom to a coordinate transformation. Equation (3.36) can
be derived directly from the diagram: On the one side, x̃′ = (W′,w′)x′ holds
(lower arrow pointing to the right), on the other side we have (taking the detour
through the upper part of the image):

x̃′ = (P,p)−1x̃ = (P,p)−1(W,w)x = (P,p)−1(W,w)(P,p)x′

Equating both paths results in eqn (3.36).
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point X image point X̃

old coordinates

new coordinatesx′ x̃′

x x̃

(P,p) (P,p)−1 (P,p) (P,p)−1

(W,w)

(W,w)−1

(W′,w′)

(W′,w′)−1

➤➤

➤➤

➤

➤

➤

➤

Fig. 3.6 Diagram of the ‘mapping of map-
pings‘.

Origin shift. If only the origin is shifted, the matrix part of the transformation
is the unit matrix, P = I. Equations (3.37) and (3.38) then become:

W′ = I−1WI = W (3.41)

and w′ = −I−1p+ I−1w+ I−1Wp (3.42)

= w +Wp−p or w′ = w+(W − I)p (3.43)

Consequences: An origin shift does not affect the matrix W of a mapping. The
change of the column not only depends on p, but also on W.

Example 3.5
Space group F d d d, origin choice 1, has a twofold screw axis at 0, 1

4 , z; it
maps an atom with the coordinates x,y,z onto a symmetry-equivalent position
−x, 1

2 − y, 1
2 + z. If one switches to origin choice 2, the origin must be shifted

by ( 1
8 , 1

8 , 1
8 ). What is the new mapping instruction?

The matrix and column parts for origin choice 1 read:

W =

⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠ and w =

⎛⎝ 0
1
2
1
2

⎞⎠
Combined with the origin shift pT = ( 1

8 , 1
8 , 1

8 ), we obtain from eqn (3.43):

w′ = w+Wp−p =

⎛⎝ 0
1
2
1
2

⎞⎠+

⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠⎛⎝ 1
8
1
8
1
8

⎞⎠−

⎛⎝ 1
8
1
8
1
8

⎞⎠=

⎛⎝ − 1
4
1
4
1
2

⎞⎠
Together with the unchanged matrix part, the new mapping for origin choice
2 thus becomes:

− 1
4 − x, 1

4 − y, 1
2 + z or (standardized to 0 ≤ w′

i < 1) 3
4 − x, 1

4 − y, 1
2 + z

Transformation only of the basis. If only the basis is transformed, the column
part of the transformation consists only of zeros, p = o. Equations (3.37) and
(3.38) then become:

A transformation of the kind
W′ = P−1W P is called a similarity
transformation.

W′ = P−1WP (3.44)

w′ = −P−1o+P−1w+P−1Wo

= P−1w (3.45)
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Example 3.6
Consider the transformation of a hexagonal to an orthorhombic cell from
Example 3.3. Assume the presence of a glide plane, which maps an atom
from the position x,y,z to the position x, x− y, z+ 1

2 , referred to the hexago-
nal coordinate system. What is the conversion formula in the orthorhombic
coordinate system?

The mapping x, x− y, z+ 1
2 corresponds to the matrix and column:

W =

⎛⎝ 1 0 0
1 −1 0
0 0 1

⎞⎠ w =

⎛⎝ 0
0
1
2

⎞⎠
The transformation matrices from Example 3.3 are:

P =

⎛⎝ 2 0 0
1 1 0
0 0 1

⎞⎠ and P−1 =

⎛⎝ 1
2 0 0

− 1
2 1 0
0 0 1

⎞⎠
Using eqns (3.44) and (3.45), we calculate for the mapping in the orthorhom-
bic coordinate system:

W′ =

⎛⎝ 1
2 0 0

− 1
2 1 0
0 0 1

⎞⎠⎛⎝ 1 0 0
1 −1 0
0 0 1

⎞⎠⎛⎝ 2 0 0
1 1 0
0 0 1

⎞⎠
=

⎛⎝ 1 0 0
0 −1 0
0 0 1

⎞⎠
w′ =

⎛⎝ 1
2 0 0

− 1
2 1 0
0 0 1

⎞⎠⎛⎝ 0
0
1
2

⎞⎠ =

⎛⎝ 0
0
1
2

⎞⎠
This is equivalent to x, −y, z+ 1

2 .

3.7.5 Several consecutive transformations of the coordinate
system

If several consecutive coordinate transformations are to be performed, the
transformation matrices for the overall transformation from the initial to the
final coordinate system result by multiplication of the matrices of the single
steps. If no origin shifts are involved, it is sufficient to use the 3×3 matrices,
otherwise the 4×4 matrices must be taken. In the following we use the 4×4
matrices.

Let P1, P2, . . . be the 4×4 matrices for several consecutive transformations
and P

−1
1 , P−1

2 , . . . the corresponding inverse matrices. Let a, b, c be the orig-
inal basis vectors and a′, b′, c′ the new basis vectors after the sequence of
transformations. Let x and x

′ be the augmented columns of the coordinates
before and after the sequence of transformations. Then the following relations
hold:
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(a′,b′,c′,p) = (a,b,c,o)P1P2, . . . and x
′ = . . .P−1

2 P
−1
1 x

p is the origin shift, i.e. the coordinate column of the new origin in the old
coordinate system. Note that the inverse matrices have to be multiplied in
reverse order.

Example 3.7
Consider the coordinate transformation cubic → rhombohedral-hexagonal
from Example 3.4, followed by another transformation to a monoclinic ba-
sis, combined with a second origin shift pT

2 = (− 1
2 ,− 1

2 ,0) (in the hexagonal
coordinate system).

The matrices of the first transformation are (see Example 3.4):

P1 =

(
P1 p1

o 1

)
=

⎛⎜⎜⎝
1 0 1 1

4
−1 1 1 1

4
0 −1 1 1

4
0 0 0 1

⎞⎟⎟⎠

and P
−1
1 =

(
P−1

1 −P−1
1 p1

o 1

)
=

⎛⎜⎜⎝
2
3 – 1

3 – 1
3 0

1
3

1
3 – 2

3 0
1
3

1
3

1
3 − 1

4
0 0 0 1

⎞⎟⎟⎠ ➤

➤

➤

ahex

amon

bhex = bmon

cmon1
3Assume a relation between the cells for the second transformation (rhombo-

hedral-hexagonal → monoclinic) according to the adjacent figure. From the
figure we deduce:

(amon,bmon,cmon) = (ahex,bhex,chex)P2

= (ahex,bhex,chex)

⎛⎝ 2 0 2
3

1 1 1
3

0 0 1
3

⎞⎠
(ahex, bhex, chex) = (amon,bmon,cmon)P−1

2

= (amon,bmon,cmon)

⎛⎝ 1
2 0 −1

− 1
2 1 0
0 0 3

⎞⎠

−P−1
2 p2 = −

⎛⎝ 1
2 0 −1

− 1
2 1 0
0 0 3

⎞⎠⎛⎝− 1
2

− 1
2
0

⎞⎠ =

⎛⎝ 1
4
1
4
0

⎞⎠

P
−1
2 =

(
P−1

2 −P−1
2 p2

o 1

)
=

⎛⎜⎜⎝
1
2 0 −1 1

4
− 1

2 1 0 1
4

0 0 3 0
0 0 0 1

⎞⎟⎟⎠
The transformation of the basis vectors and the origin shift from the original
to the final coordinate system resulting from the two consecutive transforma-
tions is obtained from:
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P1P2 =

⎛⎜⎜⎝
1 0 1 1

4
−1 1 1 1

4
0 −1 1 1

4
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

2 0 2
3 − 1

2
1 1 1

3 − 1
2

0 0 1
3 0

0 0 0 1

⎞⎟⎟⎠=

⎛⎜⎜⎝
2 0 1 − 1

4
−1 1 0 1

4
−1 −1 0 3

4
0 0 0 1

⎞⎟⎟⎠
(amon, bmon, cmon, p)= (acub, bcub, ccub, 0)P1P2

= (acub, bcub, ccub, 0)

⎛⎜⎜⎝
2 0 1 − 1

4
−1 1 0 1

4
−1 −1 0 3

4
0 0 0 1

⎞⎟⎟⎠
This corresponds to:

amon = 2acub −bcub − ccub, bmon = bcub − ccub, cmon = acub

combined with an origin shift of pT = (− 1
4 , 1

4 , 3
4) in the cubic coordinate

system. The corresponding coordinate transformations (cubic → monoclinic)
are calculated according to:

xmon = P
−1
2 P

−1
1 xcub⎛⎜⎜⎝

xmon

ymon

zmon

1

⎞⎟⎟⎠=

⎛⎜⎜⎝
1
2 0 −1 1

4
− 1

2 1 0 1
4

0 0 3 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

2
3 − 1

3 − 1
3 0

1
3

1
3 − 2

3 0
1
3

1
3

1
3 − 1

4
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

xcub

ycub

zcub

1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
0 − 1

2 − 1
2

1
2

0 1
2 − 1

2
1
4

1 1 1 − 3
4

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

xcub

ycub

zcub

1

⎞⎟⎟⎠
This corresponds to:

xmon = − 1
2 ycub − 1

2 zcub + 1
2 , ymon = 1

2 ycub − 1
2 zcub + 1

4 ,
zmon = xcub + ycub + zcub − 3

4

3.7.6 Calculation of origin shifts from coordinate
transformations

Group–subgroup relations between space groups often involve basis trans-
formations and origin shifts. In International Tables A1, Part 2, the origin
shifts are listed after the basis transformations in the form of numerical triplets
pT = (xp, yp, zp). These refer to the original coordinate system. In Part 3 of the
same tables, the coordinate transformations are given in addition to the basis
transformations; however, the origin shifts are listed only together with the co-
ordinate transformations, namely as additive numbers to the coordinate values.
These additive numbers are nothing other than the vector coefficients of the
shift vector p′T = (x′p, y′p, z′p) in the new coordinate system of the subgroup.

To calculate the corresponding origin shift p in the initial coordinate system
from the coordinate transformation listed in Part 3, eqn (3.33), page 32, has to
be applied:
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p′ = −P−1p and thus p = −Pp′ (3.46)

Unfortunately, often there exist several choices for the basis transformation
and for the origin shift for the very same group–subgroup relation. In Part
2 of International Tables A1 often a different basis transformation and/or a
different origin shift have been chosen as compared to Part 3; this is not always
obvious due to the different kind of presentation. Therefore, given the case, p
must be calculated from p′; one cannot simply look up the values listed in the
corresponding space group table in Part 2.3 3The different choices for the basis transfor-

mations and origin shifts in Parts 2 and 3 of
International Tables A1 are due, in part, to
their history of creation and, in part, to ma-
terial grounds. The tables were created in-
dependently by different authors at different
times and were only combined at a late stage.
The differences in presentation and the corre-
sponding reasons are explained in the Appen-
dix of International Tables A1.

Example 3.8
The group–subgroup relation P42/mbc →C ccm requires a cell transforma-
tion and an origin shift. In International Tables A1, Part 3, one finds the
transformation of the basis vectors in the column ‘Axes’:

a′ = a−b, b′ = a+b, c′ = c

The transformation matrix is therefore:

P =

⎛⎝ 1 1 0
−1 1 0

0 0 1

⎞⎠
In the column ‘Coordinates’ the listed coordinate transformations are 1

2 (x−
y)+ 1

4 , 1
2(x + y)+ 1

4 , z. Therefore, the origin shift is p′T = ( 1
4 , 1

4 , 0) in the
coordinate system of C ccm. The corresponding origin shift in the coordinate
system of P42/mbc is:⎛⎝ xp

yp

zp

⎞⎠= p = −Pp′ = −

⎛⎝ 1 1 0
−1 1 0

0 0 1

⎞⎠⎛⎝ 1
4
1
4
0

⎞⎠=

⎛⎝− 1
2
0
0

⎞⎠
For the same relation P42/mbc → C ccm, the same basis transformation
is listed in Part 2 of International Tables A1, but a different origin shift,
(0, 1

2 , 0).

3.7.7 Transformation of further crystallographic quantities

Any transformation of the basis vectors entails changes for all quantities that
depend on the setting of the basis. Without proof, we list some of them. Since
all mentioned quantities are vectors or vector coefficients, the changes are inde-
pendent of any origin shift; the transformations require only the 3×3 matrices
P and P−1.

The Miller indices h,k, l of lattice planes are transformed in the same way as
the basis vectors. The new indices h′,k′, l′ result from the same transformation (h′,k′, l′) = (h,k, l)P
matrix P as for the basis vectors a, b, c.

The reciprocal lattice vectors a∗, b∗, c∗ are oriented perpendicular to the
planes (1 0 0), (0 1 0), and (0 0 1). Their lengths are

a∗ = 1/d100 = bc sinα/V, b∗ = 1/d010 = ac sinβ/V, c∗ = 1/d001 = ab sin γ/V

with V being the volume of the unit cell and d100 = distance between adjacent
V =√

1–cos2 α–cos2 β –cos2 γ+2cosα cos β cos γ
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planes (1 0 0). They are transformed in the same way as the coordinates by the
inverse matrix P−1.

⎛⎝ a∗′

b∗′

c∗′

⎞⎠= P−1

⎛⎝ a∗

b∗

c∗

⎞⎠
⎛⎝ u′

v′

w′

⎞⎠= P−1

⎛⎝ u
v
w

⎞⎠
The coefficients u,v,w of a translation vector t = ua+vb+wc are also trans-

formed by the inverse matrix P−1.

Exercises

Solutions in Appendix D (page 281)

(3.1) Zircon (ZrSiO4), anatase (TiO2), many rare-earth phos-
phates, arsenates, vanadates and others crystallize in the
space group I 41/amd, space group number 141. In In-
ternational Tables A, taking origin choice 2, one finds
among others the following coordinate triplets under the
heading ‘positions’:

(8) y+ 1
4 ,x+ 1

4 , z+ 3
4 (10) x+ 1

2 ,y,z+ 1
2

Formulate these coordinate triplets as:

(a) Mappings that transfer the point X with the coordi-
nates x,y,z onto the point X̃ with the coordinates x̃, ỹ, z̃;

(b) Matrix–column pairs;

(c) 4×4 matrices.

(d) Apply eqn (3.5), page 21, consecutively to the given
matrix–column pairs. Does the result depend on the se-
quence?

(e) Multiply the corresponding 4× 4 matrices and com-
pare the results with the results of (d).

(f) Convert the results back to coordinate triplets and
compare these with the listing in International Tables A,
space group I 41/amd, origin choice 2.

(3.2) For some physical problem it is necessary to refer space
group I 41/amd to a primitive basis. This is chosen to be:

aP = a, bP = b, cP = 1
2 (a+b+ c)

If this basis were chosen for the description of the space
group in International Tables A, the data of International
Tables A, origin choice 2, would have to be changed, as
described in Section 3.7.

(a) What is the matrix of the basis transformation?

(b) How do the point coordinates transform?

(c) The symmetry operations (8) and (10) are men-

tioned in Exercise 3.1; symmetry operation (15) is
y + 3

4 ,x + 1
4 , z + 3

4 . What do the symmetry operations
(8), (10), (15), and (15)+( 1

2 , 1
2 , 1

2 ) look like in the new
basis?

(d) What would the corresponding entries be in Interna-
tional Tables A, if this primitive basis were used? Take
into account the standardization, i.e. translations are con-
verted to values of 0 to <1 by the addition of integral
numbers.

(3.3) A subgroup of the space group P6m2 is P62m with the
basis vectors a′ = 2a+b, b′ =−a+b, c′ = c and an ori-
gin shift pT = ( 2

3 , 1
3 ,0). How many times has the unit

cell of P62m been enlarged? How do the coordinates
transform?

(3.4) The coordinate system of a (body-centred) tetragonal
space group is to be transformed first to an orthorhom-
bic coordinate system with the basis vectors a′ = a + b,
b′ =−a+b, c′ = c and an origin shift pT

1 = (0, 1
2 ,0), fol-

lowed by a second transformation to a monoclinic system
with a′′ = a′, b′′ = −b′, c′′ = − 1

2 (a′ + c′) and an origin
shift pT

2 = (− 1
8 , 1

8 ,− 1
8 ) (referred to the orthorhombic co-

ordinate system). What are the transformations of the ba-
sis vectors and the coordinates from the tetragonal to the
monoclinic coordinate system? What is the origin shift?
Does the volume of the unit cell change?

(3.5) The group–subgroup relation F m3c → I 4/mcm (retain-
ing the c axis) requires a basis transformation and an ori-
gin shift. In International Tables A1, Part 3, one finds
the basis transformation 1

2 (a − b), 1
2 (a + b), c and the

coordinate transformation x − y + 1
2 , x + y, z. What is

the corresponding origin shift in the coordinate system
of F m3c? Compare the result with the origin shift of
1
4 , 1

4 , 0 given in Part 2 of the tables.
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4.1 The description of crystal symmetry in
International Tables A: Positions

Three different kinds of description of the symmetry operations of crystals are
used in International Tables A:

(1) By one or more diagrams of the symmetry elements, see Section 6.4.1.

(2) By one diagram of ‘general positions’, see Section 6.4.4.

(3) By the coordinate triplets of the ‘general positions’, see Section 3.1.1.
As shown there, the coordinate triplets not only specify the coordinates
of the image points, but can also be regarded as descriptions of the map-
pings; see also Section 6.4.3.

In International Tables A, the coordinate triplets in the upper block of the
‘Positions’, such as shown at the beginning of Section 3.1.1 for the space group
I 41/amd, are a kind of shorthand notation of eqn (3.1) (page 20):

• the left part (x̃ =, ỹ =, z̃ =) has been omitted;

• all components with the coefficients Wik = 0 and wi = 0 have been omit-
ted.

The term (2) x + 1
2 ,y+ 1

2 ,z+ 1
2 therefore means:

W =

⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠ , w =

⎛⎜⎝
1
2
1
2
1
2

⎞⎟⎠
The term (3) y,x+ 1

2 ,z+ 1
4 is a shorthand notation of the matrix–column pair:

W =

⎛⎝ 0 −1 0
1 0 0
0 0 1

⎞⎠ , w =

⎛⎜⎝ 0
1
2
1
4

⎞⎟⎠
This way, International Tables A present the analytic-geometrical tools for

the description of crystal symmetry.

4.2 Crystallographic symmetry operations m

By definition, crystallographic symmetry operations are always isometries;
however, not every isometry can be a crystallographic symmetry operation.
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This is due to the periodicity of crystals and to the restriction that the period-
icity lengths may not be arbitrarily short.

Let a crystal be referred to a coordinate system with a primitive basis, Defi-
nition 2.7 (page 14). Then every symmetry operation corresponds to a matrix–
column pair (W,w). This includes an infinity of translations (I,w); every
triplet w of integers represents a translation. However, the number of matrix
parts W is finite, as follows from the following considerations.

Theorem 4.1 For every space group, represented by the matrix–column
pairs (W,w) of its symmetry operations, there exist only a finite number
of matrices W.

The matrix W maps the basis (a1,a2,a3) onto the vectors (ã1, ã2, ã3). For
the set of all Ws we have a set of base images. Every basis vector is a lattice
vector; therefore, its image vector is also a lattice vector, since the lattice has
to be mapped onto itself under W, otherwise W would not correspond to a
symmetry operation. The set of all image vectors of a basis vector, say ai,
have their endpoints on a sphere of radius ai. If there were infinitely many
image vectors ãi, their endpoints would have to concentrate around at least one
point on this sphere with an infinite density. For any two lattice vectors their
difference also is a lattice vector; then there would have to exist arbitrarily
short lattice vectors. As a consequence, only a finite number of image vectors
ãi can exist for any i, and thus only finitely many matrices W.

This conclusion is evidently independent of the dimension d of space. How-
ever, the maximal possible number of different matrices increases markedly
with d: It is 2 for d = 1, 12 for d = 2, 48 for d = 3, and 1152 for d = 4.

A second restriction concerns the possible orders N of rotations. According
to the aforementioned consideration of the matrices W, these have to consist
of integral numbers if a primitive basis has been chosen, because in that case
all lattice vectors are integral. On the other hand, the matrix of any rotation,
referred to an appropriate orthonormal basis, can be represented by

W =

⎛⎝ cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

⎞⎠
The trace of the matrix is therefore tr(W) = n, n integral, as well as tr(W) =
1+2cosϕ.

The trace is independent of the basis. As a consequence, for crystallographic
symmetry operations, one has:

1+2cosϕ = n, n integral

This restricts the possible values of ϕ to:

ϕ = 0◦, 60◦, 90◦, 120◦, 180◦, 240◦, 270◦, and 300◦

Therefore, the order N is restricted to the values N = 1,2,3,4, and 6. This is
also valid for rotoinversions, since any rotation can be coupled with an inver-
sion.
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In crystallography, the types of crystallographic symmetry operations are
designated by their Hermann–Mauguin symbols (Figs. 4.1 and 4.2). These
are:

• 1 for the identical mapping.

• 1 (‘one bar’) for the inversion.

• Rotations: A number N, N = 2, 3, 4, 6. This corresponds to the order
of the rotation. If needed, the power of the rotation is mentioned; for
example, 6−1 = 65, rotation by −60◦ = 300◦.

• Screw rotations: Np designates a screw rotation consisting of a rotation
N coupled with a translation parallel to the axis of rotation by p/N of
the shortest lattice distance in this direction. The possible symbols are:
21 (‘two sub one’), 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

• Rotoinversions: 3, 4 and 6.

• Reflections: m (like mirror). m is identical to 2.

axes of rotation

➤

➤

➤

axes of rotoinversion➤

➤

glide plane

➤

mirror plane

➤

1

point of inversion
➤

 �
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Fig. 4.1 The effect of different symmetry operations on the point 
 (Chinese symbol for point, pronounced diăn in Chinese, hoshee in Japanese).
The symmetry operations are designated by their Hermann–Mauguin symbols and by their graphical symbols.
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Fig. 4.2 The crystallographic screw axes with their Hermann–Mauguin and graphical symbols. The axes 31, 41, 61, and 62 are right-handed, 32, 43,
65, and 64 left-handed. One length of translation in the axis direction is depicted.
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• Glide reflections: The letter m is replaced by a symbol that expresses the
glide vector v. The vector v is parallel to the glide plane; its length is
one-half of a lattice vector. The main symbols among the conventional
settings are:

a, b, or c if the glide vector is 1
2 a, 1

2 b, or 1
2 c, respectively; for plane

groups it is g;

n for glide vectors 1
2 (±a±b), 1

2(±b±c), 1
2 (±c±a), or 1

2 (±a±b±c);

d for glide vectors 1
4 (±a±b), 1

4(±b±c), 1
4 (±c±a), or 1

4 (±a±b±c).

e designates a glide plane having two mutually perpendicular glide vec-
tors 1

2 a, 1
2 b, or 1

2 c.

For the special symbols g1 and g2 among non-conventional settings of
tetragonal space groups see Section 9.3.3.

The mentioned symbols for single crystallographic symmetry operations
give no indication about the orientation of the rotation or rotoinversion axis.
As explained in more detail in Section 6.3.1, the orientation of an axis is ex-
pressed in a Hermann–Mauguin symbol by its position in the symbol.

In the plane, the same orders exist for rotations, since the traces of the ma-
trices yield the same equation 2cos ϕ = n with the same solutions for ϕ and
N. However, only one type of symmetry operation exists in the plane for
det(W) = −1, the reflection or glide reflection at a line, which is represented
in an appropriate basis by:

W =

(
−1 0

0 1

)
A rotation axis belongs to every rotation. Among the symmetry rotations

of crystals, these axes can only adopt certain mutual angles, otherwise their
compositions would produce rotations with non-integral traces. This is another
way to understand why for a crystal there can only exist a finite number of
matrices W. The different possible sets {W} of compatible matrices W, the 32
crystal classes, can be derived in this way.

4.3 Geometric interpretation of the
matrix–column pair (W,w) of a
crystallographic symmetry operation

Consider a crystallographic symmetry operation W, represented by the matrix–
column pair (W,w), referred to a given coordinate system (the geometric in-
terpretation would be impossible without the coordinate system).

Essentially, the following procedure can be applied to general isometries,
without restrictions to the orders. See also Section 3.6.

First, we analyse the matrix part W:

• det(W) = +1: rotation; det(W) = −1: rotoinversion;

• angle of rotation ϕ from cosϕ = 1
2 (±tr(W)−1) (4.1);

the + sign refers to rotations, the − sign to rotoinversions.
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This can be summarized in a table:

det(W) = +1 det(W) = −1

tr(W) 3 2 1 0 −1 −3 −2 −1 0 1

type 1 6 4 3 2 1 6 4 3 2 = m
order 1 6 4 3 2 2 6 4 6 2

Characterization of the crystallographic symmetry operations

Every symmetry operation, translations excepted, is related to a symmetry el-
ement. This is a point, a straight line, or a plane which retains its position in
space when the symmetry operation is performed.

1. Type 1 or 1:

• 1: identity or translation with w as a column of the translation vector;

• 1: inversion; the symmetry element is the point of inversion F (inver-
sion centre):

xF =
1
2

w (4.2)

2. All other operations have a fixed axis (axis of rotation or rotoinversion); its
direction can be calculated from Wu = u (rotations) or Wu =−u (rotoinver-
sions). For a reflection and a glide reflection the symmetry element is not
the axis, but the mirror plane or the glide plane (short for glide-reflection
plane); the direction of the axis is normal to the plane.

3. The coefficient of a screw rotation or the coefficient of a glide reflection 1
k t

can be calculated from the corresponding matrix of rotation W, which has
order k, i.e. Wk = I:

1
k

t =
1
k

(
Wk−1 +Wk−2 + . . .+W + I

)
w (4.3)

If t = o, we have a rotation or a reflection. If t 	= o, we have a screw rotation
or a glide reflection. In this case one obtains the reduced operation:

(I,−1
k

t)(W,w) = (W,w− 1
k

t) = (W,w′) (4.4)

The column 1
k t is called the screw component or the glide component of the

column w. The column w′ = w− 1
k t determines the position in space of the

corresponding symmetry element. Therefore, w′ is also called the positional
component of w. If W has only main diagonal coefficients, i.e. only Wii 	= 0,
then Wii = ±1 holds and wi is a screw or a glide coefficient for Wii = +1
and a positional coefficient for Wii = −1.

4. The fixed points of the isometry are determined by solution of eqn (3.11):

WxF +w = xF

This equation has no solution for screw rotations and glide reflections. The
position of the screw axis or glide plane rather results from the reduced
operation, eqn (4.4):

WxF +w′ = xF (4.5)



4.4 Derivation of the matrix–column pair of an isometry 47

The conventional pairs (W,w) are listed in International Tables A in short-
hand notation as ‘general positions’, see Section 3.1.1. Their geometric mean-
ing can be found in the tables of the space groups under the heading ‘symmetry
operations’. They have been numbered in the same sequence as the coordinate
triplets. More explanations follow in Section 6.4.3.

4.4 Derivation of the matrix–column pair of an
isometry

The matrix–column pair (W,w) consists of 12 coefficients. To determine them,
the coordinates of four non-coplanar image points have to be known. The most
straightforward procedure is to take the image points of the origin and of the
three endpoints of the basis vectors.

1. If Õ is the image point of the origin O, we obtain:

õ = Wo+w = w (4.6)

Therefore, the coordinates õ of Õ are the coefficients of w.

2. After having determined w, the matrix W is obtained from the images of the
points Xo,Yo and Zo with

xo =

⎛⎝ 1
0
0

⎞⎠ , yo =

⎛⎝ 0
1
0

⎞⎠ , zo =

⎛⎝ 0
0
1

⎞⎠
using the relations:

x̃o = Wxo +w, ỹo = Wyo +w, z̃o = Wzo +w or (4.7)

x̃o =

⎛⎝ W11

W21

W31

⎞⎠+w, ỹo =

⎛⎝ W12

W22

W32

⎞⎠+w, z̃o =

⎛⎝ W13

W23

W33

⎞⎠+w (4.8)

With the coordinates of x̃o, ỹo, z̃o one obtains the matrix W.

To check the result, one calculates fixed points, the trace, the determinant,
the order, and/or other known values. If the images of Õ, X̃o,Ỹo, or Z̃o are dif-
ficult to determine, one has to use the images of other points; the calculations
then become more complicated.
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Exercises

Solutions in Appendix D (page 283)

(4.1) Give the geometric interpretations for the symmetry op-
erations (8), (10), (15), (15) + ( 1

2 , 1
2 , 1

2 ) = (15)2 and
(15)2n mentioned in Exercises 3.1 and 3.2 (page 40;
(15)2n means standardized). Take the matrices you ob-
tained with Exercise 3.1 and apply the procedure ex-
plained in Section 4.3. For each of the mentioned op-
erations, derive:

(a) the determinant det(W) and the trace tr(W);
(b) from that, the type of symmetry operation;

(c) the direction of the axis of rotation or of the normal to
the plane;
(d) the screw and glide components;
(e) the position of the symmetry element;
(f) the Hermann–Mauguin symbol of the symmetry oper-
ation.
(g) Which operations yield fixed points?

Compare the results with the figures and listings of the
symmetry operations in International Tables A, space
group I 41/amd, origin choice 2.
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5.1 Two examples of groups

Consider two sets:

(1) The set Z of the integral numbers.
The set Z = {0,±1,±2, . . .} is infinite. The result of the addition of two
numbers z1 and z2 again is an integral number z3 = z1 + z2. There exists
the number 0 with the property z + 0 = z for any z. For every z there
exists another number −z with the property z + (−z) = 0. The relation
z1 + z2 = z2 + z1 always holds.

(2) The symmetry G of a square.
The set G consists of the eight mapping elements g1, g2, . . . , g8. These
are, see Fig. 5.1, the rotations 4 counter-clockwise by 90◦, 2 by 180◦, and
4−1 by −90◦ (equivalent to 43 by 270◦), the reflections mx , my , m+, and
m− through the lines mx, my, m+ and m−, and finally the identity mapping
1, which maps every point onto itself. Each one of these mappings maps
the square onto itself; any composition (sequence) of two mappings again
yields a mapping of the figure onto itself. The composition of any map-
ping g with 1 reproduces g, and for any mapping g there exists the inverse
mapping g−1, such that g composed with g−1 yields the identity mapping.
Contrary to Z the composition of two elements does not always yield the
same element: 4 and mx yield m− if 4 is performed first, but m+ if mx is
performed first.

⁄

Ÿ

˚

a

b

1,−1 1,1

−1,−1 −1,1

①

②③

④

my

mx

m+ m−

Fig. 5.1 The square and its symmetry ele-
ments (point of rotation ⁄ and four mirror
lines).

The two sets have another important property in common, referred to the
chosen kinds of composition, addition and sequential mapping. If one takes
three elements z1,z2,z3 or g1,g2,g3, it makes no difference which elements
are composed first as long as the sequence is not changed:

(z1 + z2)+ z3 = z4 + z3 = z6

always yields the same result as

z1 +(z2 + z3) = z1 + z5 = z6

In the same way

(g1 ◦g2)◦g3 = g4 ◦g3 = g6 = g1 ◦ (g2 ◦g3) = g1 ◦g5 = g6

holds, where the sequential execution is expressed by the symbol ◦. The sets
Z and G are said to be associative with respect to the selected compositions.

The sets Z and G share the mentioned properties with many other sets. The
term group has been coined for all sets having these properties.
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An example of a non-associative composition of elements of the set Z is
subtraction. For example, (5−3)− 2 = 2− 2 = 0, but 5− (3− 2) = 5− 1 =
4 	= 0. However, we do not have to be concerned about associativity: mappings
are associative, and symmetry deals with groups of mappings.

Table 5.1 Symmetry operations of a
square and the corresponding permuta-
tions of its vertices, see Fig. 5.1.

1 (1)(2)(3)(4)

2 (13)(24)

4 (1234)

4−1 (1432)

mx (12)(34)

my (14)(23)

m+ (2)(4)(13)

m− (1)(3)(24)

Let us consider the example of the group G in some more detail. The se-
quential execution of mappings is not always a simple matter. You may find it
difficult to answer the question, ‘Which mapping (symmetry operation) results
when a cube is first rotated counter-clockwise about the direction [111] (body
diagonal) by 120◦ and then about [010] (an edge) by 270◦?’ The replacement
of mappings by analytical tools helps to keep track of the operations. Such
tools are the permutations of the vertices ①, ②, ③, and ④; other tools are
the matrices of the mappings. Exactly one permutation and one matrix cor-
responds to each mapping (if the origin is chosen to be in the centre of the
square, the column w of the matrix–column pair (W,w) is a zero column and
it is sufficient to consider the matrix W). The composition of mappings then
corresponds to a sequence of permutations or to multiplication of the matrices,
see Tables 5.1 and 5.2. The notation in Table 5.1 has the following meaning:
(3) means, the vertex ③ keeps its position; (13) means, the vertices ① and ③

interchange their positions; (1234) means cyclic interchange of the vertices,
①→②→③→④→① .

Table 5.2 Matrices of the symmetry opera-
tions of the square.

W(1) =

(
1 0
0 1

)
W(2) =

(
1 0
0 1

)

W(4) =

(
0 1
1 0

)
W(4−1) =

(
0 1
1 0

)

W(mx) =

(
1 0
0 1

)
W(my) =

(
1 0
0 1

)

W(m+) =

(
0 1
1 0

)
W(m−) =

(
0 1
1 0

)

Using permutations, one obtains the result of the above-mentioned sequen-
tial execution of 4 and mx :

First 4, then mx

① ② ③ ④
4 ↓ ↓ ↓ ↓

② ③ ④ ①
mx ↓ ↓ ↓ ↓

① ④ ③ ②

this corresponds to the permutation
(1)(3)(2 4) which is m−

First mx , then 4

① ② ③ ④
mx ↓ ↓ ↓ ↓

② ① ④ ③
4 ↓ ↓ ↓ ↓

③ ② ① ④

this corresponds to the permutation
(2)(4)(1 3) which is m+

Using matrices, the first operation has to be written on the right side, since
it is applied to the coordinate column which is placed on the right side in the
formula x̃ = Wx:

First 4, then mx

W(mx) W(4)(
1 0
0 1

)(
0 1
1 0

)
=

(
0 1
1 0

)
= W(m−)

First mx , then 4

W(4) W(mx)(
0 1
1 0

)(
1 0
0 1

)
=

(
0 1
1 0

)
= W(m+)

If the group contains not too many elements, the results of the compositions
can be presented in a table, the group multiplication table, see Table 5.3. In
the top line, each column is labelled with a symmetry operation (group ele-
ment), and so is each row in the left-most column. The top line refers to the
operation performed first, the left column to the second operation. The entry at
the intersection of a column and a row corresponds to the composition of the
operations. Check the results obtained from 4 and mx .
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Table 5.3 Multiplication table of the symmetry group of the square.

1 2 4 4−1 mx m+ my m− ← first symmetry operation

1 1 2 4 4−1 mx m+ my m−
2 2 1 4−1 4 my m− mx m+

4 4 4−1 2 1 m+ my m− mx

4−1 4−1 4 1 2 m− mx m+ my

mx mx my m− m+ 1 4−1 2 4
m+ m+ m− mx my 4 1 4−1 2
my my mx m+ m− 2 4 1 4−1

m− m− m+ my mx 4−1 2 4 1

↑
second symmetry operation

5.2 Basics of group theory

The observations made in Section 5.1 can be formalized with the so-called
group axioms (group postulates) [45]. These are:

(1) Closure: A group is a set G of elements gi, for which a composition law is
defined, such that the composition of any two elements gi◦gk yields exactly
one element g j ∈ G :1 1gi ◦gk reads ‘gi followed by gk’.

g j = gi ◦gk

Remarks

• The notation g j ∈ G means, g j is an element of the set G.

• We use: calligraphic letters such as G,H for groups; slanted sans-
serif lower case letters or ciphers such as g,h,4 for group elements;
italic upper case letters such as A,B for arbitrary sets; and italic lower
case letters such as a,b for their elements. Groups and sets are also
designated by curly braces such as {g1,g2, . . .}= G or {a1,a2, . . .} =
A. {W} means a group consisting of mapping matrices W1,W2, . . . .

• The composition of elements is often called ‘multiplication’ and the
result the ‘product’, even if the composition is of some other kind.
The composition sign ◦ is usually omitted.

• In most cases the kind of composition is clear. However, sometimes
a specification is needed, for example, if the composition in Z should
be addition or multiplication.

• The convention in crystallography is: When mappings of points (or
coordinates) are expressed by matrices, then in a sequence of map-
pings the first matrix is written on the right, the second one on the
left, see Section 5.1.

• The symmetry operations are the elements of a symmetry group. The
symmetry elements (points of inversion, rotation axes, rotoinversion
axes, screw axes, and reflection and glide planes) are not the elements
of the group. This unfortunate terminology has historical reasons.

(2) The composition of elements is associative, see Section 5.1.
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(3) One element of the group, the identity element, g1 = e has the property

e gi = gi e = gi for all gi ∈ G

(4) Every g ∈ G has an inverse element (or reciprocal element) x ∈ G , such
that x g = g x = e holds. Usually, the inverse element is termed g−1.
The element inverse to g−1 is g. If g 	= g−1, there are pairs g and g−1.

For the following, some more basic terms are needed.

(a) The number G = |G | of elements in a group G is called the order of the
group. If G is not finite (as in Z), G is called a group of infinite order or an
infinite group.

(b) Let g ∈ G . Then, according to axiom 1, g g = g2, g g g = g3, . . . are also
elements of G . If G is finite, there must exist a smallest number k, such that
gk = e holds. This number k is called the order of the element g (not to be
confused with the order of the group). If G is infinite, k can be infinite. For
example, the group Z from Section 5.1 only has elements of infinite order
(the 0 excepted).

(c) If gi gk = gk gi holds for all element pairs gi,gk ∈ G, G is called a commu-
tative or Abelian group (after the mathematician ABEL).

(d) An arbitrary subset A = {a1,a2,a3, . . .} ⊆ G is called a complex from G.
A complex usually does not fulfil the group axioms. gi A refers to the set
{gia1,gia2,gia3, . . .} of the products of gi with the elements of A; Agi des-
ignates the set {a1gi,a2gi,a3gi, . . .}. If B = {b1,b2,b3, . . .} ⊆ G is also a
complex from G , then AB is the set of all products ai bk, AB = {a1 b1,a2 b1,
a3 b1, . . . ,a1 b2, . . . ,ai bk, . . .}; BA is the set of all products bi ak.

(e) A complex H ⊆ G which fulfils the group axioms is called a subgroup,
written H ≤ G . If G contains elements which do not occur in H, i.e. if
H (as a set) is smaller than G, then H is called a proper subgroup of G,
H < G. By analogy, G ≥ H is called a supergroup of H and G > H a
proper supergroup of H. G ≤ G as a subgroup of itself and the unity
element e (that always forms a group by itself) are the trivial subgroups
of G . If we regard e as being a group, we write {e}.

Definition 5.1 H < G is called a maximal subgroup of G if there exists no
intermediate group Z for which H < Z < G holds. If H is a maximal
subgroup of G , then G > H is called a minimal supergroup of H.

(f) A complex of elements g1,g2, . . . is called a set of generators of G if G
(i.e. all elements of G ) can be generated by repeated compositions from
the generators.
For example, the symmetry group of the square, among others, can be gen-
erated from {4,mx} or {mx ,m+} or {1,4−1,mx ,my} or {4,2,4−1,m−,m+}.

Example 5.1
Generation of the symmetry group of
the square from the generator {4,mx}:

4 ◦mx → m−; mx ◦m− → 4−1;
4 ◦m− → my ; 4 ◦my → m+;
mx ◦my → 2 ; 4 ◦4−1 → 1

(g) A group G is called cyclic, if it can be generated from one of its elements
a ∈ G (a and a−1 in the case of infinite groups). For finite cyclic groups,
the order of a is the group order. The order of (Z,+) is infinite, see above,
letter (b); generators are a = 1 and a−1 = −1.
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(h) A group of small order can be clearly represented by its group multiplica-
tion table, see the example in Table 5.3. The composition ab of a and b is
placed in the intersection of the column of a and the row of b. Each column
and each row of the group multiplication table lists each of the elements of
the group once and only once.

Question. What elements of a group multiplication table have order 2?
(Reply in Appendix D, page 283.)

(i) Groups which have the same group multiplication table, apart from the
names or symbols, and if necessary, after rearrangement of rows and col-
umns, are called isomorphic. This definition becomes unwieldy for groups
of large order and meaningless for infinite groups. However, the essen-
tial property ‘the same group multiplication table’ can be defined without
reference to a multiplication table.

Let G = {g1,g2, . . .} and G ′ = {g′
1,g

′
2, . . .} be two groups. ‘The same group

multiplication table’ means that for corresponding elements gi and g′
i or gk and

g′
k their products gi gk and g′

i g′
k also correspond to each other. This is the basis

of the definition:

Definition 5.2 Two groups G and G ′ are isomorphic, G ∼= G ′, if

(i) there exits a reversible mapping of G onto G ′, gi � g′
i ;

(ii) the product g′
i g′

k of the images g′
i and g′

k is equal to the image (gi gk)
′

of the product gi gk for every pair gi,gk ∈ G . More formally: g′
i g′

k =
(gi gk)

′. The image of the product is equal to the product of the images.

With the aid of isomorphism all groups can be subdivided into isomorphism
classes (isomorphism types) of isomorphic groups. Such a class is also called
an abstract group; the groups themselves are realizations of the abstract group.
In the group-theoretical sense, there is no distinction between different realiza-
tions of the same abstract group. This makes it possible to replace a group
of mappings by the corresponding group of matrices (or of permutations) and
thus renders it possible to treat the geometrical group with analytical tools.
This is exactly what is exploited in Section 5.1, where three realizations of the
symmetry group of the square are used:

(1) the group of the mappings {1,4, . . . ,m−};

(2) the permutation group, the elements of which are listed in Table 5.1;

(3) the group of the matrices mentioned in Table 5.2.

5.3 Coset decomposition of a group

Let G be a group and H < G a subgroup. A coset decomposition of G with
respect to H is defined as follows:

(1) The subgroup H is the first coset.

(2) If g2 ∈ G , but g2 /∈ H , then the complex g2H is the second coset (left
coset, since g2 is on the left side).
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No element of g2H is an element of H and all elements of g2H are
different. Therefore, the cosets H and g2H have |H| elements each.

(3) If g3 ∈ G but g3 /∈H and g3 /∈ g2H , the complex g3H is the third (left)
coset. All elements of g3H are different and no element of g3H appears
in H or g2H ; all elements are new.

(4) One continues the procedure until no element of G is left over. As a
result, G has been decomposed to left cosets with respect to H . In the
same way, G can also be decomposed to right cosets H ,Hg2, . . ..

(5) The number of right and left cosets is the same; it is called the index of
H in G .

It follows from items (1)–(5) that each element of G appears in exactly one
coset and that every coset contains |H| elements. Only the first coset is a group
since it is the only one which contains the identity element. From h jH = H it
follows that every element gi h j of the coset giH can be used to generate the
coset.

Taking hi ∈ H and n = |H|, the elements gi ∈ G are distributed among the
left cosets in the following manner:

first second third . . . ith
coset coset coset coset
H = g2H = g3H = . . . giH =

e = h1 g2 e g3 e . . . gi e
h2 g2 h2 g3 h2 . . . gi h2

h3 g2 h3 g3 h3 . . . gi h3
...

...
...

...
...

hn g2 hn g3 hn . . . gi hn︸ ︷︷ ︸
Total of i cosets. Each of them contains the same number of elements.
No one contains elements of another coset

Example 5.2
A few coset decompositions of the symmetry group of the square,
G = {1,2,4,4−1,mx ,my ,m+,m−} (cf. Fig. 5.1 and Table 5.3):

Decomposition with respect to H = {1,2}
1st coset 2nd coset 3rd coset 4th coset

left cosets
1◦H = {1,2} 4 ◦H = {4,4−1} mx ◦H = {mx ,my} m+ ◦H = {m+,m−}

right cosets
H◦ 1 = {1,2} H◦ 4 = {4,4−1} H ◦mx = {mx ,my} H◦m+ = {m+,m−}

There are four cosets, the index amounts to 4. In addition, in this case, the
left and right cosets are equal.
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Decomposition with respect to H = {1,mx}
1st coset 2nd coset 3rd coset 4th coset

left cosets
1◦H = {1,mx} 4◦H = {4,m−} 2 ◦H = {2,my} 4−1 ◦H = {4−1,m+}

right cosets
H◦1 = {1,mx} H◦ 4 = {4,m+} H◦2 = {2,my} H◦4−1 = {4−1,m−}

Left and right cosets are different.

The Theorem of Lagrange follows directly from the coset decomposition of
a finite group:

Theorem 5.3 If G is a finite group and H < G , then the order |H| of H is
a divisor of the order |G | of G .

There exist i cosets having |H| elements each, every element of G appears
exactly once, and therefore |G | = |H|× i. The index is:

i =
|G |
|H| (5.1)

From Theorem 5.3 it follows that a group having the order of a prime number
p can only have trivial subgroups. The symmetry group of the square, having
an order of 8, can only have subgroups of orders 1 ({1}, trivial), 2, 4, and 8
(G , trivial).

Equation (5.1) is meaningless for infinite groups. However, if the elements
of an infinite group are arranged in a sequence, one can delete from this se-
quence, say, every other element. The number of the remaining elements then
is ‘half as many’, even though their number is still infinite. After deletion of
all odd numbers from the infinite group Z of all integral numbers, the group of
the even numbers remains. This is a subgroup of Z of index 2. This is due to
the fact that in this way Z has been decomposed into two cosets: the subgroup
H of the even numbers and a second coset containing the odd numbers:

first second
coset coset
H = 1+H =

e = 0 1+0 = 1
−2 2 1+(−2) = −1 1+2 = 3
−4 4 1+(−4) = −3 1+ 4 = 5

...
...

...
...

Similar considerations apply to space groups. Space groups are infinite For the finite index between two infinite
groups G > H we write i = |G : H |.groups, consisting of an infinite number of symmetry operations. However,

one can say, ‘the subgroup of a space group of index 2 consists of half as many
symmetry operations’. ‘Half as many’ is to be taken in the same sense as, ‘the
number of even numbers is half as many as the number of integral numbers’.
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5.4 Conjugation

The coset decomposition of a group G separates the elements of G into classes;
every element belongs to one class, i.e. to one coset. The cosets have the
same number of elements, but the elements of a coset are quite different. For
example, the identity element is part of the elements of the subgroup (first
coset), while the order of all other elements is larger than 1. In this section we
consider another kind of separation of the elements of G : the subdivision into
conjugacy classes. Generally, conjugacy classes have different sizes (lengths),
but the elements of one class have common features.

Definition 5.4 The elements gi and g j , gi,g j ∈ G, are called conjugate in G
if there exists an element gm ∈ G such that g j = g−1

m gi gm holds. The set of
elements which are conjugate to gi when gm runs through all elements of G
is called the conjugacy class of gi.

One also says that gi can be transformed to g j by gm. There may exist several
elements gm,gn, . . . ∈ G which transform gi to g j .

Referred to symmetry groups, this means: Two symmetry operations of the
symmetry group G are conjugate if they are transformed one to another by
some other symmetry operation of the same group G .

Example 5.3
In the symmetry group of the square (Fig. 5.1), the rotation 4 transforms the
reflection m+ to m− and vice versa:

m+ 4−1 m− 4(
0 1
1 0

)
=

(
0 1
1 0

) (
0 1
1 0

) (
0 1
1 0

)
The same transformation m+ � m− can be achieved by the rotation 4−1 and
by the reflections mx and my , while the remaining symmetry operations of the
square leave m+ and m− unchanged. The reflections m+ and m− are conju-
gate in the symmetry group of the square. Together, they form a conjugacy
class.

Properties of conjugation:

(1) Every element of G belongs to exactly one conjugacy class.

(2) The number of elements in a conjugacy class (the length of the conjugacy
class) is different; however, it is always a divisor of the order of G .

(3) If gi ∈ G and if the equation
g−1

m gi gm = gi (5.2)

holds for all gm ∈ G, then gi is called self-conjugate. Since eqn (5.2) is
equivalent to gi gm = gm gi, one also says: ‘gi is interchangeable with all
elements of G ’.

(4) For Abelian groups, it follows from eqn (5.2) that every element is self-
conjugate, and thus forms a conjugacy class by itself. Similarly, the identity
element e ∈ G of any group forms a class by itself.

(5) Elements of the same conjugacy class have the same order.
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Definition 5.5 Subgroups H,H′ < G are called conjugate subgroups in G ,
if there exists an element gm ∈ G such that H′ = g−1

m Hgm holds. The set of
subgroups that are conjugate to H when gm runs through all elements of G
forms a conjugacy class.

Theorem 5.6 Conjugate subgroups are isomorphic and thus have the same
order.

Example 5.4
As explained in Example 5.3, m+

and m− are conjugate elements of
the symmetry group G of the square.
The groups {1,m+} and {1,m−}
are conjugate subgroups of G be-
cause 4−1{1,m+}4 = {1,m−}. These
two groups form a conjugacy class.
The conjugate subgroups {1,mx} and
{1,my} form another conjugacy class;
4−1{1,mx}4 = {1,my}.

By conjugation, the set of all subgroups of G is subdivided into conjugacy
classes of subgroups. Subgroups of the same conjugacy class are isomorphic.
The number of subgroups in such a class is a divisor of the order |G |. Every
subgroup of G belongs to exactly one conjugacy class. Different conjugacy
classes may contain different numbers of subgroups.

Conjugate subgroups of space groups are the subject of Chapter 8 .

Definition 5.7 Let H < G. If g−1
m Hgm = H holds for all gm ∈ G, H is

called a normal subgroup of G, designated H �G (also called an invariant
subgroup or self-conjugate subgroup).

The equation g−1
m Hgm = H is equivalent to Hgm = gmH . Therefore, the

coset decomposition of a normal subgroup yields the same right and left cosets.
The normal subgroup can also be defined by this property. That implies the
self-conjugacy in G . In Example 5.2, {1,2} is a normal subgroup, {1,2} �G,
but not so {1,mx} .

Every group G has two trivial normal subgroups: the identity element {e}
and itself (G ). All other normal subgroups are called proper normal subgroups.

5.5 Factor groups and homomorphisms

The cosets of a group G with respect to a normal subgroup N �G by them-
selves form a group which is called the factor group (or quotient group) F =
G/N . The cosets are considered to be the new group elements. They are con- G/N is pronounced ‘G modulo N’
nected by complex multiplication, see Section 5.2, letter (d). Replacing group
elements by cosets can be compared to the packing of matches into match
boxes: First, one has to do with matches; after packing them, one only sees the
match boxes (now filled), which are now the elements to be handled.

Example 5.5
The point group 3m consists of the elements 1, 3, 3−1, m1, m2 , m3 . Its
subgroup 3 consists of the elements 1, 3, 3−1; it is also the first coset
of the coset decomposition of 3m with respect to 3. The complex
m1 {1, 3, 3−1} = {m1, m2 , m3} is the second coset. Left and right cosets co-
incide; therefore, the subgroup 3 is a normal subgroup. The factor group
3m/3 consists of the two elements {1, 3, 3−1} and {m1, m2 , m3}. Together,
the rotations are now considered to be one group element, and the reflections
in common form another group element. The normal subgroup, in this case
{1, 3, 3−1}, is the new identity element of the factor group.
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Factor groups are important not only in group theory, but also in crystallog-
raphy and in representation theory. The following rules hold:

The normal subgroup N of the group G is the identity element of the factor
group F = G/N .

The element inverse to giN is g−1
i N .

Example 5.6
Let G be the group of the square (cf. Section 5.1) and let N be the normal
subgroup {1,2}�G. The group multiplication table of the factor group F is:

{1,2} {4,4−1} {mx ,my} {m+,m−}

{1,2} {1,2} {4,4−1} {mx ,my} {m+,m−}
{4,4−1} {4,4−1} {1,2} {m+,m−} {mx ,my}
{mx ,my} {mx ,my} {m+,m−} {1,2} {4,4−1}
{m+,m−} {m+,m−} {mx ,my} {4,4−1} {1,2}

The identity element is {1,2}. The multiplication table is equal to the multi-
plication table of the point group mm2; therefore, the factor group is isomor-
phic to mm2.

In the preceding example F is isomorphic to a subgroup of G. This is not
necessarily so; factor groups of space groups very often are not isomorphic to a
subgroup. The main difference between the factor groups F and the subgroups
H of a group G can be demonstrated by a geometric comparison:

A subgroup corresponds to a section through a body; the section only dis-
closes a part of the body, not the whole body, but of this part all of its details.
The factor group corresponds to a projection of a body onto a plane: every
volume element of the body contributes to the image, but always a column of
volume elements is projected onto an image element; the individual character
of the elements of the body is lost.

Normal subgroups and factor groups are intimately related to the homomor-
phic mappings or homomorphisms.

Definition 5.8 A mapping G → G ′ is called homomorphic or a homomor-
phism if for all pairs of elements gi,gk ∈ G that are mapped, gi → g′

i and
gk → g′

k,

(gi gk)
′ = g′

i g′
k (5.3)

also holds. The image of the product is equal to the product of the images.

This is the same condition as for an isomorphism, see Section 5.2, letter (i).
However, an isomorphism has exactly one image element per starting element,
so that the mapping can be reversed, whereas under a homomorphism there is
no restriction as to how many elements of G are mapped onto one element of
G ′. Therefore, isomorphism is a special kind of homomorphism.
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Example 5.7
Let G = {W1, . . . ,W8} be the group of the mapping matrices of the square (cf.
Table 5.2); their determinants have the values det(Wi) = ±1. If we assign its
determinant to each matrix, then this is a homomorphic mapping of the group
G of the matrices onto the group of numbers G ′ = {−1,1}; −1 and 1 form
a group with respect to the composition by multiplication. Equation (5.3)
of Definition 5.8 holds since det(WiWk) = det(Wi)det(Wk). The mapping
cannot be reversed because the determinant 1 has been assigned to four of
the matrices and the determinant −1 to the other four.

Closer inspection reveals that a homomorphism involves a close relation
between G and G ′, see, for example, the textbook [45].

Theorem 5.9 Let G →G ′ be a homomorphism of G onto G′. Then a normal
subgroup K�G is mapped onto e′, the identity element of G ′, and the cosets
giK are mapped onto the remaining elements g′

i ∈ G ′. Therefore, the factor
group G /K is isomorphic to G ′. The normal subgroup K is called the kernel
of the homomorphism. The homomorphism is an isomorphism if K = {e},
i.e. G ′ is isomorphic to G .

Theorem 5.9 is of outstanding importance in crystallography. Take G as the
space group of a crystal structure, K as the group of all translations of this
structure, and G ′ as the point group of the macroscopic symmetry of the crys-
tal; then, according to this theorem, the point group of a crystal is isomorphic
to the factor group of the space group with respect to the group of its transla-
tions. This will be dealt with in more detail in Section 6.1.2.

5.6 Action of a group on a set

In spite of their importance, groups are not of primary interest in crystal chem-
istry. Of course, they are needed, since isometry groups are used to describe
the symmetry of crystals. They are the foundation for all considerations,
and knowledge of how to deal with them is essential to all profound reflec-
tions on crystal-chemical topics. However, primary interest is focused on the
crystal structures themselves, on their composition from partial structures of
symmetry-equivalent particles, and on the interactions between particles of
equal or different partial structures. The symmetry group of the crystal struc-
ture is behind this. Therefore, what is really of interest, is the influence of the
group on the points (centres of the particles) in point space: Which points are
symmetry equivalent, which are invariant under which symmetry operations,
etc. The conception of the action of a group on a set deals with this kind of
questions. However, it is much more general, since the groups and the sets can
be of any kind. As for groups, certain postulates must be fulfilled:

Let G be a group with the elements e,g2, . . . ,gi, . . . and let M be a set with
the elements m1,m2, . . . ,mi, . . . .
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Definition 5.10 The group G acts on the set M if:

(1) mi = gi m is a unique element mi ∈M for every gi ∈G and every m∈M.

(2) e m = m is fulfilled for every m ∈ M and the identity element e ∈ G .

(3) gk(gi m) = (gk gi)m holds for every pair gi,gk ∈ G and every m ∈ M.

Definition 5.11 The set of the elements mi ∈ M which are obtained by mi =
gi m when gi runs through all elements of the group G is called the G-orbit of
m or the orbit Gm.

Applied to crystals, this means: Let G be the space group of a crystal struc-
ture and let m be an atom out of the set M of all atoms. The orbit Gm is the set
of all atoms which are symmetry-equivalent to the atom m in the crystal. For
crystals we formulate in a more general way:

Definition 5.12 The mapping of a point Xo by the symmetry operations of
a space group yields an infinite set of points, which is termed the orbit of Xo

under G or the crystallographic point orbit of Xo or the G-orbit of Xo or, for
short, GXo.

A G-orbit is independent of the point Xo chosen from its points. The different
G-orbits of point space have no points in common. Two G-orbits would be
identical if they had a common point. Therefore, the space group causes a
subdivision of the point space into G-orbits. Crystallographic point orbits are
dealt with in more detail in Section 6.5.

Example 5.8
The space group of zinc blende is F 43m. Let a zinc atom be situated at
the point XZn = ( 1

4 , 1
4 , 1

4 ). By the symmetry operations of F 43m further
(symmetry-equivalent) zinc atoms are situated at the points 3

4 , 3
4 , 1

4 , 3
4 , 1

4 , 3
4 ,

and 1
4 , 3

4 , 3
4 and, in addition, at infinitely many more points, which result

from the mentioned points by addition of (q, r, s), with q, r, s = arbitrary
positive or negative integral numbers. The complete set of these symmetry-
equivalent zinc positions makes up a crystallographic point orbit. Starting
from XS = (0, 0, 0), the sulfur atoms occupy another orbit.

Definition 5.13 The set of all gi ∈ G for which gi m = m holds is called the
stabilizer S of m in G .

In a crystal the stabilizer of m in G is the set of all symmetry operations of
the space group G which map the atom m onto itself. The stabilizer is nothing
other than the site symmetry of the point Xo at which the atom is situated
(Section 6.1.1).

The stabilizer is a subgroup of G, S ≤ G . If the element gk ∈ G , gk /∈ S,
maps the element m ∈ M onto mk ∈ M, then this is also valid for the elements
gkS ⊂ G. One can show that exactly these elements map m onto mk:

If mk = g m holds for any g ∈ G, then mk = g m = gk m or g−1
k g m = m holds.

Therefore, g−1
k g = sn ∈S holds for any sn. It follows that g = gk sn. Therefore,

all g ∈ G which map m onto mk are contained in the left coset gkS of G with
respect to S .
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Theorem 5.14 If |G| is the order of the finite group G and |S| the order of
the stabilizer S of the element m ∈ M, then L = |G|/|S| is the length of the
orbit Gm.

Among symmetry groups, ‘length’ means the ‘number of symmetry-equiva-
lent points’. For example, the symmetry group G of the square has order
|G| = 8. The vertex m = ① of the square (Fig. 5.1) is mapped onto itself
by the symmetry operations 1 and m−; the stabilizer therefore is the group
S = {1,m−} with order |S| = 2 (site symmetry group of the point ①). The
length of the orbit Gm is L = 8/2 = 4; there are four points which are symme-
try equivalent to ①.

Exercises

Solutions in Appendix D (page 283)

(5.1) How can it be recognized in a multiplication table,
whether the result of a composition is independent of the
sequence of the elements?

(5.2) What are the orders of the symmetry operations of the
symmetry group of the square in Section 5.1? Do not
confuse the orders of the symmetry operations with the
order of the group.

(5.3) List the elements of the symmetry group of the trigonal
prism. What is the order of the group? Write down the
permutation group for the vertices of the trigonal prism in
the same way as in Table 5.1 (label the vertices 1, 2, 3 for
the lower base plane and 4, 5, 6 for the upper plane, ver-
tex 4 being on top of vertex 1). Perform subsequent per-
mutations to find out which symmetry operation results
when the rotoinversion 6 is performed first, followed by
the horizontal reflection mz . Continue in the same way
for other compositions of symmetry operations and write
down the multiplication table.

(5.4) Perform the right and left coset decompositions of 6m2
(symmetry group of the trigonal prism) with respect to
the subgroup {1, 3, 3−1}. Compare the two decomposi-
tions; what do you observe? What is the index? Repeat
this with respect to the subgroup {1, m1} (m1 = reflec-
tion which maps each of the vertices 1 and 4 onto itself).
What is different this time?

(5.5) Which cosets are subgroups of G ?

(5.6) Why is a subgroup of index 2 always a normal subgroup?

(5.7) The two-dimensional symmetry group 4mm of the
square and its multiplication table are given in Section
5.1.

(a) What are the subgroups of 4mm and how can they be
found? Which of them are maximal?

(b) Why can mx and m+ not be elements of the same sub-
group?

(c) What subgroups are mutually conjugate and what
does that mean geometrically?

(d) What subgroups are normal subgroups?

(e) Include all subgroups in a graph exhibiting a hierar-
chical sequence in the following way: 4mm is at the top;
all subgroups of the same order appear in the same row;
every group is joined with every one of its maximal sub-
groups by a line; conjugate subgroups are joined by hor-
izontal lines.

(5.8) Write down the coset decomposition of the group Z of
the integral numbers with respect to the subgroup of the
numbers divisible by 5, {0,±5,±10,±15, . . .}. What is
the index of the subgroup {0,±5,±10,±15, . . .}? Is it a
normal subgroup?

(5.9) The multiplication table of the factor groupF =G/{1,2}
of the group G of the square is given in Example 5.6 (page
58). Is F an Abelian group?
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The topics that have been dealt with in Chapters 3 (mappings) and 5 (groups)
are applied in this chapter to the symmetry of crystals. This includes the clari-
fication of certain terms, because the unfortunate nomenclature that has histor-
ically evolved has caused some confusion.

6.1 Space groups and point groups

The expression ‘point group’ is used for two different terms which are inti-
mately related, but not really identical:

(1) the symmetry of a molecule (or some other arrangement of particles) or
the surroundings of a point in a crystal structure (site symmetry);

(2) the symmetry of an ideally developed macroscopic crystal.

First, we consider molecular symmetry.

6.1.1 Molecular symmetry

Consider a molecule (or a finite cluster of atoms or something similar). The
set of all isometries that map the molecule onto itself is called the molecular
symmetry.

Definition 6.1 The molecular symmetry forms a group which is called the
point group PM of the molecule.

Point groups are designated by Hermann–Mauguin symbols in the same way
as explained for space groups, see Section 6.3.1, pages 71–72 and 74.

The group PM is finite if the molecule consists of a finite number of atoms
and is mapped onto itself by a finite number of isometries. However, the group
is infinite for linear molecules like H2 and CO2 because of the infinite order of
the molecular axis.

Polymeric molecules actually consist of a finite number of atoms, but it
is more practical to treat them as sections of infinitely large molecules, in the
same way as crystals are treated as sections of ideal infinite crystals (i.e. crystal
patterns). If an (infinitely long) ideal molecule has translational symmetry in
one direction, then its symmetry group is a rod group. If it forms a layer with
translational symmetry in two dimensions, its symmetry group is a layer group.
Rod and layer groups are the subject of Section 7.4.
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According to their equivalence, point groups are classified into point-group
types.

Definition 6.2 Two point groups PM1 and PM2 belong to the same point-
group type if, after selection of appropriate bases (with origins at the centres
of gravity), the matrix groups of PM1 and PM2 coincide.

All symmetry operations of a finite molecule leave its centre of gravity un-
changed. If this is chosen as the origin, all symmetry operations are repre-
sented by matrix–column pairs of the kind (W,o), i.e. consideration of the
matrices W is sufficient.

Any arbitrary point of a molecule (e.g. an atom centre) may be mapped onto
itself by symmetry operations other than the identity.

Definition 6.3 A point in a molecule has a definite site symmetry S (site
symmetry group). It consists of all those symmetry operations of the point
group of the molecule which leave the point fixed.

The site symmetry group S is always a subgroup of the point group of the
molecule: S ≤ PM. It corresponds to the stabilizer, see Definition 5.13.

Definition 6.4 A set of symmetrically equivalent points X of a molecule is
in a general position if the site symmetry S of the points consists of nothing
more than the identity, S = I. Otherwise, if S > I , the points are in a
special position.

In this context, the term ‘position’ does not have the meaning of ‘a certain
place in space’, but is rather an abbreviation for ‘Wyckoff position’ according
to Definition 6.6. Every point group has only one general position, but it may
have several special positions.

The point group PM of the molecule acts on the molecule in the way de-
scribed in Section 5.6. By analogy to Definition 5.12, the set of points which
are symmetry-equivalent to a point X is the orbit of X under PM. According
to Theorem 5.14, the length of the orbit of a point Xg at a general position
under PM is L = |PM |, i.e. there always exist |PM | symmetrically equivalent
points of a general position. For points Xs of a special position having a site
symmetry of order |S |, there exist |P |/|S | symmetrically equivalent points.
Usually, the length of an orbit (of a finite group) is called its multiplicity.

Theorem 6.5 The multiplicity of a point at a general position in a molecule
is equal to the group order |PM |. If |S | is the order of the site symmetry of
a point in a special position, the product of the multiplicity Zs of this orbit
with |S | is equal to the multiplicity Zg of a point in the general position:

|S |×Zs = Zg.

Example 6.1
The symmetry of the NH3 molecule consists of the rotations 1, 3, 3−1 and
three reflections m1, m2 , m3 . It is a group of order 6. The atoms occupy two
special positions:
N atom with |SN |= 6 and ZN = 1; three H atoms with |SH |= 2 and ZH = 3.
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The symmetry for every one of the hydrogen atoms is alike. In this case,
there exist three kinds of orbits:

(1) Special position on the threefold rotation axis. There is only one parti-
cle (N atom).

(2) Special position on a mirror plane. There are three symmetrically
equivalent particles (H atoms).

(3) General position anywhere else comprising six equivalent particles
(not actually existing in this example).

Definition 6.6 Two PM-orbits O1 and O2 (orbits under PM) belong to the
same Wyckoff position if, after having selected two arbitrary points X1 ∈ O1

and X2 ∈ O2, their site symmetries S1 and S2 are conjugate in PM. In other
words, there exists a symmetry operation g of the point group PM which
fulfils the following equation:

S2 = g−1S1 g

Example 6.2

M

N1

N2N3

N4

C1

H1

C6H6

C11
H11

C16H16

C2

C5

C7

C10C12

C15

C17

C20

C3

H3

C4H4

C8H8

C9
H9

C13
H13

C14H14

C18H18

C19

H19

mx

my

m−

m+

The pattern of the atoms of a metal-porphirine complex has the same two-
dimensional point group as the square (cf. Fig. 5.1, page 49). The atoms
C1, C6, C11, C16 are symmetrically equivalent; they make up one orbit. The
atoms H1, H6, H11, H16 make up another orbit. The atom C1 is situated on
the mirror line my; its site symmetry group is S(C1) = {1, my}. The site
symmetry group of the atom H6 is S(H6) = {1, mx}. With the aid of the
group multiplication table (Table 5.3, page 51) one obtains:

4−1 {1, my}4 = {1, mx}
Therefore, the site symmetry of the atom C1 is conjugate to that of H6; the
orbits of the atoms C1 and H6, i.e. the points C1, C6, C11, C16, H1, H6,
H11, and H16 belong to the same Wyckoff position. The orbit comprising
the four atoms N1, N2, N3, and N4 belongs to another Wyckoff position: N1

is situated on the mirror line m− having the site symmetry group S(N1) =
{1, m−}. {1, m−} and {1, my} are different site symmetry groups; there is no
symmetry operation g of the square which fulfils m− = g−1my g. All other
C and H atoms have the site symmetry group {1} (general position); they
commonly belong to another Wyckoff position.

The example shows: The points C1, C6, C11, C16 belong to the same Wyck-
off position as H1, H6, H11, H16. Atoms at special positions belong to the same
Wyckoff position if they occupy symmetry elements that are equivalent by a
symmetry operation of the point group. The mirror lines mx and my are equiva-
lent by fourfold rotation and thus are conjugate; all points on these mirror lines
(their point of intersection excepted) belong to the same Wyckoff position. The
point of intersection (position of the M atom) has another site symmetry and
belongs to another Wyckoff position. The mirror lines m+, m− are not conju-
gate to mx, my; points on them belong to two different Wyckoff positions.

Do not get irritated by the singular form of the terms ‘general position’,
‘special position’, and ‘Wyckoff position’. Every such position may comprise
many points (e.g. centres of atoms).
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6.1.2 The space group and its point group

The 230 space-group types were derived in 1891 by FEDOROV and by SCHOEN-
FLIES, and somewhat later by BARLOW. The periodic structure of crystals was
proven 21 years later (1912) when the first X-ray diffraction experiment was
performed with a crystal by LAUE, FRIEDRICH, and KNIPPING. The period-
icity had been assumed a long time before, but symmetry considerations had
been possible only by observation of the shape of macroscopic real crystals.
Like molecules, they belong to a finite point group. Nowadays we know that
crystals are finite sections of periodic structures, and the problem of the macro-
scopic crystal symmetry is posed in a different way than for molecules.

Real crystals are formed by crystal growth, which involves a parallel ad-
vancement of crystal faces. It is not the faces which remain invariant, but the
normals on them. These are directions and thus have the character of vectors.
Usually, the external shape of a crystal does not really correspond to its sym-
metry because of impairment during the growth process. The real symmetry of
the ideally grown crystal is obtained from the normals: the bundle of vectors
on the crystal faces is not susceptible to growth impairment.

Definition 6.7 The point group of a crystal structure is the symmetry group
of the bundle of the normals on the crystal faces.

All kinds of faces that appear in a crystal species have to be considered, even
very small faces that can be missing in individual crystals.

After having selected a coordinate system, the corresponding symmetry op-
erations are not represented by matrix–column pairs (W,w), but only by the
matrix parts W, see Section 3.2, Theorem 3.5, page 24. Therefore, the group
P = {W} is finite, see Section 4.2, Theorem 4.1.

The set of all translations of a space group G forms a group T , the trans-
lation group. From a translation, by conjugation one always obtains again a

Application of the rules of Section 3.2,
eqns (3.6) and (3.9), yields (cf. page 21):

(W,w)−1(I, t)(W,w)

= (I,W−1t) = (I, t′) (6.1)

translation, see eqn (6.1). It follows that:

Theorem 6.8 The translation group T is not only a subgroup of the space
group G, but even a normal subgroup: T �G.

What is the coset decomposition, see Section 5.3, of G with respect to T ?
Let us consider an example:

Example 6.3
Left coset decomposition of the space group Pmm2 = {1, 2, mx , my , t1,
t2, t3, . . .} with respect to the translation group T = {1, t1, t2 , t3, . . .}:

1st coset 2nd coset 3rd coset 4th coset

1◦T = 1◦1, 2 ◦T = 2 ◦ 1, mx ◦T = mx ◦1, my ◦T = my ◦1,
1◦ t1, 2 ◦ t1, mx ◦ t1, my ◦ t1,
1◦ t2 , 2 ◦ t2 , mx ◦ t2 , my ◦ t2 ,
1◦ t3 , 2 ◦ t3 , mx ◦ t3 , my ◦ t3 ,

...
...

...
...

T is considered as an (infinite) column of the translations. The first coset
is represented by the identity 1, represented by (I,o). Any other symmetry
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operation (in the example the twofold rotation 2), represented by (W2,w2),
is chosen as the representative of the second coset. The remaining symmetry
operations of this coset are represented by (I, ti)(W2,w2) = (W2,w2 + ti), so
that all elements of the second coset have the same matrix W2. There can be
no elements with the matrix W2, which do not appear in the second column,
etc.

Theorem 6.9 Every coset of the decomposition of G with respect to T con-
tains exactly those elements which have the same matrix part. Every matrix
W is characteristic for ‘its’ coset.

Therefore, the number of cosets of G/T is exactly as many as the number of
matrices W. If every coset is considered to be a new (infinite) group element,
then the group consisting of these elements is nothing other than the factor
group G/T .

Multiplication of an element of the ith coset with one of the kth coset yields:

(Wk,wk + tm)(Wi,wi + tn) = (WkWi,wk + tm +Wkwi +Wktn)

This is an element of the coset represented by W j = WkWi. In addition, one
has:

(Wi,wi)(W
−1
i ,w j) = (I,Wiw j +wi) = (I, tk)

The cosets taken as the elements of the factor group G/T thus have the same
group multiplication table (aside from their labelling) as the matrix parts which
represent them.

Theorem 6.10 The factor group G/T is isomorphic to the point group P ,
or: The point group P is a homomorphic mapping of the space group G with
the translation group T as its kernel, see Section 5.5, Theorem 5.9.

The point groups of crystals are classified like the point groups of molecules.
Whereas the point groups of molecules act on points, and thus operate in point
space, the point groups of crystals map vectors onto one another; they operate
in vector space.

Definition 6.11 Two crystallographic point groups P1 and P2 belong to the
same point group type, called the crystal class, if a basis can be found such
that the matrix groups {W1} of P1 and {W2} of P2 coincide.

There are 32 crystal classes in space and 10 in the plane.

6.1.3 Classification of the space groups

A subdivision of a set into subsets is called a classification if every one of
the subsets belongs to exactly one class. The classification of the crystallo-
graphic point groups also results in a classification of the space groups into 32
crystal classes of space groups. However, other classifications are more im-
portant. We discuss three of them: The classification of the space groups into
seven crystal systems, into 219 affine space-group types, and into 230 crystal-
lographic space-group types (or positive-affine space-group types). The latter
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are frequently called the 230 space groups, although they are not really space
groups, but classes of infinite numbers of equivalent space groups.

Among the 32 crystal classes there exist seven which belong to point groups
of lattices. These seven point groups are called holohedries. All point groups
can uniquely be assigned to these holohedries. A point group P belongs to a
holohedry H such that:

(1) P ≤ H, i.e. the crystal class is a (proper or improper) subgroup of the
holohedry;

(2) the index |H|/|P | is as small as possible.

The assignment of space groups to point groups entails an assignment to the
holohedries.

Definition 6.12 The seven holohedries assigned to the space groups are the
seven crystal systems of space groups.

The crystal systems are: triclinic, monoclinic, orthorhombic, tetragonal, trigo-
nal, hexagonal, and cubic. Contrary to the ‘natural’ sequence ‘trigonal, tetrag-
onal, hexagonal’, ‘trigonal’ and ‘hexagonal’ are placed together due to their
close relationship.

The crystal systems and the crystal classes of space groups form the basis
for the sequence of the space-group tables in International Tables A.

The classification of the space groups into crystal systems is more coarse
than that into crystal classes. A finer subdivision, i.e. a subdivision of the
crystal classes, is also desirable; for example, among the crystal class 2 some
space groups have 21 screw rotations (and no rotations 2), symbol P21, and
others have only rotations, P2. Up to now, both of them belong to the same
class, but they should be separated. This can be done as follows.

Consider every space group referred to an appropriate coordinate system,
preferably the conventional crystallographic coordinate system. Then every
space group is characterized by the set of its matrix–column pairs {(W,w)}.

Definition 6.13 Two space groups G1 and G2 belong to the same affine
space-group type or are called affine equivalent, if the sets {(W1,w1)} and
{(W2,w2)} of their matrix–column pairs coincide, referred to an appropriate
coordinate system. They belong to the same crystallographic space-group
type if the sets {(W1,w1)} and {(W2,w2)} of their matrix–column pairs co-
incide, referred to an appropriate right-handed coordinate system.

Table 6.1 The 11 pairs of enantiomor-
phic space-group types (designated by their
Hermann–Mauguin symbols, Section 6.3.1).

P31 — P32
P31 21 — P32 21
P31 12 — P32 12

P41 — P43
P41 22 — P43 22

P41 21 2 — P43 21 2
P61 — P65
P62 — P64

P61 22 — P65 22
P62 22 — P64 22
P41 32 — P43 32

‘Appropriate coordinate system’ means with basis vectors that correspond to
the lattice of the crystal. In space, there exist 219 affine space-group types. The
term is due to the fact that the transformation from an appropriate coordinate
system of G1 to that of G2 generally requires an affine transformation, i.e. with
distortion of the lattice. G1 and G2 are two different space groups if their lattice
dimensions are different.

The 230 crystallographic space-group types (often called, not quite cor-
rectly, ‘the 230 space groups’) are obtained if only right-handed coordinate
systems are permitted. In chemistry, the distinction between right- and left-
handed molecules can be essential, and in crystallography it is desirable to dis-
tinguish right-handed screw axes (e.g. 41) from left-handed ones (e.g. 43). This
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restriction causes a finer classification. Eleven affine space-group types split
into enantiomorphic pairs of crystallographic space-group types (Table 6.1).

At first glance, it may seem impossible to compare space groups for equiv-
alence by comparison of their infinite groups {(W,w)}. However, this task is
not really so difficult, since it is sufficient to compare a finite set of (no more
than 10) corresponding generators, and reference to the conventional coordi-
nate systems usually yields a fast solution.

For practical work it is convenient to compare the space-group diagrams of
International Tables A, see Section 6.4, or to compare the Hermann–Mauguin
symbols.

6.2 The lattice of a space group

In crystallography, the vector lattice T is referred to a lattice basis or crystal-
lographc basis a1,a2,a3, see Definition 2.5 (page 13). In this case all integral
linear combinations t = t1a1 + t2a2 + t3a3 of the basis vectors are lattice vec-
tors. A crystallographic basis can always be chosen such that all lattice vectors
are integral linear combinations of the basis vectors: primitive basis, Defini-
tion 2.7. In crystallography, a conventional crystallographic basis is chosen,
see Definition 2.6, such that the matrices of the symmetry operations become
‘user friendly’ and the metric tensor (cf. Definiton 2.10, page 17) results in the
simplest formulae for the calculation of distances and angles. This is achieved
mainly by choosing basis vectors parallel to symmetry axes or perpendicular
to symmetry planes, i.e. if they are symmetry adapted. As a consequence, the
conventional basis is not always primitive; see the comments after Definition
2.7, page 14.

Definition 6.14 A lattice whose conventional basis is primitive is called a
primitive lattice. The other lattices are called centred lattices.

A lattice is not ‘primitive’ or ‘centred’ as such, but (artificially) becomes so
by the selection of the basis. The types of centring among the conventional
bases in crystallography are the base centring A in the b-c plane, B in the a-c
plane, C in the a-b plane, the face centring F of all faces, the body centring
I (inner centring) in the middle of the cell, and the rhombohedral centring R
(Fig. 6.1).

1 2
primitive base centred

P C (or A, B)

4 2
face centred body centred

F I

rhombohedral
3

R

Fig. 6.1 Unit cells of centred bases and their
symbols. The numbers specify how manifold
primitive the respective cell is (i.e. by which
factor the unit cell is enlarged relative to the
corresponding primitive cell).

Referred to a primitive basis, the matrices of the translations have the form
(I, t), with t being a column of integral numbers. Referred to a centred basis,
the lattice vectors may have fractional numbers as coefficients.

The cell of a primitive lattice has no lattice vectors having their endpoints
within the cell, the null vector (origin) excepted. The conventional centred
lattices have centring vectors with the coefficients:

A 0, 1
2 , 1

2 B 1
2 ,0, 1

2 C 1
2 , 1

2 ,0 F 0, 1
2 , 1

2
1
2 ,0, 1

2
1
2 , 1

2 ,0

I 1
2 , 1

2 , 1
2 R 2

3 , 1
3 , 1

3
1
3 , 2

3 , 2
3

The infinite set of all possible lattices is classified into Bravais types (also
called Bravais lattices). The easiest way to envisage this classification is ac-
cording to the space groups of their point lattices.
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Definition 6.15 Two point lattices belong to the same Bravais type if their
space groups belong to the same space-group type.

According to this definition, there exist 14 Bravais types, named after A.
BRAVAIS, who was the first one to derive them in 1850. Since every point
lattice also corresponds to a vector lattice, this includes a classification of the
vector lattices (Table 6.2).

Table 6.2 The 14 Bravais types (Bravais lattices).

Name (abbreviation) Metrics of the lattice Centring

primitive triclinic (aP) a 	= b 	= c; α 	= β 	= γ 	= 90◦

primitive monoclinic (mP) a 	= b 	= c; α = γ = 90◦; β 	= 90◦

base-centred monoclinic (mC) a 	= b 	= c; α = γ = 90◦; β 	= 90◦ 1
2 , 1

2 ,0
primitive orthorhombic (oP) a 	= b 	= c; α = β = γ = 90◦

base-centred orthorhombic (oC) a 	= b 	= c; α = β = γ = 90◦ 1
2 , 1

2 ,0
face-centred orthorhombic (oF) a 	= b 	= c; α = β = γ = 90◦ 0, 1

2 , 1
2 ; 1

2 ,0, 1
2 ; 1

2 , 1
2 ,0

body-centred orthorhombic (oI) a 	= b 	= c; α = β = γ = 90◦ 1
2 , 1

2 , 1
2

primitive tetragonal (tP) a = b 	= c; α = β = γ = 90◦

body-centred tetragonal (tI) a = b 	= c; α = β = γ = 90◦ 1
2 , 1

2 , 1
2

primitive hexagonal (hP) a = b 	= c; α = β = 90◦; γ = 120◦

rhombohedral trigonal (hR)∗ a = b 	= c; α = β = 90◦; γ = 120◦ 2
3 , 1

3 , 1
3 ; 1

3 , 2
3 , 2

3
primitive rhombohedral (rP)∗ a = b = c; α = β = γ 	= 90◦

primitive cubic (cP) a = b = c; α = β = γ = 90◦

face-centred cubic (cF) a = b = c; α = β = γ = 90◦ 0, 1
2 , 1

2 ; 1
2 ,0, 1

2 ; 1
2 , 1

2 ,0
body-centred cubic (cI) a = b = c; α = β = γ = 90◦ 1

2 , 1
2 , 1

2

∗ hR and rP are identical, but with different settings of their basis vectors

6.3 Space-group symbols

Several kinds of symbols have been in use to designate space-group types.
We deal with the Hermann–Mauguin symbols in detail and briefly with the
Schoenflies symbols. In addition, especially in the Russian literature, the Fe-
dorov symbols have been used [47]. Since the Hermann–Mauguin symbols
contain no information about the position of the chosen origin, although this
is sometimes important, HALL developed correspondingly supplemented sym-
bols [46].

6.3.1 Hermann–Mauguin symbols

The original version of the Hermann–Mauguin symbols is due to CARL HER-
MANN [48]; they were converted to an easy-to-use form by CHARLES MAU-
GUIN [49]. They are also called international symbols. Initially, the symbols
were conceived of as a specification of a system of generators of the space
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group, see Section 5.2, letter (f). This was not a system of as few generators
as possible, but such that the space group could be generated in a most simple
and clear way (for details, see International Tables A, Section 8.3.5).

In the course of time, this view has changed: In International Tables A, a
Hermann–Mauguin symbol designates the symmetry in outstanding directions,
the symmetry directions. The symmetry in a symmetry direction u means the
complete set {Wi} of symmetry operations Wi, whose rotation, screw, and
rotoinversion axes or the normals on mirror or glide planes run parallel to u.

A direction u of non-trivial symmetry (i.e. higher than 1 or 1) is always a
lattice direction, and a plane perpendicular to u is always a lattice plane. To
perceive the ‘symmetry in a symmetry direction u’, it is convenient to define a
cell referred to u , i.e. a symmetry-adapted cell.

Definition 6.16 A cell, defined by a shortest lattice vector in the direction of
u and a primitive basis in the plane perpendicular to u, is called a symmetry-
adapted cell or a cell referred to u.

If this cell is primitive, then the symmetry in the direction of u is uniform:
All rotation or screw axes parallel to u are of the same kind; for example, only
rotation axes 2 or only screw axes 21 or only screw axes 42; or only one kind
of mirror or glide planes exists perpendicular to u; for example, only mirror
planes m or only glide planes n.

If the cell is centred, rotations exist along with screw rotations and reflec-
tions along with glide reflections, or there jointly exist different kinds of screw
rotations or of glide reflections. This is because the subsequent execution of a
rotation and a centring translation results in a screw rotation, and a reflection
and a translation results in a glide reflection. Examples: space group C 2 has
parallel 2 and 21 axes; space group I 4 has 4 and 42 axes; space group R3 has
3, 31, and 32 axes; space group C c has c and n glide planes.

Different symmetry directions can be symmetrically equivalent, for exam-
ple, the three fourfold axes parallel to the edges of a cube. Symmetry directions
of this kind are combined to symmetry classes or symmetry direction systems.
In crystals sometimes there are up to three classes of symmetrically equivalent
directions of non-trivial symmetry. From each of these classes one selects one
representative symmetry direction, the direction and its counter-direction being
considered as one symmetry direction.

In International Tables A, the full Hermann–Mauguin symbol first desig-
nates the conventional lattice type (P, A, B, C, F , I, or R; Section 6.2).

The full Hermann–Mauguin symbol then specifies one system of generators
of the symmetry group for every representative symmetry direction. If the
normals to reflection or glide planes are parallel to rotation or screw axes, then
both are separated by a fraction bar, for example, 2/c, 63/m (however, 6 is used
instead of 3/m). Rotations are specified with priority over screw rotations, and
reflections over glide reflections.

In the Hermann–Mauguin symbol the kind of symmetry is specified by its
component and the orientation of the symmetry direction by the place in the
symbol. The sequence of the representative symmetry directions in the symbol
depends on the crystal system. The crystal system and the number of represen-
tative symmetry directions is revealed by the Hermann–Mauguin symbol:
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(1) No symmetry direction: triclinic (only P1 and P1).

(2) One symmetry direction, twofold symmetry: monoclinic. The represen-
tative symmetry direction in crystallography is usually b, in physics and
chemistry sometimes c. Examples: P21, C c, P21/c.
The Hermann–Mauguin symbol of monoclinic space groups often also
states the symmetry in the a, b, and c directions (as in the orthorhombic
system), each of the two non-symmetry directions being labelled by a ‘1’.
Examples: P121 (b axis setting), P11m (c axis setting), C 12/c1 (b axis
setting).

(3) Three mutually perpendicular symmetry directions parallel to the coor-
dinate axes, only twofold symmetries: orthorhombic. The sequence of
the symmetry directions is a, b, c. Examples: P2221, I 222, C mc21,
P21/n21/n2/m, F 2/d 2/d 2/d.

(4) One symmetry direction with higher than twofold symmetry in the point
group (3, 3, 4, 4, 4/m, 6, 6, or 6/m): trigonal, tetragonal, or hexagonal
space groups. The direction of this symmetry direction is c. The other
representative symmetry directions are oriented perpendicular to c and have
a maximal order of 2. The sequence of the symmetry directions in the
Hermann–Mauguin symbol is c, a, a−b. Examples: P31 11 = P31, P31c,
P3c1, P65 22, P62m, P6m2, P63/m2/c2/m.

With a rhombohedral R lattice there are only two representative symmetry
directions: c and a for a hexagonal setting of the coordinate system, cor-
responding to [111] and [110] for a rhombohedral coordinate system (i.e.
a = b = c; α = β = γ 	= 90◦). Examples: R3, R3, R32, R3m, R3c, R32/c.

(5) One symmetry direction system of four directions having threefold axes
parallel to the four body diagonals of the cube: cubic. A further symmetry
direction system runs parallel to the cube edges and in some cases another
symmetry direction system runs parallel to the six face diagonals. The se-
quence of the representative symmetry directions in the Hermann–Mauguin
symbol is a (cube edge), a+b+ c (body diagonal); if present, additionally
a+b (face diagonal).

Note: Contrary to trigonal and rhombohedral space groups, cubic space
groups do not have the component 3 or 3 directly after the lattice symbol,
but in the third position.
Examples: P23 (P321 and P312 are trigonal), I a3, P42 32, F 43m,
P42/m32/n, F 41/d 32/m.

Particularities:

(1) The presence of points of inversion is mentioned only for P1. In all other
cases the presence or absence of points of inversion can be recognized as
follows: they are present and only present if there are either rotoinversion
axes of odd order or rotation axes of even order perpendicular to planes of
reflection or glide reflection (e.g. 2/m, 21/c, 41/a, 42/n, 63/m). Only the full
symbol reveals this for some space groups.

(2) P42m and P4m2 are the Hermann–Mauguin symbols of different space
group types. P3, P31, R3, R3c are correct symbols, but not so P32 or
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P3c. For the latter, the symmetry in the directions a and a−b must be
mentioned: P321 and P312, P3c1 and P31c are pairs of different space-
group types.

(3) In two cases it is necessary to depart from the rule that rotations are men-
tioned with priority over screw rotations. Otherwise two space-group types
would obtain the same Hermann–Mauguin symbol I 222 and another two
would obtain I 23. All four space group types have twofold rotation axes
that run parallel to the coordinate axes along with twofold screw axes, due
to the I centring. For one space-group type each of the mentioned sym-
bols is maintained (in these space-group types non-parallel axes 2 intersect
each other); the other two types are labelled I 21 21 21 and I 21 3 (they have
non-intersecting axes).

In the short Hermann–Mauguin symbol the symmetry information of the full
symbol has been reduced, so that the symbols become more handy, but remain
sufficiently informative (the symbol contains at least one set of generators of
the space group). The reflections and glide reflections of the full symbol are
being kept in the short symbol; only rotations and screw rotations are omitted.
In the short symbols of centrosymmetric orthorhombic space groups only three
planes are mentioned, for example Pbam (full symbol P21/b21/a2/m).

Only C centrings and c glide reflections are used for the short symbols of
monoclinic space groups. The full symbol must be given for other settings,
for example, A112/m, not A2/m; P121/n1, not P21/n (although the symbol
P21/n abounds in the literature).

The scarcely used extended Hermann–Mauguin symbol specifies nearly the
entire symmetry of every symmetry direction (Table 6.3). For further details
see International Tables A, Section 4.

The short Hermann–Mauguin symbol can be completed to the full symbol,
and from this it is possible to derive the full set of symmetry operations of the
space group. However, some familiarity with Hermann–Mauguin symbols is
required before they can be handled securely in difficult cases. This is due to
the fact that the Hermann–Mauguin symbols depend on the orientation of the
space-group symmetry relative to the conventional basis. This property makes
them more informative but also less easy to handle. Different symbols can
refer to the same space-group type.

Table 6.3 Examples of short, full, and extended Hermann–Mauguin symbols.

Short Full Extended Short Full Extended

C m C 1m1 C 1m1 I 21 21 21 I 21 21 21 I 21 21 21
a 2 2 2

C 2/c C 12/c1 C 12/c1 C mcm C 2/m2/c21/m C 2/m 2/c 21/m
21/n 21/b21/n21/n ∗

I 41/a I 41/a I 41/a P42/nmc P42/n21/m2/c P42/n21/m2/c
43/b 21/n

∗ Inconsequently labelled somewhat differently in International Tables A.
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Example 6.4
P2/m2/n21/a, P2/m21/a2/n, P21/b2/m2/n, P2/n2/m21/b, P2/n21/c2/m,
and P21/c2/n2/m denote the same orthorhombic space group type No. 53
(Pmna).

P21/n21/m21/a, P21/n21/a21/m, P21/m21/n21/b, P21/b21/n21/m,
P21/m21/c21/n, and P21/c21/m21/n are the (full) Hermann–Mauguin
symbols of another orthorhombic space group type, No. 62 (Pnma).

The symbols mentioned first refer to the conventional settings. The other
five are non-conventional settings, with differently oriented bases. More
details on non-conventional settings are the subject of Section 9.3.

The point group symbol corresponding to a space group can be obtained
from the Hermann–Mauguin symbol in the following way:

(1) the lattice symbol is deleted (P, A, B, C, F , I or R);

(2) all screw components are deleted (the subscript ciphers are deleted);

(3) the letters for glide reflections (a, b, c, n, d, e) are replaced by m.

Examples: C 2/c → 2/m
P2/m2/n21/a (short Pmna) → 2/m2/m2/m (short mmm)
I 42d → 42m
I 41/a32/d (short I a3d) → 4/m32/m (short m3m)

6.3.2 Schoenflies symbols

Schoenflies symbols were developed 35 years before the Hermann–Mauguin
symbols. Compared to their original form, some of them have been slightly
altered.

Rotoreflections are used instead of rotoinversions. A rotoreflection results
from a coupling of a rotation with a reflection through a plane perpendicular
to the rotation axis. Rotoreflections and rotoinversions state identical facts, but
the orders of their rotations differ in pairs if they are not divisible by 4:

rotoreflection (Schoenflies) S1 S2 S3 S6 S4

rotoinversion (Hermann–Mauguin) 2 = m 1 6
5

3
2

4
3

In Section 6.1.2 the space groups are assigned to crystal classes according to
their point groups. SCHOENFLIES introduced symbols for these crystal classes
(point-group types) in the following way:

C1 no symmetry.

Ci a centre of inversion is the only symmetry element.

Cs a plane of reflection is the only symmetry element.

CN an N-fold rotation axis is the only symmetry element.

SN an N-fold rotoreflection axis is the only symmetry element; only S4

is used; for symbols replacing S3 and S6 see the following.



6.3 Space-group symbols 75

CNi there is an N-fold rotation axis (N odd) and a centre of inversion on
the axis. Identical to SM with M = 2×N.

DN there are N twofold rotation axes perpendicular to an N-fold rotation
axis.

CNh there is a vertical N-fold rotation axis and a horizontal reflection
plane. C3h is identical to S3. There is also an inversion centre if N is
even.

CNv an N-fold vertical rotation axis is situated at the intersection line of
N vertical reflection planes.

DNh there is an N-fold vertical rotation axis, N horizontal twofold ro-
tation axes, N vertical reflection planes, and a horizontal reflection
plane. There is also an inversion centre if N is even.

DNd an N-fold vertical rotation axis contains a 2N-fold rotoreflection axis
and N horizontal twofold axes have bisecting directions between N
vertical reflection planes. There is also an inversion centre if N is
odd. Identical to SMv with M = 2×N.

Oh symmetry of an octahedron and a cube.

O as Oh without reflection planes (rotations of an octahedron).

Td symmetry of a tetrahedron.

Th symmetry of an octahedron with twofold instead of fourfold axes.

T as Td and Th without reflection planes (rotations of a tetrahedron).

Special non-crystallographic point groups:

Ih symmetry of an icosahedron and pentagonal dodecahedron.

I as Ih without reflection planes (rotations of an icosahedron).

C∞v symmetry of a cone.

D∞h symmetry of a cylinder.

Kh symmetry of a sphere.

The space-group types belonging to a crystal class were simply numbered
consecutively by SCHOENFLIES; they are distinguished by superscript num-
bers. The sequence of the crystal classes has not always been kept the same in
the space-group tables. Since 1952 the space-group types have been numbered
in International Tables from 1 to 230, with the consequence that this sequence
can hardly be changed.

Some Schoenflies symbols are compared with the corresponding Hermann–
Mauguin symbols in Table 6.4 .

Schoenflies space-group symbols have the advantage that they designate the
space-group types in a unique way and independent of the selection (setting)
of a basis. They have the disadvantage that they only give direct information
about the point-group symmetry. They lack information about the lattice type,
which is expressed only indirectly by the superscript number.

Schoenflies symbols are concise, but contain less information than Hermann–
Mauguin symbols. Schoenflies symbols continue to be very popular in spec-
troscopy, quantum chemistry, and to designate the symmetry of molecules. In
crystallography they are hardly used anymore.
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Table 6.4 Comparison of Schoenflies and Hermann–Mauguin symbols of the crystallographic and
some additional point-group types and examples for a few space-group types.

Schoen- Hermann– Schoen- Hermann– Schoen- Hermann–Mauguin
flies Mauguin flies Mauguin flies short full

Point-group types

C1 1 Ci 1 Cs m
C2 2 C2h 2/m C2v mm2
C3 3 C3h = S3 6 = 3/m C3v 3m
C4 4 C4h 4/m C4v 4mm
C6 6 C6h 6/m C6v 6mm
S4 4 C3i = S6 3 C∞v ∞m
D2 222 D2d = S4v 42m D2h mmm 2/m2/m2/m
D3 32 D3h 62m D3d 3m 32/m
D4 422 D4d = S8v 82m D4h 4/mmm 4/m2/m2/m
D5 52 D5h 102m D5d 5m 52/m
D6 622 D6d = S12v 122m D6h 6/mmm 6/m2/m2/m

D∞h ∞/mm ∞/m2/m = ∞2/m
T 23 Td 43m Th m3 2/m3

O 4 3 2 Oh m3m 4/m32/m
I 2 3 5 Ih m35 2/m35

Space-group types

C1
1 P1 C1

i P1 C1
s Pm P1m1

C1
2 P2 C2

2 P21 C5
2h P21/c P121/c1

D1
2 P222 C12

2v C mc21 D16
2h Pnma P21/n21/m21/a

C6
4h I 41/a D3

2d P421 m D9
4h P42/mmc P42/m2/m2/c

C2
3i R3 C2

6h P63/m D4
6h P63/mmc P63/m2/m2/c

T 2
d F 43m O3 F 432 O5

h F m3m F 4/m32/m

6.4 Description of space-group symmetry in
International Tables A

In most cases, the information concerning each space-group type can be found
in International Tables A on two facing pages. The space-group symmetry
is shown by diagrams, a list of the symmetry operations, and a table of the
Wyckoff positions.

6.4.1 Diagrams of the symmetry elements

Consider as an example the space-group type Pbcm, No. 57. On the left
page of the facing pages in International Tables A there are three diagrams,
showing projections of the geometric sites of the symmetry elements of one
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P b c m D11
2h mmm Orthorhombic

No. 57 P 2/b 21/c 21/m

Hermann–Mauguin
symbol (short)

Schoenflies
symbol

Hermann–Mauguin
symbol (full)

point-group type
(crystal class) crystal system
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Fig. 6.2 Heading and diagrams from Interna-
tional Tables A for the orthorhombic space-
group type Pbcm. Orientation of axes when
the letters are upright: ➤

➤ a
b .unit cell (Fig. 6.2). In each diagram, the origin is at the upper left corner. As

in the case of all orthorhombic space groups, every one of the three diagrams
has two space-group symbols. The symbol mentioned in the heading and on
top of the first diagram refers to the conventional (standard) setting. The other
five symbols refer to non-conventional settings. If the book is turned such that
the letters of a space-group symbol next to a diagram are upright, the a axis of
the diagram points downwards and the b axis to the right. If the book is held
upright, the diagram at the upper right corresponds to the conventional setting
with the a axis downwards and the c axis to the right; the lower left diagram
corresponds to the conventional setting with the c axis downwards and the b
axis to the right.
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Table 6.5 The most important graphic symbols for symmetry elements.

1 

Axes perpendicular to the paper plane

2 fi 21 ffl 1 on 2 ffi 1 on 21 Ò
3 fl 31 ' 32  3 `
4 ⁄ 41 ) 42 * 43 + 1 on 4 ( 1 on 42 ð
6 Ł 61 = 62 > 63 ? 64 @ 65 A

1 on 6 < 1 on 63 B 4 ≤ 6 $
Axes parallel to the paper plane

2 m ˚ 21 k ł 4 h— 4 |— 41 Ω— 42 ò—

Axes inclined to the paper plane

2 x 21 y 3 ˆ 3 ‚ 31 ƒ 32 „
Planes parallel to the paper plane; axes directions ➤

➤ a
b

m a

➤

b ➤ n
➤

e ➤

➤

Planes perpendicular to the paper plane; axes directions ➤

➤ a
b

m b c . . . . . . n . . d ➤. . e .. ..

The symmetry elements are depicted by graphic symbols (Table 6.5). The
kind of symmetry element and its orientation follow from the symbol. The
heights z in the direction of c (direction of view) are specified for points of
inversion and for axes and planes parallel to the paper plane as fractional num-
bers 0 < z < 1

2 if z 	= 0. All symmetry elements at height z occur again at height
z+ 1

2 .
Triclinic and monoclinic space groups are also shown by three projections

along the three coordinate axes; all of them are referred to the conventional set-
ting, which is mentioned in the heading. The axes are marked in the diagrams.
Monoclinic space groups are treated with the two settings with symmetrically
unique axis b and c. In those cases in which, in addition to this monoclinic
axis, there is another special direction (centring vector, glide vector), three dif-
ferent cell choices are distinguished; therefore, the space-group types C 2, Pc,
C m, C c, C 2/m, P2/c, P21/c, and C 2/c do not take the usual two pages, but
eight pages per space-group type.

For each tetragonal, trigonal, hexagonal, and cubic space-group type only
one diagram is shown in projection along c, having the standard orientation a
downwards and b to the right. Trigonal space groups with rhombohedral lattice
are described twice each, for a rhombohedral (primitive) cell and a hexagonal
(rhombohedrally centred) cell; the diagrams for both are identical. The depic-
tion of the symmetry elements for cubic space groups with an F-centred lattice
only comprises one quarter of the cell, the contents of the other three quarters
being the same.
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6.4.2 Lists of the Wyckoff positions

For every space-group type there is a table of Wyckoff positions under the
heading ‘Positions’, usually on the right page of the facing pages. For the
space-group type Pbcm it reads:

Multiplicity, Coordinates
Wyckoff letter,
Site symmetry

8 e 1 (1) x,y,z (2) x̄, ȳ, z+ 1
2 (3) x̄,y+ 1

2 , z̄+ 1
2 (4) x, ȳ+ 1

2 , z̄

(5) x̄, ȳ, z̄ (6) x,y, z̄+ 1
2 (7) x, ȳ+ 1

2 , z+ 1
2 (8) x̄,y+ 1

2 , z

4 d . .m x,y, 1
4 x̄, ȳ, 3

4 x̄,y+ 1
2 , 1

4 x, ȳ + 1
2 , 3

4

4 c 2 . . x, 1
4 ,0 x̄, 3

4 , 1
2 x̄, 3

4 ,0 x, 1
4 , 1

2

4 b 1 1
2 ,0,0 1

2 ,0, 1
2

1
2 , 1

2 , 1
2

1
2 , 1

2 ,0

4 a 1 0,0,0 0,0, 1
2 0, 1

2 , 1
2 0, 1

2 ,0

The Wyckoff positions are numbered alphabetically from bottom to top by the
Wyckoff letters in the second column. The Wyckoff position with the highest
site symmetry is always placed in the bottom line and has the letter a. For any
point belonging to a Wyckoff position, the number of symmetry-equivalent
points within one unit cell is specified by the multiplicity in the first column.
Usually, a Wyckoff position is labelled by its multiplicity and the Wyckoff
letter, for example, 4d for the second Wyckoff position in the preceding list.

The site symmetry in the third column is stated in an oriented way, hav-
ing the same sequence of symmetry directions as in the space-group symbol.
Those representative symmetry directions that have no symmetry higher than
1 or 1 are marked by points. For example, the site symmetry given for the
Wyckoff position 4d is . .m ; therefore, its site symmetry is a reflection through
a plane perpendicular to the third symmetry direction (c).

The general position is always the first one of the list of Wyckoff positions;
it is labelled by the ‘highest’ necessary lower-case letter of the alphabet (for
Pbcm this is e), and it always has the site symmetry 1. Exceptionally, the
general position of Pmmm is labelled α, because Pmmm has 27 Wyckoff
positions, which is one more than the number of letters in the alphabet.

The coordinate triplets of the general position are numbered, for Pbcm from
(1) to (8). As explained in Section 4.1 (page 41), the corresponding symmetry
operation can be derived from a coordinate triplet: The coordinate triplet is
transcribed to a matrix–column pair and its geometric meaning is derived by
the method explained in Section 4.3 (page 45):

(1) :

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
,

⎛⎝ 0
0
0

⎞⎠ (2) :

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠
,

⎛⎝ 0
0
1
2

⎞⎠ . . . (8) :

⎛⎝−1 0 0
0 1 0
0 0 1

⎞⎠
,

⎛⎝ 0
1
2
0

⎞⎠
The general position is the most important one, but it is not the only way to

express the space-group symmetry. In addition, the matrix–column pairs of the
corresponding symmetry operations are explicitly listed, see the next section.
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6.4.3 Symmetry operations of the general position

The symmetry operations are listed under the heading ‘Symmetry operations’,
usually on the left page of the facing pages. The symmetry operation corre-
sponding to a coordinate triplet of the general position is specified after the
number of the coordinate triplet. For the example of the space-group type
Pbcm the listing is:

(1) 1 (2) 2(0,0, 1
2 ) 0,0,z (3) 2(0, 1

2 ,0) 0,y, 1
4 (4) 2 x, 1

4 ,0

(5) 1 0,0,0 (6) m x,y, 1
4 (7) c x, 1

4 , z (8) b 0,y,z

This is to be interpreted in the following way:

The symmetry operation (1) is the identity;

(2) is a twofold rotation about the axis 0,0,z combined with a shift by
(0,0, 1

2 ), i.e. it is a twofold screw rotation;

(3) is a twofold rotation about the axis 0,y, 1
4 combined with a shift by

(0, 1
2 ,0), i.e. a twofold screw rotation;

(4) is a twofold rotation about the axis x, 1
4 ,0;

(5) is an inversion through the point 0,0,0;

(6) is a reflection through the plane x,y, 1
4 ;

(7) is a glide reflection with the glide direction c through a glide plane
x, 1

4 ,z;

(8) is a glide reflection with the glide direction b through a glide plane
0,y,z.

In general, an entry consists of the following data:

(1) (n) number of the coordinate triplet.

(2) Hermann–Mauguin symbol of the operation, for example, 2 or c. The
sense of rotation is marked by + or −, for example, 4̄+ or 4̄−. If a
triplet of numbers in parentheses follows, for example, 2(0,0, 1

2 ), this
corresponds to the column of the screw or glide vector.

(3) Parameterized representation of the symmetry element (point, axis, or
plane), for example, 0,0,z or 0,y, 1

4 or x, 1
4 ,z. For rotoinversions, the

axis and the point of inversion are given, for example, 4
−

0, 1
2 ,z; 0, 1

2 , 1
4 .

The listing for space groups with centred lattices consists of several blocks,
one for 0,0,0 and one for each centring vector, which is mentioned on top of
the block, for example ‘For ( 1

2 , 1
2 , 1

2 )+ set’. Translations as symmetry opera-
tions occur only in the latter blocks, specified, for example, by t( 1

2 , 1
2 , 1

2 ). Fur-
ther exhaustive explanations can be found, as for all components of the space-
group tables, in the instructions in Part 2 of International Tables A (Guide to
the use of the space-group tables).

6.4.4 Diagrams of the general positions

Only one diagram per space group is shown for the general position. It has
the standard orientation (a downward, b to the right; Fig. 6.2 bottom right).
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Monoclinic space groups have one diagram each for the two settings ‘unique
axis b’ and ‘unique axis c’. The outlines of the cell have been drawn as thin
lines, as well as the lines x, 1

2 ,0 and 1
2 ,y,0 (x = y for hexagonal cells). The

starting point of the orbit is within the cell, close to the origin (upper left cor-
ner), slightly above the plane of the paper, which is expressed by a + sign (for
+z). The depicted points cover all points within the unit cell and points in the
close vicinity of the unit cell; their heights are given as 1

2+ (for 1
2 + z), − (for

−z), 1
2− (for 1

2 − z), etc. (y for monoclinic b settings).
The points are represented by circles. Each point corresponds to exactly

one symmetry operation, which maps the starting point onto the considered
point. Image points of symmetry operations of the second kind, i.e. those
with det(W) = −1 for their matrix part W, are marked by a comma in the
middle of the circle. If the starting point were a right-hand glove, the points
with a comma would correspond to left-hand gloves. If there are reflection
planes parallel to the paper plane, the points of projection of equivalent points
coincide. In this case the circle is subdivided by a vertical line, and exactly one
of the semicircles contains a comma.

The diagrams for cubic space groups differ somewhat (if available, look
up the page of a cubic space group in International Tables A). The points of
the orbit are connected by lines forming a polyhedron around the origin and
around its translationally equivalent points. Three diagrams form two pairs of
stereoscopic views, allowing stereo views of the configurations. Look at the
left image with the left eye and at the central image with the right eye or at
the central image with the left eye and at the right image with the right eye.
Unfortunately, the quality of the images leaves somewhat to be desired.

6.5 General and special positions of the space
groups

The site symmetry group SX of a point X is defined for a space group G in
the same way as for a molecular symmetry group PM: it is the subgroup of
G consisting of those symmetry operations of G which leave X unchanged,
see Definition 6.3. Again, general and special positions are distinguished,
Definition 6.4. However, in the case of space groups it is not immediately
clear that the order |S| of S must be finite. This follows from:

Theorem 6.17 The matrix–column pairs (Wk,wk) of the elements sk ∈ S
have different matrix parts Wk; each Wk can occur at most once.

If two group elements sm ∈ S and sn ∈ S had the same matrices, Wm = Wn,
the following would hold (cf. eqns (3.6) and (3.9) in Section 3.2, page 21):

(Wm,wm)(Wn,wn)
−1 = (Wm,wm)(W−1

n ,−W−1
n wn)

= (I,wm −wn) = (I, t)

That is a translation. However, translations have no fixed points and thus can-
not be part of the site symmetry. The group {W} of all matrix parts of G is
finite, see Section 4.2, and, therefore, so is S .



82 Basics of crystallography, part 3

The Wyckoff positions of the space groups G yield the real base for a concise
and complete description of a crystal structure. In Section 2.3 two ways of
putting together a crystal structure are described:

(1) by lining up unit cells;

(2) by interlacing particle lattices.

Now we can add:

(3) One starts from the centre of gravity of a particle in the unit cell and
adds the centres of gravity of the corresponding (infinte) G-orbit. One
continues with the centre of gravity of a particle not yet considered, etc.;
in this way the crystal structure is set up from a finite number of G-orbits.
Usually, several point lattices form part of a G-orbit.

Whereas the coordinate triplets of the points of a point group designate in-
dividual points, the coordinate triplets of the Wyckoff positions of the space
groups are representatives of their point lattices. The matrix–column pairs de-
rived from the general position do not represent single mappings, but cosets
of G with respect to T . The multiplicity Z in the first column of the tables
corresponds to the product of the order of the crystal class and the number of
centring vectors, divided by the order S of the site-symmetry group S . This is
nothing other than the number of symmetry-equivalent points in the unit cell.

A Wyckoff position consists of infinitely many G-orbits if the coordinate
triplet of the representing point includes at least one free parameter, see the
following example. If there is no free parameter, like in the case of the Wyckoff
position 4b 1 1

2 ,0,0 of the space-group type Pbcm, the Wyckoff position
consists of only one G-orbit.

Example 6.5
In the space-group Pbcm the G-orbits GX1 for X1 = 0.094, 1

4 , 0, and GX2

for X2 = 0.137, 1
4 , 0 belong to the same Wyckoff position 4c x, 1

4 ,0 with
the site symmetry 2. X1 and X2 belong to the same site symmetry group S ,
consisting of the identity and a twofold rotation, but their orbits are different.

6.5.1 The general position of a space group

The importance of the general position of a space group G has been stressed
repeatedly. The (numbered) coordinate triplets listed in International Tables A
in the upper block of the ‘Positions’ can be interpreted as a shorthand notation
of the matrix–column pairs of symmetry operations. They form a system of
representatives of the cosets of G/T , i.e. they contain exactly one representa-
tive of every coset. The choice of the representatives, in principle, is arbitrary.
It is standardized such that 0 ≤ wi < 1 holds for the coefficients of the columns
w. This way the coset belonging to (W,w) contains exactly all matrix–column
pairs (W,w + t), with t running through the coefficient columns of all trans-
lations. The number of representatives is equal to the order |P| of the point
group, due to the isomorphism of the factor group G/T with the point group
P .
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For primitive lattices, t is a triplet of integral numbers; centred lattices addi-
tionally have rational numbers. This makes the standardization of the represen-
tatives ambiguous. In fact, the choice of the representatives has been changed
in some cases. For example, for the space-group type C mma (termed C mme
since 2002), in the 1952 edition International Tables one finds 1

2 − x, ȳ,z, but
x̄, ȳ+ 1

2 ,z since 1983. The reason is that the representatives and their sequences
were selected according to different procedures in 1952 and 1983.

The components that make up a space group are such that they render it
possible to cover the infinite set of symmetry operations by a finite number of
specifications. The bases in International Tables A have been selected in such
a way that all matrices consist of integral numbers.

6.5.2 The special positions of a space group

The order of the site-symmetry group S of a special position is |S|> 1. The set
of the matrix parts W of the elements of S form a group which is isomorphic to
the group of the matrix–column pairs {(W,w)} of S . Since {W} is a subgroup
of the matrix group of the point group P of G, it follows that:

Theorem 6.18 Every site-symmetry group S of a space group G is isomor-
phic to a subgroup of the point group P of G.

The site-symmetry group S of an arbitrary point X in a special position
always has infinitely many conjugate groups Si. Due to the three-dimensional
periodicity of the lattice, every point X has an infinite number of symmetry-
equivalent points Xi, i.e. points belonging to the orbit of X ; their site-symmetry
groups are conjugate. If S consists of rotations about an axis, all points of the
orbit GX , which are located on the rotation axis, have the same group S . In
addition, there exists an infinite bunch of parallel axes and thus an infinite
number of groups Si. Similar considerations apply to the points located on
a reflection plane; they have the same site-symmetry group, and there are an
infinite number of these groups on the infinitely many parallel planes.

Generally, there are several site symmetry groups of the same kind. For
example, in a centrosymmetric space group, the centres of inversion which
are translation equivalent to the centre 1 at the origin are located at points Xk

having integral coordinates. There are additional inversion centres at 1
2 ,0,0;

0, 1
2 ,0; 0,0, 1

2 ; 1
2 , 1

2 ,0; 1
2 ,0, 1

2 ; 0, 1
2 , 1

2 ; and 1
2 , 1

2 , 1
2 . They can be derived from eqn

(4.2) (page 46), according to which the fixed points of inversion are at xF = 1
2 w,

with the translations w = (1,0,0); (0,1,0); (0,0,1); (1,1,0); (1,0,1); (0,1,1);
and (1,1,1). Every centrosymmetric space group has eight inversion centres in
a primitive unit cell; they are not translation equivalent, but some of them may
become symmetry equivalent by symmetry operations other than translations.

A glance at International Tables A shows that Pmmm, No. 47, has eight
kinds of inversion centres (in this case the centres 1 are hidden in the eight
Wyckoff positions of site symmetry mmm). Pbcm, No. 57, has only two
Wyckoff positions with the site symmetry 1, each with a multiplicity of 4,
because every four of the inversion centres are equivalent by reflections and
rotations.
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The coordinate triplets of special positions can only be interpreted as such,
and no longer as descriptions of mappings. This is because the first represen-
tative is not only invariant under the identity mapping, but under |S| mappings
and it is converted by |S| mappings onto other representatives.

In practical work, two aspects of the special positions are of importance:

(1) Special positions of higher-symmetry space groups often have multiplic-
ities that correspond to the number of certain equivalent particles in the
unit cell, whereas the multiplicity of the general position is too high for
other particles. In this case, these other particles can be located only
at a special position, in accordance with the chemical composition. For
example, the unit cell of CaF2 contains four Ca2+ ions (multiplicity of
4); then the F− ions can only be situated at a Wyckoff position of multi-
plicity 8.

(2) If a building block of a crystal structure is to occupy a special position,
the symmetry of its surroundings cannot be higher than the proper sym-
metry of this building block. For example, the centre of gravity of a
tetrahedral molecule cannot be placed at a special position whose site
symmetry contains an inversion. This often restricts the possible posi-
tions to be taken.

6.6 The difference between space group and
space-group type

Repeatedly, it has been mentioned that a space group should not be confused
with a space-group type. A space group is characterized by the symmetry
which is expressed by a space-group symbol and by the lattice of its transla-
tions. If one considers a specific crystal structure, then it has a lattice with
well-defined lattice parameters and the atoms are located at specific places.
The corresponding symmetry is a space group.

A space-group type is also characterized by a space-group symbol and a lat-
tice, but the dimensions of the lattice are arbitrary. Consider as an example the
structures of rutile and trirutile (Fig. 11.8, page 147). Both structures belong
to the same space-group type P42/mnm, but the basis vector c and the number
of atoms in the unit cell of trirutile are triplicated. The symmetries of both of
the individual structures, rutile and trirutile, are also designated by the symbol
P42/mnm. Rutile and trirutile have a specific lattice each, but their lattices do
not coincide; in this case the symbol refers to two different space groups.

At first glance it may seem confusing that the same symbol is used for two
different things. But in fact there is no confusion, because a space group never
serves for anything other than to designate the symmetry of a specific crystal
structure, including the specification of the lattice parameters and the atomic
coordinates.

To put it another way: A space group is the group of symmetry operations
of some specific crystal structure. There are an infinite number of possible
space groups. A space-group type is one out of 230 possible ways that crystal-
lographic symmetry operations can be combined in space.
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The tables of International Tables A, in the first place, are the tables of
space-group types, with arbitrary values for the lattice parameters, arbitrary
occupation of Wyckoff positions, and arbitrary atomic coordinates. However,
if the symmetry of a specific crystal structure is being described, with specific
lattice parameters and atomic coordinates, the corresponding table describes
an individual space group.

International Tables A1 are the tables of the subgroups of the space groups.
Group–subgroup relations exist only between space groups, not between space-
group types. No specific values of lattice parameters have been listed, but for
every group–subgroup pair it is unequivocal how the lattice parameters and the
atomic sites of the subgroup result from those of the original group.

Exercises

Solutions on page 285

(6.1) Denominate the crystal systems corresponding to the fol-
lowing space groups:

P41 32; P41 22; F d d d; P12/c1; P4n2; P43n; R3m;
F m3.

(6.2) What is the difference between the space groups P63 mc
and P63 cm?

(6.3) To what crystal classes (point groups) do the following
space groups belong?
P21 21 21; P63/mcm; P21/c; Pa3; P42/m21/b2/c?
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A structural relationship entails a symmetry relationship. Changes of symme-
try occur during phase transitions or when an isotropic surrounding is replaced
by anisotropic mechanical forces or by the action of electric or magnetic fields.
Part of the symmetry of a molecule or crystal is then lost (‘the symmetry is
broken’). In the mentioned cases, there often exists a group–subgroup relation
between the symmetry groups of the involved substances or phases. Therefore,
it is useful to consider the foundations of such relations.

7.1 Subgroups of the point groups of molecules

In this section those molecular symmetries and their subgroups are considered
which may occur as crystallographic point groups. A diagram of group–sub-
group relations of non-crystallographic point groups can be found in Interna-
tional Tables A, Section 10.1.4, Fig. 10.1.4.3.

The relations between a point group and its subgroups can be depicted by a
graph. Two important aspects should be taken into account:

(1) to include as many as possible such relations in a graph;

(2) to manage with as few as possible and as clear as possible graphs.

Every crystallographic point group is either a subgroup of a cubic point
group of type 4/m32/m (short symbol m3m) of order 48 or of a hexagonal
point group of type 6/m2/m2/m (6/mmm) of order 24. Therefore, only two
graphs are needed to display all group–subgroup relations.

In the graphs of Figs. 7.1 and 7.2 the symbol of every point group is con-
nected with its maximal subgroups by lines. The order of the group mentioned
on the left side corresponds to the height in the graph. The graphs shown
are contracted graphs, in which subgroups of the same type are mentioned
only once. For example, 4/m32/m actually has three subgroups of the type
4/m2/m2/m, with their fourfold rotation axes aligned along x, y, and z, respec-
tively, but 4/m2/m2/m is mentioned only once. The complete graphs, which
would contain all subgroups (e.g. three times 4/m2/m2/m), would take much
more space; Fig. 7.1 would consist of 98 Hermann–Mauguin symbols with a
bewildering number of connecting lines.

Some point-group types appear in both graphs.
A direction is called unique, if it is not equivalent by symmetry to any other

direction, not even the counter-direction. The 10 point groups framed in the
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Fig. 7.1 Subgroup graph (contracted) of the
point group 4/m32/m (m3m). The order at
the left side is given on a logarithmic scale.
Polar groups are framed.

48 4/m32/m

24 43m 432 2/m3

16 4/m2/m2/m

12 23 32/m

8 42m 4mm 422 4/m 2/m2/m2/m

6 3m 32 3

4 4 mm2 222 4 2/m

3 3

2 m 2 1

1 1

Fig. 7.2 Subgroup graph (contracted) of the
point group 6/m2/m2/m (6/mmm). Polar
groups are framed.

24 6/m2/m2/m

12 622 32/m 6/m 6mm 62m

8 2/m2/m2/m

6 3 32 6 3m 6

4 222 2/m mm2

3 3

2 1 2 m

1 1
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graphs of Figs. 7.1 and 7.2 have at least one unique direction. They are called
polar point groups. Certain properties, for example, an electric dipole moment,
require a polar point group.

Figures 7.1 and 7.2 only show symmetry relations. A symmetry reduction
from a group G to a subgroup H also implies a change of the equivalence
conditions within a molecule:

(1) The site symmetries of the atoms are reduced, or

(2) the point orbits of symmetrically equivalent atoms split into different
orbits, or

(3) both happen.

The symmetry reduction is often accompanied by an increased mobility of the
atoms: Parameters (coordinates, parameters of thermal motion) with fixed or
coupled values become independent.

7.2 Subgroups of the space groups

When crystal structures are related or when one of them is converted to another
one by a phase transition, keeping the general arrangement, the symmetries
of the crystal structures are related. A few examples have been presented in
Section 1.2, and many more are dealt with in Part II.

‘Related symmetry’ means:

(1) the symmetry of one crystal structure is a subgroup of the symmetry of
the other one; or

(2) both crystal structures have a common supergroup, i.e. they have differ-
ent partial symmetries of a higher symmetry; or

(3) both crystal structures have a common subgroup, i.e. they have part of
their symmetries in common, but none is contained in the other. This
case, however, requires particular prudence; in principle, it is always
possible to find an infinite number of common subgroups and to use
them to invent meaningless ‘symmetry relations’.

On the other hand, symmetry relations often indicate the presence of struc-
tural relations, and it may be worth checking them. However, this should be
done with caution, as shown by the example of the pair of structures CO2 –
FeS2; both have the same space group type Pa3, similar lattice parameters,
and the same occupied Wyckoff positions, and yet the structural details are so
different that they cannot be considered to belong to the same structure type
(cf. Section 8.8, page 117).

It is possible to list all possible subgroup types for every space-group type
and to specify the subgroups in a general way by formulae. For practical work,
another approach has been chosen. First, one looks for groups that are inter-
mediate between the starting space group G and the candidate subgroup H and
proceeds from G to H by a chain or several chains of consecutive maximal sub-
groups. This way one finds all subgroups of G up to a certain index by deter-
mining first the maximal subgroups H1i of G, then all maximal subgroups H2k

of H1i, etc., until the desired index has been reached. The indices |G : H 1i|,
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|H 1i : H 2k|, must be divisors of the index |G : H| (Lagrange’s Theorem 5.3,
page 55).

For this kind of procedure a theorem by C. HERMANN is of special value.
First we define three special kinds of subgroups of space groups.

Let G be a space group with point group PG and normal subgroup of all
translations TG and, correspondingly, let H<G be a subgroup with point group
PH and normal subgroup TH.

Definition 7.1 H < G is called a translationengleiche subgroup if G and
H have the same group of translations, TH = TG ; therefore, H belongs to a
crystal class of lower symmetry than G, PH < PG .11See margin note No. 1 in Chapter 10 (page

133) for comments referring to the terms
translationengleiche and klassengleiche. Definition 7.2 H < G is called a klassengleiche subgroup, if G and H be-

long to the same crystal class, PH = PG ; therefore, H has fewer translations
than G, TH < TG .1

Definition 7.3 A klassengleiche subgroup is called an isomorphic subgroup
if G and H belong to the same affine space-group type.

Isomorphic subgroups are a special case of klassengleiche subgroups. An iso-
morphic subgroup either has the same standard Hermann–Mauguin symbol as
the supergroup or that of the enantiomorphic partner.

Definition 7.4 H is called a general subgroup, if TH < TG and PH < PG

hold.

A general subgroup is neither translationengleiche nor klassengleiche.

The remarkable theorem of Hermann [50] is then:

Theorem 7.5 A maximal subgroup of a space group is either translationen-
gleiche or klassengleiche.

The proof of the theorem follows by construction of the intermediate group
Z , G ≥ Z ≥ H, which consists of those cosets of G that occur in H, possibly
with fewer translations. Z is evidently a translationengleiche subgroup of G
and a klassengleiche supergroup of H. Either Z = G or Z = H must hold for
a maximal subgroup.

Due to Hermann’s theorem it is sufficient to consider only the translationen-
gleiche and the klassengleiche subgroups. The maximal subgroups for every
space-group type are listed in International Tables, volumes A and A1 (Vol-
ume A only up to the 5th edition, 2005). In Volume A they can be found under
the headings ‘Maximal non-isomorphic subgroups’ and ‘Maximal isomorphic
subgroups of lowest index’. However, among the klassengleiche subgroups
with an enlarged conventional cell (mentioned under IIb) only the space-group
types of the subgroups are listed, and not all of the individual subgroups them-
selves. In addition, Volume A lacks the important information about any nec-
essary origin shifts. The complete listing of all subgroups can be found in
Volume A1 [14] which was published for the first time in 2004.

A detailed description of the data and instructions for their use appear in
Volume A, Section 2.2.15, and in Volume A1, Chapters 2.1 and 3.1.
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In addition to Hermann’s theorem, further restrictions apply to the maximal
subgroups of the space groups. Some of them, which are useful when setting
up subgroup tables and in the practical application of group–subgroup rela-
tions, are mentioned in the following, without proofs. The proofs can be found
in International Tables A1, Chapter 1.5 (2004 edition) and Chapter 1.3 (2010
edition) in a theoretical chapter by G. NEBE.

Theorem 7.6 Every space group G has an infinite number of maximal sub-
groups H. They are space groups and their indices are powers of prime
numbers p1, p2, or p3.

Remarks

(1) A subgroup of, say, index 6 cannot be maximal.

(2) Prime numbers p1 apply to triclinic, monoclinic, and orthorhombic space
groups G;
p1 and p2 to trigonal, tetragonal, and hexagonal G;
p1, p2, and p3 to cubic G.

(3) Certain restrictions apply to the possible values of the prime numbers p,
depending on G and the subgroup (e.g. only prime numbers of the kind
p = 6n+1 with n = integral). See Appendix A.

Theorem 7.7 There are only a finite number of maximal non-isomorphic
subgroups H of G because: If i is the index of H in G, i = |G : H|, then H
being non-isomorphic to G is only possible if i is a divisor of |P|, the order
of the point group P of G.

Since the orders of the crystallographic point groups only contain the factors
2 and 3, maximal non-isomorphic subgroups can only have the indices 2, 3, 4,
and 8. However, the index 8 is excluded. Actually, not all of these possibili-
ties do occur. All maximal non-isomorphic subgroups of triclinic, monoclinic,
orthorhombic, and tetragonal space groups have index 2; those of trigonal and
hexagonal space groups have indices 2 or 3; indices 2, 3, and 4 only occur
among cubic space groups.

Isomorphic subgroups may also have the mentioned indices, for example 2.
A space group of type P1, for example, has seven subgroups of index 2, all of
which are isomorphic.

Theorem 7.8 The number N of the subgroups of index 2 of a space group
G is N = 2n −1, 0 ≤ n ≤ 6.

The mentioned theorems show that a space group has infinitely many max-
imal subgroups. However, there are only a finite number which are non-
isomorphic.

7.2.1 Maximal translationengleiche subgroups

The conditions concerning translationengleiche subgroups are the simplest
ones. They can only be non-isomorphic subgroups because the (finite) point
group has been decreased. All translations are kept; complete cosets of the de-
composition of G with respect to T have been deleted (Table 7.1). The graphs
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Fig. 7.3 Graph (contracted) of the translatio-
nengleiche subgroups of Pm3m. Every con-
jugacy class of maximal subgroups is marked
by one line. For example, there are three non-
conjugate subgroups of Pmmm of the type
Pmm2, namely Pmm2, Pm2m, and P2mm,
which are commonly designated by the con-
ventional setting Pmm2. These may be con-
jugate in groups of higher order; in Pm3
there is only one class of three conjugates of
Pmm2. The trivial subgroup P1 is not men-
tioned.

Pm3m

P432 P43m Pm3

P4/mmm

P4/m P4mm P422 P42m Pmmm P4m2 Cmmm

P23 R3m

R32 R3m R3

R3

P4 P4 P2/m Cmm2 Pmm2 C222 C2/m Cm2m P222

P2 Pm C2 Cm P1

Fig. 7.4 Graph (contracted) of the translatio-
nengleiche subgroups of Pbcm. The kind of
presentation is as in Fig. 7.3.

Pbcm

P21212 Pca21 Pma2 Pmc21 P21/c P2/c P21/m

P21 P2 Pc Pm P1

of the point groups of Figs. 7.1 and 7.2 can be applied, since the factor group
G/T is isomorphic to the point group P . Space-group symbols replace the
point-group symbols. There are 10 cubic space-group types of the crystal class
m3m, and thus there are 10 graphs corresponding to Fig. 7.1. However, addi-
tional graphs are needed because, for example, Pbcm does not appear among
the translationengleiche subgroups of a space group of the crystal class m3m.
Figures 7.3 and 7.4 are examples of such graphs.

The translationengleiche subgroups H of a space group G are completely
listed in the subgroup tables of International Tables A (up to 2005) under I.
Since every H contains complete cosets of G/T , H can be completely char-
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acterized by specifying the numbers (n) of the representatives of these cosets.
Note, however, that the standard coordinate system of H may differ from that
of G. It may be necessary to perform a coordinate transformation (Section 3.7)
to obtain the standard data of H.

Table 7.1 Coset decomposition of the space
group G = Pmm2 with respect to the group
of translations T (cf. Example 6.3, page
66). The group elements that are deleted
upon symmetry reduction to the transla-
tionengleiche subgroup P2 and the klassen-
gleiche subgroup Pcc2 with doubled ba-
sis vector c have been crossed out. For
Pcc2 the elements of T are designated
by (p,q,0), (p,q,1), . . . which means the
translations pa,qb,0c, pa,qb,±1c, . . . with
p,q = 0,±1,±2, . . . ; (0,0,0) is the identity
translation.

translationengleiche subgroup P2

1st coset 2nd coset 3rd coset 4th coset

1◦1 2 ◦1 mx ◦1 my ◦1

1◦ t1 2 ◦ t1 mx ◦ t1 my ◦ t1
1◦ t2 2 ◦ t2 mx ◦ t2 my ◦ t2
1◦ t3 2 ◦ t3 mx ◦ t3 my ◦ t3
1◦ t4 2 ◦ t4 mx ◦ t4 my ◦ t4

...
...

...
...

klassengleiche subgroup Pcc2 (c′= 2c)

1st coset 2nd coset 3rd coset 4th coset

1◦(p,q,0) 2 ◦(p,q,0) mx ◦(p,q,0) my ◦(p,q,0)

1◦(p,q,1) 2 ◦(p,q,1) mx ◦(p,q,1) my ◦(p,q,1)

1◦(p,q,2) 2 ◦(p,q,2) mx ◦(p,q,2) my ◦(p,q,2)

1◦(p,q,3) 2 ◦(p,q,3) mx ◦(p,q,3) my ◦(p,q,3)

1◦(p,q,4) 2 ◦(p,q,4) mx ◦(p,q,4) my ◦(p,q,4)
...

...
...

...

7.2.2 Maximal non-isomorphic klassengleiche subgroups

Non-isomorphic klassengleiche subgroups of every space group can also be
listed completely. However, in Volume A of International Tables this has been
done only partly; the complete list can be found in Volume A1. Klassengleiche
subgroups have a reduced T and thus also every coset in the factor group G/T
is reduced, but the number of cosets remains unchanged (Table 7.1). Two pos-
sibilities are distinguished for practical reasons (there is no group-theoretical
reason):

(1) The conventional cell remains unchanged, i.e. only centring translations
are lost (of course, only applicable to centred settings).

(2) The conventional cell is enlarged.

Case 1 can be treated in the same way as the case of translationengleiche
subgroups since the representatives of G (with or without centring translations)
remain present in H. For this reason, subgroups of this kind have been com-
pletely listed in Volume A under IIa and characterized in the same way as un-
der I. Case 2, the subgroups with an increased conventional cell, would have
different coordinate triplets than G due to the changed cell. Therefore, only the
kinds of cell enlargements and the types of the subgroups have been listed in
Volume A under IIb, but neither their numbers nor the actual representatives.
For example, in Volume A, space-group type Pmmm, in the listing of the IIb
subgroups, the entry Pccm refers to two subgroups, the entry C mmm to four,
and F mmm to eight different subgroups. In Volume A1 all of these subgroups
have been completely listed.

Klassengleiche subgroups can also be depicted in graphs, one for each crys-
tal class. If the isomorphic subgroups are not considered (although they exist
always), 29 graphs are needed; some rather simple, others more or less compli-
cated. The crystal classes mmm, mm2, and 4/mmm have the most complicated
ones, because they have the largest numbers of space-group types (28, 22, 20).
As examples, the graphs of the crystal classes 2/m and m3m are depicted in
Figs. 7.5 and 7.6. All 29 graphs of the klassengleiche subgroups can be found
in International Tables A1.

7.2.3 Maximal isomorphic subgroups

The number of maximal isomorphic subgroups is always infinite; therefore, it
is only possible to list a small number of them individually. Only a few with
the smallest indices have been included in Volume A of International Tables,
under the heading ‘IIc Maximal isomorphic subgroups of lowest index’. In
Volume A1 all up to index 4 are mentioned individually. In addition, series
are mentioned that cover the complete infinite set of isomorphic subgroups
with the aid of parameters. Concerning the possible values of the indices of
isomorphic subgroups see Appendix A.
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Fig. 7.5 Graph of the maximal klassengleiche
subgroups of space groups of the crystal class
2/m. Every space group G is connected with
its maximal subgroups H by arrows; H is
placed lower than G in the graph. If the type
G can also occur as a subgroup of H, both
symbols are at the same height and the arrows
point in the possible directions group → sub-
group. All indices are 2.

C2/m P2/m➤➤

➤

➤

➤

➤
➤

C2/c P2/c P21/m
➤➤

➤

➤ ➤➤

P21/c

Fig. 7.6 Graph of the maximal klassenglei-
che subgroups of space groups of the crystal
class m3m. The kind of presentation is as in
Fig. 7.5. The indices are given in the arrows.
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2

➤

Fm3c

Pn3m Pm3n Pn3n

4
➤

2
➤

2
➤

Fd3m Fd3c

4

➤
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7.3 Minimal supergroups of the space groups

Whereas subgroups of space groups of finite index are always space groups,
this restriction is not applicable to supergroups. However, this must not worry
us as long as we deal with real crystal structures, whose symmetries can be
described by space groups. Quasicrystals and incommensurately modulated
structures, which are described with superspace groups in four- or five-dimen-
sional space, are left out of consideration. We consider only three-dimensional
space groups.

By reversal of the definitions for maximal subgroups of space groups we
define:

Definition 7.9 Let H be a maximal translationengleiche, klassengleiche, or
isomorphic subgroup of the space group G, H < G. Then G is a translatio-
nengleiche, klassengleiche, or isomorphic minimal supergroup of H.

Even with restriction to space groups, supergroups are more manifold than
subgroups. Subgroups result from the deletion of present symmetry opera-
tions; supergroups, however, result from the addition of symmetry operations.

Example 7.1
By deletion of the points of inversion from the space group P1 one obtains
one translationengleiche, maximal subgroup P1 of index 2. If one starts from
P1 and adds points of inversion, without changing the shape and size of the
unit cell, there are an infinite number of possibilities where to place these
points of inversion. Therefore, P1 has an infinity of minimal translationen-
gleiche supergroups P1 of index 2.
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The tables of the supergroups in International Tables A and A1 are reversed
listings of the subgroup tables. If a space group H appears as a maximal sub-
group of a space group G, then G is listed as a supergroup in the table of
the space group H. The table contains only translationengleiche and non-
isomorphic klassengleiche supergroups. Not all of the individual supergroups
have been listed; a listed space-group symbol may refer to several space groups
of the same type, but only the corresponding conventional symbol is mentioned
once. The tables neither contain information about the actual number of super-
groups of the same type nor about origin shifts.

However, in Chapter 2.1 of the second edition of International Tables A1
(2010), ‘Guide to the subgroup tables and graphs’, instructions and examples
have been included of how to derive the exact data of the minimal supergroups
(only if the space group H is neither triclinic nor monoclinic and if the super-
group G is a space group).

A space group G which belongs to a different crystal system than the space
group H can only be a supergroup G > H if the lattice of H fulfils the metric
conditions of the lattice of G, or nearly so in practical work. For example, if
H is orthorhombic and G is tetragonal, then G can only be a supergroup if the
lattice parameters of H fulfil the condition a = b.

Example 7.2
In International Tables, Volumes A and A1, the following translationen-
gleiche orthorhombic supergroups of the space group P21 21 2 are listed with
their short Hermann–Mauguin symbols. The full symbols have been added
here:

Pbam P21/b21/a2/m Pccn P21/c21/c2/n Pbcm P2/b21/c21/m
Pnnm P21/n21/n2/m Pmmn P21/m21/m2/n Pbcn P21/b2/c21/n

From the sequence of the 21 axes in the full symbols one can deduce:
Pbam, Pccn, Pnnm, and Pmmn are supergroups with the same orienta-
tions of the coordinate systems. It is not mentioned that of these only Pbam
is a supergroup without an origin shift; to find this out, one has to look up the
tables of the mentioned space groups in Volume A1 and look for the sub-
group P21 21 2; it is there where the origin shifts are mentioned. Pbcm
and Pbcn themselves are not actually supergroups, but only the conven-
tional symbols of the space groups of four actual supergroups with exchanged
axes and shifted origins; Pbcm stands for the supergroups P21/b21/m2/a
and P21/m21/a2/b without changed axes; Pbcn stands for P21/c21/n2/b
and P21/n21/c2/a (see Section 9.3 for Hermann–Mauguin symbols of non-
conventional settings). The tables do not show directly that Pbam, Pccn,
Pnnm, and Pmmn refer to one supergroup each, while Pbcm and Pbcn
refer to two each. However, this can be calculated by the procedure given in
Section 2.1.7 of the second edition of International Tables A1 (2010).

In addition, four translationengleiche tetragonal supergroups are listed:
P421 2, P42 21 2, P421 m and P421 c. However, these are supergroups
only if the space group P21 21 2 satisfies the condition a = b (or nearly so in
practice).
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7.4 Layer groups and rod groups

Definition 7.10 The symmetry operations of an object in three-dimensional
space form a layer group if it has translational symmetry only in two dimen-
sions, and a rod group if it has translational symmetry only in one dimension.

The symmetry operations of an object in two-dimensional space form a frieze
group if it has translational symmetry only in one dimension.

Layer, rod, and frieze groups are called subperiodic groups.

There are a few other terms for these groups (incomplete list):

Layer group, layer space group, net group, diperiodic group in three
dimensions, two-dimensional group in three dimensions.

Rod group, stem group, linear space group, one-dimensional group in
three dimensions.

Frieze group, ribbon group, line group in two dimensions.

The terms ‘two-dimensional space group’ instead of layer group and ‘one-
dimensional space group’ instead of rod group, which can be found in the
literature, are misleading and should not be used because these terms rather
refer to plane groups and line groups.

Layer and rod groups were derived by C. HERMANN [51]. They have been
compiled in International Tables, Volume E [52], in the same style as the space
groups in Volume A (including their maximal subgroups).

As for space groups, the orders of rotations of layer groups are restricted
to 1, 2, 3, 4, and 6. Therefore, there are only a finite number of layer group
types, namely 80. The order of rotations of rod groups parallel to the axis with
translational symmetry is not restricted; therefore, there are an infinite number
of rod group types. If the orders of rotations are restricted to 1, 2, 3, 4, and 6,
the number of rod group types is 75. The maximal order of rotations of frieze
groups is 2; there are seven types of frieze groups.

Layer groups are not to be confused with plane groups. For a plane group,
space is restricted to two dimensions, which in principle is an infinitely thin
plane. An (ideal) infinitely extended planar molecule like a graphene layer
always has an extension in the third dimension (perpendicular to the molecular
plane); its symmetry can only be designated by a layer group, in principle. The
symmetry of the pattern of the graphene layer, i.e. its projection onto a parallel
plane, on the other hand, can be designated by a plane group. The symmetry
of layers having a thickness of several atoms, for example a silicate or a CdI2

layer, cannot be described by such a projection.
The symbols used in International Tables E to denominate the symmetries

of layer groups correspond to the Hermann–Mauguin symbols of space groups.
The direction of c is considered to be perpendicular to the layer. Screw axes
and glide vectors of glide planes can only occur perpendicular to c. The sole
difference to the space-group symbols is the use of the lower case letters p and
c instead of P and C for the first letter, which designates the lattice type (cen-
tring), for example, p4/nmm (layer groups have no a, b, f , i, and r centrings).
When using one of these symbols, one must explicitly state whether one is
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talking about a layer or a plane group, because the symbols in both cases begin
with the same letters (p or c), and in some cases a layer group is designated
with the same symbol as a plane group.

No centrings exist for rod groups. To distinguish them from layer groups,
the symmetry symbol begins with a slanted $ in (North American) script
style, for example, $42/mmc. c is the direction having translational sym-
metry. Screw axes and glide vectors of glide planes can only occur parallel to
c. Non-conventional settings, with translational symmetry along a or b, can
be expressed by subscript letters a or b, for example, $a 21 am (conventionally
$mc21).

Molecules of chain polymers tend to be entangled, in which case they have
no overall symmetry; symmetry is then restricted to the local symmetry in the
immediate surroundings of an atom. In crystalline polymers the chains are
forced to align themselves and to adopt a symmetric conformation. This sym-
metry can be crystallographic, but often the symmetry of the single molecule
within the crystal matrix is non-crystallographic.

c
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1

1
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2
7
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7
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7

5
7

6
7

0; 1
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Fig. 7.7 7/2 P-helix of isotactic poly-4-
methyl-1-pentene which corresponds to a 74
helix in Hermann–Mauguin notation. Large
spheres represent isobutyl groups. Image
adapted from [54].

Crystalline chain polymers often adopt helical molecular structures. In poly-
mer science helices are designated by N/r (‘N/r helix’) where N is the num-
ber of repeating units2 within one translation period and r is the corresponding

2‘Repeating unit’ and ‘monomer unit’ can
be identical; however, in a case like poly-
ethylene, (CH2)∞, the repeating unit is CH2
whereas the chemical monomer is C2H4.

number of helical coil turns along the molecular chain [53]. The corresponding
Hermann–Mauguin screw axis symbol Nq can be calculated from

N n±1 = r q (7.1)

where n = 0,1,2, . . . and 0 < q < N are integers to be chosen such that the
equation is satisfied. In a helix designated by a Hermann–Mauguin symbol, all
repeating units are symmetrically equivalent. The chemical handedness of the
helix does not follow from the N/r symbol, but is specified by the letters M
(minus; or L) and P (or R) for left and right, respectively.

Example 7.3
Isotactic poly-4-methyl-1-pentene (form I) consists of helical 7/2 chains (7
monomers per two chain windings). Equation (7.1) is fulfilled either as
7× 1 + 1 = 2× 4 or 7× 1− 1 = 2× 3, i.e. q = 4 or q = 3, and the corre-
sponding Hermann–Mauguin screw axis symbol is either 74 or 73, depend-
ing on chirality. The helix is shown in Fig. 7.7. The N/r symbol cannot be
deduced uniquely from the Hermann-Mauguin symbol, because a 7/9 or any
other 7/(2 modulo 7) P-helix and any 7/(5 modulo 7) M-helix also has $74

symmetry.

Somewhat different symbols for layer and rod groups that had been in use
before the publication of International Tables E in 2002 go back to BOHM and
DORNBERGER-SCHIFF [55, 56]. Hermann–Mauguin symbols of space groups
had been used, the symmetry directions without translational symmetry being
set in parentheses. Again, the unique direction is c. Examples: layer group
P(4/n)mm [short] or P(4/n)21/m2/m [full symbol]; rod group P42/m(mc)
[short] or P42/m(2/m2/c) [full].

A layer group is the subgroup of a space group that has lost all translations
in the space dimension perpendicular to the layer. It corresponds to the factor
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group of the space group with respect to the group of all translations in this
direction. For example, the layer group pmm2 is a subgroup of the space
group Pmm2; it is isomorphic to the factor group Pmm2/Tz, Tz being the
group of translations in the z direction.

Example 7.4
The symmetry group of a graphene layer is the layer group p6/m2/m2/m
(p6/mmm for short; P(6/m)mm in Bohm–Dornberger-Schiff notation).

Example 7.5
The symmetry group of a single selected polymeric molecule of mercury
oxide is the rod group $2/m2/c21/m ($mcm for short; P(mc)m in Bohm–
Dornberger-Schiff notation):
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Exercises

Solutions in Appendix D (page 285).

For an exercise concerning supergroups see Exercise 9.5, page
130.
Exercises concerning translationengleiche, klassengleiche, and
isomorphic subgroups are at the ends of Chapters 11, 12, and 13.

(7.1) What layer or rod symmetry do the following polymeric
molecules or ions have?

1
∞P4−

6 in BaP3

1
∞P12 in (CuI)8P12

1
∞CrF2−

5 in Rb2CrF5

black phosphorus2
∞Si2O2−

5 in kaolinite
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8.1 Conjugate subgroups of space groups o

Conjugate subgroups were defined in Section 5.4 (Definition 5.5, page 57). In
this section we consider some relations among conjugate subgroups of space
groups by means of examples.

Let G be a space group and H a subgroup of G, H < G. There can be
groups conjugate to H, which we designate by H′, H′′, . . . . In common, H,
H′, H′′, . . . form a conjugacy class. Conjugate means: the groups H, H′,
H′′, . . . belong to the same space-group type, their lattices have the same di-
mensions, and they are equivalent by symmetry operations of G. One says,
‘H, H′, H′′, . . . are conjugate in G ’ or ‘H′, H′′, . . . are conjugate to H in G ’.

Two kinds of conjugation of maximal subgroups can be distinguished:
1. Orientational conjugation. The conjugate subgroups have differently ori-
ented unit cells. The orientations can be mapped one onto the other by sym-
metry operations of G. Consider as an example the orthorhombic subgroups
of a hexagonal space group (Fig. 8.1); the three unit cells are mutually rotated
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➤ Fig. 8.1 Conjugate (C centred) orthorhom-
bic subgroups (H = C mm2) of a hexagonal
space group (G = P6mm) with three differ-
ent orientations.



102 Conjugate subgroups and normalizers

by 120◦, i.e. they are equivalent by a rotation of order three of the hexagonal
space group. The axis of order two which is contained in an axis of order six
is maintained in the subgroups; the subgroups are conjugate in G by means of
the lost axis of order three.
2. Translational conjugation. The primitive unit cell of the subgroups H, H′,
H′′, . . . must be enlarged by a (integral) factor ≥ 3 as compared to the primitive
cell of G. The conjugates differ in the selection of the symmetry elements of G
that are being lost with the cell enlargement. If the unit cells of the conjugate
subgroups H, H′, H′′, . . . are set up according to the usual conventions, they
differ in the positions of their origins; the positions of the origins of H, H′,
H′′, . . . are mapped onto each other by translation vectors of G which do not
belong to H.

Figure 8.2 shows an example in which the unit cell of a centrosymmetric
space group G (e.g. P1) is enlarged by a factor of three. There are three sub-
groups H, H′, and H′′ that are conjugate in G. Every one of them contains
another third of the centres of inversion originally present. H, H′, and H′′ can
be mapped onto each other by the translation vector b of G. Instead of the
initially symmetry-equivalent points • we now have three kinds of points, •,

and . The three patterns of points are completely equivalent; the same
pattern results if the ‘colours’ are interchanged.

G

� b

�
a,3b,c

H

H′

H′′

Fig. 8.2 Occurrence of conjugate subgroups
by triplication of the unit cell.

A second example is shown in Fig. 8.3. In this case the unit cell of a cen-
trosymmetric space group G is enlarged by a factor of four in two steps. The
first step involves a doubling of the basis vector b, and one half of the inver-
sion centres are being lost. There are two subgroups H1 and H2 which are on a
par; one contains one half of the original inversion centres, the other one con-
tains the other half. However, H1 and H2 are not conjugate in G, but belong
to different conjugacy classes. H1 and H2 are not equivalent by a symmetry
operation of G; their origins are mutually shifted by 1

2 b. The patterns of the
two inequivalent points • and are not alike and cannot be made equivalent
by interchange of their colours. We return to this subject in Section 8.3, where
non-conjugate subgroups of this kind are called subgroups on a par according
to Definition 8.2.

The two unit cells depicted in Fig. 8.3 for the subgroup H1 differ in the
positions of their origins, which are equivalent by the translation vector b of G.
And yet, in this case there are no conjugate subgroups; both unit cells comprise
exactly the same selection of remaining inversion centres. For the description
and distribution of the points • and it makes no difference whether the one
or the other position of the origin is selected. H1 is a subgroup of G of index
2. This is an example for the universally valid statement that there never exist
conjugate subgroups when the index is 2.

The situation is different when the unit cell is doubled a second time. At
each of the steps H1 → H3 and H1 → H′

3 again one half of the inversion
centres are lost. H3 and H′

3 are two different subgroups that are conjugate
in G (but not in H1). Their unit cells shown in Fig. 8.3 are equivalent by the
translation b of G. They contain different subsets of the remaining fourth of the
inversion centres. Both patterns of distribution of the four kinds of points •,

, , and are absolutely equivalent, as can be recognized by interchange of
the ‘colours’. The index of H3 in G is 4.
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G

� b

�
a,2b,c

�

a,2b,c
0, 1

2 ,0

H1

H1

H2

�
a,2b′,c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

first step: doubling of the
basis vector b′ = 2b

H1 and H2 are not symmetry
equivalent by a translation b of
G; they are not conjugate in G
but subgroups on a par

�two equivalent descriptions of the very same sub-
group H1 that differ by the translation b of G. Both
cells contain exactly the same subset of inversion cen-
tres of G. There are no conjugates

second step: second doubling of the basis vector b′

H3

H′
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

H3 and H′
3 are two subgroups that

are conjugate in G. They are different
space groups that contain different sub-
sets of the inversion centres of G. They
are conjugate by the translation b of G

Fig. 8.3 Example for the occurrence of conjugate subgroups due to the loss of translational sym-
metry by enlargement of the unit cell by a factor of 4.

Cell enlargements do not always generate conjugate subgroups. If the cell of
a space group is being enlarged in a direction in which the origin may float, i.e.
is not fixed by symmetry, no conjugate subgroups result. For example, there
are no isomorphic subgroups of Pca21 if the basis vector c is enlarged by an
arbitrary integral factor, since the origin of Pca21 may float in the direction of
c. In addition, there are some other cases where the enlargement of the unit cell
by a factor ≥ 3 does not produce conjugate subgroups. An example is shown
in Fig. 8.4.

Among translationengleiche maximal subgroups only orientational conju-
gation can occur, among klassengleiche and isomorphic maximal subgroups
only translational conjugation.
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Fig. 8.4 The group G has three conjugate sub-
groups of type H1, but only one subgroup of
type H2. The three conjugates to H1 differ in
the positions of their origins. For H2 it makes
no difference whether the origin is chosen at
the positions ①, ②, or ③; the result is the
same subgroup in any case.

8.2 Normalizers of space groups

According to Definition 5.5 two groups H and H′ are conjugate subgroups in
G if H can be mapped onto H′ by an element gm ∈ G by conjugation:

H′ = g−1
m Hgm gm 	∈ H

In addition, there always exist further elements gi ∈G that map H onto itself.
These include at least the elements of H itself, but there may exist further
elements with this property.
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Definition 8.1 All elements gi ∈ G that map a subgroup H < G onto itself
according to H = g−1

i Hgi, taken by themselves, are the elements of a group.
This group is called the normalizer of H in G and is designated by NG(H).
Expressed mathematically:

NG(H) = {gi ∈ G | g−1
i Hgi = H} (8.1)

The expression between the braces means: ‘all elements gi in G for which
g−1

i Hgi = H holds’.

The normalizer is an intermediate group between G and H: H � NG(H) ≤
G. It depends on G and H. H is a normal subgroup of NG(H).

A special normalizer is the Euclidean normalizer of a space group. This is
the normalizer of a space group G in the supergroup E , the Euclidean group:

NE(G) = {bi ∈ E | b−1
i G bi = G}

The Euclidean group E comprises all isometries of three-dimensional space,
i.e. all distortion-free mappings. All space groups are subgroups of E .

Consider as examples the images of the symmetry elements of the space
groups in the left half of Fig. 8.5. A certain pattern can be recognized, the
symmetry of which is higher than the symmetry of the space group itself. The
symmetry operations that map equal symmetry elements of a space group G
onto each other form a group (not necessarily a space group), which is nothing
other than the Euclidean normalizer of G. In Fig. 8.5 the Euclidean normalizers
are shown on the right side. The Euclidean normalizer NE(G) so to speak de-
scribes the ‘symmetry of the symmetry’ of G. A synonymous term is Cheshire
group (so-called after the ‘Cheshire cat’ from the fairy tale ‘Alice’s adventures
in Wonderland’; first the cat appears grinning on the branches of a tree, later it
disappears and nothing is left but its grin) [57].

In most cases NE(G) has a smaller unit cell than G (Fig. 8.5). For space
groups whose origin floats in one or more directions, i.e. is not fixed by symme-
try, the unit cell of the Euclidean normalizer is even infinitesimally small in the
corresponding directions. For example, if G belongs to the crystal class mm2
and has the lattice basis a,b,c, then the lattice basis of NE(G) is 1

2 a, 1
2 b,εc;

the value of ε is infinitesimally small. In this case NE(G) is no longer a space
group (the basis vectors of a space group may not be arbitrarily small); in the
symbol of the normalizer this is expressed by a superscript 1, 2, or 3, depending
on the number of the corresponding directions.

In many cases of triclinic, monoclinic, and orthorhombic space groups,
NE(G) also depends on the metric of the unit cell of G. For example, the
Euclidean normalizer of Pbca is normally Pmmm with halved lattice parame-
ters, but it is Pm3 if a = b = c (Fig. 8.5). The Euclidean normalizer of P21/m
generally is P2/m with halved lattice parameters; however, with a specialized
metric of the cell it is Pmmm, P4/mmm, P6/mmm, or C mmm (Fig. 8.6). Nor-
malizers with specialized metric have to be taken into account for translatio-
nengleiche subgroups; for example, a translationengleiche orthorhombic sub-
group of a tetragonal space group still has the tetragonal cell metric a = b 	= c.

Tables of Euclidean normalizers of all space groups can be found in Inter-
national Tables A, Chapter 15, beginning with the 1987 edition. However, the
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Fig. 8.5 Examples of Euclidean normaliz-
ers of space groups. The unit cells of the
Euclidean normalizers are displayed by grey
backgrounds. For P16/mmm the additional
21 axes and the additional glide planes in
between the reflection planes have not been
drawn for the sake of clarity. ε = infinitesi-
mally small value.

Euclidean normalizers with specialized metric of the unit cell have been listed
only since the 5th edition (2002); they can also be found in [58]. An extract
from International Tables A is reproduced in Table 8.1 (page 112).

Finally, we mention two more normalizers. The affine normalizer, like the
Euclidean normalizer, maps a space group onto itself, but in addition allows
a distortion of the lattice. For example, only parallel 21 axes of the space
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Fig. 8.6 Euclidean normalizers of the space
group P1121/m with specialized metrics of
the unit cell; a downwards, b to the right,
monoclinic axis c perpendicular to the pa-
per plane. The cells displayed by grey back-
grounds correspond to the cells of the normal-
izers, for which only the symmetry axes and
reflection planes parallel to c are shown, and
whose third basis vector is 1
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group P21/b21/c21/a (a 	= b 	= c) are mapped onto each other by the Euclidean
normalizer; however, the affine normalizer also maps the differently oriented
axes onto each other. The affine normalizer of the group G is the normalizer
in the affine group, the group of all mappings (including distorting mappings).
The affine normalizer is a supergroup of the Euclidean normalizer.

The chirality-preserving Euclidean normalizer NE+(G) is the normalizer of
a space group G in the chirality-preserving Euclidean group. That is the group
of all isometries of three-dimensional space, but excluding all symmetry oper-
ations of the second kind (inversion, rotoinversion, reflection, glide reflection).
The chirality-preserving normalizer is a subgroup of the Euclidean normalizer:

G ≤NE+(G) ≤NE(G)

If NE(G) is centrosymmetric, NE+(G) is the non-centrosymmetric subgroup
of NE(G) of index 2, which is a supergroup of G. If NE(G) is non-centro-
symmetric, NE+(G) and NE(G) are identical. Chirality-preserving Euclidean
normalizers are listed in International Tables A from the 6th edition onwards
(due to be published in 2013).

8.3 The number of conjugate subgroups.
Subgroups on a par

According to eqn (8.1), the normalizer of H in G, NG(H), is the group of all
elements gm ∈ G that map H onto itself by conjugation. These group elements
are also elements of NE(H), the Euclidean normalizer of H.

NG(H) is the largest common subgroup of G and NE(H); it consists of the
intersection of the sets of symmetry operations of G and NE(H). This property
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makes it especially valuable; it renders it possible to derive the normalizer
NG(H) from the tabulated Euclidean normalizers of the space groups.

NE (H)G

NG(H)

H

j

��

�

NE (H) Euclidean nor-
malizer of H

NG(H) = NE(H) ∩ G
normalizer
of H in G

(∩ = symbol
for intersection)

index j = number of conjugates of H in G

The index j of NG(H) in G corresponds to the number of conjugate sub-
groups of H in G [59]. The arrows in the adjacent graph mark group–subgroup
relations that do not have to be maximal. In addition, several space groups may
coincide, NE(H) =NG(H) or G =NG(H) or NG(H) =H; the corresponding
connecting arrow is then omitted. If G = NG(H), then j = 1 and there are no
subgroups conjugate to H; this applies if H is a normal subgroup of G.

Example 8.1

G = P63/mmc
a, b, c

H = C mcm = NG(H)
a, a+2b, c

�
3

Pmmm = NE (H)
1
2 a, 1

2 (a+2b), 1
2 c

C mmm
a, a+2b, 1

2 c

�

�

How many maximal conjugate subgroups of type C mcm does the space
group P63/mmc have?
The Euclidean normalizer of C mcm is Pmmm with halved basis vectors
(Table 8.1). Since C mcm is a maximal subgroup of P63/mmc, NG(H) must
either be equal to G or equal to H. In this case, NG(H)=H and the index 3 of
NG(H) in G shows the existence of three conjugates of C mcm in P63/mmc.
They have the three orientations as in Fig. 8.1. In the adjacent graph the basis
vectors of every space group are given as vector sums of the basis vectors a,
b, c of G.

Among the subgroups of a space group G there may exist several conjugacy
classes, H1, H′

1, H′′
1 , . . . , H2, H′

2, H′′
2 , . . . , . . . , all of which belong to the

same space-group type and whose unit cells have the same dimensions.

Definition 8.2 Subgroups H1, H2, . . . < Z ≤ G which are not conjugate in
G, but conjugate in one of the Euclidean normalizers NE(G) or NE(Z) are
called subgroups on a par in G.1 They belong to different conjugacy classes,
have the same lattice dimensions, and the same space group type.

1We avoid the expression ‘equivalent sub-
groups’ which has different meanings in the
literature; in addition, it should not be con-
fused with ‘symmetry equivalent’.We already met subgroups on a par in Fig. 8.3 (page 103). There, H1 and H2

are subgroups on a par in G; they are not symmetry equivalent by a symmetry
operation of G. H3 and H′

3 are subgroups on a par of H1; they are not conjugate
in H1, but they are conjugate in G and also in NE(H1). Actual examples of
subgroups on a par are dealt with in the following Example 8.2 and in Section
11.2, page 141.

Subgroups on a par H1, H2, . . . that are maximal subgroups of G are con-
jugate in NE(G). Then one of the relations shown in Fig. 8.7 holds. The
mentioned indices i and j show how many of these conjugacy classes occur
and how many conjugates are contained in each of them. Every conjugacy
class of the subgroups on a par contains the same number of conjugates. The
number i× j refers to all conjugates in all conjugacy classes of the subgroups
on a par; for this quantity the expression ‘Euclidean equivalent subgroups’ can
be found in the literature [59] which, however, has caused misunderstandings
(it is only applicable if H1, H2, . . . are maximal subgroups of G).

If H is not a maximal subgroup of G, there may be subgroups on a par that
are conjugate in NE(Z), the Euclidean normalizer of an intermediate group Z ,
G > Z > H. If H is a maximal subgroup of Z , one can elucidate with one of
the diagrams of Fig. 8.7 if there exist subgroups on a par (different conjugacy
classes); for this purpose, G is to be replaced by Z .
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Fig. 8.7 Possible group–subgroup relations
between the space group G, its maximal sub-
group H, and their Euclidean normalizers.
Except for G and H, two or more of the
groups may coincide; the connecting arrow is
then omitted. The group–subgroup relations
marked by the arrows, from G to H excepted,
do not have to be maximal.
Index j of NG(H) in G = number of conju-
gates to H in G in a conjugacy class;
index i = number of conjugacy classes.

NE (G)
NE(H)

D

G = NG(H)

H

�
i

	

�

�

j = 1

NE(G)

NE (H)

D

G

H = NG(H)
➤

i× j

	
�

�

j

NE (G)

NE(H)

G

H = NG(H) = D

�

��
j

i

D = NE(G) ∩ NE (H) = largest common subgroup of NE(G) and NE(H)

Example 8.2

P4/m32/m = G
a,b,c

NE (Z) = P4/m2/m2/m
1
2 (a−b), 1

2 (a+b), 1
2 c

D = NE(Hk) = P4/m2/m2/m
k = 1,2 a,b, 1

2 c

Z = P4/m2/m2/m = NG(Hk)
a,b,c k = 1,2

H1 = P4/m21/b2/m
a−b,a+b,c

1
2 , 1

2 ,0
3 conjugates in G

H2 = P4/m21/b2/m
a−b,a+b,c

0,0,0
3 conjugates in G

3

➤

2

➤

�

➤
➤

2 2

︸ ︷︷ ︸
2 conjugacy classes
(subgroups on a par)

compare with the left diagram of Fig.
8.7, with D = NE (Hk), i = 2, and
inserting Z instead of G

Starting from the cubic space group of perovskite, G = Pm3m, sym-
metry can be reduced in two steps to the space group P4/mbm. As
can be seen by the relations shown in the margin, there are two differ-
ent subgroups on a par of the type P4/mbm, H1 and H2, which have
the tetragonal c vector parallel to cubic c and the origin positions
1
2 , 1

2 ,0 and 0,0,0 in the coordinate system of G. They are conju-
gate in NE(Z), the Euclidean normalizer of the intermediate group
Z , and belong to two conjugacy classes. The index of NG(Hk) in
G is 3. Therefore, the conjugacy classes represented by H1 and H2

consist of three groups each that are conjugate in G; they have c par-
allel to a, b, and c of cubic G, respectively. The existence of two
subgroups on a par, H1 and H2, with c parallel to cubic c can be
recognized by the index 2 of D in NE(Z). They render possible two
different kinds of distortion of the perovskite structure (Fig. 8.8).

If one is interested in the subgroups of G in a tree of group–subgroup rela-
tions, in general only one representative of each conjugacy class needs to be
considered, since all representatives are symmetry equivalent from the point of
view of G and thus are absolutely equal. However, subgroups an a par, being
non-conjugate, should all be considered, even though they also have the same
space-group type and the same lattice dimensions. In the tree shown to the left
of Example 8.2 only one representative is mentioned of each conjugacy class.
The complete graph, which includes all conjugate subgroups, is depicted in
Fig. 8.9.

In International Tables A1 all maximal subgroups are listed for every space
group. All conjugate maximal subgroups are mentioned in Part 2 of the ta-
bles; braces indicate which of them belong to the same conjugacy classes. In
Part 3 of the Tables (Relations between the Wyckoff positions) only one repre-
sentative is listed for every conjugacy class; however, if there exist conjugate
subgroups with orientational conjugation, their basis transformations are men-
tioned. The relations between the Wyckoff positions for a group–subgroup pair
are always the same for conjugate subgroups.
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Fig. 8.8 Two variants of the perovskite struc-
ture with different kinds of distortion of the
coordination octahedra in two different klas-
sengleiche subgroups on a par. With the cell
enlargement from P4/mmm to P4/mbm, in
one case the fourfold rotation axes running
through the centres of the octahedra are lost;
in the other case those running through the
cations drawn as spheres.

G = P4/m32/m
a,b,c

Z = P4/m2/m2/m
a,b,c

Z ′ = P4/m2/m2/m
b,c,a

Z ′′ = P4/m2/m2/m
c,a,b

P4/m21/b2/m
a−b,a+b,c

1
2 , 1

2 ,0

H1

P4/m21/b2/m
a−b,a+b,c

0,0,0

H2

P4/m21/b2/m
b− c,b+ c,a

0, 1
2 , 1

2

H′
1

P4/m21/b2/m
b− c,b+ c,a

0,0,0

H′
2

P4/m21/b2/m
c−a,c+a,b

1
2 ,0, 1

2

H′′
1

P4/m21/b2/m
c−a,c+a,b

0,0,0

H′′
2

➤

➤

➤

➤

➤

➤

➤

➤

➤

Fig. 8.9 Complete graph of the group–subgroup relations from Example 8.2 including all conjugate
subgroups (without Euclidean normalizers). The basis vectors of the subgroups are given as linear
combinations of the basis vectors a, b, and c of G, and the origin positions refer to the coordinate
system of G. Subgroups that are conjugate in G are distinguished by primes ′ and ′′.



110 Conjugate subgroups and normalizers

8.4 Standardized description of crystal
structures

At least the following data are needed for a unique description of a crystal
structure:

(1) the dimensions of the lattice, expressed by the lattice parameters a, b, c,
α,β , γ ;

(2) the space group (Hermann–Mauguin symbol, perhaps its number ac-
cording to International Tables), given the case with mention of the ori-
gin choice (origin choice 1 or 2);

(3) for every point orbit occupied by atoms, the coordinates of one of its
atoms.

These data can be specified in infinitely different ways, in principle. To be
able to compare different crystal structures, to give them a systematic order,
and to be able to handle them in databases, a uniform as possible description
of the many structures is desirable. Therefore, in the course of time, rules have
been developed for a standardized description, namely [60, 61]:

• The conventional setting according to International Tables A is chosen
for the space group. If the tables allow for different choices, the pref-
erence is: origin at a centre of inversion, if present (origin choice 2);
hexagonal axes for rhombohedral space groups; monoclinic axis b and
‘cell choice 1’ for monoclinic space groups.

• If there is still free scope to choose the unit cell, the reduced cell is
chosen. Detailed instructions to establish such a cell can be found in
International Tables A, Chapter 9.2. The most important ones are:

a ≤ b ≤ c |cosγ| ≤ a
2b

|cosβ | ≤ a
2c

|cosα| ≤ b
2c

All angles 60◦ ≤ α, β , γ ≤ 90◦ or all 90◦ ≤ α, β , γ ≤ 120◦.

• Atomic coordinates for every representative atom of a point orbit such
that 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ z < 1 and a minimum for

√
x2 + y2 + z2.

• Sequence of the atoms according to the sequence of the Wyckoff sym-
bols in International Tables A (from top to bottom); if the Wyckoff sym-
bols coincide, sequence with increasing coordinate values of x, then y,
then z.

The program STRUCTURE TIDY [62] can be used to standardize any set of
data this way.

8.5 Equivalent descriptions of crystal structures

Contraventions of the rules mentioned in the preceding section are frequent,
not only from negligence or ignorance of the rules, but often for compelling
reasons. For instance, in the case of molecules, the atomic coordinates are pref-
erably chosen such that the atoms belong to the same molecule and are listed
in the sequence of their linkage, even if this is in contravention of the rules.
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Standardized structural data can result in two similar structures being docu-
mented differently, such that their relationship can hardly be recognized or is
even obscured. In order to make relations evident one is often forced to avoid
standardized descriptions. Relations become most evident when the unit cells
exhibit strict correspondence of their settings, dimensions, axes ratios, and
atomic coordinates. When comparing crystal structures, cell transformations
and the involved coordinate transformations should be avoided, if possible,
even if this calls for non-conventional settings of space groups.

Even if the rules are observed, there are almost always several possible ways
to describe the very same crystal structure. For example, for the structure of
rock salt (space group Fm3m) the origin can be chosen to be at the centre of
a Na+ or a Cl− ion, which results in two different sets of coordinates. In this
case the equivalence of both descriptions is easy to recognize. However, in
many other cases it is by no means a simple matter to recognize whether two
differently documented structures are alike or not.

For all space groups, except I m3m and I a3d, one can choose several dif-
ferent sets of atomic coordinates describing one and the same structure in the
same space-group setting. The number of equivalent coordinate sets for the
space group G is exactly i, i being the index of G in its Euclidean normalizer
NE(G) [63, 64]. By definition, i cosets result in the coset decomposition of
NE(G) with respect to G (cf. Section 5.3). G, which is the first coset of NE(G),
maps the structure onto itself; the symmetry operations of any other coset gen-
erate one additional mapping each with a different set of coordinates.

To obtain one equivalent set of coordinates from another one, one makes use
of the Euclidean normalizers as listed in Chapter 15 of International Tables A.
Table 8.1 contains an excerpt of these tables. The columns under Euclidean
normalizer NE(G) contain the (space) group symbols of the Euclidean nor-
malizers and their basis vectors (as vector sums of the basis vectors of G).
For space groups with floating origins (not fixed by symmetry), such as I 4, the
numbers of pertinent dimensions of space are specified by superscript numbers
in the symbols of NE(G), for example, P1 4/mmm. In addition, the basis vec-
tors of NE(G) are infinitesimally small in these directions, which is expressed
by the numerical factor ε . The last column contains the indices of G in NE(G).
The index values correspond to the numbers of equivalent sets of coordinates
with which a structure can be described in a space group G. By application of
the coordinate transformations listed in the column Additional generators of
NE(G) one obtains one equivalent set of coordinates from another one. The
symbol t means a translation of an arbitrary amount. A few particularities have
to be watched in the case of chiral crystal structures (see next section).

Example 8.3
Rock salt crystallizes in space group F m3m. The Euclidean normalizer is
NE(Fm3m) = Pm3m ( 1

2 a, 1
2 b, 1

2 c) with index i = 2. Therefore, there are two
possible sets of coordinates. One is obtained from the other one according to
the additional generators of NE(G) in Table 8.1 by the addition of 1

2 , 1
2 , 1

2 :

Na 4a 0, 0, 0 and Na 4b 1
2 , 1

2 , 1
2

Cl 4b 1
2 , 1

2 , 1
2 Cl 4a 0, 0, 0
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Table 8.1 Selection of Euclidean normalizers of space groups. Excerpt from International Tables
A, 6th edition (2013) [13]; Tables 15.2.1.3 and 15.2.1.4 in the editions of 2002 and 2005; Table
15.3.2 in the editions of 1987–1998.

Space group G Euclidean normalizer NE(G) Additional generators of NE (G) Index
Hermann– and chirality-preserving Inversion Further of G
Mauguin normalizer NE+(G) through a gener- in
symbol Symbol Basis vectors Translations centre at ators NE(G)

P1 21/m1∗ P12/m1 1
2 a, 1

2 b, 1
2 c 1

2 ,0,0; 0, 1
2 ,0; 0,0, 1

2 8 ·1 ·1
P1 21/m1 † Bmmm 1

2 (a+c), 1
2 b, 1

2 (–a+c) 1
2 ,0,0; 0, 1

2 ,0; 0,0, 1
2 z, y, x 8 ·1 ·2

C 1 2/m1 ∗ P12/m1 1
2 a, 1

2 b, 1
2 c 1

2 ,0,0; 0,0, 1
2 4 ·1 ·1

P21 21 21
∗ Pmmm 1

2 a, 1
2 b, 1

2 c 1
2 ,0,0; 0, 1

2 ,0; 0,0, 1
2 0, 0, 0 8 ·2 ·1

NE+(G) : P222 1
2 a, 1

2 b, 1
2 c 1

2 ,0,0; 0, 1
2 ,0; 0,0, 1

2 8 ·1
C mcm Pmmm 1

2 a, 1
2 b, 1

2 c 1
2 ,0,0; 0,0, 1

2 4 ·1 ·1
I bam∗ Pmmm 1

2 a, 1
2 b, 1

2 c 1
2 ,0,0; 0, 1

2 ,0 4 ·1 ·1
I 4 P1 4/mmm 1

2 (a–b), 1
2 (a+b), εc 0,0, t 0, 0, 0 y, x, z ∞ ·2 ·2

NE+(G) : P1422 1
2 (a–b), 1

2 (a+b), εc 0,0, t y, x, z̄ ∞ ·2
P4/n P4/mmm 1

2 (a–b), 1
2 (a+b), 1

2 c 1
2 , 1

2 ,0; 0,0, 1
2 y, x, z 4 ·1 ·2

I 422 P4/mmm 1
2 (a–b), 1

2 (a+b), 1
2 c 0,0, 1

2 0, 0, 0 2 ·2 ·1
NE+(G) : P422 1

2 (a–b), 1
2 (a+b), 1

2 c 0,0, 1
2 2 ·1

P42c P4/mmm 1
2 (a–b), 1

2 (a+b), 1
2 c 1

2 , 1
2 ,0; 0,0, 1

2 0, 0, 0 4 ·2 ·1
I 42d P42/nnm 1

2 (a–b), 1
2 (a+b), 1

2 c 0,0, 1
2

1
4 , 0, 1

8 2 ·2 ·1
P32 21 P64 22 a+b, –a, 1

2 c 0,0, 1
2 x̄, ȳ, z 2 ·2

P3m1 P6/mmm a, b, 1
2 c 0,0, 1

2 x̄, ȳ, z 2 ·1 ·2
R3m (hex.) R3m (hex.) –a, –b, 1

2 c 0,0, 1
2 2 ·1 ·1

P6 P6/mmm 1
3 (2a+b), 1

3 (–a+b), 1
2 c 2

3 , 1
3 ,0; 0,0, 1

2 0, 0, 0 y, x, z 6 ·2 ·2
P63/m P6/mmm a, b, 1

2 c 0,0, 1
2 y, x, z 2 ·1 ·2

P63 mc P1 6/mmm a, b, εc 0,0, t 0, 0, 0 ∞ ·2 ·1
P63/mmc P6/mmm a, b, 1

2 c 0,0, 1
2 2 ·1 ·1

Pm3m I m3m a, b, c 1
2 , 1

2 , 1
2 2 ·1 ·1

F m3m Pm3m 1
2 a, 1

2 b, 1
2 c 1

2 , 1
2 , 1

2 2 ·1 ·1
∗ without specialized lattice metric
† if a = c, 90◦ < β < 120◦

Example 8.4
WOBr4 crystallizes in space group I 4 with the following atomic coordinates
[65]:

x y z
W 0 0 0.078
O 0 0 0.529
Br 0.260 0.069 0.0

The Euclidean normalizer of I 4 is P 1 4/mmm with the basis vectors
1
2 (a−b), 1

2 (a + b), εc. The index of I 4 in P1 4/mmm is ∞ · 2 · 2 and thus
is infinite (due to the infinitesimally small basis vector εc). By addition of
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0,0,t to the coordinates of all atoms one obtains another equivalent set of
coordinates. For this, there are infinitely many possibilities because t can
adopt any arbitrary value. As expressed by the index ∞ · 2 · 2, in addition,
there exist four equivalent sets of coordinates for every one of these infinitely
many sets of coordinates. They are obtained by inversion at 0,0,0 and by the
transformation y, x, z. The equivalent sets of coordinates are thus:

W 0 0 0.078 + t 0 0 –0.078 – t
O 0 0 0.529 + t 0 0 –0.529 – t
Br 0.260 0.069 0,0 + t –0.260 –0.069 0.0 – t

W 0 0 0.078 + t 0 0 –0.078 – t
O 0 0 0.529 + t 0 0 –0.529 – t
Br 0.069 0.260 0.0 + t –0.069 –0.260 0.0 – t

with t = arbitrary. The situation is depicted in Fig. 8.10.

�a (fourth set of coordinates)

�
b

�a

�
b

(second set of coordinates)

Fig. 8.10 Two equivalent descriptions of the
crystal structure of WOBr4. Two more re-
sult by inversion and infinitely many more by
shifting the origin in the direction of c.

8.6 Chirality

Definition 8.3 An object is chiral if it cannot be superposed by pure rotation
and translation on its image formed by inversion through a point.

The symmetry group of a chiral object contains no symmetry operations of
the second kind, i.e. no inversion, rotoinversion, reflection, or glide reflection.
Further terms in this context are [66, 67]:
Absolute configuration spatial arrangement of atoms in a chiral molecule

and its appropriate designation (e.g. by (R), (S) etc.)

Absolute (crystal) spatial arrangement of atoms in a chiral crystal and its des-
structure cription (lattice parameters, space group, atomic coordinates)

Enantiomorph one out of a pair of objects of opposite chirality

Enantiomer one molecule out of a pair of opposite chirality
(special designation for enantiomorphic molecules)

Racemate equimolar mixture of a pair of enantiomers

Chirality sense property that distinguishes enantiomorphs from one another;
(for short: chirality) the two enantiomorphs of a pair have opposite chirality

Achiral property of an object that is not chiral

One has to distinguish: the symmetry of a molecule, designated by its point
group; the symmetry of a crystal, designated by its space group; and the sym-
metry of a space group, designated by its Euclidean normalizer.

Space groups are precisely chiral if their Euclidean normalizer has no sym-
metry operations of the second kind. These are the space groups with screw
axes 31 or 32, 41 or 43, 61 or 65 as well as 62 or 64 if only one of these kinds
is present. There are eleven pairs of enantiomorphic space group types (Ta-
ble 6.1, page 68; the terms ‘enantiomorphic space group’ and ‘chiral space
group’ are synonymous).

An enantiomorphic space group is a sufficient but not a necessary condition
for a chiral crystal structure. Chirality of the crystal structure is given also if the
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building blocks of a crystal in an achiral space group consist of only one kind if
enantiomers or if the building blocks, without having to be chiral themselves,
are arranged in a chiral manner in the crystal. For example, the single strands
of molecules in WOBr4 are not chiral (Example 8.4 and Fig. 8.10); the square-
pyramidal molecules fulfil the point symmetry 4mm, and the strands of the
molecules associated along c fulfil the rod group$4mm . The crystal structure,
however, is chiral.

Chiral crystal structures are compatible only with space groups that have no
inversion centres, rotoinversion axes, reflection, and glide-reflection planes;
these symmetry elements would generate the opposite enantiomers, the com-
pound would have to be racemic. Chiral crystal structures can adopt one out
of 65 space-group types; they are called the Sohncke space-group types (after
L. SOHNCKE who was the first to derive them).2 The Sohncke space-group2 Many structural researchers are not aware

of the difference between chiral space groups
and Sohncke space groups; frequently, even
in textbooks, the term chiral space group
is used although a Sohncke space group is
meant.

types comprise the 11 pairs of enantiomorphic space-group types and a further
43 achiral space-group types. For details see [67]. The enantiomorphic struc-
tures of a chiral crystal structure in an achiral space group are equivalent by
the Euclidean normalizer of their space group. The total number of equivalent
sets of coordinates, including the enantiomorphic pairs, can be determined as
described in the preceding section. If one wants to determine the equivalent
sets of coordinates of a chiral crystal structure without inclusion of the enan-
tiomorphs, the chirality-preserving Euclidean normalizer NE+(G) has to be
applied instead of the Euclidean normalizer.

The chirality-preserving Euclidean normalizer is identical to the Euclidean
normalizer in the case of the 11 pairs of enantiomorphic space-group types.
For the other 43 Sohncke space-group types the chirality-preserving Euclidean
normalizer is a non-centrosymmetric subgroup of index 2 of the Euclidean
normalizer.

Example 8.5
The phosphorus atoms in NaP form helical chains that have the symmetry
(rod group), not imposed by the crystal symmetry, $ 4322 [68]. The chains
wind around 21 axes parallel to b in the space group G = P21 21 21.
The Euclidean normalizer NE(G) is Pmmm with halved basis vectors (cf.
Table 8.1); the chirality-preserving Euclidean normalizer NE+(G) is its non-
centrosymmetric subgroup P222. The index 16 of G in NE(G) shows the
existence of 16 equivalent sets of coordinates to describe the crystal structure,
which includes 8 enantiomorphic pairs. The index of G in NE+(G) is 8. That
corresponds to the eight equivalent sets of coordinates that are obtained by
application of the translations

0,0,0; 1
2 ,0,0; 0, 1

2 ,0; 0,0, 1
2 ; 1

2 , 1
2 ,0; 1

2 ,0, 1
2 ; 0, 1

2 , 1
2 ; and 1

2 , 1
2 , 1

2

keeping the chirality. The other eight, with the opposite chirality, follow from
the same translations and additional inversion.
The inversion converts the left-handed$ 4322 helices to right-handed$ 4122
helices. $ 4322 and $ 4122 helices are enantiomorphic. The chirality is a
property of the polymeric (P−)∞ ions.
The space group P21 21 21 itself is not chiral, but it contains no symmetry
operations of the second kind; it is a Sohncke space group. The left as well
as right-handed form of NaP can crystallize in the space group P21 21 21.
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If the space group itself is chiral, i.e. if it belongs to one of the 11 pairs
of enantiomorphic space-group types, the enantiomorphic pair of structures
are not equivalent by the Euclidean normalizer. Therefore, when determining
the number of equivalent sets of coordinates with the aid of the Euclidean
normalizer, one obtains only those with the same chirality. For example, quartz
exhibits two enantiomorphic forms in the space groups P31 21 (left quartz) and
P32 21 (right quartz).3 As explained in Example 8.6, there are four equivalent 3That ‘left quartz’ has right-handed 31 screw

axes has historical reasons. The terms ‘left
quartz’ and ‘right quartz’ were coined by
CHR. S. WEISS in the nineteenth century,
based on the morphology of quartz crystals,
at times when the theory of space groups
had not been developed and the experimental
crystal structure determination was not possi-
ble. Accidentally, left quartz rotates the plane
of polarized light to the left.

sets of coordinates for right quartz. For left quartz there are also four equivalent
sets of coordinates that cannot be generated by the Euclidean normalizer of
right quartz. To obtain a coordinate set of the opposite enantiomorph of an
enantiomorphic space group, the coordinates have to be inverted at 0, 0, 0 and
the opposite enantiomorphic space group has to be chosen.

Whereas the non-chiral space group P21 21 21 is compatible with $ 4322
as well as $ 4122 helices of NaP, the helical components of right quartz are
incompatible with the space group P31 21 of left quartz.

Example 8.6
The crystal structure of quartz was determined approximately one hundred
times. Right quartz crystallizes in the space group P32 21 with the atomic
coordinates:

x y z

Si 0.470 0 1
6

O 0.414 0.268 0.286

The Euclidean normalizer is P64 22 (Table 8.1). The index 4 shows four
equivalent sets of coordinates. The other three are obtained by the translation
0,0, 1

2 , the transformation −x, −y, z, and by translation and transformation:

Si 0.470 0 2
3 –0.470 0 1

6 –0.470 0 2
3

O 0.414 0.268 0.786 –0.414 –0.268 0.286 –0.414 –0.268 0.786

The four possibilities are shown in Fig. 8.11.

8.7 Wrongly assigned space groups

Due to the rapid collection of X-ray diffraction data and powerful comput-
ers and computer programs, the number of crystal structure determinations
has strongly increased. Often computers have been used as ‘black boxes’ us-
ing preadjusted (default) routines, without the user worrying about what the
computer has been doing. Correspondingly, the number of faulty structure de-
terminations has increased. One of the most frequent errors is the choice of a
wrong space group, in particular one of a too low symmetry [69–78]. This is
always the case if the Euclidean normalizer NE(G) of the chosen space group
G generates less than i equivalent sets of coordinates (i = index of G in NE(G)).
The correct space group is then an intermediate group between G and NE(G).
Another reason for the wrong choice of space groups are twinned crystals, see
Section 17.4.
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Fig. 8.11 The four equivalent descriptions for
the crystal structure of right quartz. The num-
bers in the SiO4 tetrahedra are the z coordi-
nates of the Si atoms.
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Example 8.7
LaB2C2 was described in the space group P42c with the set of coordi-
nates mentioned first [79]. The Euclidean normalizer is P4/mmm with
1
2 (a − b), 1

2 (a + b), 1
2 c. The index of P42c in P4/mmm is 8. With the

aid of Table 8.1 we supposedly obtain eight equivalent sets of coordinates:

x y z 1
2 +x 1

2 +y z x y 1
2 +z 1

2 +x 1
2 +y 1

2 +z

La 0 0 0 1
2

1
2 0 0 0 1

2
1
2

1
2

1
2

B 1
2 0.226 1

4 0 0.726 1
4

1
2 0.226 3

4 0 0.726 3
4

C 0.173 1
2

1
4 0.673 0 1

4 0.173 1
2

3
4 0.673 0 3

4

–x –y 1
2 –z 1

2 –x 1
2 –y 1

2 –z –x –y –z 1
2 –x 1

2 –y –z

La 0 0 1
2

1
2

1
2

1
2 0 0 0 1

2
1
2 0

B 1
2 –0.226 1

4 0 0.274 1
4

1
2 –0.226 3

4 0 0.274 3
4

C –0.173 1
2

1
4 0.337 0 1

4 –0.173 1
2

3
4 0.337 0 3

4

In P42c the following positions are symmetry equivalent [13]:

0,0,0 and 0,0, 1
2

1
2 , 1

2 ,0 and 1
2 , 1

2 , 1
2

1
2 ,y, 3

4 and 1
2 ,–y, 3

4 0,y, 3
4 and 0,–y, 3

4
1
2 ,y, 1

4 and 1
2 ,–y, 1

4 0,y, 1
4 and 0,–y, 1

4 x, 1
2 , 3

4 and –x, 1
2 , 3

4 x,0, 3
4 and –x,0, 3

4
x, 1

2 , 1
4 and –x, 1

2 , 1
4 x,0, 1

4 and –x,0, 1
4
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Therefore, the atoms of the sets of coordinates mentioned one beneath the
other belong to the same set of coordinates in P42c. There really are only
four independent sets of coordinates. The symmetry of the space group
P42c is too low. The correct space group is a supergroup of P42c, namely
P42/mmc [78].

Errors of this kind can lead to unreliable or even wrong atomic coordinates
and interatomic distances, which occasionally led to grotesque misinterpreta-
tions or ‘explanations’. The most frequent descriptions of structures with too
low a symmetry concern space groups with floating origins or not recognized
rhombohedral symmetry. The space group Cc has been wrongly assigned more
often than any other [69, 70, 72].

Since the Euclidean normalizers also depend on the metric of the unit cell,
this has to be paid attention to. If the correct space group has a different metric,
the coordinates have to be transformed to its unit cell. Therefore, in the course
of a crystal structure determination it should always be checked if the lattice
can be transformed to that of a crystal system of higher symmetry. An example
is given in Exercise 8.12 (page 120).

8.8 Isotypism

Definition 8.4 The crystal structures of two compounds are isotypic if their
atoms are distributed in a like manner and if they have the same space group.

One of the structures can be generated from the other if atoms of an element
are replaced by atoms of another element without changing their positions in
the crystal structure (one-to-one correspondence for all atomic positions). The
absolute values of the lattice dimensions and the interatomic distances may
differ, and small deviations are permitted for the atomic coordinates. The an-
gles between the basis vectors and the relative lattice dimensions (axes ratios)
must be similar.

pyrite [80] Pa3 CO2 [81] Pa3
a = 542 pm a = 562 pm

Fe 4a 0 0 0 C 4a 0 0 0
S 8c x x x O 8c x x x
with x = 0.384 with x = 0.118

It is not quite clear how large the deviations may be if there are striking
differences among free parameters for atomic positions or axes ratios. If all
parameters are fixed by symmetry, the situation is clear. NaCl and MgO def-
initely are isotypic. However, pyrite and solid carbon dioxide should not be
considered to be isotypic, in spite of certain agreements. Evidently, the para-
meters x deviate too much from one another. CO2 has two O atoms placed on a
threefold rotation axis at only 115 pm from a C atom; the corresponding Fe–S
distance in pyrite amounts to 360 pm, whereas six other S atoms surround the
Fe atom at only 226 pm.

To specify the degree of deviation in a quantitative manner, one can define
deviation parameters [82, 83]. If the data of two structures that are to be com-
pared have been standardized in the same way, one can define a characteristic
value Δ(x) in which the coordinate deviations of all atoms are combined:

Δ(x) =
∑m

√
(x1 − x2)2 +(y1 − y2)2 +(z1 − z2)2

∑m
(8.2)
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Table 8.2 Comparison of structural data of some representatives of the chalcopyrite type ABX2,
space group I 42d [83]. Wyckoff positions: A on 4b (0,0, 1

2 ); B on 4a (0,0,0); X on 8d (x, 1
4 , 1

8 ).
The angle ψ specifies the turning of the BX4 coordination tetrahedra about c relative to a. The Δ
values have been calculated in relation to CuGaTe2 which was chosen as the ideal representative.

Bond angles Bond angles
Formula c/a x X–A–X /◦ X–B–X /◦ ψ/◦ Δ
ABX2 2× 4× 2× 4×

CuGaTe2 1.98 0.2434 110.7 108.9 109.2 109.6 0.2 –
CuFeS2 1.97 0.2426 111.1 108.7 109.5 109.5 0.9 0.006
InLiTe2 1.95 0.2441 111.5 108.5 110.3 109.1 0.3 0.016
AgGaS2 1.79 0.2092 119.5 104.7 111.1 108.7 4.3 0.133
LiPN2 1.56 0.1699 129.7 100.7 114.5 107.0 10.8 0.335
LiBO2 1.55 0.1574 130.2 100.0 113.4 107.5 12.8 0.355

where x1, y1, z1 are the coordinates of an atom of the one structure and x2, y2, z2

are those of the corresponding atom of the other structure. m is the correspond-
ing multiplicity of the Wyckoff position. The sum is taken over all atoms of
the asymmetric unit. A second characteristic value Δ (a) is used to relate the
axes ratios:

Δ (a) =
(b1/a1)(c1/a1)

(b2/a2)(c2/a2)
(8.3)

Both characteristic values can be combined into a deviation parameter Δ :

Δ = [
√

2Δ (x)+1]Δ(a)−1 (8.4)

Δ is equal to zero if there is complete coincidence of both structures. For the
example pyrite – CO2 we calculate Δ = 0.65. Further examples are listed in Ta-
ble 8.2, referring to structural data of representatives of the chalcopyrite type.
In chalcopyrite (CuFeS2) Cu and Fe atoms have a tetrahedral coordination by
S atoms, and the tetrahedra are linked via common vertices. The compounds
LiPN2 and LiBO2 at the end of the list exhibit considerable deviations from the
ideal values c/a = 2.0, x = 0.25 (free parameter of the X atoms) and ψ = 0◦

(turning angle of the tetrahedra about c); the tetrahedra are strongly distorted.
Nevertheless, the general linking of the atoms remains unchanged, and one
could consider these compounds as being isotypic with CuFeS2. The sulfur
atoms in chalcopyrite, taken by themselves, are arranged in a cubic-closest
packing of spheres and have coordination number 12 relative to atoms of their
kind. The N and O atoms in LiPN2 and LiBO2, however, have only six ad-
jacent atoms of the same kind. In this and in similar cases it is advisable to
use the term ‘isotypism’ with caution and to rather disclose the relationship
by an appropriate circumscription. Parameters like the turning angle ψ or the
deviation parameter Δ are expedient for this purpose.
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Definition 8.5 Two structures are homeotypic if they are similar, but the
aforementioned conditions for isotypism are relaxed in that [84]:

(1) their space groups are different and are related by a group–subgroup
relation;

(2) positions occupied by one kind of atoms in the one structure are taken
by several kinds of atoms in the other structure in an ordered manner
(substitution derivatives);

(3) or the geometric conditions differ (significant deviations of axes ratios,
angles, or atomic coordinates).

An example of substitution derivatives is: C (diamond) – ZnS (zinc blende)
– CuFeS2. The most appropriate method to work out relations of homeotypic
structures whose space groups differ are crystallographic group–subgroup re-
lations. Structures are also termed homeotypic if a single atom is replaced by a
building block consisting of several atoms. Known examples are: the Nowotny
phase Mn5Si3C as an analogue to the apatite structure Ca5(PO4)3F [85] and
K2[PtCl6] as an analogue to CaF2 (PtCl2−6 ions at the Ca positions).

Exercises

Normalizers are in Table 8.1. Some of the problems require
access to International Tables A or A1.
Solutions in Appendix D (page 285)

(8.1) Every cubic space group has four conjugate maximal
rhombohedral subgroups. Is this orientational or trans-
lational conjugation?

(8.2) Use the images of the symmetry elements in Interna-
tional Tables A to draw a diagram each with the sym-
metry elements of the ‘symmetry of the symmetry’ of
the space groups P21 21 21, Pbam, P41. What are the
Hermann–Mauguin symbols and the basis vectors of the
Euclidean normalizers? Does any one of the orthorhom-
bic space groups have a normalizer with enhanced sym-
metry if a = b?

(8.3) Let G = R3m and H = P3m1 with the same lattice pa-
rameters (hexagonal setting of the unit cell). Set up a
tree of group–subgroup relations with the aid of Inter-
national Tables A or A1 including NE(H) and NG(H).
How many conjugate subgroups are there for H in G?

(8.4) Consider Fig. 8.4 and show with the aid of the normaliz-
ers why there are three conjugates of the space group H1
in G but only one of H2.

(8.5) How many subgroups on a par H = P63/mmc in G =
P6/mmm exist with doubled c? Are there any conjugates
of H in G?

(8.6) Many tetraphenylphosphonium salts having square-
pyramidal or octahedral anions crystallize in the space
group P4/n. The coordinates for P(C6H5)4[MoNCl4] are
(origin choice 2, i.e. origin at a centre of inversion) [86]:

x y z x y z

P 1
4

3
4 0 Mo 1

4
1
4 0.121

C 1 0.362 0.760 0.141 N 1
4

1
4 –0.093

C 2 0.437 0.836 0.117 Cl 0.400 0.347 0.191

(values for the H atoms and C 3 to C 6 omitted)

How many equivalent sets of coordinates can be used to
describe the structure? What are the corresponding coor-
dinates?

(8.7) The vanadium bronzes β ′-Cu0.26V2O5 [87] and β -
Ag0.33V2O5 [88] are monoclinic, both with space group
C 2/m (the positions of the Cu and Ag atoms show partial
occupancy). The coordinates are (without O atoms):
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β ′-Cu0.26V2O5 β -Ag0.33V2O5
a = 1524, b = 361, a = 1539, b = 361,
c = 1010 pm, β = 107.25◦ c = 1007 pm, β = 109.7◦

x y z x y z

Cu 0.530 0 0.361 Ag 0.996 0 0.404
V1 0.335 0 0.096 V1 0.117 0 0.119
V2 0.114 0 0.120 V2 0.338 0 0.101
V3 0.287 0 0.407 V3 0.288 0 0.410

Are the two structures isotypic or homeotypic (apart from
the different partial occupancies of the Cu and Ag posi-
tions)?

(8.8) Are the following three crystal structures isotypic?

NaAg3O2 [89] I bam
a = 616, b = 1044, c = 597 pm

x y z

Na 4b 1
2 0 1

4

Ag1 4c 0 0 0
Ag2 8e 1

4
1
4

1
4

O 8 j 0.289 0.110 0

Na3AlP2 [90] I bam
a = 677, b = 1319, c = 608 pm

x y z

Al 4a 0 0 1
4

Na1 4b 1
2 0 1

4
Na2 8 j 0.312 0.308 0
P 8 j 0.196 0.101 0

Pr2NCl3 [91] I bam
a = 1353, b = 685, c = 611 pm

x y z

N 4a 0 0 1
4

Cl 1 4b 0 1
2

1
4

Cl 2 8 j 0.799 0.180 0
Pr 8 j 0.094 0.177 0

(8.9) Are the following two crystal structures isotypic?

Na6FeS4 [92] P63 mc
a = 895, c = 691 pm

x y z

Na1 6c 0.146 –0.146 0.543
Na2 6c 0.532 0.468 0.368
Fe 2b 1

3
2
3 0.25

S1 2b 1
3

2
3 0.596

S2 6c 0.188 –0.188 0.143

Ca4OCl6 [93, 94] P63 mc
a = 907, c = 686 pm

x y z

Ca1 2b 1
3

2
3 0.427

Ca2 6c 0.198 –0.198 0.0
O 2b 1

3
2
3 0.106

Cl 1 6c 0.136 –0.136 0.385
Cl 2 6c 0.464 0.536 0.708

(8.10) In 2001 it was announced that rambergite has an ‘anti-
wurtzite’ structure with the opposite absolute configura-
tion of wurtzite [95]. Why is this nonsense?

wurtzite (ZnS) P63 mc rambergite (MnS) P63 mc
a = 382, c = 626 pm a = 398, b = 645 pm

x y z x y z

Zn 1
3

2
3 0 Mn 2

3
1
3 0

S 1
3

2
3 0.375 S 2

3
1
3 0.622

(8.11) The crystal data for two compounds are listed in the fol-
lowing. Decide whether the mentioned space groups are
possibly wrong.

GeS2-Ii [96] I 42d Na2HgO2 [97] I 422
a = 548, c = 914 pm a = 342, b = 1332 pm

x y z x y z

Ge 0 0 0 Na 0 0 0.325
S 0.239 1

4
1
8 Hg 0 0 0

O 0 0 0.147

(8.12) From the published lattice parameters of Na4AuCoO5
[98] it may be conjectured that the structure is not mono-
clinic (space group P21/m), but B-centred orthorhombic.
What is the correct space group and what are the atomic
coordinates?

a = 555.7, b = 1042, c = 555.7 pm, β = 117.39◦

x y z x y z

Au 0 0 0 Co 0.266 3
4 0.266

Na1 0.332 0.000 0.669 O1 0.713 0.383 0.989

Na2 0.634 3
4 0.005 O2 0.989 0.383 0.711

Na3 0.993 1
4 0.364 O3 0.433 1

4 0.430
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9.1 Wyckoff positions of space groups

The (infinite) set of symmetry-equivalent points in a space group G is called
a G-orbit or crystallographic point orbit (also point configuration), cf. Defin-
itions 5.11 and 5.12 (page 60) [99–102]. If it is clear that the subject in ques-
tion concerns points of a space group, for short, we simply call it an orbit or
point orbit. If the coordinates of a site are completely fixed by symmetry (e.g.
1
4 , 1

4 , 1
4 ), then the orbit is identical with the corresponding Wyckoff position of

the space group. However, if there are one or more freely variable coordinates
(e.g. x in x, 1

4 ,0), the Wyckoff position comprises an infinity of possible or-
bits; they differ in the values of the variable coordinate(s), cf. Definition 6.6
(page 65) and Section 6.5 (page 81). For example, in space group Pbcm the
set of points that are symmetry equivalent to, say, 0.391, 1

4 , 0, makes up one or-
bit. The set corresponding to 0.468, 1

4 , 0 belongs to the same Wyckoff position
4c of Pbcm, but to another orbit (its variable coordinate x is different).

It is customary to designate a Wyckoff position of a space group by its Wyck-
off symbol. It consists of the multiplicity and the Wyckoff letter, for example,
4c, see Section 6.4.2, page 79.

A consequence of this kind of designation is the dependence of the multi-
plicity on the size of the chosen unit cell. For example, the multiplicities of
rhombohedral space groups are larger by a factor of 3 if the unit cell is not
referred to rhombohedral, but to hexagonal axes.

Many space groups have different Wyckoff positions with the same type of
point symmetry; combined they form a Wyckoff set (called Konfigurationslage
by [99]). These Wyckoff positions are mapped onto one another by the affine
normalizer of the space group (cf. Section 8.2, page 105).

Example 9.1
Space group No. 23, I 222, has six Wyckoff positions with the site symmetry
2; together they make up one Wyckoff set:

4e (x, 0, 0) and 4 f (x, 0, 1
2 ) on twofold rotation axes parallel to a,

4g (0, y, 0) and 4h ( 1
2 , y, 0) on twofold rotation axes parallel to b,

4i (0, 0, z) and 4 j (0, 1
2 , z) on twofold rotation axes parallel to c.

However, if the lattice parameters are a 	= b 	= c, in the preceding example
the positions 4e, 4 f cannot be considered to be equivalent to the positions 4g,
4h and to 4i, 4 j, being on differently oriented axes. On the other hand, the
positions 4e and 4 f are equivalent; they are mapped onto each other by the
Euclidean normalizer (they are equivalent in the Euclidean normalizer).
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As explained in Section 8.5, as a rule, there exist several equivalent sets of
coordinates that describe the very same crystal structure; they can be inter-
converted with the aid of the Euclidean normalizer. The change from one to
another coordinate set can imply an interchange of Wyckoff positions among
the positions that are equivalent in the Euclidean normalizer. If the origin of
space group I 222 is shifted by 0, 0, 1

2 , the atoms at the Wyckoff position 4e
are shifted to 4 f and vice versa. This is similar to the interchange of Na and
Cl atoms in Example 8.3 (page 111).

With monoclinic space groups, different unit cells can be chosen for the
same structure; their bases can be interconverted by transformations such as
a±nc, b, c (n = integral number). This can also cause an interchange of Wyck-
off symbols. The same applies to basis transformations of the space group P1.

Example 9.2


 
 
 
 



 
 
 



 
 
 ➤

➤ ➤

c

a a′ = a + c

2a 2c

2b→2d 2d →2b

The space group P121/c1 has four kinds of inversion centres:

2a, 0, 0, 0; 2b, 1
2 , 0, 0; 2c, 0, 0, 1

2 ; 2d, 1
2 , 0, 1

2

By transformation to a cell with the basis a + c, b, c (grey in the image in
the margin), the Wyckoff positions 2a and 2c keep their Wyckoff symbols,
whereas the other two are interchanged 2b � 2d.

9.2 Relations between the Wyckoff positions in
group–subgroup relations

For every group–subgroup relation G →H it is essential to keep track of which
Wyckoff positions of the subgroup H result from those Wyckoff positions of
the space group G that are occupied by atoms. A group–subgroup relation can
only be correct and fraught with meaning if there exist clear connections for
all atoms.

The atomic positions show clearly how the symmetry is being reduced step
by step in a sequence of group–subgroup relations. At first, as a rule, the atoms
occupy special positions, i.e. they are located on certain symmetry elements
with fixed values for the coordinates and with some specific site symmetry.
When proceeding from group to subgroup, the atomic positions experience the
following changes one by one or jointly [103]:

(1) some or all coordinates x, y, z fixed or coupled by symmetry become
independent, i.e. the atoms can shift away from a special position;

(2) the site symmetry is reduced;

(3) the point orbit splits into different orbits.

If the index of the symmetry reduction is 2, either the site symmetry is kept
and the orbit splits or there is no splitting and the site symmetry is reduced.

There is a one-to-one relation between the points of an orbit and the cor-
responding points of a subgroup. They comprise the same number of points
in the same volume. The multiplicity of a Wyckoff position shows up in the
multiplicities of the corresponding Wyckoff positions of the subgroup. If the
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unit cell selected to describe the subgroup has the same size, the sum of the
multiplicities of the positions of the subgroup must be equal to the multiplicity
of the position of the starting group. For example, from a position with multi-
plicity of 6, a position with multiplicity of 6 can result, or it can split into two
positions of multiplicity of 3, or into two with multiplicities of 2 and 4, or into
three with multiplicity of 2. If the unit cell of the subgroup is enlarged or re-
duced by a factor f , then the sum of the multiplicities must also be multiplied
or divided by this factor f .

Between the positions of a space group and those of its subgroups there
exist unique relations for given relative positions of their unit cells. Usually,
there are several possible relative positions; the relations between the Wyckoff
positions may differ for different (arbitrary choices of) relative positions of the
origins of the group and the subgroup.

The relations between the Wyckoff positions of the space groups and their
subgroups can be derived from the data of International Tables A. However,
this is a cumbersome task prone to errors. Therefore, it is recommended to
use the tables of International Tables A1. Listed are all maximal subgroups
of all space groups and what Wyckoff positions of a subgroup result form the
Wyckoff positions of each space group. The listed relations in each case are
valid only for the given basis transformation and origin shift. With other ba-
sis transformations or origin shifts the Wyckoff symbols of the subgroup may
have to be interchanged among the positions that are equivalent in the Euclid-
ean normalizer. In addition, the computer program WYCKSPLIT can be used;
it computes the relations after input of the space group, subgroup, basis trans-
formation, and origin shift [104].

9.3 Non-conventional settings of space groups

As a rule, it is recommended to describe crystal structures with the conven-
tional settings of the space groups and taking into account the standardization
rules mentioned in Section 8.4. However, standardized settings may mean that
related crystal structures have to be described differently, with the consequence
that the similarities become less clear and may even be obscured. For the com-
parison of crystal structures, it is preferable to set up all unit cells in a most
uniform way and to avoid cell transformations as far as possible, even if this
requires the utilization of non-conventional settings of the space groups. In this
section some instructions are given referring to such non-conventional settings.

9.3.1 Orthorhombic space groups

Among orthorhombic space groups it is frequently suitable to choose settings
that deviate from the listings in International Tables A. This is due to the fact
that there exists no special preference for any of the axes directions a, b, and c
in the orthorhombic system. Generally, there are six possible settings. All six
are mentioned in Table 4.3.2.1 of International Tables A, but only one of them
is considered as the standard setting and has been completely listed. The other
five are obtained by interchange of the axes, namely:



124 How to handle space groups

(1) Conventional setting: a b c
(2) Cyclic interchange ‘forwards’: c a b
(3) Cyclic interchange ‘backwards’: b c a

(4) Interchange of a and b: bac or bac or bac
(5) Interchange of a and c: cba or cba or cba

(6) Interchange of b and c: acb or acb or acb

The notation c a b means: the original a axis is now in the position b, etc.,
or: convert a to b, b to c, c to a. The options 4 to 6 (interchange of two axes)
require the reversal of the direction of one axis in order to retain a right-handed
coordinate system.

The interchange of the axes has the following consequences:

(1) The lattice parameters a, b, c must be interchanged.

(2) In the Hermann–Mauguin symbol the sequence of the symmetry direc-
tions has to be changed.

(3) The notations of the glide directions a, b, c in the Hermann–Mauguin
symbol have to be interchanged. m, n, d, and e remain unaltered.

(4) The notations of the centrings A, B, C have to be interchanged. P, F ,
and I remain unaltered.

(5) In the coordinate triplets of the atomic positions the sequence and the
notations have to be interchanged. If the direction of an axis is reversed,
the signs of the corresponding coordinates have to be inverted. Usually,
the Wyckoff symbols remain unaltered. However, caution is required if
the interchange of axes concerns space groups whose symbols do not
reveal that or how the axes have been interchanged (see Examples 9.5
and 9.6).

(6) The notations of rotations and screw rotations do not change.

Example 9.3
Two possibilities to interchange axes of the space group P2/b21/c21/m
(Pbcm, No. 57) and its Wyckoff position 4c (x, 1

4 , 0):

a b c :

b c a :

P 2/b 21/c 21/m

➤

➤ ➤

P 21/b 21/m 2/a

x, 1
4 , 0

➤➤ ➤

1
4 , 0, z

a b c :

a c b :

P 2/b 21/c 21/m

➤ ➤

➤

P 2/c 21/m 21/b

x, 1
4 , 0

➤ ➤➤

x, 0, – 1
4

Example 9.4
Two possibilities to interchange axes of the space group C 2/m2/c21/m
(C mcm, No. 63) and its Wyckoff position 8g (x, y, 1

4 ) with x = 0.17 and
y = 0.29:

a b c :

c a b :

C 2/m 2/c 21/m

➤ ➤ ➤

➤

A 21/m 2/m 2/a

0.17, 0.29, 1
4

➤ ➤➤

1
4 , 0.17, 0.29

a b c :

b a c :

C 2/m 2/c 21/m

➤ ➤

➤ ➤

C 2/c 2/m 21/m

0.17, 0.29, 1
4

➤➤ ➤

–0.29, 0.17, 1
4
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In most cases the non-conventional Hermann–Mauguin symbol shows in a
unique way how the setting differs from the conventional setting. However,
there are exceptions, as shown in the following two examples.

Example 9.5
In the space group P2221 (No. 17) the Wyckoff position 2a (x, 0, 0) is sit-
uated on twofold rotation axes parallel to a, and the position 2c (0, y, 1

4 ) on
twofold rotation axes parallel to b. The following two possibilities to inter-
change axes result in the same non-conventional space-group symbol:

a b c :

c a b :

P 2 2 21

➤ ➤➤

P 21 2 2

2a
x, 0, 0

➤ ➤➤

0, y, 0

2c
0, y, 1

4

➤ ➤➤

1
4 , 0, z

a b c :

c b a :

P 2 2 21

➤➤➤

P 21 2 2

2a
x, 0, 0

➤➤➤

0, 0, z̄

2c
0, y, 1

4

➤➤➤
1
4 , y, 0

After cyclic interchange the twofold rotation axes of the Wyckoff position 2a
are parallel to b at 0, y, 0. On the other hand, interchange of a and c yields
twofold rotation axes parallel to b at 1

4 , y, 0. The non-conventional symbol
P21 22 does not show how the basis vectors have been interchanged and
where the rotation axes are situated. In such cases cyclic interchange should
be preferred.

Example 9.6
The space group C mme (C 2/m2/m2/e, No. 67) has a subgroup I bca
(I 21/b21/c21/a, No. 73) with doubled c vector. The Wyckoff position 4d
(0, 0, 1

2 ) of C mme becomes 8c (x, 0, 1
4 ) of I bca with x ≈ 0.

Starting from Bmem, a non-conventional setting (b c a) of C mme, one ob-
tains the same subgroup I bca by doubling b. The position 4d of Bmem is
(0, 1

2 , 0), from which one obtains (0, 1
4 , z) of I bca (z ≈ 0). According to

International Tables A, (0, 1
4 , z) is not the position 8c, but 8e of I bca; there-

fore, it has another denomination than when starting from C mme. However,
one can choose the non-conventional setting b c a for I bca, which results in
the Wyckoff symbol 8c for the position (0, 1

4 , z). The symbol I bca does not
reveal this because cyclic interchange of the axes does not change the sym-
bol. In this case the interchanged axes and Wyckoff symbols must explicitly
be mentioned to avoid confusion.

C 2/m 2/m 2/e

a, b, 2c

➤

I 21/b21/c21/a

4d
0, 0, 1

2

➤ ➤ ➤

x, 0, 1
4

8c

B 2/m 2/e 2/m

a, 2b, c

➤

I 21/b21/c21/a
(a′b′c′)

4d
0, 1

2 , 0

➤ ➤ ➤

0, 1
4 , z

8e

B 2/m 2/e 2/m

a, 2b, c

➤

I 21/b21/c21/a
(b′c′a′)

4d
0, 1

2 , 0

➤ ➤ ➤

0, 1
4 , z

8c

9.3.2 Monoclinic space groups
The interchange of axes of monoclinic space groups has the same consequences
as for orthorhombic space groups. In addition, the interchange of the angles
α,β ,γ has to be considered. International Tables A list the settings with b and
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Fig. 9.1 The three cell choices for space
group No. 14, P21/c, with monoclinic b axis.

➤
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ffl ffl ffl ffl ffl

ffl ffl ffl ffl ffl

ffl ffl ffl ffl ffl

ffl ffl ffl ffl ffl

➤a c

➤

a

c

➤a
c

cell choice 1
P121/c1
standard setting

cell choice 2
P121/n1

cell choice 3
P121/a1

c as monoclinic axis. Settings with monoclinic a axis can be obtained from
these settings in the same way as described in the preceding section.

A few additional particularities have to be taken into account in the case
of monoclinic space groups with centrings or with glide planes. Three cell
choices have each been listed for these space groups (cell choices 1, 2, and
3). The direction of the monoclinic axis and the cell choice can be uniquely
recognized from the full Hermann–Mauguin symbol (Fig. 9.1). If a setting
other than the standard setting is chosen (P121/c1 in Fig. 9.1), the full symbol
must be stated. A change of the cell choice not only entails a change of the
Hermann–Mauguin symbol, but also of the monoclinic angle.
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ffl

ffl

ffl

ffl

ffl

ffl

1
4

1
4

1
4

1
4

1
4

1
4

➤

➤

1
4

A12/n1

➤

➤

a
c

Fig. 9.2 The two settings A12/a1 and
A12/n1 of the same space group with the
same axes directions differ in the positions of
their origins.

The interchange of axes of the space groups C c and C 2/c requires special
care. An interchange of the axes a and c (keeping the cell and −b as mono-
clinic axis), results in the following change of the space group symbol:

C 12/c1 (cell choice 1) −→ A12/a1

A12/a1 is not a conventional setting. One of the settings listed in International
Tables is A12/n1 (cell choice 2). A12/n1 and A12/a1 refer to the same space
group with the same cell, but with shifted origin positions. The space group has
a as well as n glide planes; the one mentioned in the symbol is located at y = 0,
the other one at y = 1

4 . The change of the setting from A12/a1 to A12/n1,
keeping the axes directions, involves an origin shift by 0, 1

4 , 1
4 (Fig. 9.2).

Cyclic interchange of the axes abc → cab yields a change of the mono-
clinic axis from b to c. C 12/c1 is then converted to A112/a. One can also
interchange b and c: abc → acb; in this case the position of the origin must
be watched. C 12/c1 is then converted to B112/b with glide planes b at z = 0
and n at z = 1

4 . B112/b had been the setting used for the monoclinic c axis in
the old editions of International Tables (up to 1969). However, since the 1983
edition it has been B112/n (monoclinic c, cell choice 2), with glide planes n
at z = 0 and b at z = 1

4 . B112/b and B112/n differ in their origin positions
by 1

4 , 0, 1
4 . The denominations of the Wyckoff symbols in the old editions of

International Tables (up to 1969) differ from the newer editions.
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If one can choose, non-conventional monoclinic settings that result from
cyclic interchange of axes should be preferred. In that case the coordinate
triplets have to be interchanged correspondingly, but there are no origin shifts.
The Wyckoff letters remain unchanged. In addition, the monoclinic angle
keeps its value (β for monoclinic b axis). If a and c are interchanged, β only
keeps its value if the direction of b is reversed, whereas the settings c b a and
c b a require a replacement of β by 180◦ −β .

Sometimes it is useful to choose a non-conventional centred setting. For
example, the space group C mcm has a subgroup P1121/m that can also be set
as C 1121/m. This setting avoids a cell transformation:

C 2/m 2/c 21/m C 2/m 2/c 21/m

P 1 1 21/m C 1 1 21/m

➤ ➤

1
2 (a−b), b, c

➤ C 1121/m

➤
P1121/m

➤ a

➤ b

➤

a′ = 1
2 (a−b)

•
•

•

•

•
•

•

•

•

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ò

ÒÒ
Ò
Ò

A disadvantage of non-conventional centrings is the lack of tables of the
coordinate triplets for the Wyckoff positions. Wyckoff symbols are only unique
if the corresponding coordinate triplets are explicitly stated.

9.3.3 Tetragonal space groups

Sometimes it is useful to choose C-centred instead of primitive settings or face-
centred instead of body-centred settings of tetragonal space groups. Their a′

and b′ axes run diagonal to the axes of the conventional setting (Fig. 9.3). For
example, this should be considered for a relation from a face-centred cubic
space group to a tetragonal subgroup, which can then be described with un-
changed axes and an F instead of a (conventional) I cell. This is advisable if a
further subgroup follows which again has the metric of the original F cell; in
this way two cell transformations can be avoided.

P cell
�

C cell
�

’b

½
a

Ÿa′

˚b
′

I cell
�

F cell
�

’b

½
a

Ÿa′

˚b
′

1
2

1
2

1
2

1
2

a′ = a−b b′ = a+b

Fig. 9.3 Relative orientations of C and F cen-
tred tetragonal unit cells.

In the Hermann–Mauguin symbol of the non-conventional centred setting
the symmetry elements referring to the directions a and a−b are interchanged.
In addition to the letters for the centrings, the following letters for glide planes
have to be changed:

setting glide glide
(centring) planes ⊥ c planes ⊥ a

conventional P I a n b n
↓ ↓ ↓ ↓ ↓ ↓

non-conventional C F d e g1 g2

The glide planes g1 and g2 run perpendicular to a′ − b′ and a′ + b′ (in the
non-conventional setting) and have glide components of 1

4 , 1
4 ,0 and 1

4 , 1
4 , 1

2 ,
respectively.
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Example 9.7
Transformation of two tetragonal space groups to unit cells with doubled
volume and diagonal a and b axes:

I 4 c m

➤ ➤ ➤➤

F 4 m c

P 4/n 2/b 2/m

➤ ➤ ➤➤

C 4/e 2/m 2/g1

Example 9.8
Above 47 ◦C, NiCr2O4 has the cubic spinel structure. Upon cooling, the
structure experiences a slight distortion and becomes tetragonal [105]. If
the tetragonal structure is not described with a body-centred but with a face-
centred setting, the small amount of the distortion concerning the coordinates
of the O atoms becomes much more apparent (tree of group–subgroup rela-
tions as explained in Chapter 10):

F 41/d 3 2/m(1)

NiCr2O4 325 K

Ni:8a Cr:16d O:32e
43m .3m .3m

0 5
8 0.3866 a =

0 5
8 0.3866 831.8 pm

0 5
8 0.3866

➤

t3
t3

1
2 (a−b),

1
2 (a+b), c

➤

➤ ➤ ➤

x−y,x+y, z

F 41/d 2/d 2/m (1)

NiCr2O4 295 K

non-conventional
setting

Ni:8a Cr:16d O:32h
42m ..2/m ..m

0 5
8 0.3851

0 5
8 0.3851

0 5
8 0.3897

a = 825.7 pm, c = 843.5 pm

I 41/a 2/m 2/d (1)

NiCr2O4 295 K

conventional
setting

Ni:4a Cr:8d O:16h
4m2 .2/m. .m.

0 0 0
0 1

4 0.7702

0 5
8 0.3897

a = 583.8 pm, c = 843.5 pm

Transformation I 41/a 2/m 2/d → F 41/d 2/d 2/m according to a+ b, –a+ b, c
and 1

2 (x+ y), 1
2 (–x+ y),z

Note the sequence in the Hermann–Mauguin symbols, also at the site sym-
metry of the Ni atom, and the halved multiplicities at the Wyckoff symbols
of the conventional setting I 41/a 2/m 2/d (because of the halved size of the
unit cell).

A disadvantage as for all non-conventional centrings is the lack of tables
of the coordinates of the Wyckoff positions. One has to be specially careful
when space groups with d glide planes are involved. For instance, for the
space group I 41/amd (I 41/a2/m2/d) mentioned in Example 9.8, it makes a
difference whether the transformation I 41/amd → F 41/d d m is performed
according to a+b, –a+b, c or a−b, a+b, c, because the d glide directions
are different. The latter transformation results in wrong glide directions un-
less an origin shift of – 1

4 ,– 1
4 ,– 1

4 is included in the group–subgroup relation.
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The transformation of space groups that allow two origin choices can involve
different origin shifts depending on the origin choice.

9.3.4 Rhombohedral space groups

Basis transformations concerning rhombohedral space groups can be rather
complex. In addition, it has to be watched whether the setting refers to ‘rhom-
bohedral’ or to ‘hexagonal’ axes. The transformations are notoriously prone to
errors.

Every cubic space group has rhombohedral subgroups that have their three-
fold axes parallel to one of the four directions of the body diagonals of the
cube. Only in the case of primitive cubic space groups does the conventional
cell of a maximal rhombohedral subgroup have the same unit cell, provided
that rhombohedral axes have been chosen. The maximal rhombohedral sub-
groups of F- and I-centred cubic space groups can be derived without cell
transformations if non-conventional F- or I-centred settings are chosen with
rhombohedral axes (i.e. with a = b = c, 90◦ 	= α = β = γ ≈ 90◦). The space-
group symbol then begins with F 3, F 3, I 3, or I 3, for example, F 3m instead
of R3m (rh) (not to be confounded with F m3).

‘Hexagonal’ axes offer two possible settings called ‘obverse’ and ‘reverse’;
obverse is the conventional one. The settings differ in the kind of centring of
the hexagonal cell, namely ±( 2

3 , 1
3 , 1

3 ) for obverse and ±( 1
3 , 2

3 , 1
3 ) for reverse.

Sometimes cell transformations can be avoided if the reverse setting is chosen.
For example, when a rhombohedral space group results from another rhombo-
hedral space group by doubling of the (hexagonal) c axis, either the directions
of a and b have to be reversed or one can keep the directions if one of the two
space groups is chosen with a reverse setting. Since this cannot be expressed
by the Hermann–Mauguin symbol, it has to be explicitly mentioned, preferably
be a superscript (rev) after the corresponding Hermann–Mauguin symbol.

9.3.5 Hexagonal space groups

In former times, hexagonal space groups were described with an H cell or a C
cell. These result from the conventional cell according to:

Basis vectors of the H cell: 2a+b, −a+b, c

Basis vectors of the C cell: 2a+b, b, c or a, a+2b, c

The C cell (orthohexagonal cell) corresponds to the cell of orthorhombic
subgroups of hexagonal space groups. The H cell is centred in the positions
±( 2

3 , 1
3 , 0). Both kinds of cell are usually of little advantage and are used only

seldom.
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Exercises

Solutions in Appendix D (page 287)

(9.1) The cell of space group P1 is to be converted to another
cell with the basis vectors a, b, a + b + c. How do the
Wyckoff symbols have to be interchanged? Set up the
transformation matrices P and P−1. The Wyckoff sym-
bols are: 1a (0, 0, 0); 1b (0, 0, 1

2 ); 1c (0, 1
2 , 0); 1d ( 1

2 , 0, 0);
1e ( 1

2 , 1
2 , 0); 1 f ( 1

2 , 0, 1
2 ); 1g (0, 1

2 , 1
2 ); 1h ( 1

2 , 1
2 , 1

2 );
2i (x,y, z).

(9.2) What are the Hermann–Mauguin symbols of space group
P21/n21/m21/a for the axes settings c, a, b and b, a, c?
What are the corresponding coordinates of the point 0.24,
1
4 , 0.61?

(9.3) What has to be considered when the axes a and b of the
space group C 12/c1 are interchanged?

(9.4) What is the Hermann–Mauguin symbol of the space
group P42/n21/c2/m with a C-centred setting?

(9.5) Among others, the following supergroups of space group
P21/c (P121/c1, No. 14) are listed in International Ta-
bles with their standard symbols; the full symbols have
been added here in parentheses:

Pnna (P2/n21/n2/a); Pcca (P21/c2/c2/a);
Pccn (P21/c21/c2/n); C mce (C 2/m2/c21/e).

Only the standard symbols are listed for supergroups,
even if this requires a basis transformation that is not
mentioned. What are the Hermann–Mauguin symbols of
the supergroups if their axes are oriented in the same way
as for P121/c1? Is it necessary, in some of the cases, to
choose some other setting of P121/c1 in order to be able
to keep the orientation of the axes for the supergroup?
What conditions must be met by the cell of P121/c1 so
that the mentioned space groups can actually be super-
groups?
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The group-theoretical
presentation of
crystal-chemical
relationships 10
The consequent application of group theory in crystal chemistry yields a con-
clusive confirmation for the validity of the symmetry principle mentioned in
Section 1.1. Particularly aspect 2 of the symmetry principle emerges in an
impressive way. Disturbances like covalent bonds, lone electron pairs, or the
Jahn–Teller effect, as a rule, cause symmetry reductions as compared to ideal
models. However, the group-theoretical analysis shows that the symmetry re-
duction often corresponds to the smallest possible step, i.e. the space group of
a crystal structure is a maximal subgroup of a related conceivable or actually
existent higher-symmetry structure.

If the symmetry reduction is such that all translations are being retained, the
maximal subgroup H is called a translationengleiche subgroup of the space
group G. CARL HERMANN called these subgroups zellengleiche subgroups.
However, this term has been replaced by translationengleiche because of pos-
sible misinterpretations. On page 145 it is explained why zellengleiche is prone
to misinterpretations.1 1German translationengleiche means ‘with

the same translations’; zellengleiche means
‘with the same cell’; klassengleiche means
‘of the same (crystal) class’. Of the dif-
ferent German declension endings only the
form with terminal -e is commonly used in
English. Native English-speaking experts of
a commission of the International Union of
Crystallography could not agree upon apt
English terms with exactly the same mean-
ings and officially decided to adopt the Ger-
man terms. The abbreviations ‘t-subgroup’
and ‘k-subgroup’ are unfortunate because
with ‘t-subgroup’ it is not obvious if the
loss or the conservation of the translations
is meant. Some non-English-speaking au-
thors have used the expressions translation-
equivalent and class-equivalent which do not
reflect the exact meaning. A few American
authors use the terms equi-translational and
equi-class.

If the symmetry reduction involves a loss of translations, the maximal sub-
group H is either a klassengleiche or an isomorphic subgroup of the space
group G; isomorphic is an important special case of klassengleiche. The loss
of translations is tantamount to an enlargement of the primitive unit cell, either
by enlargement of the conventional unit cell or by the loss of centrings. In the
outset of the development, the misleading terms ‘equivalent’ and ‘isosymbolic’
(with the same Hermann–Mauguin symbol) were used instead of ‘isomorphic’.
Enantiomorphic subgroups like P31 and P32 are isomorphic, although they ap-
pear as different, not ‘isosymbolic’ space-group types in International Tables.

With the aid of the mentioned terms of space-group theory it is possible to
present symmetry relations between two crystal structures in a concise manner
with a Bärnighausen tree. If the space group of the lower-symmetry structure
is a maximal subgroup of the space group of the higher-symmetry structure,
there is only one step of symmetry reduction. If it is not a maximal subgroup,
we resolve the total symmetry reduction into a chain of sequential steps, each
step representing the transition to a maximal subgroup. Therefore, we have to
discuss only one of these steps in detail.
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For two structures that we want to interrelate, we place their space-group
symbols one below the other and indicate the direction of the symmetry reduc-
tion by an arrow pointing downwards. See the example in the white field of
the scheme on the opposite page.

Since they are more informative, it is advisable to use only the full Hermann–
Mauguin symbols. In the middle of the arrow we insert the kind of maximal
subgroup and the index of symmetry reduction, using the abbreviations t for
translationengleiche, k for klassengleiche, and i for isomorphic. If the symme-
try reduction involves a change of the size or setting of the unit cell, we also
insert the new basis vectors expressed as vector sums of the basis vectors of
the higher-symmetry cell.

For the sake of clarity it is recommended to avoid cell transformations when-
ever possible. If necessary, it is much better to fully exploit the possibilities
offered by the Hermann–Mauguin symbolism and to choose space-group set-
tings that do not correspond to the conventional settings of International Tables
(cf. Section 9.3, page 123).

If the transition to a subgroup requires an origin shift of the unit cell, be-
cause otherwise the conventional position of the origin of a space group would
have to be abandoned, we insert this in the arrow as a triplet of numbers which
express the coordinates xp, yp, zp of the new origin referred to the (old) coor-
dinate system of the higher-symmetry cell. Origin shifts also tend to obscure
relations, and they can be rather irksome. Nevertheless, there is no point in
deviating from the standard origin settings of International Tables, because
otherwise much additional information would be required for an unequivo-
cal description. Note: The coordinate triplet specifying the origin shift in the
group–subgroup arrow refers to the coordinate system of the higher-symmetry
space group, whilst the corresponding changes of the atomic coordinates refer
to the coordinate system of the subgroup and therefore are different. The new
coordinates do not result from the addition of xp, yp, zp to the old coordinates;
see Sections 3.7.3, page 32, and 3.7.6, page 38.

Any change of the basis vectors and the origin is essential information that
should never be omitted if they are needed.

Note: In International Tables A1 origin shifts given in Part 2 refer to the
higher-symmetry space group. In Part 3 (tables of the relations of the Wyckoff
positions) they are given only as parts of the coordinate transformations, i.e.
in the coordinate systems of the subgroups; to convert them to origin shifts
referred to the coordinate system of the higher-symmetry space group, a con-
version according to eqn (3.46), page 39, is necessary. This calculation has to
be performed; one may not simply take the origin shift listed in Part 2, because
unfortunately in Parts 2 and 3, as a rule, the same origin shift (out of several
possible choices) has not been chosen for the same group–subgroup pair.

International Tables offer two origin choices for some space groups (‘origin
choice 1’ and ‘origin choice 2’). The choice is specified by a superscript (1)
or (2) after the space-group symbol, for example P4/n (2). Whether the cho-
sen setting of rhombohedral space groups refers to rhombohedral or hexagonal
axes is specified by superscript (rh) or (hex). Occasionally it may be useful
to use a non-conventional rhombohedral ‘reverse’ setting, i.e. with centring
vectors ±( 1

3 , 2
3 , 1

3 ) instead of ‘obverse’ with ±( 2
3 , 1

3 , 1
3); this is specified by su-
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Scheme of the formulation of the smallest step of symmetry reduction connecting two related crystal
structures

Hermann–Mauguin symbol of the
higher-symmetry space group G ➤

Symbol designating the higher-symmetry crystal
structure, e.g. the chemical formula or mineral name

➤

Kind and index of the subgroup H ➤

Basis transformation∗ ➤

Origin shift∗ ➤

Hermann–Mauguin symbol of the
maximal subgroup H ➤

Symbol designating the lower-
symmetry crystal structure

➤

∗ mentioned only if there is a change

P 6/m 2/m 2/m

AlB2

Al : 1a B:2d
6/mmm 6m2

0 1
3

0 2
3

0 1
2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
k2

a, b, 2c
0, 0, – 1

2
x, y, 1

2 z+ 1
4

➤

➤ ➤

P 63/m 2/m 2/c

CaIn2

Ca:2b In :4 f
6m2 3m

0 1
3

0 2
3

1
4 0.452

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

see Note 5

➤ coordinate
transformations∗

see Note 5

Explanatory notes

(1) Possible kinds of maximal subgroups H of a given space group G:

Symbol Term Meaning

t translationengleiche G and H have the same translations; the crystal class of H is of lower
symmetry than that of G

k klassengleiche G and H belong the same crystal class; H has lost translational sym-
metry, its primitive unit cell is larger than that of G

i isomorphic G and H belong to the same or the enantiomorphic space group type;
H has lost translational symmetry, its unit cell is larger than that of G

(2) The index i of a subgroup is the number of cosets of H in G. The number of symmetry operations of H
is 1/i of those of G (in the same way as the number of even numbers is half the number of all integer
numbers).

(3) Basis transformation: The three basis vectors of H are expressed as linear combinations of the basis
vectors a, b, c of G. Never omit this information if there is a change of the basis vectors.

(4) Origin shift: The coordinate triplet of the origin of H is given in the coordinate system of G.
Never omit this information if there is an origin shift.

(5) Additional information (only if there is enough space; otherwise this information must be listed in a
separate table). The atomic positions are given in a box next to the space-group symbol in the following
way:

element symbol: Wyckoff label
site symmetry

x
y
z

The coordinates are given for one atom in the asymmetric unit.
If a numeric value is fixed by symmetry, it is stated as 0 or as a
fraction, e.g. 0, 1

4 , 1
2 . Free parameters are stated as decimal num-

bers, e.g. 0.0, 0.25, 0.53. If possible, align the site-symmetry
symbols in one line with the space-group symbol.
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perscript (rev), for example R3 (rev). Since obverse and reverse settings always
refer to hexagonal axes, an additional (hex) is obsolete in this case.

In a Bärnighausen tree containing several group–subgroup relations, it is
recommended that the vertical distances between the space-group symbols are
kept proportional to the logarithms of the corresponding indices. This way all
subgroups that are at the same hierarchical distance, i.e. with the same index
from the aristotype, appear on the same line.

If several paths can be constructed from one space group to a general sub-
group, via different intermediate space groups, usually there is no point in
depicting all of them. There is no general recipe indicating which of several
possible paths should be preferred. However, crystal-chemical and physical
aspects should be used as a guide. First of all, the chosen intermediate groups
should be:

(1) Space groups having actually known representatives.

(2) Among different modifications of the same compound: Space groups
that disclose a physically realizable path for the symmetry reduction.
Actually observed phase transitions should be given high priority. For
phase transitions that are driven by certain lattice vibrations (soft modes),
those intermediate space groups should be considered that are compati-
ble with these lattice modes (i.e. irreducible representations).

(3) In the case of substitution derivatives: Space groups showing a splitting
of the relevant Wyckoff position(s). These intermediate groups allow for
substitution derivatives, even if no representative is yet known.

Group–subgroup relations are of little value it the usual crystallographic
data are not given for every considered structure. The mere mention of the
space group symbols is insufficient. The atomic coordinates of all atoms in
an asymmetric unit are of special importance. It is also important to present
all structures in such a way that their relations become apparent. In particu-
lar, the coordinates of all atoms of the asymmetric units should exhibit strict
correspondence, so that their positional parameters can immediately be com-
pared. Of course, all examples dealt with in the following chapters have been
documented along these lines, so that they give an impression of how close the
relations actually are.

For all structures, the same coordinate setting and, among several symmetry-
equivalent positions for an atom, the same location in the unit cell should be
chosen, if possible. In order to obtain the necessary correspondence between
all structures that are to be compared, one is often forced to transform coordi-
nates. For nearly all space groups one can choose several different equivalent
sets of coordinates describing one and the same structure. It is by no means
a simple matter to recognize whether two differently documented structures
are alike or not (the literature abounds with examples of ‘new’ structures that
really had been well known). For more details see Section 8.5, page 110.

If space permits, it is useful to list the Wyckoff symbols, the site symme-
tries, and the coordinates of the atoms next to the space-group symbols in the
Bärnighausen tree. If there is not enough space, this information must be pro-
vided in a separate table.
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In this chapter, using a selection of simple examples, we point out the different
kinds of group–subgroup relations that are important among related (homeo-
typic) crystal structures and how to set up Bärnighausen trees.

11.1 The space group of a structure is a
translationengleiche maximal subgroup of
the space group of another structure

The relation between pyrite and PdS2

The space group Pbca of PdS2 is a translationengleiche maximal subgroup of
Pa3, the space group of pyrite (FeS2). The threefold axes of the cubic space
group have been lost; the index of the symmetry reduction is therefore 3. The
twofold screw axes parallel to and the glide planes perpendicular to the cube
edges have been retained. This could be formulated in the following manner:

P 21/a 3 — t3 → P 21/a 1

However, the second symbol does not correspond to the conventions for the or-
thorhombic system. The cube edges are no longer equivalent in the orthorhom-
bic system, so that P21/a1 has to be replaced by P21/b21/c21/a or the short
Hermann–Mauguin symbol Pbca. As shown in Fig. 11.1, the atomic coordi-
nates have not changed much. However, the two structures differ widely, the
c axis of PdS2 being strongly stretched. This is due to the tendency of biva-
lent palladium towards square planar coordination (electron configuration d8),
whereas the iron atoms in pyrite have octahedral coordination.

Strictly speaking, in the mathematical sense, the space groups of FeS2 and
PdS2 are not really translationengleiche because of the different lattice para-
meters. In the strict sense, however, FeS2 at 25.0 ◦C and at 25.1◦C would not
have the same space group either, due to thermal expansion. Such a strict treat-
ment would render it impossible to apply group-theoretical methods in crystal
chemistry and physics in the first place. Therefore, certain abstraction from the
strict mathematical viewpoint is necessary. We use the concept of the parent
clamping approximation [106], i.e. we act as if the lattices of the two homeo-
typic structures were the same or were ‘clamped’ the one with the other, and
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Fig. 11.1 Tree of group–subgroup relations
for the family of structures of pyrite. Coordi-
nates in brackets (not stated normally) refer
to symmetry-equivalent positions.

P 21/a 3

FeS2

Fe:4a S:8c
3 3
0 0.384 [0.616]
0 0.384 [0.616]
0 0.384 [0.616]

t3

➤

t2
– 1

4 , 0, 0

➤ x+ 1
4 , y, z

➤ ➤ ➤

t2

➤

➤ ➤ ➤

P 21/b 21/c 21/a

PdS2

Pd:4a S:8c
1 1
0 0.393 [0.607]
0 0.388 [0.612]
0 0.425 [0.575]

P b c 21

CoAsS

Co:4a S:4a As:4a
1 1 1

0.259 0.631 0.869
–0.005 0.383 0.619

0 0.380 0.617

P 21 3

NiAsS

Ni:4a S:4a As:4a
3 3 3

−0.006 0.385 0.618
−0.006 0.385 0.618
−0.006 0.385 0.618

lattice parameters in pm:
a b c references

FeS2 541.8 541.8 541.8 [80]
NiAsS 568.9 568.9 568.9 [107]
PdS2 546.0 554.1 753.1 [108]
CoAsS 558.9 558.3 558.1 [109]

then we permit relaxation of the clamp. With the parent clamping approxima-
tion we also tacitly treat isotypic structures with different lattice parameters
(like NaCl, KCl, and MgO) as if they had the same space group with the same
translational lattice.

There is no general rule indicating up to what degree deviations are toler-
able. They should be judged with crystallographic, chemical, and physical
expertise (see also the comments on isotypism in Section 8.8). Anything that
helps to increase the understanding of structural relations is acceptable. How-
ever, it is recommended to be cautious with any tolerance.

Upon transition from Pa3 to Pbca none of the occupied Wyckoff positions
split, but their site symmetries are reduced. Without the symmetry reduction
from 3 to 1 the square coordination of the Pd atoms would not be possible.

Ternary derivatives of the pyrite type

If the positions of the sulfur atoms of pyrite and PdS2 are replaced by two
different kinds of atoms in an ordered 1 : 1 ratio, this enforces further symmetry
reductions. The corresponding subgroups may only be subgroups in which the
point orbits of the sulfur atoms split into symmetry-independent orbits. In the
chosen examples NiAsS (gersdorfitte) and CoAsS (cobaltite) the symmetry
reductions consist in the loss of the inversion centres of Pa3 and Pbca; the
index is thus 2 in each case.

In both examples the site symmetries of the splitting positions are being
kept (point group 3 for NiAsS, 1 for CoAsS). This always holds for subgroups
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PdS2 Pbca

FeS2

Pa3
NiAsS

P21 3

CoAsS Pbc21

➤

➤

a
c

S

As

S
As

Fig. 11.2 Top views of the unit cells of pyrite,
NiAsS, PdS2, and CoAsS.

of index 2: Either the point orbit splits or there is a reduction of the site sym-
metry. Coordinate changes are not necessary, but may occur depending on the
site symmetries. In our examples there are minor coordinate changes. In the
case of NiAsS atomic shifts may only occur along the threefold rotation axes
due to the site symmetry 3.

The relations between FeS2, PdS2, NiAsS, and CoAsS are summarized in
Fig. 11.1 according to the instructions given in the scheme of Chapter 10
(page 135). Pbc21 is the non-conventional setting of the space group Pca21

after interchange of the axes a and b. A basis transformation from PdS2 to
CoAsS is avoided with this setting. Mind the origin shift; in the conventional
description of Pca21, and therefore also of Pbc21, the origin is situated on
one of the 21 axes and thus differs from that of Pbca. The origin shift of
− 1

4 , 0, 0 in the coordinate system of Pbca involves a change of atomic coor-
dinates by + 1

4 , 0, 0, i.e. with opposite sign.
The substitution derivatives NiAsS and CoAsS can only by connected by the

common supergroup P21/a3. A direct group–subgroup relation from P21 3 to
Pbc21 does not exist, since P21 3 has no glide planes. Therefore, the men-
tioned structures belong to different branches of the pyrite tree. NiAsS and
CoAsS differ in the distribution of the atoms (Fig. 11.2).
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The crystal-chemical relation between α- and β -tin

Grey tin (α-Sn) has a cubic structure of diamond type. Under high pressure
it is converted to tetragonal white tin (β -Sn). At first glance, according to the
lattice parameters of the two modifications (Fig. 11.3), one would not expect
a structural relation. However, one can imagine the structure of β -tin to be
formed from that of α-tin by compression along one of the cube edges, with-
out change of the coordinate triplet x,y,z of the tin atom. The distortion is
enormous: the lattice parameter c decreases from 649 pm to 318 pm, and in
this direction the atoms approach each other to this distance. The coordination
number of a tin atom is increased from 4 to 6. Simultaneously, the lattice is
widened in the a-b plane. The cell volume decreases to 79% of its original
value.

In group-theoretical terms the transformation of α-tin to β -tin corresponds to
the transition to a translationengleiche maximal subgroup of index 3 according
to the notation:

F 41/d 3 2/m — t3 → F 41/d 1 2/m

Because of the compression along c the crystal system changes from cubic to
tetragonal, and hence the space-group symbol has to be changed according to
the conventions of the tetragonal system, namely:

F 41/d 3 2/m — t3 → F 41/d 2/d 2/m

Instead of a face-centred tetragonal cell one can always choose a body-centred
cell with half the volume. The new axes a′ and b′ of the small cell run
along the face diagonals of the original cell and have half their lengths (cf.
Fig. 9.3, page 127). Commonly β -tin is described with the smaller cell, which
also requires a change of the space-group symbol to I 41/a2/m2/d (for short

Fig. 11.3 The relation between α- and β -tin
and their unit cells. The conventional cell
of β -tin (a′, b′, c′) is less appropriate for the
comparison than the face-centred cell with
a =

√
2a′.

α-Sn

β -Sn

F 41/d 3 2/m

α-Sn

Sn:8a
43m

0
0
0

I 41/a 2/m 2/d (1)

β -Sn

Sn:4a
4m2

0
0
0

t3
1
2 (a−b), 1

2 (a+b), c

➤

➤

➤

➤

➤

➤

b′
➤

a

b

c = 649 pm

a′ =

c′ = 318 pm

583 pm
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I 41/amd), as given in Fig. 11.3. The group–subgroup relation is depicted ac-
cording to the instructions of Chapter 10 in the left part of Fig. 11.3.

The group-theoretical relation may not lead one to infer a mechanism of
the phase transition. No continuous deformation of an α-tin single crystal to
a β -tin single crystal takes place under pressure. Rather, nuclei of β -tin are
formed in the matrix of α-tin, which then grow at the expense of the α-tin.
The structural rearrangement takes place only at the phase boundaries between
the shrinking α-tin and the growing β -tin.

11.2 The maximal subgroup is klassengleiche

Two derivatives of the AlB2 type

Consider two derivatives of the AlB2 type as an example of klassengleiche sub-
groups. AlB2 has a simple hexagonal structure in the space group P6/mmm.
In the c direction, aluminium atoms and sheets of boron atoms alternate; the
boron atom sheets are planar, like in graphite (Fig. 11.4) [110]. The ZrBeSi
type has a similar structure [111], but the sheets consist of alternating Be and
Si atoms (the sheet is like a sheet in hexagonal boron nitride BN). As a conse-
quence, the inversion centres in the middles of the six-membered rings cannot
be retained; the Zr atoms which replace the Al positions remain on inversion

➤c

➤ b➤a

Al

B

Zr

Si

Be Ca

In

AlB2
P 6/m m m

P 63/m m cZrBeSi P 63/m m cCaIn2

•
•

•
•




 





•

•

•

•

•

•
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•
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Fig. 11.4 The structures of AlB2, ZrBeSi, and CaIn2. The mirror planes perpendicular to c in P63/mmc are at z = 1
4 and z = 3

4 .
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P 6/m 2/m 2/m

AlB2

Al: 1a B: 2d
6/mmm 6̄m2 a = 301 pm

0 2
3 c = 326 pm

0 1
3

0 1
2

k2
a, b,2c

➤

k2
a, b, 2c

0, 0, – 1
2

➤

x, y, 1
2 z + 1

4

➤ ➤

P 63/m 2/m 2/c

ZrBeSi

Zr: 2a Be: 2c Si: 2d
a = 371 pm 3m . 6m2 6m2
c = 719 pm 0 2

3
1
3

0 1
3

2
3

0 1
4

1
4

P 63/m 2/m 2/c

CaIn2

Ca: 2b In: 4f
6m2 3m . a = 490 pm

0 2
3 c = 775 pm

0 1
3

1
4 0.455

Fig. 11.5 Both hettotypes of the AlB2 type have the same space-group type and a doubled c axis, but the space groups are different due to different
origin positions relative to the origin of the aristotype. Because of the doubling of the c axis the z coordinates are halved. The origin shift of 0,0,− 1

2
in the right branch requires that 1

4 by added to the z coordinates.

centres. This enforces a symmetry reduction to the klassengleiche space group
P63/mmc with doubled c vector.

The doubling of c is the essential aspect in the symmetry reduction from the
AlB2 to ZrBeSi type. The index is 2: half of all translations are lost, together
with half of the inversion centres, half of the symmetry axes perpendicular to
c, and half of the mirror planes perpendicular to c. Instead of the mirror planes
perpendicular to [210] (last m in the Hermann–Mauguin symbol P6/mmm)
now there are glide planes c. The Wyckoff position 2d of the boron atoms
of AlB2 splits into two symmetry-independent positions 2c and 2d of the sub-
group (Fig. 11.5, left), rendering possible occupation by atoms of two different
species.

Figures 11.4 and 11.5 show another peculiarity. P6/mmm has two different
klassengleiche maximal subgroups of the same type P63/mmc with doubled
basis vector c. The second one corresponds to CaIn2 [112, 113]. Here the
graphite-like sheets of the AlB2 type have become puckered layers of indium
atoms, similar to those in grey arsenic. The indium atoms of adjacent layers
have shifted parallel to c and have come close to each other in pairs, so that
the result is a network as in lonsdaleite (hexagonal diamond). The alternating
shift of the atoms no longer permits the existence of mirror planes in the layers;
however, neighbouring layers are mutually mirror-symmetrical. The calcium
atoms are on the mirror planes, but no longer on inversion centres. The dif-
ference between the two subgroups P63/mmc consists of the selection of the
symmetry elements that are being lost with the doubling of c.

The conventional description of the space groups according to International
Tables requires an inversion centre to be at the origin of space group P63/mmc.
The position of the origin at an Al atom of the AlB2 type can be kept when the
symmetry is reduced to that of ZrBeSi (i.e. Zr at the origin). The symmetry
reduction to CaIn2, however, requires an origin shift to the centre of one of
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the six-membered rings. In the coordinate system of the aristotype that is a
shift by 0, 0,− 1

2 , as marked in the middle of the group–subgroup arrow in
Fig. 11.5. For the new atomic coordinates (in the coordinate system of the
subgroup), the origin shift results in the addition of + 1

4 to the z coordinates,
i.e. with the opposite sign of the shift stated in the group–subgroup arrow. In
addition, due to the doubling of c, the z coordinates of the aristotype have to
be halved. Therefore, the new z coordinate of the In atom is approximately
z′ ≈ 1

2 z + 1
4 = 1

2 ×
1
2 + 1

4 = 1
2 . It cannot be exactly this value, because then

there would have been no symmetry reduction and the space group would still
be P6/mmm. The symmetry reduction requires the atom shift to z′ = 0.455.

For two structures to be considered as related, the atom shift may not be
arbitrarily large. There is no general rule indicating up to what amount atom
shifts are permitted. As in the case of tolerable deviations of the lattices, they
should be judged with crystallographic, chemical, and physical expertise.

In the relation AlB2 → ZrBeSi, the site symmetry 6m2 of the boron atoms
is retained and the Wyckoff position splits. In the relation AlB2 → CaIn2

it is the other way; the position does not split, the atoms remain symmetry
equivalent, but their site symmetry is reduced to 3m1 and the z coordinate
becomes variable.

Among klassengleiche subgroups of index 2 there often exist two or four,
and sometimes even eight subgroups of the same type with different origin
positions. It is important to choose the correct one, with the correct origin
shift. All of these subgroups are listed in International Tables, Volume A1, but
not so in Volume A. They are subgroups on a par, i.e. they are not conjugate,
but belong to different conjugacy classes (cf. Section 8.3, page 106).

What we have dealt with here is a widespread phenomenon. For many crys-
tal structures so-called superstructures are known; they have reduced transla-
tional symmetry. In X-ray diffraction patterns they have additional weak ‘su-
perstructure reflections’ in between the main reflections of the basic structure.
Whereas the term superstructure gives only a qualitative, informal outline of
the facts, the group-theoretical approach permits a precise treatment.

The relation between In(OH)3 and CaSn(OH)6

Aside from the enlargement of the unit cell as in the preceding examples,
the loss of translational symmetry is also possible without enlargement of
the conventional unit cell if centring translations are lost. In any case, the
primitive unit cell is enlarged. Consider as an example the relation of in-
dium hydroxide [114, 115] and CaSn(OH)6 which is known as the mineral
burtite [116, 117]. All important data of the structures are given in Fig. 11.6.
In the lower part of the figure the symmetry elements of both space groups
are shown in the style of International Tables. Pay attention to how symmetry
elements are eliminated by the symmetry reduction I 2/m3 — k2 → P2/n3.

The structure of In(OH)3 is intimately related to the structure of skutterudite,
CoAs3 [118, 119]. Its structure consists of vertex-sharing CoAs6 octahedra that
are mutually tilted in such a way that four octahedron vertices each come close
to one another forming a slightly distorted square, corresponding to the for-
mula Co3+

4 (As4−
4 )3. In In(OH)3, (OH−)4 squares take the places of the As4−

4



144 Symmetry relations between related crystal structures

I 2/m 3

In(OH)3

In: 8c O:24g 1
2 H:24g 1

2 H:24g
.3. m.. m.. m..
1
4 0 0 0
1
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1
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2 H:24h
3 3 1 1 1
1
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1
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3
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1
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Fig. 11.6 The relation between In(OH)3 and CaSn(OH)6. The H atoms exhibit misorder among two close sites in between two neighbouring O
atoms, O–H· · ·O and O· · ·H–O, and therefore occupy their positions with a mean probability of one half (expressed by the formulation 1

2 H; data
from neutron diffraction). Three (distorted) (OH−)4 squares are shown by black bonding lines in the images to the right.
Remark for those who look meticulously: due to the doubling of the translation vectors in the [111], [111̄], [11̄1], and [1̄11] directions, 31 axes are
converted to 32 axes and vice versa.
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squares, with O atoms at the vertices and hydrogen bonds on the edges. As
a consequence of the loss of the body centring, the positions of the indium
atoms of In(OH)3 split into two independent positions, which are occupied by
the calcium and tin atoms in burtite. In addition, the mirror planes on which
the O and H atoms are placed in In(OH)3 are lost, resulting in an additional de-
gree of freedom. This renders possible two different sizes of the coordination
octahedra in the subgroup P2/n3, which are occupied by the Ca and Sn atoms.
The (OH−)4 squares become slightly twisted.

The example shows that the old term ‘zellengleiche’ (with the same cell)
instead of ‘translationengleiche’ (with the same translations) can be misinter-
preted. The unit cells of In(OH)3 and CaSn(OH)6 have nearly the same size,
and yet the subgroup is not a ‘zellengleiche’ subgroup, because one of the cells
is centred and the other one is not. The volumes of the primitive cells differ by
a factor of 2; CaSn(OH)6 has half as many translations as In(OH)3.

11.3 The maximal subgroup is isomorphic o

Isomorphic subgroups comprise a special category of klassengleiche subgroups.
Every space group has an infinite number of isomorphic maximal subgroups.
The index i agrees with the factor by which the unit cell is being enlarged. The
indices are prime numbers p; squares of prime numbers p2 may occur in the
case of tetragonal, hexagonal, and trigonal space groups, and for cubic space
groups only cubes p3 (p ≥ 3) of prime numbers are possible. For many space
groups not all prime numbers are permitted. The prime number 2 is often ex-
cluded, and for certain subgroups additional restrictions may apply (e.g. only
prime numbers p = 6n +1) [120, 121]; for details see Appendix A, page 261.
Usually, in accordance with the symmetry principle, only small index values
are observed. However, seemingly curious values like 13, 19, 31, or 37 do
occur (see Exercise 13.2 for two examples).

In International Tables A (1983–2005 editions), isomorphic subgroups are
listed only for the smallest possible indices. If one looks there, it may happen
that an isomorphic subgroup is missed. On the other hand, it may happen that
one believes that a not-mentioned subgroup of some higher index is possible,
although its index is a forbidden prime number. Therefore, it is safer to consult
International Tables A1, where all possibilities are listed completely.

Since isomorphic subgroups have the same Hermann–Mauguin symbol (ex-
cept for enantiomorphic space groups), it is of special importance to keep in
mind the difference between space groups and space group types. In the fol-
lowing examples the group and the subgroup belong to the same space-group
type, but they are different space groups with different lattices.

The relation between CuF2 and VO2

Consider the pair of structures CuF2–VO2 as an example for the transition to
an isomorphic subgroup. The details are shown in Fig. 11.7. The z coordinates
are being halved with the switch-over from CuF2 to VO2, due to the doubling
of the basis vector c. Atoms from the neighbouring unit cell of CuF2 are being
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Fig. 11.7 The relation between CuF2 and
VO2. Numbers in the images are y coordi-
nates of the metal atoms. The white arrows
on top of the four vanadium atoms in the bot-
tom image mark the directions of their shifts.

P 1 21/a 1

CuF2

Cu:2b F: 4e
1 1
0 0.295
0 0.297
1
2 0.756

P 1 21/a 1

VO2

V:4e O:4e O:4e
1 1 1

0.026 0.299 0.291
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0.239 0.401 0.894

i2
a, b, 2c x, y, 1
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➤ ➤ ➤
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➤

a

c ➤ 1
4

➤ 1
4
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ffl
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ffl

ffl
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ffl
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ffl

ffl
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0
1
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0.02 0.48
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➤

➤

➤

➤

➤

➤

➤

Table 11.1 Crystal data of the compounds of Section 11.3.

Lattice parameters Space group Z References
a/pm b/pm c/pm β/◦

CuF2 536.2 456.9 330.9 121.1 P121/a1 2 [122]

VO2 538.3 453.8 575.2 122.7 P121/a1 4 [123]

TiO2 (rutile) 459.4 459.4 295.9 P42/mnm 2 [124]

CoSb2O6 (trirutile) 465.0 465.0 927.6 P42/mnm 2 [125]

included in the doubled cell, whereby the original coordinates x, y, z + 1 are
converted approximately, but by no means exactly, to the coordinates x, y, 1

2 z+
1
2 ; if they were exactly at these values, the symmetry would not have been
reduced. For the vanadium atoms, the atom at ∼(x, y, 1

2 z+ 1
2) does not have to

be listed. This is due to the fact that the metal atom position does not split; the
Cu positions at 0, 0, 1

2 and 0, 0, 3
2 become the V pair 0.026, 0.021, 0.239 and

−0.026, −0.021, 0.761, whose atoms are symmetry equivalent by the inversion
at 0, 0, 1

2 . The multiplicities of the Wyckoff labels show that the numbers of
all atoms in the unit cell are doubled.

The crystal data are listed in Table 11.1. The images of the unit cells in
Fig. 11.7 show the elimination of one half of all inversion centres and screw
axes, resulting from the doubling of the lattice parameter c. Whereas the Cu
atoms in CuF2 are located on inversion points in the centres of the coordination
octahedra, the V atoms (electron configuration d1) in VO2 have been shifted
along c forming pairs, with alternating V· · ·V distances of 262 and 317 pm
due to spin pairing at the shorter of these distances (two of these V–V contacts
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are marked in Fig. 11.7 by dotted lines). In addition, there is one shortened
V=O bond (176 pm); the remaining V–O bonds have lengths of 186 to 206
pm. (Upon heating, the spin pairing is cancelled at 68 ◦C, the V· · ·V distances
become equal and VO2 becomes metallic in the rutile type; cf. Exercise 11.6).

The rutile–trirutile relation

Another simple example of a relation between isomorphic space groups con-
cerns trirutile [126]. As shown in Table 11.1 and Fig. 11.8, the c axis of triru-
tile is tripled as compared to rutile. This way it is possible to obtain an ordered
distribution of two kinds of cations in a ratio of 1 : 2, keeping the space-group
type P42/mnm. This is possible because the space group P42/mnm has an
isomorphic subgroup of index 3, what is nicely reflected by the term ‘trirutile’.
For the sake of a clear terminology, this term should only be used if it has
this kind of group-theoretical foundation. The index 3 is the smallest possible
index for an isomorphic subgroup of P42/mnm. A ‘dirutile’ with this space
group type cannot exist; therefore, it is recommended not to use this term,
even if lower-symmetry, non-tetragonal structures with doubled c axis can be
developed from the rutile type [127, 128].

P 42/m 21/n 2/m

TiO2 (rutile)

Ti:2a O: 4 f
mmm m2m

0 0.305
0 x
0 0

P 42/m 21/n 2/m

CoSb2O6 (trirutile)

Co:2a Sb:4e O:4 f O:8 j
mmm m2m m2m ..m

0 0 0.308 0.303
0 0 x x
0 0.336 0 0.326

i3
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➤

x, y, 1
3 z; ±(0, 0, 1

3 )

➤ ➤ ➤ ➤

➤

c

➤

c′

The splitting of the Wyckoff position 2a (rutile) to the
positions 2a and 4e (trirutile) is due to the triplication
of the unit cell. The translation-equivalent positions
0, 0, 0; 0, 0, 1; 0, 0, 2 of rutile are converted to 0, 0, 0;
0, 0,∼ 1

3 ; 0, 0,∼ 2
3 of trirutile
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Fig. 11.8 Group–subgroup relation between rutile and trirutile. To clarify the elimination if symmetry elements, the twofold rotation axes have
been included in the unit cells.



148 Symmetry relations between related crystal structures

11.4 The subgroup is neither translationengleiche
nor klassengleiche

Subgroups that are neither translationengleiche nor klassengleiche are called
general subgroups. They cannot be maximal subgroups; there must be at least
one intermediate group. Starting from a high-symmetry aristotype, one fre-
quently encounters the case that the symmetry is first reduced to a translatio-
nengleiche subgroup, followed by a klassengleiche subgroup.

The relation between NiAs and MnP

The phase transition of the NiAs type to the MnP type has been the subject
of thorough studies with a number of compounds (e.g. VS, MnAs) [129, 130].
The symmetry reduction involves two steps (Fig. 11.9). In the first step the
hexagonal symmetry is lost; for this a slight distortion of the lattice would
be sufficient. The orthorhombic subgroup has a C-centred cell. Due to the
centring, the cell is translationengleiche, although its size is twice as big. The
centring is removed in the second step, half of the translations being lost; there-
fore, it is a klassengleiche reduction of index 2.

The images in Fig. 11.9 show what symmetry elements are eliminated with
the two steps of symmetry reduction. Among others, half of the inversion cen-
tres are being lost. Here we have to watch out: the eliminated inversion centres

Fig. 11.9 The relation between NiAs and
MnP. The numbers in the images to the right
are z coordinates [131].
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of the space group C mcm (C 2/m2/c21/m) are those of the Wyckoff positions
4a (0, 0, 0) and 4b ( 1

2 , 0, 0), while those of the Wyckoff position 8d ( 1
4 , 1

4 ,0) are
retained. Since the subgroup Pmcn (P21/m21/c21/n) should have its origin on
a point of inversion, an origin shift is required. The shift of − 1

4 ,− 1
4 ,0 entails

an addition of 1
4 , 1

4 ,0 to the coordinates.
After addition of 1

4 , 1
4 ,0 to the coordinates listed in Fig. 11.9 for the space

group C mcm, one obtains ideal values for an undistorted structure in the space
group Pmcn. However, due to the missing distortion, the symmetry would still
be C mcm. The space group Pmcn is attained only after the atoms have been
shifted away from the ideal positions. The deviations concern mainly the y
coordinate of the Mn atom (0.196 instead of 1

4 ) and the z coordinate of the P
atom (0.188 instead of 1

4 ). These are significant deviations, but they are small
enough to consider MnP as being a distorted variant of the NiAs type.

11.5 The space groups of two structures have a
common supergroup

Two crystal structures can be intimately related even when there is no direct
group–subgroup relation between their space groups. Instead, there may ex-
ist a common supergroup. The structures of NiAsS and CoAsS, presented in
Section 11.1, offer an example. In this case, the pyrite type corresponds to
the common supergroup. Even if there is no known representative, it may be
worthwhile to look for a common supergroup.

The relation between RbAuCl4 and RbAuBr4

The crystal structures of the rubidium-halidoaurates RbAuCl4 and RbAuBr4

are monoclinic, but have different unit cells and space groups. If the settings
given in Table 11.2 are chosen, the metric conditions suggest a close relation.
The main difference obviously concerns the lattice parameter c, which is ap-
proximately twice as large for RbAuCl4 as for RbAuBr4.

Table 11.2 Crystal data of RbAuCl4 and
RbAuBr4.

RbAuCl4 RbAuBr4

a/pm 976.0 1029.9
b/pm 590.2 621.4
c/pm 1411.6 743.6
β/◦ 120.05 121.33

space group I 12/c1 P121/a1
references [132] [133]

With the aid of International Tables (volumes A or A1) it is easy to find out
that both I 12/c1 and P121/a1 can be derived from the common supergroup
C 12/m1 by klassengleiche symmetry reductions (Fig. 11.10; in Volume A1,
Part 3, I 12/a1 is listed as subgroup of C 12/m1; I 12/c1 is the same subgroup
with interchanged axes a and c).

The symmetry elements of the three space groups are depicted in Fig. 11.11
in the style of International Tables. It is recommended to study the images
thoroughly in order to get acquainted with the details of the different kinds of
elimination of symmetry elements due to the loss of translations.

Uncritical inspection of the subgroup tables could lead to the assumption
that the space group of RbAuBr4 could be a maximal subgroup of that of
RbAuCl4, because P121/c1 is mentioned as a subgroup of I 12/a1 in Inter-
national Tables A1; after exchange of a and c these are the same as P121/a1
and I 12/c1, respectively. However, this is wrong: The relation I 12/c1 – k2→
P121/a1 is valid only for an unchanged size of the unit cell (the loss of trans-
lations results from the loss of the centring).
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Fig. 11.10 The symmetry relation
between RbAuCl4 and RbAuBr4.
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fi

fi
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Fig. 11.11 Bottom: Projections of the strutures of RbAuCl4 and RbAuBr4 along b. Centre: The corresponding symmetry elements. Top: Hypo-
thetical aristotype in the common supergroup; in the perspective image the additional Au–halogen contacts are depicted by hollow bonds.
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The lower part of Fig. 11.11 shows the crystal structures of both aurates.
The structural similarity is evident. The positions of the Au and Rb atoms
coincide almost completely. The difference concerns the relative orientations
of the square AuX−

4 ions in their sequence along c. Whereas the AuBr−4 ions
in RbAuBr4 have the same tilting angle against the direction of view, the tilt of
the AuCl−4 ions in RbAuCl4 alternates with opposite angles.

Why don’t the aurates crystallize in the common supergroup? The answer
can be found by construction of the hypothetical structure in the space group
C 12/m1. Here each of the trivalent gold atoms would have to be coordinated
by six halogen atoms, whereas their d8 electron configuration requires a square
coordination. At the top left of Fig. 11.11 the hollow bond lines show where the
additional Au–Halogen contacts would be; they would have the same lengths
as the Au–halogen bonds in the a-b plane drawn in black. In addition, an
undistorted octahedral coordination would require a considerable metric ad-
justment of the unit cell, with a = b ≈ 800 pm and a/b = 1 instead of a/b =
1.65 (Fig. 11.12).

Now that the halidoaurates cannot adopt the structure in the supergroup
C 12/m1, the question remains if another compound could adopt this higher-
symmetry structure. It would require a trivalent cation with a tendency towards
octahedral coordination. Actually, no example is known as yet in the space
group C 12/m1. However, the pattern of vertex-sharing octahedra in the a-b
plane corresponds to that of the TlAlF4 type in the space group P4/mmm [134]
(cf. Exercise 11.7). In fact, the structure can be traced back to this structure
type, requiring the metric adjustment to a/b = 1 and additionally a shearing
deformation of the lattice such that the monoclinic angle is decreased from
β ≈ 121◦ to 90◦.

➤

➤

a

b

Fig. 11.12 Tetragonal MX−
4 layer as in

TlAlF4 and the distorted variant that occurs
in RbAuCl4 in two alternating orientations.

The settings of the space groups I 12/c1 (standard: C 12/c1) and P121/a1
(standard: P121/c1) were chosen because then the relation to the TlAlF4 type
does not require the interchange of axes.

11.6 Large families of structures

For the sake of simplicity and clarity, the preceding sections have been re-
stricted to simple examples. Large trees can be constructed using the modular
way to put together Bärnighausen trees as set forth in the preceding sections.
This way it is possible to introduce a systematic order to large areas of crystal
chemistry using symmetry relations as the guiding principle. As an example,
Figs. 11.13 and 11.14 show structures that constitute the family of structures
of the ReO3 type.

The tree consists of two branches. The one shown in Fig. 11.13 contains
hettotypes that result from substitutions of the metal atoms, including addi-
tional symmetry reductions due to distortions caused by the Jahn–Teller effect
(Cu(II)-, Mn(III) compounds), covalent bonds (As–As bonds in CoAs3), hy-
drogen bonds, and different relative sizes of the atoms. A section from this
tree, namely the relation CoAs3 (or In(OH)3) → CaSn(OH)6, is the subject of
the preceding section 11.2 and Fig. 11.6. The relation ReO3 → VF3 (FeF3) is
presented in more detail in Section 13.2.1 (page 171 and Fig. 13.4).
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Fig. 11.13 The family of structures of the
ReO3 type. For the atomic coordinates and
other crystallographic data see [135].
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P4/m32/m

ReO3

I 4/m32/m

F 4/m32/m

NaSbF6

P4/m2/m2/m

➤

continued
in Fig. 11.14

F 2/m3

α-CuZrF6

R32/m(rh)

I 2/m3

CoAs3

P42/n32/m(1)

I 4/m2/m2/m

HT -CrNbF6

R32(rh)

ScF3

F 32/c∗

VF3

I 2/m2/m2/m

I 2/mP21/m2/n21/m(2)

F 3∗

LiSbF6

I 12/c1

F 1∗

CuSnF6

C 12/c1

MnF3

P12/c1

P1c1

SnZrCl6

P2/n3
(1)

CaSn(OH)6

P42/n2/n2/m(1)

CuSn(OH)6

P42/n(1)

NaSb(OH)6

P21/b21/n21/m

CrZr0.75Nb0.25F6

∗ non-conventional, nearly face-centred cubic settings:
F 32/c (R32/c) with a = b = c and α = β = γ ≈ 90◦

F 3 (R3) with a = b = c and α = β = γ ≈ 90◦

F 1 (P1) with a ≈ b ≈ c and α ≈ β ≈ γ ≈ 90◦

Of the second branch of the tree only the space group P4/m2/m2/m is men-
tioned in Fig. 11.13; it is continued in Fig. 11.14. Only one compound is
mentioned in this branch, WO3. This is an example showing the symmetry re-
lations among different polymorphic forms of a compound which are mutually
transformed from one to another depending on temperature and pressure:
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P21/c21/n2/b

β -WO3

P121/c1

HP-WO3

P121/n1

γ-WO3

P1c1

ε-WO3

P1

P1
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Fig. 11.14 Continuation of the left branch of
Fig. 11.13 with polymorphic forms of WO3.
+ and – in the image on the top right indi-
cate in what direction the W atoms have been
shifted from the octahedron centres. The bent
arrows indicate how neighbouring octahedra
have been turned as compared to the ReO3
type. The turning at δ - and ε-WO3 is like that
of HP-WO3.

HT
1170K
� α

990K
� β

600K
� γ

290K
� δ

230K
� ε�

>300 MPa

HP

Since all of these transformations exhibit strong hysteresis, HT � α and β � γ

excepted, the mentioned temperatures of transformation are only rough esti-
mates. All mentioned modifications are derivatives of the ReO3 type that result
from three kinds of distortions, namely:

(1) shifting of the W atoms out of the centres of the coordination octahedra;

(2) mutual turning of the octahedra;

(3) deformation of the octahedra.

(More modifications of WO3 are known which are not derivatives of the ReO3

type.)
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Table 11.3 Crystal data of the modifications of tungsten trioxide.

Space group a/pm b/pm c/pm α/◦ β/◦ γ/◦ References

HT-WO3 (1200 K) P4/nmm 530.3 530.3 393.5 [136]

α-WO3 (1100 K) P4/ncc 528.9 528.9 786.3 [136, 137]

HP-WO3 (570 MPa) P121/c1 526.1 512.8 765 92.1 [138]

ε-WO3 (230 K) P1c1 527.8 516.2 767.5 91.7 [139]

β -WO3 (623 K) Pcnb 733.1 757.3 774.0 [137]

γ-WO3 (573 K) P121/n1 732.7 756.4 772.7 90.5 [137]

δ -WO3 (293 K) P1 731.3 752.5 768.9 88.8 90.9 90.9 [140]

WO2.95 P421 m 739 739 388 [141]

Even the most symmetrical modification, the high-temperature form HT-
WO3 (1200 K), is not cubic. It has W atoms that are shifted away from the
octahedron centres parallel to c, combined with a slight elongation of the oc-
tahedra in this direction. This way, alternating short and long W–O bonds
result in a strand of the vertex-sharing octahedra along c. In neighbouring
strands the W atoms have been shifted in opposite directions. β -, γ-, and δ -
WO3 have their W atoms shifted towards an octahedron edge, ε-WO3 and the
high-pressure form HP-WO3 towards an octahedron face. In addition, the low-
symmetry modifications have octahedra mutually turned in different ways. For
α-WO3 this is only a mutual turning of the octahedra about c. β -WO3 exhibits
an additional turning of the octahedra about b and γ-WO3 also about a.

The crystal data (Table 11.3) and the atomic coordinates of all atoms (Ta-
ble 11.4) show that the modifications of WO3 differ only slightly from one
another.

The importance of group–subgroups relations during phase transitions is the
subject of Chapter 15.

Further Bärnighausen trees of families of structures, some of them rather
extensive, have been set up in the course of time. They include: Hettotypes of
perovskite, containing a large variety of distortion and substitution derivatives
[12, 142–144], the families of structures of rutile [127, 128, 145], of the CaF2

type [127], of the AlB2 type [146], of the ThCr2Si2 (or BaAl4) type [147, 148],
of zeolites [149], and of tetraphenylphosphonium salts [150, 151]. Many more
citations can be found in the review article [150].
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Table 11.4 Atomic coordinates of the modifications of tungsten trioxide mentioned in Table 11.3.

W O O
x y z x y z x y z

HT-WO3
1
4

1
4 0.066 1

4
1
4 0.506 1

2
1
2 0

x, y, 1
2 z+ 1

4➤

α-WO3
1
4

1
4 0.283 1

4
1
4 0.503 0.525 0.475 1

4

HP-WO3 0.256 0.268 0.288 0.255 0.173 0.512 0.558 0.454 0.301
x, y– 1

4 ,z

➤

–0.042 0.039 0.202

ε-WO3
∗ 0.255 0.030 0.287 0.252 –0.082 0.509 0.541 0.214 0.292

–0.256 0.490 –0.288 –0.254 0.566 0.494 0.451 0.294 –0.284
–0.035 –0.206 0.216
0.033 –0.279 –0.209

1
2 (x+y),

1
2 (–x+y),z

➤

β -WO3 0.252 0.029 0.283 0.220 –0.013 0.502 0.502 –0.032 0.279
0.283 0.269 0.259

γ-WO3 0.253 0.026 0.283 0.212 –0.002 0.500 0.498 –0.036 0.279
0.246 0.033 0.781 0.277 0.028 0.000 0.000 0.030 0.218

0.282 0.264 0.277
0.214 0.257 0.742

δ -WO3 0.257 0.026 0.285 0.210 –0.018 0.506 0.499 –0.035 0.289
0.244 0.031 0.782 0.288 0.041 0.004 0.001 0.034 0.211
0.250 0.528 0.216 6 additional O atoms 0.287 0.260 0.284
0.250 0.534 0.719 at ca. 1

2 − x, 1
2 + y, 1

2 − z 0.212 0.258 0.729

1
2 (x+y),

1
2 (–x+y)– 1

4 ,z

➤

WO2.95 0.243 0.743 0.070 0.237 0.737 0.507 0.498 0.708 –0.024

∗ coordinates shifted by x−0.245, y+ 1
2 , z+0.037 as compared to the literature [139]
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Exercises

To be solved, access to International Tables A and A1 is neces-
sary. Solutions in Appendix D (page 288).

(11.1) Prepare a (favourably enlarged) copy of Fig. 11.2. Insert
all symmetry elements in the style of International Ta-
bles into the four unit cells. What symmetry elements are
eliminated in each case?

(11.2) The crystal data of low-temperature quartz are given in
Example 8.6 (page 115); a = 491 pm, c = 541 pm. Upon
heating above 573◦C it is converted to high-temperature
quartz, space group P62 22, a = 500 pm, c = 546 pm,
with the atomic coordinates Si, 1

2 , 0, 1
2 and O, 0.416,

0.208, 2
3 [152]. Derive the relation between the two

structures. What kind of a relation is it? What has to
be observed concerning the atomic coordinates? What
additional degrees of freedom are present in the low-
symmetry form?

(11.3) The crystal data of α-AlPO4 are [153]:

P31 21 a = 494 pm, c = 1095 pm
x y z x y z

Al 0.466 0 1
3 O1 0.416 0.292 0.398

P 0.467 0 5
6 O2 0.416 0.257 0.884

What is the symmetry relation with the structure of
quartz? (cf. Exercise 11.2).

(11.4) Most metals crystallize with one of the following pack-
ings of spheres.

cubic-closest hexagonal-closest packing of
packing of spheres spheres (Mg type)
(Cu type) F m3m P63/mmc c/a = 1.633

x y z x y z

0 0 0 1
3

2
3

1
4

body-centred cubic
packing of spheres
(W type) I m3m

x y z
0 0 0

How and from which of these packings are the structures
of indium, α-mercury, protactinium, and α-uranium de-
rived?

In I 4/mmm α-Hg R3m
a = 325.1 c = 494.7 a = 346.5 c = 667.7

(hex. axes)
x y z x y z

0 0 0 0 0 0

Pa I 4/mmm α-U C mcm
a = 392.5 c = 324.0 a = 285.4 b = 586.8

c = 495.8 pm
x y z x y z

0 0 0 0 0.398 1
4

(11.5) Derive the structure of Tl7Sb2 [154] from one of the
packings mentioned in Exercise 11.4.

I m3m a = 1162 pm
x y z x y z

Tl 1 0 0 0 Tl3 0.350 0.350 0
Tl 2 0.330 0.330 0.330 Sb 0.314 0 0

(11.6) Normal VO2 (the so-called M1 phase) is reversibly con-
verted at temperatures above 68◦C to the rutile struc-
ture (phase R). This includes a dramatic increase of its
electric conductivity (transition from an insulator to a
metal). There is another modification (the so-called M2
phase [155]) if a small amount of the vanadium has been
replaced by chromium. Take the data from Figs. 11.7 and
11.8 to construct a Bärnighausen tree that relates these
structures. Pay attention to the different settings of the
space group No. 14 (P121/a1, P121/n1, P121/c1). The
CaCl2 type has to be considered as an intermediate group
(cf. Fig. 1.2.)

Phase M2 A112/m
a = 452.6 b = 906.6 c = 579.7 pm γ = 91.9◦

x y z x y z

V1 0 0 0.281 O1 0.294 0.148 0.248
V2 0.531 0.269 1

2 O2 0.209 0.397 0
O3 0.201 0.400 1

2

(11.7) The crystal data of two modifications of TlAlF4 at two
different temperatures are given in the following [134].
Set up the group–subgroup relation between them. In
what way do the modifications differ? Although the vol-
umes of the cells differ by a factor of approximately 4,
the index is only 2; how can that be?
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TlAlF4- tP6, 300 ◦C P4/mmm
a = 364.9 c = 641.4 pm

x y z x y z

Tl 1
2

1
2

1
2 F1 1

2 0 0
Al 0 0 0 F2 0 0 0.274

TlAlF4- tI24, 200 ◦C I 4/mcm
a = 514.2 c = 1280.7 pm

x y z x y z

Tl 0 1
2

1
4 F1 0.276 0.224 0

Al 0 0 0 F2 0 0 0.137

TlAlF4-tP6 is known as the TlAlF4 type.

(11.8) Set up the symmetry relations between boehmite (γ-
AlOOH) [156, 157] and the alkali metal hydroxide hy-
drates [158]. Do not consider the H atom positions.
There are layers of edge-sharing octahedra parallel to
the a-c plane. The lengths of the Al–O bonds in the
(distorted) coordination octahedra are approximately 191
pm; the Rb–O and K–O distances are approximately 1.56
and 1.51 times longer. This is reflected in the a and c lat-
tice parameters.

γ-AlOOH C mcm RbOH·OH2 C mc21
a = 286.8 b = 1223.2 a = 412.0 b = 1124.4
c = 369.5 pm c = 608.0 pm

x y z x y z

Al 0 0.179 1
4 Rb 0 0.152 1

4
O1 0 0.206 3

4 O1 0 0.163 0.75
O2 1

2 0.083 1
4 O2 1

2 –0.032 0.146

KOH·OH2 P1121/a
a = 788.7 b = 583.7
c = 585.1 pm γ = 109.7◦

x y z

K 0.075 0.298 0.254
O1 0.085 0.343 0.754
O2 0.237 –0.055 0.137

(11.9) The space group P4/ncc of α-WO3 mentioned in
Fig. 11.14 has additional n glide planes with the glide

component 1
2 (a + b) + 1

2 c halfway between the c glide
planes. It is a subgroup of P4/nmm (HT-WO3) that has
glide planes with the glide component 1

2 (a + b), but the
n glide planes seem to be missing. Since a symmetry
reduction may only involve loss of and by no means ad-
dition of symmetry elements, there seems to be an error.
Clarify the contradiction.

(11.10) When the alloy MoNi4 is quenched from 1200 ◦C, it crys-
tallizes in the cubic Cu type with a statistical distribution
of the atoms. If it is then annealed for hours at 840 ◦C,
the atoms become ordered in a superstructure of the Cu
type [159]. Set up the symmetry relations between the
misordered and the ordered alloy.

MoNi4, Cu type, Fm3m ordered MoNi4, I 4/m
a = 361.2 pm a = 572.0 pm, c = 356.4 pm

x y z x y z

Mo, Ni 4a 0 0 0 Mo 2a 0 0 0
Ni 8h 0.400 0.200 0

Mo

Ni

0

0

0

1
2

1
2 I 4/m

➤

➤

a

b

(11.11) Misordered β -brass (CuZn) crystallizes in the W type:
I 4/m32/m, a = 295.2 pm, Cu and Zn statistically at po-
sition 2a (0, 0, 0). γ-brass (Cu5Zn8) is ordered: I 43m,
a = 886.6 pm, with the atomic coordinates [160]:

x y z x y z

Cu1 0.328 x x Zn1 0.608 x x
Cu2 0.356 0 0 Zn2 0.312 x 0.037

What is the group–subgroup relation between β - and γ-
brass? Comment: γ-brass has a vacant atom site as com-
pared to β -brass.
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Exercises 166

Unfortunately, the search for crystallographic group–subgroup relations is sus-
ceptible to pitfalls. Errors can easily be committed when noting down such
relations uncritically.

Relations cannot be set up with space-group symbols alone. The lattice
with given metric is an essential part of a space group. In crystal chemistry
we compare crystal structures, and their characterization not only requires the
space-group symbol, but also the lattice parameters and the coordinates of all
atoms. Special attention must be paid to the sizes and orientations of the unit
cells and the relative positions of their origins. In addition, the coordinates of
all atoms of all subgroups must result straightforwardly from those of the aris-
totype. Reasonable deviations of the lattice dimensions and moderate atomic
shifts are acceptable and often even necessary (cf. Sections 11.1 and 11.2).

Possible sources of errors are:

• Not taking into account necessary origin shifts.

• Wrong origin shifts.

• Wrong basis and/or coordinate transformations.

• Unnecessary basis transformations, for example, just for the sake of
clinging on to standard space-group settings.

• Errors handling non-conventional space-group settings.

• Lack of distinction between space groups and space-group types; group–
subgroup relations exist only between space groups, not between space-
group types. This implies that the volume of the primitive unit cell of a
subgroup cannot have been decreased (apart from metric adjustments).

• Missing or wrong correspondence between the atomic positions of the
group and the subgroup.

• Space-group or coordinate system settings among homeotypic structures
that do not match.

• If the group–subgroup relations are correct, but origin shifts or basis
transformations have not been stated, this can cause subsequent errors
or misunderstandings.

In the following it is shown by means of examples how such errors can slip
in.
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12.1 Origin shifts

β -K2CO3 and β -Na2CO3 have similar structures and unit cells (Fig. 12.1)
[161]. Along c, there are rows of alkali metal ions and rows in which alkali
metal ions alternate with carbonate ions. The planes of the carbonate ions are
not aligned exactly perpendicular to c. Compared to the perpendicular orienta-
tion, in the case of β -K2CO3, they are rotated about b and those of β -Na2CO3

are rotated about a. There is no group–subgroup relation between the space
groups C 12/c1 and C 2/m11 of the two structures. However, in International
Tables A and A1 one can find the space groups C mce and C mcm as possible
candidates for a common supergroup. In the listings of the supergroups the ori-
gin shifts are not mentioned in International Tables, neither in Volume A nor in
Volume A1. Origin shifts are mentioned only in the listings of the subgroups in
Volume A1. Therefore, one has to look up the subgroups of C mcm and C mce
in Volume A1. One finds that the relation C mce −→ C 12/c1 requires an ori-
gin shift of 1

4 , 1
4 ,0 (or − 1

4 ,− 1
4 ,0 ); all other relations (C mce −→ C 2/m11,

C mcm −→ C 12/c1, C mcm −→C 2/m11) require no origin shifts. Since the
values of the coordinates of all atoms of β -K2CO3 and β -Na2CO3 are nearly
the same, there can be no origin shift. As a consequence, only C mcm and
not C mce can be the common supergroup. Choosing C mce would be a gross
mistake.

Another argument is in favour of the space group C mcm: it points the way
to a hexagonal aristotype in the space group P63/mmc (Fig. 12.2). The im-
ages in Fig. 12.1 give the impression of a pseudohexagonal symmetry of the
carbonates, and this agrees with the numerical ratio of a

√
3 ≈ b. In fact,

the hexagonal aristotype is known in this case; α-K2CO3 (> 420◦C) and α-
Na2CO3 (> 400◦C) are high-temperature modifications that crystallize in this
space group. They have the CO2−

3 ions on threefold rotation axes and on mirror
planes perpendicular to c.

We have chosen the non-conventional setting of C 2/m11 with monoclinic a
axis for β -Na2CO3 to avoid a basis transformation (standard setting C 12/m1;
a and b interchanged). This ensures a correspondence between the cells and
coordinates of β -K2CO3 and β -Na2CO3 and makes their similarity obvious
(Fig. 12.2).



a �b

β -K2CO3 C 12/c1

β -Na2CO3 C 2/m11

➤

22.8◦

➤

27.3◦

Fig. 12.1 Unit cells of β -K2CO3 and β -
Na2CO3. The angles of tilt of the CO2−

3 ions
are referred relative to a plane perpendicular
to c.

Below 250 ◦C, K2CO3 forms another modification (γ-K2CO3) in the space
group P121/c1 that is also mentioned in Fig. 12.2. The relation C 12/c1 −→
P121/c1 requires an origin shift by − 1

4 ,− 1
4 ,0, i.e. 1

4 , 1
4 ,0 has to be added to

all coordinates of β -K2CO3; this is in accordance with the observed values of
γ-K2CO3. If it were not so, the relation would be wrong.1

1The structure of sodium carbonate between
360◦C and −143◦C (γ-Na2CO3) has CO2−

3
ions, whose tilt angles vary from unit cell to
unit cell following a sine wave, the period-
icity of which is not commensurate with the
periodicity of the lattice [166–168]. Struc-
tures of this kind are called incommensu-
rately modulated structures. They cannot be
adequately described by three-dimensional
space groups, but require an extension to
higher-dimensional superspace groups.

The maximal subgroups of every space group are listed in International
Tables A [1983–2005 editions; from the 6th edition onwards (2013) this in-
formation is no longer part of Volume A]. The corresponding origin shifts
are missing in Volume A. They can only be found in International Tables
A1.

However, International Tables A1 also has its shortcomings. In Volume A1
all space groups have been listed twice. In Part 2 of the volume (Maximal sub-
groups of the space groups), the origin shifts refer to the coordinate systems
of the space groups. In Part 3 (Relations between the Wyckoff position), how-
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P 63/m 2/m 2/c

α-Na2CO3,
α-K2CO3

Na:2a Na:2c C:2d O:6h
3m. 6m2 6m2 mm2

0 1
3

1
3 0.204

0 2
3

2
3 0.408

0 1
4

3
4

3
4

t3
a, a+2b, c

➤

x− 1
2 y, 1

2 y, z

➤ ➤ ➤ ➤ ➤

C 2/m 2/c 21/m
4a 4c 4c 4c 8g

2/m.. m2m m2m m2m ..m
0 0 0 0 0.694
0 0.333 0.333 0.204 0.898
0 1

4
3
4

3
4

3
4t2

➤

t2

➤

➤

➤ ➤ ➤ ➤ ➤

C 1 2/c 1

β -K2CO3

K:4a K:4e C:4e O:4e O:8f
1 2 2 2 1
0 0 0 0 0.678
0 0.332 0.333 0.202 0.895
0 1

4
3
4

3
4 0.707

C 2/m 1 1

β -Na2CO3

Na:2a Na:2c Na:4i C:4i O: 4i O:8 j
2/m 2/m m m m 1

0 0 0 0 0 0.702
0 0 0.326 0.337 0.208 0.897
0 1

2 0.249 0.752 0.817 0.717t2
− 1

4 ,− 1
4 ,0

➤

➤ ➤ ➤ ➤ ➤

➤

x+ 1
4 , y+ 1

4 , z

P 1 21/c 1

γ-K2CO3

K:4e K:4e C:4e O:4e O:4e O:4e
0.261 0.242 0.245 0.263 0.937 0.415
0.240 0.583 0.583 0.457 0.151 0.639
0.028 0.215 0.749 0.799 0.723 0.672

Lattice parameters in pm:
a a

√
3 b c

α-Na2CO3
∗ 521 521 645 [162]

α-K2CO3
† 569 569 733 [163]

β -Na2CO3
‡ 525 898 = 898 621 α =99.3◦ [162]

β -K2CO3 568 984 ≈ 992 702 β =96.8◦ [164]
γ-K2CO3 564 983 ≈ 980 687 β =98.7◦ [165]
∗ 756K † 835K ‡ 605K

Fig. 12.2 Bärnighausen tree relating some
modifications of the alkali metal carbonates
K2CO3 and Na2CO3 (the O atoms of α-
K2CO3 exhibit disorder). The position 8g of
C 2/m2/c21/m results from the point –0.408,
–0.204, 3

4 which is a symmetry-equivalent
point of the position 6h of P63/m2/m2/c.

ever, the origin shifts are given only as components of the coordinate trans-
formations, and thus refer to the coordinate systems of the subgroup. In the
group–subgroup arrow we state the origin shift with reference to the coordinate
system of the high-symmetry space group; the corresponding transformations
can be obtained from the data of Volume A1, Part 3, only after conversion to
the coordinate system of the higher-symmetry space group. This is explained
in Section 3.7.6 and Example 3.8, page 39. Given the case, this conversion has
to be performed; one may not simply look up the corresponding transformation
in Part 2 of Volume A1. The reason is that, as a rule, the origin shifts chosen
for one and the same group–subgroup pair differ in Parts 2 and 3 of Volume
A1 (often they have opposite directions). For example, the origin shift given in
Fig. 12.2 for the relation C 12/c1 → P121/c1 corresponds to the data of space
group C 12/c1 in Volume A1, Part 3, whereas the origin shift mentioned in Part
2 is 1

4 , 1
4 ,0.
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12.2 Subgroups on a par

The listings of the subgroups in International Tables A (1983–2005) are in-
complete. Only among the translationengleiche subgroups and the klassengle-
iche subgroups of the kind ‘IIa’ (klassengleiche with loss of centring) is the
space group symbol of the subgroup repeated if there are several subgroups of
the same type. They differ in the selection of the symmetry operations of the
space group that are being retained in the subgroups; they are the ones speci-
fied by the listed generators. However, among the klassengleiche subgroups of
the kind ‘IIb’, with enlarged conventional unit cell, the individual subgroups
are not listed as such, but only their space-group type is mentioned once, even
if there are several subgroups of this type; in addition, the list of the retained
generators is missing. The information missing in Volume A can be found in
Volume A1; there, all maximal subgroups have been listed completely.

A space group may have several different subgroups of the same space-
group type and with the same lattice dimensions; they can be either conjugate
subgroups or subgroups on a par that belong to different conjugacy classes.
See Defininion 8.2 and the following text (page 107).

From the point of view of the aristotype, conjugate subgroups are symmet-
rically equivalent; only one of them needs to be considered, see Section 8.1,
page 101, and the text after Example 8.2, page 108. However, an eye has to
be kept upon the conjugacy classes (non-conjugate subgroups on a par). Sub-
groups on a par frequently occur among klassengleiche maximal subgroups
of index 2. They have different positions of their origins. The examples of
Fig. 8.8 (page 109) and Fig. 11.4 (page 141) show that structures whose space
groups are subgroups on a par can be rather different. Therefore, it is important
to choose the correct one out of several subgroups on a par. See also Fig. 14.1,
page 187, where only the subgroup with the given origin shift results in the
correct space group of KN3.

12.3 Wrong cell transformations

When searching for possible paths of symmetry reduction that will lead from
a given aristotype to a given hettotype, first one will write down all maximal
subgroups of the aristotype, followed by their maximal subgroups, etc., until
the hettotype is reached. It is important to keep track of all cell transformations
and origin shifts for all of the involved group–subgroup relations. At the end all
cell transformations and origin shifts must yield the correct lattice and origin
of the hettotype.

The crystal structure of β -IrCl3 can be regarded as a NaCl type in which
two-thirds of the cation positions are vacant [169]. The dimensions of the unit
cell correspond to

a =
√

2aNaCl b = 3
√

2bNaCl c = 2cNaCl (with aNaCl ≈ 490.5 pm)

The space group is F d d d. Two paths of symmetry reduction are depicted in
Fig. 12.3. Of these, the right one is wrong; it does not yield the correct unit
cell. That the two paths cannot yield the same result is also revealed by the



12.4 Different paths of symmetry reduction 163
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➤

➤

a

b

a′

b′

NaCl➤

F 2/d 2/d 2/d➤

β -IrCl3
➤

I 4/m2/m2/m

➤

F 4/m 3 2/m

NaCl

t3
1
2 (a−b), 1

2 (a+b), c

	

k4

�
I 4/m 2/m 2/m P 42/n 3 2/m

k2

�

k2
2a, 2b, 2c

�
P 42/n 2/n 2/m F 41/d 3 2/m

t2

�
t2

�
P 2/n 2/n 2/n F 2/d 3

k2
2a, 2b, 2c

�
t3

�
F 2/d 2/d 2/d F 2/d 2/d 2/d

i3
a, 3b, c

�

i3
a, 3b, c

	
F 2/d 2/d 2/d

β -IrCl3 Fig. 12.3 Symmetry reduction from the NaCl
type to IrCl3 by removal of 2

3 of the cations.
The right branch is not correct. The image
at the left shows the relations between the
basis vectors of the space groups of the left
branch (necessary origin shifts have not been
marked).indices; if all indices of a path are multiplied, the left path yields 72, the right

one 144. That there must be an error could have been noticed immediately
if the vertical distances between the space-group symbols in Fig. 12.3 were
drawn proportional to the logarithms of the indices.

Multiplication of the transformation matrices of the subsequent basis trans-
formations of Fig. 12.3 yields the total transformation matrix and reveals the
wrong result of the right branch:2 2Keep in mind that the matrices of consec-

utive basis transformations have to be multi-
plied in the sequence P1P2 . . . , whereas the
inverse matrices needed for the coordinate
transformations have to be multiplied in the
reverse order . . .P−1

2 P−1
1 , see Section 3.7.5,

page 36.

left branch:

⎛⎝ 1
2

1
2 0

− 1
2

1
2 0

0 0 1

⎞⎠⎛⎝ 2 0 0
0 2 0
0 0 2

⎞⎠⎛⎝ 1 0 0
0 3 0
0 0 1

⎞⎠ =

⎛⎝ 1 3 0
−1 3 0

0 0 2

⎞⎠

right branch:

⎛⎝ 2 0 0
0 2 0
0 0 2

⎞⎠⎛⎝ 1 0 0
0 3 0
0 0 1

⎞⎠=

⎛⎝ 2 0 0
0 6 0
0 0 2

⎞⎠
12.4 Different paths of symmetry reduction

Frequently, it is possible to find several sequences of group–subgroup relations
that will lead from an aristotype to a hettotype, i.e. via different intermediate
groups. If cell transformations or origin shifts are involved, then all of these



164 Pitfalls when setting up group–subgroup relations

Fig. 12.4 Three sequences of symmetry re-
duction from the NaCl type to the monoclinic
structure of AgO. The left sequence yields a
differently oriented lattice of a conjugate sub-
group.

F 4/m 3 2/m

NaCl

t4
1
2 (−a+b),

1
2 (–b+ c),

a+b+ c
➤

t4
1
2 (−a + c),
1
2 (a +b),

–a+b− c

➤

t3
1
2 (a−b),

1
2 (a +b), c

➤

R 3 2/m (hex) R 3 2/m (hex)

I 4/m 2/m 2/m

t3
–2a−b, b,

– 1
3 (2a+ b+ c)

➤

C 1 2/m 1

k2

➤

P 1 21/a 1

P 1 21/c 1

AgO

i2
a, b, –a+ 2c

➤

t3
1
3 (–2a−b− c), b,

1
3 (4a+2b− c)

➤

t2

➤

t2

➤

I 2/m 2/m 2/m

I 1 2/m 1

k2

➤

P 1 21/n 1

i2
a− c, b, a+ c

➤

P 1 21/c 1

AgO

sequences have to yield the same lattice, with the same cell size, cell orienta-
tion, and origin position. The sequential multiplication of all transformation
matrices of each sequence must yield the same basis vectors and the same ori-
gin shift for the hettotype. If origin shifts are involved, use the 4×4 matrices,
otherwise the 3×3 matrices are sufficient.

Silver oxide AgO is to be regarded as Ag(I)Ag(III)O2. The crystal structure
of its monoclinic modification is a derivative of the NaCl type, with distortions
to meet the coordination requirements of the silver atoms: linear for Ag(I) and
square for Ag(III) [170, 171]. Starting from the space group of the NaCl type
(F m3m), the symmetry can be reduced via a tetragonal or a rhombohedral
intermediate group (Fig. 12.4 middle and right). The tetragonal c axis can be
oriented along a, b, or c of F m3m, while the c axis of the rhombohedral space
group (hexagonal setting) can be along any one of the four body diagonals of
the NaCl cell. In this case it is indeed cumbersome to find two sequences of
group–subgroup relations that end with the same lattice of AgO. There are a
total of 24 subgroups P121/c1 that are conjugate in F m3m with six different
orientations of the monoclinic b axis. That the central and the right branch
of Fig. 12.4 result in the same subgroup can be recognized by multiplying
the transformation matrices corresponding to the two paths down to the in-
termediate group I 12/m1, where the two paths via R3m and I 4/mmm meet.
Multiplication of the matrices on the way via R3m yields:
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⎛⎝ − 1
2

1
2 −1

0 1
2 1

1
2 0 −1

⎞⎠⎛⎝ − 2
3 0 4

3
− 1

3 1 2
3

− 1
3 0 − 1

3

⎞⎠=

⎛⎝ 1
2

1
2 0

− 1
2

1
2 0

0 0 1

⎞⎠
This corresponds to the matrix for the only transformation on the way via
I 4/mmm. After further symmetry reduction down to P121/c1 we obtain the
transformation matrix for the conversion of the basis vectors from the NaCl
type to AgO: ⎛⎝ 1

2
1
2 0

− 1
2

1
2 0

0 0 1

⎞⎠⎛⎝ 1 0 1
0 1 0

−1 0 1

⎞⎠=

⎛⎝ 1
2

1
2

1
2

− 1
2

1
2 − 1

2
−1 0 1

⎞⎠
The determinant of this matrix is 1, and the unit cell thus has the same volume
as the NaCl cell. Another transformation is obtained for the left branch of
Fig. 12.4:⎛⎝ − 1

2 0 1
1
2 − 1

2 1
0 1

2 1

⎞⎠⎛⎝ −2 0 − 2
3

−1 1 − 1
3

0 0 − 1
3

⎞⎠⎛⎝ 1 0 −1
0 1 0
0 0 2

⎞⎠=

⎛⎝ 1 0 −1
− 1

2 − 1
2 − 1

2
− 1

2
1
2 − 1

2

⎞⎠
The different results show the different orientations of the AgO cells. The
determinant of the last matrix is also 1.

Basis transformations are frequently complicated if rhombohedral space groups
are involved, and errors may creep in.

12.5 Forbidden addition of symmetry operations

A subgroup always has reduced symmetry and thus fewer symmetry opera-
tions. The error to add symmetry operations can be induced if symmetry opera-
tions present in the aristotype are first deleted in a sequence of group–subgroup
relations and then are reinstated at a later stage. This is not permitted, even if
the hettotype itself is correct; in this case a different path must be found.

For example, starting from an aristotype that has twofold rotation axes, one
cannot choose a subgroup with 21 axes and then have the rotation axes reappear
in a following subgroup. Consider the space group C c ce; it has two subgroups
of the type Pnna (Pnna and Pnnb), and each one of these has a subgroup of
type P12/n1. Among the following four trees the first two each are wrong:

C c c e (2) C 2/c 2/c 2/e (2) C c c e(2) C 2/c 2/c 2/e (2)

k2

➤

k2

➤

k2
– 1

4 , – 1
4 , 0

➤

k2
– 1

4 , – 1
4 , 0

➤

P n n a

P 1 2/n 1

P 2/n 21/n 2/a

P 1 2/n 1

P n n b

P 1 2/n 1

P 21/n 2/n 2/b

P 1 2/n 1

t2

➤

t2

➤

t2

➤

t2

➤
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The first two trees represent the same relation, once with short, once with full
Hermann–Mauguin symbols. The full symbols reveal the error: P2/n21/n2/a
does not have 2 but 21 axes parallel to b, which excludes 2 axes in the subgroup
P12/n1. The two trees to the right side, which represent another relation twice,
are correct (Pnnb is a non-conventional setting of Pnna). The example shows
why it is preferable to use full Hermann–Mauguin symbols.

�

�

�

b

a

a′

Primitive subgroups of centred space groups often involve cell transforma-
tions with new basis vectors that result by linear combinations of fractions of
the old basis vectors. For example, the cell transformation 1

2 (a− b), b, c is
required for the relation

C 2/m2/c21/m — t2→ P1121/m

Such relations are frequent if the subgroup is monoclinic or triclinic, or if
there are rhombohedral space groups. This may not lead one to believe that
vector sums with fractional basis vectors are generally permitted. They are
permitted only if they are compatible with corresponding centring vectors. By
no means may new translations be added. The mentioned cell transformation
is not permitted for the relation P2/m2/c21/m — t2→ P1121/m.

Exercises

Solutions in Appendix D (page 291)

(12.1) Let two crystal structures have similar unit cells and sim-
ilar atomic coordinates for all atoms. One of them crys-
tallizes in the space group P21 21 21, the other one in
P1121/a. Use International Tables A or A1 to find the
two space groups that could be considered as common
minimal supergroups. Only one of them is correct; which
one is it?

(12.2) What is the error among the cell transformations in the
right branch of the tree of Fig. 12.3? Supplement the
missing origin shifts and the missing relations between
occupied positions in the left branch. Note: At the step
P2/n2/n2/n → F 2/d 2/d 2/d there are eight subgroups
on a par with eight possible origin shifts.

NaCl type F m3m β -IrCl3 F d d d (1)

(a = 490.5 pm) a = 695 b = 2082 c = 981 pm
x y z x y z

M 0 0 0 Ir 1
4 0.167 1

4
Cl 0 0 1

2 Cl 1 0.220 1
2

1
2

Cl 2 0.247 0.162 0.488

Adapted from reference [169] by
shifting from origin choice 2 to 1,
and exchange of axes b and c.

(12.3) Does the space group Pm3m have an isomorphic sub-
group of index 8?

(12.4) Is there any error among the following relations?

C 2/m 2/c 21/m

C 2/m 2/c 21/m P 1 1 21/m

P 1 1 21/m

i3
a, 3b, c

t2
1
2 (a−b), b, c

t2
1
2 a− 1

6 b, b, c
i3

a, 3b, c

➤
➤

➤
➤

(12.5) At the end of the preceding section it is claimed that the
cell transformation 1

2 (a−b), b, c is not compatible with
the relation P2/m2/c21/m — t2→ P1121/m. Why is
that so?
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13.1 Occupation of interstices in closest packings
of spheres

In the preceding chapters it was shown how to relate an aristotype and its sub-
stitution derivatives with the aid of group–subgroup relations. The removal of
atoms from a structure to a defect structure and also the occupation of inter-
stices in a structure can be treated in the same way. In other words, atoms are
replaced by voids or interstices are filled with atoms. A known example of this
kind of approach is the description of CdI2 as a hexagonal-closest packing of
iodine atoms in which one-half of the octahedral interstices are occupied by
cadmium atoms.

The term ‘interstitial compound’ originates in this kind of view. These com-
pounds include the transition metal hydrides and carbides. The direct occupa-
tion of voids by atoms can actually be performed in the case of the transition
metal hydrides by reaction of the metals with hydrogen. This also applies to
some other compounds, for example, the electrode materials of lithium ion
batteries, where a reversible electrochemical intercalation of Li+ ions takes
place (e.g. x Li+ + Li1−xCoO2 + x e− � LiCoO2). However, in most cases the
intercalation of atoms into a given guest structure, keeping this structure, can-
not actually be performed. The intercalation then only takes place in one’s
imagination. In this sense, all relations that are dealt with in this chapter are
purely mental or descriptive in a formal way. Nevertheless, the formal descrip-
tion is useful as it opens the view to many connections. Many more or less
complicated crystal structures can be derived by the same procedure from well
known, simple structure types. In a formal way, the occupation of interstices
is treated like a ‘substitution’ of real atoms for ‘zero atoms’.

Essentially, the relations among substitution derivatives that are dealt with
in the preceding chapters are also purely mental. Zinc blende cannot really
be made from diamond by substitution of zinc and sulfur atoms for carbon
atoms. However, one should be aware of the crystal-chemical and physical
differences between the (mental) substitution of atoms and the filling of voids.
In the case of substitution of atoms for atoms the surroundings of the atoms and
their linkage remain, but they experience drastic changes by the occupation of
voids.
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A large number of inorganic crystal structures can be derived from closest
packings of spheres by the partial occupation of octahedral or tetrahedral inter-
stices. In all closest packings of spheres the number of octahedral interstices
is equal to the number of spheres, and the number of tetrahedral interstices is
twice as large. The fraction of the voids to be occupied results from the chem-
ical composition. In a pentahalide MX5 whose halogen atoms form a closest
packing of spheres and whose M atoms occupy octahedral voids, exactly one-
fifth of the octahedral voids has to be occupied. The unit cell of the hexagonal-
closet packing of spheres contains two octahedral interstices; the cell of the
cubic-closest packing contains four octahedral interstices. To be able to occupy
one-fifth of these interstices, first the unit cell has to be enlarged by a factor of
5 (or a multiple of 5). Enlargement of the unit cell is tantamount to removal
of translational symmetry and elimination of further symmetry elements of the
packing of spheres. That means: The space groups of the derivative structures
have to be subgroups of the space group of the packing of spheres, and there
must be at least one klassengleiche group–subgroup relation.

The packing of spheres itself can be chosen to be the aristotype; the initially
symmetry equivalent voids become non-equivalent positions if some of them
are occupied by atoms. Just as well, the packing of spheres with completely
filled voids can be chosen to be the aristotype; the derivative structures then
result from partial vacation of these sites. Therefore, for example, the cubic-
closest packing of spheres just as well as the NaCl type can be chosen to be
the aristotype.

Of course, in addition to the occupation of voids, the atomic positions of the
packing of spheres themselves can be replaced by different atom species. See,
for example, reference [172] to obtain an idea of how manifold these structures
can be. In addition, to a certain degree, some of the spheres of the packing can
be missing. An example is the perovskite structure (CaTiO3), where the Ca
and O atoms combined form a closest packing of spheres with Ti atoms in one
quarter of the octahedral voids. If the Ca position is vacant, this is the ReO3

type.

13.2 Occupation of octahedral interstices in the
hexagonal-closest packing of spheres

13.2.1 Rhombohedral hettotypes

The Bärnighausen tree in Fig. 13.1 shows how the structures of some com-
pounds with rhombohedral symmetry can be derived from the hexagonal-clos-
est packing of spheres. Figure 13.2 shows a corresponding section of the
packing of spheres. A triplication of the (primitive) unit cell is necessary;
the enlarged cell can be described by a primitive rhombohedral unit cell, but
it is more common to choose the triply-primitive hexagonal setting, the cell of
which has a triplicated base in the a-b plane and a triple lattice constant c (this
cell is larger by a factor of 9, but due to the centring at ±( 2

3 , 1
3 , 1

3 ) its primitive
cell is only tree times larger). In Fig. 13.1 the space groups are numbered from
G1 to G9, which is referred to in a later chapter.
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Fig. 13.1 Bärnighausen tree of some rhom-
bohedral hettotypes of the hexagonal-closest
packing of spheres. The little boxes repre-
sent the octahedral interstices, the letters are
the corresponding Wyckoff letters. The im-
age at the top right shows the correspond-
ing coordinates (cf. the octahedral interstices
marked ①, ②, and ③ in Fig. 13.2). Different
point orbits of the same Wyckoff position are
distinguished by subscript numbers (a1, a2,
etc.). Wyckoff letters above and below the
six little boxes mark neighbouring octahedral
interstices (due to the rhombohedral symme-
try the groupings of six octahedral voids are
shifted sideways above the other, correspond-
ing to the rhombohedral basis vector crh in the
image at the top right) [173].
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Fig. 13.2 Section from the hexagonal-closest
packing. Cell with grey background: unit
cell, space group P63/m2/m2/c. Large cell:
triple cell with c′ = c for hexagonal and c′ =
3c for rhombohedral subgroups. The speci-
fied z coordinates of the spheres refer to c′ =
c. Six kinds of octahedral voids are marked
by ①, ②, and ③; they are at z = 0 and z = 1

2
(for c′ = c) and z = 0 and z = 1

6 (for c′ = 3c).



170 Derivation of crystal structures from closest packings of spheres

The unit cell of the aristotype contains two spheres at the Wyckoff position
2d, ±( 2

3 , 1
3 , 1

4 ) and two octahedral voids at 2a with the coordinates 0, 0, 0 and
0, 0, 1

2 . In the maximal translationengleiche subgroup P32/m1 the octahedral
voids are no longer symmetry equivalent; if one of them is occupied and the
other one remains empty, the result is the CdI2 type. This step of symmetry
reduction does not yet require an enlargement of the cell.

After triplication of the cell it contains six octahedral voids. They are rep-
resented in Fig. 13.1 by six little boxes and are marked by the corresponding
Wyckoff letters; symmetry-equivalent octahedral interstices have the same la-
bel. If the little boxes are side by side, the corresponding octahedra have an
edge in common; if they are one on top of the other, the octahedra have a face
in common; if they are staggered with a common vertex, the octahedra share a
vertex.

With the successive symmetry reduction, the voids successively become
more and more symmetry independent, as can be seen by the increasing num-
ber of different Wyckoff letters. Finally, in the space group R3 they have all
become independent. The atoms of the packing of spheres remain symmetry
equivalent in all mentioned space groups, R32 and R3 excepted, which have
two independent positions.

`

`

`

`

`
`

`

`

`

`

`
`

RhF3

FeF3

0

1
3

1
6

0

1
6

1
3

Fig. 13.3 Mutual rotation of occupied octa-
hedra in the RhF3 type about the threefold
axes of the space group R32/c. The vertices
of the cells are at the threefold axes running
through the octahedra drawn in light grey at z
= 0. The numbers are the z coordinates of the
metal atoms. Only one half of the unit cell is
shown along the direction of view (c).

If one is interested in compounds of the composition AX3 (e.g. trihalides; X
atoms form the packing of spheres), then one-third of the six octahedral voids
have to be occupied by A atoms, i.e. two of them are occupied and four remain
vacant. We express this by the formulae A2�4X6 or A�2X3. Two known
structure types have this arrangement:

BiI3 in R3. This is a layered structure whose occupied octahedra
share common edges (position c1 of R3 in Fig. 13.1).

RhF3 in R32/c. All occupied octahedra share common vertices
(position b of R32/c in Fig. 13.1).

If occupied and unoccupied octahedra of RhF3 are interchanged, the space
group remains R32/c. Now, four voids are occupied (position c of R32/c) and
two are vacant, and the composition is �A2X3. That corresponds to the struc-
ture of α-Al2O3 (corundum). Regarded this way, RhF3 and α-Al2O3 are for-
mally equivalent structures. From the point of view of crystal chemistry they
are not: the occupied octahedra of α-Al2O3 share common faces and edges,
whereas those of RhF3 share only vertices. The crystal chemical difference
also becomes apparent by comparison with the structures of further trifluo-
rides. The symmetry of space group R32/c permits a distortion of the packing
of spheres in that the octahedra can be mutually rotated about the threefold
axes (Fig. 13.3) [174]. The common vertices of the occupied octahedra in a
trifluoride act as ‘hinges’, changing the A–F–A bond angles (Table 13.1). In
an undistorted packing of spheres this angle amounts to 131.8◦. In contrast,
mutual rotation of octahedra of Al2O3 is hardly possible due to the rigid con-
nection of the edge-sharing octahedra.

If the octahedra in a trifluoride are rotated until the A–F–A bond angle be-
comes 180◦, the result is the ReO3 type. It has a higher symmetry, namely
cubic in the space group Pm3m. That is a supergroup of R32/c. Therefore,
the structures of the trifluorides can also be regarded as hettotypes of the ReO3
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Table 13.1 Some data concerning the structures of trifluorides AF3 and related compounds.

Compound Angle of rotation Bond angle References
of the octahedra A—X—A

ReO3 0◦ 180◦ [175]
TiF3 11.6◦ 170.6◦ [178]
AlF3 14.1◦ 157.0◦ [176]
FeF3 17.0◦ 152.1◦ [177–179]
VF3 19.1◦ 149.1◦ [180]
CoF3 19.3◦ 148.8◦ [181]
GaF3 20.4◦ 146.8◦ [182]
InF3 20.6◦ 146.8◦ [183]
CrF3 21.8◦ 144.8◦ [184]
AlD3 24.2◦ 140.7◦ [185]
MoF3 24.4◦ 141.0◦ [186]
TeO3 25.9◦ 137.9◦ [187]
RhF3 27.7◦ 135.4◦ [188]
TmCl3-III 29.3◦ 132.8◦ [189]
IrF3 30.3◦ 131.6◦ [181]
CaCO3 40.1◦ (118.2◦) [190]

type, from which they differ the more the A–F–A bond angles deviate from
180◦. ReO3 contains large cavities that have a cuboctahedral surrounding of
12 oxygen atoms. Upon rotation of the octahedra, the surrounding atoms move
into the cavity and it becomes smaller. When the hexagonal-closest packing
has been reached, this cavity becomes an octahedral interstice. The mutual ro-
tation of the octahedra can be continued to a ‘superdense’ sphere packing. This
corresponds to calcite (CaCO3); calcite contains C atoms in the middles of cer-
tain octahedron faces; The C atom pulls up three O atoms each in a carbonate
ion and squeezes them.
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4

Fig. 13.4 Derivation of the FeF3 structure
either from the ReO3 type or from the
hexagonal-closet packing of spheres. The co-
ordinates for FeF3 given in the boxes are ideal
values calculated from the aristotypes assum-
ing no distortions. A y coordinate given as x
means y = x. The Schottky symbol � desig-
nates an unoccupied octahedral void.

The actual rotation of the octahedra of FeF3 (VF3 type) is halfway between
the two extremes. The group–subgroup relations are shown twice in Fig. 13.4,
once with the ReO3 type as the aristotype, and once with the hexagonal-closest
packing of spheres as the aristotype. The space group R32/c of FeF3 is de-
liberately not given as a common subgroup of the space groups of the two
aristotypes P4/m32/m and P63/m2/m2/c, but two separate trees have been
drawn; the two different points of view should not be mixed up. The tree
with P63/m2/m2/c as the aristotype corresponds to the non-executable, men-
tal derivation of the FeF3 structure from the packing of spheres by occupation
of octahedral voids. On the other hand, the tree with the ReO3 type as the aris-
totype involves no change of the chemical composition, but a distortion of the
structure. This distortion can actually be performed. When FeF3 is subjected
to high pressures, the coordination octahedra experience a mutual rotation as
described; at 9 GPa it is a nearly undistorted hexagonal closest packing of flu-
orine atoms with the c/(a

√
3) ratio and the x coordinate of the F atom close to
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Table 13.2 Observed lattice parameters, x coordinates of the F atoms, and angles of rotation of the
coordination octahedra (0◦ = ReO3 type, 30◦ = hexagonal closest packing) for FeF3 at different
pressures [178, 179].

p/GPa a/pm c/pm c/(a
√

3) x Angle of rotation/◦

10−4 520.5 1332.1 1.48 0.412 17.0
1.54 503.6 1340.7 1.54 0.385 21.7
4.01 484.7 1348.3 1.61 0.357 26.4
6.42 476 1348 1.64 0.345 28.2
9.0 469.5 1349 1.66 0.335 29.8

the ideal values of 1.633 and 0.333 (Table 13.2). The same behaviour is known
for TiF3 and CrF3 under pressure [178, 184].

In α-Al2O3 the Al positions are symmetry equivalent. By reduction of the
symmetry from R32/c to R3 the corresponding position c splits into two inde-
pendent positions that can be occupied by atoms of two different elements (c1

and c2 of R3 in Fig. 13.1). Ilmenite, FeTiO3, has this structure. It has edge-
sharing octahedra (little boxes side by side) occupied with atoms of the same
element. Occupation of the edge-sharing octahedra with two different elements
is possible in the space group R3c (positions a2 and a3 of R3c in Fig. 13.1);
that is the structure of LiNbO3. In addition, ilmenite as well as LiNbO3 have
pairs of face-sharing octahedra that are occupied by two different atoms.

Structures of further compounds can be included in the tree of Fig. 13.1.
In WCl6 the tungsten atoms occupy one-sixth of the octahedral voids in a
hexagonal-closest packing of chlorine atoms. The space group R3 is the only
appropriate one of this tree; the Wyckoff position a is occupied, the remaining
ones remain vacant.

The mentioned structure types and some further examples are listed in Ta-
ble 13.3. Table 13.4 contains the corresponding crystal data.

In addition to the RhF3 and BiI3 types, Fig. 13.1 shows a third possible
structure type for the composition AX3 in the space group R32 if the point
orbit c3 is occupied and c1 and c2 remain vacant. In this case there are pairs
of face-sharing octahedra, the pairs being connected by sharing vertices, as
shown in Fig. 13.5. As yet, no representative is known for this structure type.
A compound that could adopt this structure is WCl3. Trivalent tungsten is
known to have a tendency towards structures with face-sharing octahedra, for
example in the W2Cl3−9 ion, because the closeness of the W atoms enables a
W≡W bond. Similar pairs of octahedra are also known for ReCl4. Maybe it
is worth trying to look for a corresponding modification of WCl3. (Another
modification that has W6Cl18 clusters is known, see Exercise 13.2.)

Fig. 13.5 The kind of linkage of the octahedra
in the hypothetical structure of WCl3, space
group R32 [173].

The space group R32 also offers a possibility for a variant of ilmenite, which
could occur with AlTiO3, a compound not studied yet. With Al at c2 and Ti at
c3 of R32 (Fig. 13.1) the linkage of the octahedra would be like in ilmenite.
However, the Ti atoms would not be placed in edge-sharing octahedra, but in
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Table 13.3 Known structure types with space groups according to Fig. 13.1.

Space Point orbits of the occupied Number of known
group Structure type Formula type∗ octahedral voids representatives

P63/mmc hex. closest packing �X – > 35
NiAs AX a: Ni > 70

P3 m1 CdI2 A�X2 a: Cd > 75

R3 c RhF3 (VF3) A�2X3 b: Rh ca. 20
α-Al2O3 �B2X3 c: Al ca. 15

R3 BiI3 A�2X3 c1: Bi 11
FeTiO3 (ilmenite) AB�X3 c1: Fe c2: Ti ca. 25
α-WCl6 A�5X6 a: W 2
LiSbF6 AB�4X6 a : Li b: Sb > 50
Na2UI6 AB2�3X6 a : U c1: Na 5
Na2Sn(NH2)6 AB2�3X6 a : Sn c2: Na 2
NiTi3S6 A�2C3X6 a : Ti b: Ni c1: Ti 2

R3 c LiNbO3 AB�X3 a2: Li a3: Nb > 10

R3 Ni3TeO6 A�2C3X6 a1: Te a2: Ni a4: Ni a6: Ni 1
Li2TeZrO6 ABC2�2X6 a1: Zr a2: Li a3: Li a6: Te 1

∗ A, B, C = atoms in octahedral voids; � = unoccupied octahedral void

Table 13.4 Crystal data of some of the name-giving rhombohedral structure types of Table 13.3.

Space a(hex) c(hex) Wyckoff Ele- Ideal coordinates Refe-
group Compound /pm /pm position ment x y z x y z rences

R3c RhF3 487.3 1355.0 6b Rh 0 0 0 0 0 0 [188]
18e F 0.652 0 1

4 0.667 0 1
4

R3c α-Al2O3 476.0 1300.0 12c Al 2
3

1
3 –0.019 2

3
1
3 0.0 ∗∗

18e O 0.694 0 1
4 0.667 0 1

4

R3 BiI3 752.5 2070.3 6c Bi 2
3

1
3 0.002 2

3
1
3 0.0 [191]

18 f I 0.669 0.000 0.246 0.667 0.0 0.25

R3 ilmenite 508.8 1408.5 6c Ti 2
3

1
3 –0.020 2

3
1
3 0.0 [192]

6c Fe 0 0 0.145 0 0 0.167
18 f O 0.683 –0.023 0.255 0.667 0.0 0.25

R3 α-WCl6 608.8 1668.0 3a W 0 0 0 0 0 0 [193]
18 f Cl 0.667 0.038 0.253 0.667 0.0 0.25

R3 LiSbF6 518 1360 3a Li 0 0 0 0 0 0 [194]
3b Sb 1

3
2
3

1
6

1
3

2
3

1
6

18 f F 0.598 –0.014 0.246 0.667 0.0 0.25

R3c LiNbO3 514.8 1386.3 6a Li 2
3

1
3 –0.053 2

3
1
3 0.0 [195,

6a Nb 1
3

2
3 0.0 1

3
2
3 0.0 196]

18b O 0.704 0.048 0.271 0.667 0 0.25

∗∗ approximately 40 determinations
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Fig. 13.6 Bärnighausen tree of some hexago-
nal and trigonal hettotypes of the hexagonal-
closest packing of spheres. The little boxes
represent the octahedral interstices, the letters
are the corresponding Wyckoff letters. The
image at the top right shows the correspond-
ing coordinates (cf. Fig. 13.2).
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pairs of face-sharing octahedra. Titanium would be trivalent in AlTiO3 and
would have an extra valence electron per atom; this could favour the occu-
pation of pairs of face-sharing octahedra by titanium atoms, forming Ti–Ti
bonds.

The examples of the postulated possible structures of WCl3 and AlTiO3

show how conceivable new structure types can be predicted with the aid of
Bärnighausen trees. The systematic prediction of structure types is the subject
of Chapter 18.

13.2.2 Hexagonal and trigonal hettotypes of the
hexagonal-closest packing of spheres

Consider two more possibilities to enlarge the unit cell of the hexagonal-closest
packing of spheres. A triplication is possible if the a-b base plane is in-
creased like for the rhombohedral hettotypes, but the hexagonal basis vector
c is retained (H cell, Fig. 13.2). The resulting Bärnighausen tree is shown
in Fig. 13.6. In addition, it contains the group G7 which is a subgroup with
doubled c axis (P6c2 and P63 22 have no maximal subgroups with doubled c
axis). Corresponding structures are mentioned in Tables 13.5 and 13.6.

The compound AgInP2S6 is mentioned in Table 13.5 (space group G7 =
P312/c). Actually, the octahedron centre at the position c of G7 ( 1

3 , 2
3 , 1

4 ) is not
occupied in this case; instead there is a pair of P atoms (coordinates 1

3 , 2
3 , 0.164
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Table 13.5 Known structure types with space groups according to the tree of Fig. 13.6.

Space Wyckoff positions of occupied Number of known
group Structure type Formula type∗ octahedral voids representatives

P63/mmc hex. closest pack. �X – > 35
NiAs AX 2a: Ni > 70

P3m1 CdI2 A�X2 1a: Cd > 75∗∗

P63/mcm TiI3-hex. A�2X3 2b: Ti 8†

P31m ε-Fe2N A�X2 1a: N 2d: N ca. 7
OAg3 A�2X3 2c: O 1
Li2ZrF6 AB2�3X6 1a: Zr 2d: Li ca. 16
Li2Pt(OH)6 AB2�3X6 1a: Pt 2c: Li 3
Hg3NbF6 A�2B3X6 1a: Nb 1b: Hg 2d: Hg 1

P6c2 LiScI3 AB�X3 2a: Li 2c: Sc 1

P63 22 Ni3N A�2X3 2c: N 4

P31c FeZrCl6 AB�4X6 2a: Fe 2c: Zr 4
CaPt(OH)6 AB�4X6 2b: Pt 2c: Ca 2
Li2UI6 AB2�3X6 2a: Li 2c: U 2d: Li 2
Na3CrCl6 A�2C3X6 2a: Na 2c: Cr 4 f : Na 2
LiCaAlF6 ABC�3X6 2b: Ca 2c: Al 2d: Li 9
Cr2Te3 �B2X3 2b: Cr 2c: Cr 4 f : Cr 3
Cr5S6 �B5X6 2a: Cr 2b: Cr 2c: Cr 4 f : Cr 1
AgInP2S6 AB(C2)�3X6 2a: Ag 2d: In 2c: 2P‡ 4

P312 KNiIO6 ABC�3X6 1a: K 1d: Ni 1 f : I 4

∗ A, B, C atoms in octahedral voids; � vacant octahedral voids
∗∗ including hydroxides
† 14 if distorted orthorhombic variants are included, see text
‡ see text

and 1
3 , 2

3 , 0.336). The octahedral void, whose middle is the position c, therefore
is occupied by a P2 dumbbell; it forms a P2S4−

6 ion together with the six S
atoms at the octahedron vertices.

The Bärnighausen trees of Figs. 13.1 and 13.6 do not cover structural vari-
ants that result from distortions with an additional symmetry reduction. Con-
sider the space group G3 = P63/m2/c2/m in Fig. 13.6; if the Wyckoff position b
(0,0,0 and 0,0, 1

2 ) is occupied and d is left vacant, the result is a structure type
that consists of strands of face-sharing octahedra parallel to c. This structure
type (hexagonal TiI3 type) has been observed among high-temperature modifi-
cations of a few trihalides. It occurs only with odd numbers of d electrons (d1,
d3, d5). However, most of these trihalides are not hexagonal, but orthorhombic
at room temperature (RuBr3 type; space group Pmnm). Atoms in the centres
of face-sharing octahedra are rather close to each other, so that this arrange-
ment is unfavourable for electrostatic reasons.1 However, for atoms with odd

1This is in accordance with Pauling’s third
rule for polar compounds: edge-sharing and
especially face-sharing of coordination poly-
hedra is unfavourable [10].d electron numbers there can be a preference for face-sharing because this
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Table 13.6 Crystal data of some of the structures according to Table 13.5.

Space a c Wyckoff Ele- Ideal coordinates Refe-
group Compound /pm /pm position ment x y z x y z rences

P63/mcm TiI3 hex. 714.2 651.0 2b Ti 0 0 0 0 0 0 [198]
6g I 0.683 0 1

4 0.667 0 1
4

P31m Ag3O 531.8 495.1 2c O 1
3

2
3 0 1

3
2
3 0 [199]

6k Ag 0.699 0 0.277 0.667 0 0.25

Li2ZrF6 497.3 465.8 1a Zr 0 0 0 0 0 0 [200]
2d Li 1

3
2
3

1
2

1
3

2
3

1
2

6k F 0.672 0 0.255 0.667 0 0.25

P6 c2 LiScI3 728.6 676.8 2a Sc 0 0 0 0 0 0 [201]
2c Li 1

3
2
3 0 1

3
2
3 0

6k I 0.673 –0.004 1
4 0.667 0 1

4

P63 22 Ni3N 462.2 430.6 2c N 1
3

2
3

1
4

1
3

2
3

1
4 [202]

6g Ni 0.328 0 0 0.333 0 0

P3 1c FeZrCl6 628.4 1178.8 2a Fe 0 0 1
4 0 0 1

4 [203]
2c Zr 1

3
2
3

1
4

1
3

2
3

1
4

12i Cl 0.667 –0.023 0.131 0.667 0.0 0.125

LiCaAlF6 500.8 964,3 2b Ca 0 0 0 0 0 0 [204]
2c Al 1

3
2
3

1
4

1
3

2
3

1
4

2d Li 2
3

1
3

1
4

2
3

1
3

1
4

12i F 0.623 –0.031 0.143 0.667 0.0 0.125

AgInP2S6 618.2 1295.7 2a In 0 0 1
4 0 0 1

4 [205]
2d Ag 2

3
1
3

1
4

2
3

1
3

1
4

4 f P 1
3

2
3 0.164 see text

12i S 0.657 –0.028 0.120 0.667 0.0 0.125

enables the formation of metal–metal bonds through the shared face of neigh-
bouring polyhedra. In that case, the atoms shift towards each other in pairs,
i.e. they shift away from the polyhedron centres towards the common polyhe-
dron face (Fig. 13.7). The consequence for the RuBr3 type is: The inversion
centres at the occupied octahedron centres and the 63 axes cannot be retained,
while the mirror planes perpendicular to c can be retained. The space group
is a subgroup of P63/mcm (Fig. 13.8). The symmetry reduction involves a
translationengleiche subgroup of index 3, and therefore the RuBr3 type is pre-
destinated to form triplet twins (twinned crystals with three kinds of domains;
see Chapter 15). In fact, the hexagonal → orthorhombic phase transition en-
tails the formation of such twinned crystals that cause hexagonal symmetry to
be feigned for the orthorhombic modification. Ba3N crystallizes as antitype in
the space group P63/mcm [197].

Lone electron pairs can be another reason for a shift of atoms out of the
octahedron centres, as observed at the P atom of phosphorus triiodide and the
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Fig. 13.7 RuBr3: view along a strand of face-
sharing octahedra and side view of a strand.
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Fig. 13.8 Distorted variants of structures from
Fig. 13.6 with subgroups of the space groups
G3, G4, and G6. The dots • mark how the Ru,
N, and P atoms are shifted from the octahe-
dron centres parallel to c. Occupied octahe-
dral voids are displayed in grey.

N atom of trimethylamine. PI3 crystallizes with a hexagonal-closest packing
of iodine atoms. The distribution of the phosphorus atoms corresponds to the
Wyckoff position 2c of the space group P63 22 (G6 in Fig. 13.6). However,
they have been shifted parallel to c towards an octahedron face each, which
results in three short P−I bonds and three longer P· · · I contacts. The space
group symmetry has been reduced to P63 (Fig. 13.8). A similar situation arises
for crystalline trimethylamine, whose methyl groups form a hexagonal-closest
packing. The N atoms are alternately shifted from the Wyckoff position 2c of
the space group P31m (G4 in Fig. 13.6) in the directions +c and −c, reducing
the symmetry to P3.
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Table 13.7 Crystal data of RuBr3, PI3, and NMe3.

Space a c Wyckoff Ele- Ideal coordinates Refe-
group /pm /pm position ment x y z x y z rences

RuBr3 Pmnm(2) 1125.6 587.3 4 f Ru 1
4 0.746 0.015 1

4 0.75 0.0 [206]
b = 649.9 2a Br 1

4 0.431 1
4

1
4 0.417 1

4
2b Br 1

4 0.052 3
4

1
4 0.083 3

4
4e Br 0.597 0.407 1

4 0.583 0.417 1
4

4e Br 0.408 0.903 1
4 0.417 0.917 1

4

PI3 P63 713.3 741.4 2b P 1
3

2
3 0.146 1

3
2
3 0.25 [207]

6c I 0.686 0.034 0 0.667 0,0 0

NMe3 P3 613.7 685.2 2d N 1
3

2
3 0.160 1

3
2
3 0.0 [208]

6g C 0.575 –0.132 0.227 0.667 0.0 0.25

The crystal data are presented in Table 13.7 in comparison to the expected
values without distortions. Not surprisignly, the deviations from the ideal val-
ues are largest for the molecular compounds PI3 and NMe3. In the case of
trimethylamine the deviations are also due to the fact that the C atoms are not
exactly in the centres of the methyl ‘spheres’.

13.3 Occupation of octahedral and tetrahedral
interstices in the cubic-closest packing of
spheres

13.3.1 Hettotypes of the NaCl type with doubled unit cell

If all octahedral voids of a cubic closest packing of spheres are occupied with
one species of atoms, the result is the NaCl type. This is also the structure of
the high-temperature modification of LiFeO2 (>670◦), with random distribu-
tion of Li and Fe atoms [210]. In the low-temperature form the Li and Fe atoms
are ordered and the doubled unit cell has a c/a ratio of 2.16. If one of the metal
atom positions is vacant, this corresponds to the structure of anatase, Ti�O2,
with c/a = 2.51 (Fig. 13.9). The corresponding group–subgroup relations are
shown in the left part of Fig. 13.10 [213].

The crystal structure of SnF4 can be described as a cubic-closest packing
of fluorine atoms with a doubled unit cell, with one quarter of the octahedral
voids occupied, in such a way that there are layers of vertex-sharing octahedra
(Fig. 13.9 and Fig. 13.10 right). The distortion of the sphere packing is small;
the c/a ratio is 1.96 instead of 2.
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Fig. 13.9 Unit cells of anatase (TiO2,
I 41/amd), SnF4, and ThCr2Si2 (both
I 4/mmm).
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Fig. 13.10 Hettotypes of the NaCl type with doubled unit cell. Opinion can differ whether it is sensible to include ThCr2Si2 here; see text.
� = vacant site. References: anatase [209]; γ-LiFeO2 [210]; SnF4 [211]; ThCr2Si2 [212].
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On the right side of Fig. 13.10 the ThCr2Si2 type has been included as a
derivative of the NaCl type. It has three-quarters of the metal atom positions
occupied, and one-half of the anion positions are vacant. The distortion is more
marked, with c/a = 2.62. In particular, the free z parameter of the Si atom
deviates considerably from the ideal value (z = 0.377 instead of z = 0.25).
Therefore, two Si atoms are shifted away from the Th atom while eight others
are closer, resulting in a coordination number of 10 for the Th atom (marked by
dotted lines in Fig. 13.9). The Cr atoms have a nearly tetrahedral coordination.
The Si atoms are close to one another in pairs, resulting in a direct bond.

We mention ThCr2Si2 as an example where the application of group the-
ory comes to the limit of becoming meaningless. The geometric and chemical
deviations are so severe that it is not really justified to regard ThCr2Si2 as a de-
fective derivative of the NaCl type. In the relation NaCl—ThCr2Si2 according
to Fig. 13.10, group theory serves as nothing more than a formal tool, with-
out chemical or physical justification. However, the relation is acceptable as
a mnemonic aid to be able to memorize the structure of ThCr2Si2. About 90
representatives are known of the ThCr2Si2 type.

,Nb
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0 0
0 0
0 1

2

k4

➤
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� : 1a Nb:3c � : 1b O: 3d
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0 1
2

1
2 0

0 1
2

1
2 0

0 0 1
2

1
2

Fig. 13.11 Description of NbO as a defective
variant of the NaCl type [214].

On the other hand, the mental derivation of the structure of NbO as a defec-
tive variant of the NaCl type seems to be natural, having one quarter of vacant
cation and anion sites (Fig. 13.11). The special aspect of NbO are Nb–Nb
bonds by formation of octahedral clusters of Nb atoms that are connected via
common vertices to form a network. Every Nb atom has a square coordination
by four O atoms.

13.3.2 Hettotypes of the CaF2 type with doubled unit cell

CaF2 (fluorite type) can be regarded as a cubic-closest packing of Ca2+ ions in
which all tetrahedral interstices are occupied by F− ions. A selection of struc-
ture types that result from partial vacation of the tetrahedral interstices with a
unit cell unchanged in size and also with a doubled unit cell are mentioned in
Fig. 13.12. Views of the unit cells are depicted in Fig. 13.13.

If variants with vacancies among the spheres of the packing are included in
the considerations, rather different structure types are obtained, with different
coordination polyhedra and kinds of linkage of the polyhedra (Table 13.8). In
all cases without vacancies in the sphere packing, the atoms in the tetrahedral
interstices keep the tetrahedral coordination. Partial occupation of the tetrahe-
dral interstices result in different coordination polyhedra for the atoms of the
sphere packing. These coordination polyhedra are derived from the coordina-
tion cube of the Ca2+ ion when its vertices are being removed (Fig. 13.14). Of
course, there is a group–theoretical connection: The point groups of the coor-
dination polyhedra are subgroups of the point group m3m of the cube (for the
linear arrangement the point group within the crystal is maximally 3m and not
∞/mm).
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Fig. 13.12 Group–subgroup relations for some structures that are derived from the CaF2 type by successive removal of atoms from the tetrahedral
interstices. The atoms mentioned to the left in the boxes form the packing of spheres. The Zn and S atoms of zinc blende can be interchanged since
they occupy equivalent positions. Note the multiplicities of the atomic positions as compared to the chemical composition. If, at a group–subgroup
step, the multiplicity of the position mentioned to the right side is halved or the one mentioned to the left side is doubled, then the position mentioned
to the right side splits into two positions, keeping their site symmetries; one of them becomes vacant (not mentioned).
Cu2O [215]; Pt2Si [216]; α-PbO [217]; PtS [218]; HgI2 [219, 220]; SiS2 [221].
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Fig. 13.13 Unit cells of the structures of CaF2, Cu2O, α-PbO, zinc blende, PtS, SiS2, β -HgI2, and α-ZnCl2. CaF2 has all tetrahedral voids occupied
(= centres of the octants of the cube). Each arrow marks the reduction of the number of occupied tetrahedral voids by the factor given in the arrow.
Metal atoms have been drawn light grey, non-metal atoms dark grey. The atoms mentioned first in the formulae form the cubic-closest packing.
Schottky symbols � designate vacant tetrahedral interstices (α-ZnCl2 is not mentioned in Fig. 13.12).
The conventional origin positions of the cells of α-PbO, SiS2, β -HgI2, α-ZnCl2, and PtS are not as drawn, but at the sites marked by �. The
coordinates mentioned in Fig. 13.12 in each case in the first column then correspond to the atoms drawn at the lower left corners of the cells.
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Table 13.8 Coordination polyhedra and polyhedron linkage for the atoms of the sphere packing
for the structure types mentioned in Fig. 13.12. The atoms mentioned first in the formulae form
the sphere packing.

Structure type Coordination polyhedron Linkage by

CaF2 cube all edges framework
zinc blende tetrahedron all vertices framework
α-PbO square pyramid all basal edges layers
PtS rectangle all edges framework
I2Hg tetrahedron 4 edges layers
S2Si tetrahedron 2 edges chains
α-Cl2Zn angle, c.n. 2 all vertices framework
Cu2O linear, c.n. 2 all vertices 2 interwoven frameworks

square pyramid
Pb in PbO 4mm

tetrahedron 43m
Zn in zinc blende

trigonal pyramid
I in β -Cu2HgI4 3m

rectangle mmm
Pt in PtS

angle mm2
S in SiS2

linear 3m
Cu in Cu2O

Fig. 13.14 Coordination polyhedra derived
from a cube by removal of vertices.

Exercises

Solutions in Appendix D (page 292)

(13.1) Boron triiodide crystallizes with a hexagonal-closest
packing of iodine atoms; the boron atoms occupy trian-
gular interstices whose centres take the position 0, 0, 1

4 of
the sphere packing. a = 699.1 pm, c = 736.4 pm; P63/m;
B: 2c, 1

3 , 2
3 , 1

4 ; I: 6h 0.318, 0.357, 1
4 [222]. The van der

Waals radius of an iodine atom is 198 pm. Derive the
structure of BI3 from the hexagonal-closest packing of
spheres.

(13.2) The C and I atoms of the cluster compound CZr6I12 com-
monly form a cubic-closest packing. W6Cl18 has a cubic-
closest packing of Cl atoms with vacancies at the centres
of the clusters. The metal atoms occupy part of the octa-
hedral interstices. Derive the structures from the cubic-
closest packing of spheres. The van der Waals radii are:
Cl 175 pm; I 198 pm.

CZr6I12 [223] R 3
(hex)

a = 1450.8 pm, c = 1000.7 pm
x y z

Zr 18 f 0.1430 0.0407 0.1301
C 3a 0 0 0
I 1 18 f 0.3114 0.2308 0.0008
I 2 18 f 0.6155 0.4598 0.0085

W6Cl18 [224] R 3
(hex)

a = 1493.5 pm, c = 845.5 pm
x y z

W 18 f 0.1028 0.1182 0.1383
Cl 1 18 f 0.2129 0.5296 –0.0116
Cl 2 18 f 0.1032 0.2586 0.0024
Cl 3 18 f 0.4397 0.0777 0.0281

(13.3) The crystal structure of Sn2OF2 can be regarded as a
hettotype of the cassiterite structure (SnO2, rutile type).
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There are distortions due to the lone electron pairs at the
tin atoms; in addition, one quarter of the O atom positions
are vacant [225]. Derive the symmetry relations between
cassiterite and Sn2OF2.

SnO2 P42/mnm
a = 473.6 pm, c = 318.5 pm

x y z
Sn 2a 0 0 0
O 4g 0.305 –0.305 0

Sn2OF2 A112/m
a = 507 pm, b = 930 pm, c = 808 pm, γ = 97.9◦

x y z
Sn1 4i 0.486 0.283 1

2
Sn2 4g 0 0 0.296
O 4i 0.803 0.392 0
F 8 j 0.301 –0.175 0.321

(13.4) The unit cell of α-ZnCl2 is shown in Fig. 13.13. The
crystal data are [226]:

space group I 42d; a = 539.8 pm, c = 1033 pm; Zn 4a,
0, 0, 0; Cl 8d, 0,25, 1

4 , 1
8 .

Derive the relation with the zinc blende type (Fig. 13.12).

(13.5) The crystal structure of OsO4 can be described as a
cubic-closest packing of O atoms (acub ≈ 435 pm) in
which one-eighth of the tetrahedral interstices are occu-
pied [227, 228].

I 12/a1, a = 863.2 pm, b = 451.5 pm, c = 948.8 pm,
β = 117.9◦

x y z
Os 4e 1

4 0.241 0 transformed from [228],
O1 8 f 0.699 0.517 0.618 setting C 12/c
O2 8 f 0.420 0.463 0.113

Make a drawing of the structure in a projection along b
(one unit cell) and derive the metric relations to the unit

cell of the CaF2 type. Supplement the tree of Fig. 13.12,
starting from the space group C 2/m2/m2/e. (The task is
exacting due to several necessary basis transformations
and origin shifts and because the correct subgroup among
several subgroups on a par has to be chosen.)

(13.6) The chlorine and caesium atoms of CsTi2Cl7-II com-
monly form a double-hexagonal-closest packing of
spheres (stacking sequence ABAC). The titanium atoms
occupy one quarter of the octahedral interstices in pairs
of face-sharing octahedra [229]. Derive the structure
from the double-hexagonal-closest packing of spheres.
Remark: Consider first what are the metric relations
between the unit cells; the distance between adjacent
spheres of the packing is approximately 360 pm. � =
centre of an octahedral interstice.

double-hexagonal closest packing
P63/mmc c/a = 3.266

x y z
X1 2a 0 0 0
X2 2d 2

3
1
3

1
4

� 4 f 1
3

2
3 0.125

CsTi2Cl7-II P1121/m
a = 728.0 pm, b = 635.4 pm, c = 1163.0 pm, γ = 91.5◦

x y z

Cs 2e 0.633 0.946 1
4

Ti 4 f 0.139 0.592 0.111
Cl1 2e 0.907 0.444 1

4
Cl2 2e 0.353 0.435 1

4
Cl3 2e 0.127 0.888 1

4
Cl4 4 f 0.112 0.268 –0.001
Cl5 4 f 0.634 0.253 0.007
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The treatment of inorganic compounds in the preceding chapters could produce
the impression that the application of group–subgroup relations is not appro-
priate to be applied to crystal structures of more complicated molecular com-
pounds. In fact, the vast number of such compounds crystallize in space groups
of lower symmetry, and the molecules frequently take positions with the site
symmetries 1 or 1. The most frequent space group among organic compounds
is P21/c (Table 14.1). For compounds consisting of chiral molecules, which
can adopt only one of the 65 Sohncke space-group types (cf. Section 8.6, page
114), it is P21 21 21. For this reason, it has even been argued that a ‘principle
of symmetry avoidance’ holds for molecular compounds. However, this is not
really true, as is shown by the examples of this chapter. The symmetry princi-
ple is also effective for crystal structures of molecular compounds. However,
aspect number 2 of the symmetry principle as stated in Section 1.1 is of great
importance. Frequently, the low symmetries of a large number of molecules do
not allow for packings with molecules occupying special positions with high
symmetries.

Molecules of arbitrary shape arrange themselves in a crystal as close as pos-
sible [230–232]. This has not only been shown by experience, but also by nu-

Table 14.1 Frequency of space groups among crystal structures of molecular compounds and
site symmetries adopted by molecules in these space groups; frequency of point groups among
molecules (only organic compounds with no more than one kind of molecule in the crystal, ap-
proximately 96 000 compounds) [238].

Space group Frequency Site symmetries of the molecules Point Frequency among
% in this space group in % group molecules in %

P21/c 40.0 1 86 1 14 1 70.9
P1 17.4 1 81 1 19 1 8.1
P21 21 21

∗ 11.6 1 100 2 7.5
C 2/c 7.1 1 48 1 10 2 42 m 6.5
P21

∗ 5.8 1 100 2/m 2.1
Pbca 4.8 1 88 1 12 mm2 1.7
Pna21 1.6 1 100 3 0.6
Pnma 1.3 1 2 1 1 m 97 mmm 0.5
Pbcn 1.0 1 36 1 4 2 60 222 0.3
146 others 9.4 1 55 4 0.3

∗ Sohncke space group
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merous energetic computations using interatomic potentials [233, 234]. How-
ever, even with powerful computer programs, the prediction of how given kinds
of molecules will pack themselves in a crystal is only possible in a restricted
way. The energy differences between several feasible polymorphic forms are
often much too small to establish reliable conclusions [235, 236]. KITAIGO-
RODSKII dealt intensively with the question of how molecules with irregular
shape can be packed so as to occupy space in a most parsimonious way, and he
investigated what symmetry elements are compatible with packings of the kind
‘proturberance clicks into place with a re-entrant angle’ [230, 237]. Mainly, in-
version centres, glide planes, and 21 axes are appropriate.

Statistics also show: Centrosymmetric molecules crystallize in more than
99% of all cases into centrosymmetric space groups and predominantly occupy
centrosymmetric positions [238, 239]. If a molecule has a twofold rotation
axis, then this is kept in 45% of all cases on a corresponding rotation axis of
the crystal. A threefold molecular axis is maintained with a frequency of 47%
and a mirror plane with 24%. Space groups that have reflection planes usually
occur only if at least one kind of molecule is placed on the planes [231, 238].

Statistics look different for inorganic compounds; higher-symmetry space
groups are much more frequent. Among the 100 444 entries of the year 2006
in the Inorganic Crystal Structure Database [3], Pnma is the most frequent
space group (7.4%), followed by P21/c (7.2%), F m3m (5.6%), F d 3m (5.1%),
P1 (4.0%), I 4/mmm (4.0%), C 2/c (3.8%), and P63/mmc (3.4%) [240]. How-
ever, these statistical data are misleading inasmuch non-molecular compounds
having higher-symmetry crystal structures were frequently studied repeatedly,
at different temperatures, pressures, and foreign-atom dopings.

The structures of molecules in crystals usually differ only marginally from
their structures in the gaseous state or in solution. The intermolecular forces
in the crystal are usually too weak to influence the molecular structure sig-
nificantly. Apart from slight distortions, only conformation angles experience
changes. However, there are exceptions, especially if a structural change al-
lows for a better packing density or if the association of molecules upon crys-
tallization is exothermic. For example, PCl5 consists of trigonal–bipyramidal
molecules in the gas phase; upon crystallization a rearrangement to PCl+4 and
PCl−6 ions takes place. Dimeric Al2Cl6 molecules associate to polymeric lay-
ers; N2O5 molecules crystallize as NO+

2 NO−
3 .

14.1 Symmetry reduction due to reduced point
symmetry of building blocks mm

Many crystal structures consisting of complicated molecules or ions can be
traced back to simple structure types if a molecule or molecular ion as a whole
is considered to be only one building block. For example, if a PtCl2−6 ion in
K2PtCl6 is considered to be one particle, the packing of PtCl2−6 and K+ ions
corresponds to the CaF2 type. In this case even the space group F m3m is the
same, since the point group m3m of the PtCl2−6 ions is the same as the site
symmetry of the Ca2+ ions in CaF2. Crystal structures related this way are
also considered to be homeotypic (see text after Definition 8.5, page 119).
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Fig. 14.1 The relation between CsCl and
KN3. Only coordinates of the particle centres
are stated. Dotted lines: Unit cell correspond-
ing to the CsCl type [241].

In most cases the point group of a molecule (or molecular ion) is lower than
the site symmetry of the idealized structure type, which we consider to be the
aristotype. In that case the symmetry of the space group has to be reduced. In
the actual hettotype, the site symmetry of the centre of gravity of the molecule
has to be a common subgroup of the site symmetry in the aristotype and the
molecular symmetry.

In potassium azide, KN3, the K+ and N−
3 ions are arranged like in caesium

chloride. However, the N−
3 ions are not spherical, but rod-shaped, point group

∞/mm. In order to achieve a favourable packing, the azide ions are oriented in
two mutually perpendicular directions perpendicular to c, with a slight expan-
sion of the lattice along a and b. The symmetry of the space group is reduced
to I 4/mcm (Fig. 14.1). The site symmetry mmm of the N−

3 ions is a common
subgroup of ∞/mm and the site symmetry m3m of the Cl− ions in CsCl. The
axes ratio of c/a = 1.16 <

√
2 is an expression of the expansion of the lattice.

14.2 Molecular packings after the pattern of
sphere packings

Some molecules and molecular ions are more or less ‘round’, i.e. they resem-
ble spheres. This is obvious for the fullerene molecule C60. Such molecules
tend to arrange themselves as in a packing of spheres. In addition, they often
exhibit dynamical behaviour in the temperature range immediately below the
melting point, with molecules that rotate in the crystal or perform strong rota-
tional vibrations. This is called a plastic phase. Molecules like MoF6 and ions
like PF−

6 and BF−
4 are notorious for this kind of behaviour. Upon cooling, a
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phase transition takes place, the molecules adopt a definite orientation, and a
symmetry reduction takes place.

MoF6 is body-centred cubic above−9.8 ◦C up to the melting point (17.4 ◦C),
with rotating molecules. It thus corresponds to a body-centred cubic packing of
spheres. The molecules become oriented below −9.8 ◦C and a phase transition
to an orthorhombic phase takes place; this is a modification that could only
be regarded as a packing of MoF6 ‘spheres’ with some intellectual acrobatics.
However, it finely fits a description as a double-hexagonal packing of fluorine
atoms (stacking sequence ABAC) in which one-sixth of the octahedral voids
are occupied by Mo atoms [242–244].

In other cases the positions of the molecules do indeed correspond to a pack-
ing of spheres. For C60 this is not surprising. Its molecules are packed in
a cubic-closest packing of spheres in the space group F 4/m32/m [245]. The
molecules rotate in the crystal, albeit with a preferential orientation that cor-
responds to the site symmetry 2/m3. 2/m3 is the common subgroup of the
molecular symmetry 2/m3 5 (icosahedron symmetry) and the site symmetry
4/m32/m in F 4/m32/m. If all molecules were ordered, the space group would
be F 2/m3, a maximal subgroup of F 4/m32/m [246]. Below 249 K the mole-
cules become ordered in the subgroup P2/a3 and the site symmetry is reduced
to 3 [247].

The octahedral interstices in a packing of C60 molecules can be occupied,
with some distortion and expansion of the packing being tolerated. The com-
pound C60·Se8·CS2 offers an example (Fig. 14.2). The C60 molecules are or-
dered like in a distorted hexagonal-closest packing of spheres, with Se8 and
CS2 molecules placed in the ‘octahedral’ voids. The octahedral voids of the
sphere packing are located on the 63 axes of the space group P63/m2/m2/c.

Fig. 14.2 The relation between the
hexagonal-closest packing of spheres and the
structure of C60·Se8·CS2. The coordinates
designate the centres of the C60 molecules.
The unit cell of the sphere packing is
marked by dotted lines at the right side.
The two triangles are two faces of an
octahedron spanned by the centres of six C60
molecules [248].
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lattice parameters in pm:
a b c
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Fig. 14.3 The relations of the hexagonal-
closest packing of spheres with some mod-
ifications of P4S3 and As4S3 [249]. Only
coordinates of the centres of the molecules
are mentioned. Pmcn and Pbnm are non-
conventional settings of Pnma.

These screw axes have been lost just as the mirror planes and the twofold rota-
tion axes, resulting in the actual subgroup P121/c1.

For the packing of the nearly ellipsoid-shaped C70 molecules see Section
16.1, page 218, and Fig. 16.2.

The less spherical cage molecules of P4S3 and As4S3 crystallize like in a
hexagonal-closest packing of spheres. Several modifications are observed,
what is an expression that none of them permits packing free of stress. The
four modifications mentioned in Fig. 14.3 have four different space groups,
but all of them belong to the space-group type Pnma. In all cases the site
symmetry of the centres of gravity of the molecules is m, and the deviation of
the molecular shape from being spherical is absorbed by different kinds of dis-
tortion: For γ-P4S3 it is a slight shift from the ideal positions (cf. y coordinate
in Fig. 14.3; Fig. 14.4). For α-P4S3 and α-As4S3 the lattice has experienced
an expansion in the direction of a, including two different orientations of the
molecules. For α-P4Se3 the deviations from the ideal packing are the least,
but this entails four symmetry-independent molecules with differently rotated
molecules [249].

Even for more complicated particles the packing can often be derived
from a simple structure type. Consider as an example the compound
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Fig. 14.4 The packing in four modifications
of the cage-like molecules E4X3. Dotted
lines: pseudohexagonal unit cells. Numbers:
z coordinates of the molecule centres.
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(Na-15-crown-5)2[ReCl6]·4CH2Cl2 [250]. It contains octahedral ReCl2−6 ions;
two Na+ ions are coordinated to two opposite octahedron faces of the
ReCl2−6 ion, and each of them has attached a crown-ether molecule; in ad-
dition, there are intercalated dichloromethane molecules. The building block
[15-crown-5–Na+–ReCl2−6 –Na+–15-crown-5] is far from being spherical. And
yet these blocks are arranged like in a hexagonal-closest packing of spheres
(Fig. 14.5 right). If each of these blocks is considered as one unit, the rela-
tion is as shown in Fig. 14.5. The symmetry reduction consists of the min-
imum of three steps that is needed to reduce the site symmetry 6m2 of a
sphere in the packing of spheres down to the site symmetry 1. The coordi-
nates of the Re atoms correspond nearly to the ideal values and the axes ratio
b/a = 1.756 ≈

√
3 is in accordance with the pseudohexagonal symmetry. The

voids in the strands of face-sharing ‘octahedra’ running along c offer more
space than in the packing of spheres, due to the size of the building blocks.
They form channels that contain the CH2Cl2 molecules.
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Fig. 14.5 The packing in (Na-15-crown-5)2[ReCl6]·4CH2Cl2 and its relation with the hexagonal-closest packing of spheres. Only coordinates of the
Re atoms are mentioned. Top right: One building block (15-crown-5–Na)[ReCl6](Na–15-crown-5); these building blocks are aligned approximately
along c, in the direction of view of the lower image; numerical values are z coordinates of the Re atoms [250].

14.3 The packing in tetraphenylphosphonium
salts

Tetraphenylphosphonium ions, P(C6H5)+4 , and similar species like As(C6H5)+4
and Li(NC5H5)+4 , are popular cations among chemists; they are used to stabi-
lize unstable anions. Generally, the compounds are soluble in weakly polar
solvents like CH2Cl2 and, as a rule, they crystallize easily.

The space requirement of the phenyl groups in a P(C6H5)+4 ion entails a
preferred conformation, such that the ion adopts the point symmetry 4. In
crystalline tetraphenylphosphonium salts the ions are frequently stacked into
columns, two phenyl groups of one ion being rotated by 90◦ relative to two
phenyl groups of the next ion (Fig. 14.6) [151]. The columns are arranged in
parallel in the crystal, parallel to the direction we designate by c. The distance
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between two neighbouring cations in the column amounts to 740–800 pm.
Most frequent is a tetragonal packing in the space group P4/n, where all phos-
phorus atoms are at the same height at z = 0. The cations take positions with
the site symmetry 4, whereas the anions are placed on the fourfold rotation
axes of the space group P4/n (site symmetry 4). This kind of packing is ob-
served if the anions have (at least) one fourfold axis of rotation, namely with
square anions like AuCl−4 , swastika-like anions like Au(SCN)−4 , tetragonal-
pyramidal anions like VOCl−4 , and octahedral anions like SbCl−6 (Fig. 14.8).
After a compound whose structure was determined at an early time, this is
called the As(C6H5)4[RuNCl4] type, what, strictly speaking, only corresponds
to compounds with tetragonal-pyramidal anions [251].

➤

c

➤

➤

740 –
800 pm

�

�

�

�

�

�

�

Fig. 14.6 Stacking of P(C6H5)+4 ions into
columns.

What happens if the symmetry of the anions is not compatible with the site
symmetry 4? The consequence is a symmetry reduction, i.e. the space group
is then a subgroup of P4/n with a correspondingly reduced site symmetry for
the anions. Examples:

SnCl−5 ions have a trigonal-bipyramidal structure, point group 62m. This
symmetry is only compatible with the packing of the As(C6H5)4[RuNCl4] type
if the space-group symmetry is reduced from P4/n to P112/n, the SnCl−5 ions
being aligned along the former fourfold axis with one of their twofold axes
[252]. This requires only one step of symmetry reduction (Fig. 14.7).
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Fig. 14.7 Tree of group–subgroup relations for several tetraphenylphosphonium salts [150, 151].
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Fig. 14.8 Unit cells of several
tetraphenylphosphonium salts.
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If the anions have no twofold axes, the symmetry has to be reduced even
more. The packing, in principle, is retained with SnCl−3 ions, but the space-
group symmetry is reduced to P1 [253].

A symmetry reduction can also be necessary if the anions still have a four-
fold rotation axis, but their size does not permit them to be aligned along the
fourfold rotation axis of the crystal within the predetermined packing of PPh+

4
ions. For example, [TiCl5(NCCH3)]

− ions have point symmetry 4mm (not
taking into account the H atoms, or if the methyl group is free to rotate).
However, along the molecular axis the ions have a length of approximately
1060 pm, whereas the period of translation in the columns of PPh+

4 ions (c
axis) is no longer than 800 pm. Nevertheless, the packing is retained; the
[TiCl5(NCCH3)]

− ions are tilted relative to the c axis. As a consequence, there
can no longer be a rotation axis in this direction, the space-group symmetry is
reduced to P1 (Figs. 14.7 and 14.8) [254].

If one [MoOCl4]− ion and one [MoOCl4(NCCH3)]
− ion are aligned one be-

hind the other on a fourfold axis of rotation, together they have a length of ap-
proximately 1600 pm. That is twice the length of 800 pm between two neigh-
bouring AsPh+

4 ions. The packing of (AsPh4)2[MoOCl4][MoOCl4(NCCH3)]
remains tetragonal and also the space-group type P4/n is retained, albeit with
doubled c axis. P4/n has an isomorphic subgroup P4/n with doubled c axis
[255].

Even PPh4[TiCl5(NCCH3)]·CH3CN follows the same packing principle. To
obtain the space required for the additional acetonitrile molecule, the columns
of the PPh+

4 ions are separated a little and the [TiCl5(NCCH3)]
− ions move

away from the former 4 axes. After the symmetry reduction P4/n −→ P112/n
— 2c→ P1121/n the [TiCl5(NCCH3)]

− ions are placed alternately on two
sides of a 21 axis, each one opposite to one of the additional acetonitrile mole-
cules [254].

Still another packing variant is observed with [CoBr3(NCCH3)]
− ions. These

are tilted relative to the fourfold axis in four different directions, such that the
4 axis is converted to a 41 axis, with fourfold length of c. That requires two
steps of symmetry reduction from P4/n to I 41/a. The packing of the PPh+

4
ions remains nearly unaffected, although there are two symmetry-independent
PPh+

4 ions and their site symmetry has been reduced from 4 to 2 [256].
P1 and P1121/n (P21/c) are the most common space-group types of molec-

ular compounds (Table 14.1). Neither in PPh4[TiCl5(NCCH3)] nor in
PPh4[TiCl5(NCCH3)]·CH3CN do any particles occupy a special position, and
the metrics of their unit cells are far from being tetragonal. Nevertheless, in
both cases the close relationship to the tetragonal As(C6H5)4[RuNCl4] type
is evident; the molecular packing is still pseudotetragonal. A ‘principle of
symmetry avoidance’ is out of the question. However, the situation requires a
symmetry reduction from the ideal symmetry in the space group P4/n, quite in
accordance with aspect 2 of the symmetry principle as stated in Section 1.1.
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Exercises

Solutions in Appendix D (page 296)

(14.1) In urea inclusion compounds the urea molecules form
a honeycomb-like host structure via hydrogen bonds in
the space group P61 22. Hydrocarbon molecules or their
derivatives are included in the channels of the comb. If
the length of the guest molecules or a multiple thereof is
compatible with the c lattice parameter of the host struc-
ture, the guest molecules can be ordered or disordered,
depending on temperature. If the molecular length is not
compatible with c, the result is an incommensurate com-
posite crystal. Set up the tree of group–subgroup rela-
tions between the space groups of the host structures with
the following crystal data [257]:

guest molecule compound space group a/pm b/pm c/pm references
n-hexadecane C16H34·[OC(NH2)2]12-I P61 22 822 822 1101 [258]
n-hexadecane C16H34·[OC(NH2)2]12-II P32 12 820 820 2200 [259]
n-hexadecane C16H34·[OC(NH2)2]12-III P21 21 21 825 1389 1098 [258]
2,9-decandione C10H18O2·[OC(NH2)2]8 P31 12 823 823 4416 [260]
2,7-octandione C8H14O2·[OC(NH2)2]7 P61 22 821 821 7691 [261]

(14.2) The (BN)3 ring in the hexachloroborazine molecule,
(BN)3Cl6, occupies approximately as much space as a
chlorine atom. The crystal structure can be described as a
cubic-closest packing of Cl atoms in which one-seventh
of the spheres has been replaced by (BN)3 rings. The
Cl· · ·Cl van der Waals distance is approximately 350 pm.
Derive the structure from the cubic-closest packing. Z in
the table refers to the centre of the molecule.

R3 (hex) a = 883.5 pm, c = 1031.3 pm [262]
x y z

Z 0 0 0.002
Cl 1 0.140 0.404 –0.005
Cl 2 0.408 0.265 0
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15.1 Phase transitions in the solid state

Definition 15.1 A phase transition is an event which entails a discontinuous
(sudden) change of at least one property of a material.

Properties that can change discontinuously include volume, density, elasticity,
electric, magnetic, optical, or chemical properties. A phase transition in the
solid state is accompanied by a structural change, which means a change of
crystallographic data for crystalline solids (space group, lattice parameters,
occupied positions, atomic coordinates). In the literature, ‘structural phase
transitions’ are indeed distinguished from ‘magnetic’, ‘electronic’, and other
kinds of phase transitions, but all of these transitions are always accompanied
by (sometimes very small) structural changes. For example, a transition from
a paramagnetic to a ferromagnetic phase entails spontaneous magnetostriction,
i.e. the structure experiences a slight deformation.

Even the so-called isostructural or isosymmetric phase transitions involve
structural changes. These are transformations that exhibit no changes of the
occupation of Wyckoff positions, the number of atoms in the unit cell, and the
space group (within the scope of the parent clamping approximation; Section
11.1, page 137). For example, samarium sulfide, SmS, crystallizes in the NaCl
type. At ambient pressure it is a black semiconductor. Under pressure it expe-
riences a phase transition to a metallic, golden lustrous modification, combined
with a sudden volume change by −14% and a delocalization of electrons from
the 4 f subshell of the samarium atoms into a metallic 5d6s band (‘electronic
phase transition’; Sm2+S2− → Sm3+S2−e−). The golden SmS also has the
NaCl structure; nevertheless, there is a structural change because the lattice
parameter experiences a sudden decrease from a = 591 pm to a = 562 pm
(values at 58 K and 1.13 GPa [263]).

There exist numerous kinds of phase transitions, and the corresponding the-
ories and experimental findings are the subject of an extensive field of research
in physics. This chapter gives only a small insight, group-theoretical aspects
being in the foreground. A few additional considerations are dealt with in Ap-
pendix B (page 269). First, we introduce a few common distinctions.
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15.1.1 First- and second-order phase transitions

A thermodynamically stable phase can become unstable relative to another
phase by a change of the external conditions (temperature, pressure, electric
field, magnetic field, mechanical forces); this causes a stress that can induce a
transformation. The transformation is enantiotropic, i.e. reversible; it can be
reversed by returning to the original conditions.1 If only one variable of state is1Monotropic phase transitions are irre-

versible, i.e. they start from a phase that is
only kinetically stable, but thermodynami-
cally unstable at any condition.

changed, for example the temperature T or the pressure p, then there is a point
of transition Tc or pc at which the phases are at equilibrium with one another
and where the Gibbs free energy change is ΔG = 0.

Let: G = Gibbs free energy (free enthalpy), H = enthalpy, U = internal en-
ergy, S = entropy, and V = volume. They are functions of T and p and further
variables of state like electric or magnetic fields; we restrict our considerations
to the variables T and p.

∂ G
∂ T

= −S
∂ G
∂ p

= V (15.1)

∂ 2G
∂ T 2 = − ∂ S

∂ T
= − 1

T
∂ H
∂ T

= −Cp

T

∂ 2G
∂ p2 =

∂V
∂ p

= −κV

∂ 2G
∂ p∂ T

= αV

For reversible processes, according to the laws of thermodynamics, (neg-
ative) entropy and volume are the first derivatives of the Gibbs free energy
G = H −T S = U + pV −T S with respect to temperature and pressure. The
partial derivatives express that this is valid if the other variable(s) of state are
held constant. The second derivatives with respect to T and p express the spe-
cific heat at constant pressure, Cp = ∂ H/∂ T ; the compressibility of the volume
V at constant temperature, κV = −∂V/∂ p; and the thermal expansion of the
volume, αV = ∂V/∂ T , α being the coefficient of thermal expansion.

Definition 15.2 after EHRENFEST (1933). At a first-order phase transi-
tion at least one of the first derivatives of the Gibbs free energy G experiences
a discontinuous change, i.e. ΔS 	= 0 or ΔV 	= 0. It is accompanied by the ex-
change of conversion energy (latent heat) ΔH = TΔS with the surroundings.
At a second-order phase transition volume and entropy experience a con-
tinuous variation, but at least one of the second derivatives of G exhibits a
discontinuity. At a phase transition of n-th order, a discontinuity appears for
the first time at the n-th derivative (however, third and higher order transitions
do not really occur).

The mentioned distinction of the order of phase transitions after EHREN-
FEST is based on purely thermodynamic arguments and macroscopic measured
variables, without taking into account the interatomic interactions and struc-
tures of the substances.

Since the times of EHRENFEST, theory and experimental measurement tech-
niques have advanced considerably. The mentioned classification has turned
out to be neither sufficiently ample nor sufficiently precise. In phase-transition
physics, the distinction of discontinuous and continuous phase transitions has
replaced the classification after EHRENFEST:

Definition 15.3 At a discontinuous phase transition entropy as well as an
order parameter change discontinuously. At a continuous phase transition
the entropy and order parameter change continuously (in infinitesimal small
steps).

Section 15.2 explains what an order parameter is.
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Often there is hardly any difference between the old and the new classifica-
tion. The terms ‘first’ and ‘second order’ continue to be used. ‘First-order
transition’ is often used as a synonym for ‘discontinuous phase transition’
since every discontinuous transition is also a first-order transition according
to EHRENFEST. ‘Second-order transition’ usually means ‘continuous phase
transition’. In any case, all phase transitions, including the continuous transi-
tions, exhibit a discontinuous behaviour of certain thermodynamic functions.

In the theory of continuous phase transitions, critical points are of essential
importance, and the corresponding physical laws are called critical phenom-
ena. Continuous phase transitions exhibit a number of properties in common
(‘universality’), in contrast to the discontinuous transitions. In particular, they
do not depend on the kind of interaction between the atoms, but on their range
of action and on the number of space dimensions in which they are active. For
more details see Appendix B (page 269).

A discontinuous phase transition is always accompanied by an exchange of
latent heat ΔH = TΔS with the surroundings. This exchange cannot occur in-
stantly, i.e. with an infinitely fast transfer of heat. Accordingly, discontinuous
phase transitions exhibit hysteresis: The transition lags behind the causing tem-
perature or pressure change. When the point of transition is reached, nothing
happens; under equilibrium conditions the transition does not get started. Only
after the point of transition has been crossed, i.e. under non-equilibrium con-
ditions, does the transition get started, provided that nuclei of the new phase
are being formed which then grow at the expense of the old phase. Simulta-
neously, a temperature gradient is being built up with the surroundings, thus
enabling the flow of latent heat. Predominantly, nuclei are formed at defect
sites in the crystal.

In contrast, continuous phase transitions show no latent heat, no hysteresis,
and no occurrence of metastable phases.

15.1.2 Structural classification of phase transitions

A classification of phase transitions frequently encountered in the literature is
due to BUERGER [37]:

(1) Reconstructive phase transitions: Chemical bonds are broken and re-
joined; the reconstruction involves considerable atomic motions. Such
conversions are always first-order transitions.

(2) Displacive phase transitions: Atoms experience small shifts.

(3) Order–misorder transitions:2 Different kinds of atoms that statistically 2The common term is term ‘order–disorder
transition’. However, we take the liberty
of replacing the unfortunate term ‘disorder’
by the more precise term ‘misorder’ because
there is still some order in the ‘disordered’
state; it is merely an order with faults.

occupy the same crystallographic point orbit in a crystal become ordered
in different orbits or vice versa. Or molecules that statistically take sev-
eral orientations become ordered in one orientation.

The mentioned classification is often made according to the known struc-
tures before and after the phase transition, without experimental evidence of
the actually occurring processes and atomic motions during the transition.
Nevertheless, frequently there are no doubts as to what category a phase tran-
sition is to be assigned. However, the qualitative kind of the classification does
not always permit a clear assignment. There exists no unanimous opinion in



200 Symmetry relations at phase transitions

the literature, of what has to be considered to be a displacive transition and how
it should be delimited on the one hand from reconstructive, on the other hand
from order–misorder transitions. For example, some authors call transitions
displacive only if the atomic shifts are not only small, but also take place con-
tinuously. Some other authors call them displacive if there is a group–subgroup
relation between the involved space groups and reconstructive if not.

On the other hand, BUERGER’s classification sometimes permits subtle dis-
tinctions. For example, PbTiO3 and BaTiO3 both crystallize at high tempera-
tures in the cubic perovskite type (Pm3m). PbTiO3 has a Ti atom at the centre
of its coordination octahedron. In BaTiO3, however, it does not seem to be
placed at the octahedron centre, but at eight positions slightly sideways from
the centre, with occupancy probabilities of 1

8 each. At the cubic → tetragonal
transition the Ti atoms of PbTiO3 slightly shift away from the centres of the
octahedra, parallel to +c; that is a displacive transition. However, upon cool-
ing, BaTiO3 becomes tetragonal in that a Ti atom becomes more ordered by
occupying only four out of the eight positions with occupancy probabilities of
1
4 each. Upon further cooling it restricts itself to two positions (orthorhombic)
and finally to one position (rhombohedral). These are order–misorder transi-
tions [264–266].

15.2 On the theory of phase transitions mm

15.2.1 Lattice vibrations

Lattice vibrations play a major role at phase transitions in the crystalline state.
In physics, lattice vibrations are treated as quasiparticles, as phonons, by anal-
ogy to the photons of light. A vibration with a certain frequency corresponds
to phonons of a certain energy. We do not deal here with the theory of vibra-
tions, but mention only some terms that are important for the understanding of
the following [267–271].

In solid-state physics a mode (vibrational mode) is a collective and corre-
lated vibrational motion of atoms having certain symmetry properties.

The symmetry of point and space groups does not deal with time. The sym-
metry of time-dependent functions like vibrations is not covered. Represen-
tation theory offers the necessary tools to deal with the symmetry properties
of vibrating atoms in molecules and crystals; it is not a topic of this book,
but there exists plenty of literature (e.g. [15–22]). Irreducible representations33often called irrep, for short

(symmetry species) are used to designate the symmetry of vibrations. The
symbols introduced by PLACZEK are commonly used to designate the sym-
metry of molecular vibrations [272, 273] (called Mulliken symbols in Ameri-
can literature because MULLIKEN adopted them to designate the symmetry of
wave functions [274]). A list with the most important symbols can be found in
Appendix C (page 279). The symbols are also suited for the designation of the
symmetry of lattice vibrations in crystals at the Γ point of the Brillouin zone.

In the language of solid-state physics, the Brillouin zone is a polyhedron
around the origin of a coordinate system in ‘k space’.4 The origin of the Bril-4k space corresponds to the reciprocal space

common in crystallography, but is expanded
by a factor of 2π.

louin zone is called the Γ point. Every lattice vibration is represented by a
point with coordinates k1, k2, k3 in the Brillouin zone.
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2 N1; k1 = π/(2a1); λ = 4a1
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Fig. 15.1 Atomic displacements for three
lattice modes of a chain consisting of
two kinds of atoms. Other lattice modes
with 0 < k1 < π/a1 have wavelengths λ

between 2a1 and ∞. The number of nodes is
k′1 = k1N1a1/π with N1 = number of unit
cells in the chain, a1 = periodicity length
(lattice constant); 0 ≤ k′1 ≤ N1.

Three lattice vibrations are shown in Fig. 15.1 for the simple case of a chain
(= crystal with one-dimensional translation symmetry) consisting of two kinds
of atoms. N1 is the number of unit cells in the chain of finite length, a1 is the
lattice constant, and k′1 is the number of vibrational nodes of the standing wave.
The standing wave with k′1 = 0 has no nodes; all translation-equivalent atoms
move in the same way and synchronously in all unit cells (in other words:
the particle lattice of one kind of atoms vibrates relative to the particle lattice
of the other kind of atoms). The vibration with k′1 = 1

2 N1 has half as many
nodes as unit cells. The vibration with k′1 = N1 has exactly one node per unit
cell; translation-equivalent atoms in adjacent cells move exactly in opposite
directions (antisymmetric; opposite in phase). There can be no more nodes
than unit cells. Instead of designating the number of nodes by integral numbers
k′1 that run from zero to N1, numbers k1 = k′1π/(N1a1) are used which are
independent of the number of cells. The maximal possible number of nodes
k′1 = N1 then corresponds to the value k1 = π/a1. Three numbers 0 ≤ k1 ≤
π/a1, 0 ≤ k2 ≤ π/a2, 0 ≤ k3 ≤ π/a3 are needed for a crystal with translational
symmetry in three dimensions, and nodal surfaces replace nodal points.

A point at the boundary of the Brillouin zone has ki = π/ai. Special points
at the Brillouin zone boundary are designated with capital latin letters (e.g.
K, M, X). Vibrational modes at the Γ point, k1, k2, k3 = 0, have no nodal sur-
faces; they have atoms that perform the same vibrational motions synchro-
nously in all unit cells of the crystal. Only modes that are very close to the
Γ point can be measured by optical techniques (infrared and Raman spec-
troscopy). Modes outside of the Γ point can be measured by inelastic neutron
scattering.
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rutile type, T > 490 K
P 42/m 21/n 2/m B1g

CaCl2 type, T < 490 K
P 21/n 21/n 2/m Ag

Fig. 15.2 Mutual rotations of the coordination
octahedra of the soft mode of CaCl2 in the
rutile and CaCl2 types.

For the example of CaCl2, one vibrational mode of the rutile-type modifi-
cation is marked by arrows in Fig. 15.2 (top). This mode involves a mutual
rotational vibration of the strands of edge-sharing coordination octahedra that
run along c; the motion is the same and synchronous in all unit cells and is thus
at the Γ point. In tetragonal CaCl2 (P42/m21/n2/m) this mode is of symmetry
species B1g. As explained in Table C.1 (page 279), in this case B means anti-
symmetric with respect to the 42 axes, i.e. after execution of a 42 operation the
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direction of motion of the atoms has to be reversed. The lower-case 1 means
symmetric with respect to the 21 axes parallel to a (and b). The index g means
symmetric with respect to the points of inversion.55g from the German gerade, meaning even.

In the orthorhombic low-temperature modification of CaCl2 (P21/n21/n2/m;
Fig. 15.2, bottom), the same kind of mode is symmetric with respect to all
symmetry elements, it is totally symmetric (also called the identity or unit rep-
resentation). Totally symmetric means that the space-group symmetry is com-
pletely fulfilled at any time of the vibrational motion. The symmetry species is
Ag. The B1g mode of the tetragonal as well as the Ag mode of the orthorhombic
form are observable by Raman spectroscopy.

15.2.2 The Landau theory of continuous phase transitions

In 1937, L. D. LANDAU introduced a phenomenological theory6 to treat con-6A phenomenological theory relates obser-
vations mathematically without tracing them
back to a fundamental law.

tinuous phase transitions in a uniform way. The theory has been considerably
expanded by E. M. LIFSCHITZ and V. L. GINZBURG and later on by many
more authors, and finally has been extended to cover discontinuous phase tran-
sitions as well [11, 264, 275–279].

First, we present the basic concepts of Landau theory for continuous phase
transitions by means of the example of the tetragonal � orthorhombic phase
transition of calcium chloride. An order parameter is defined to trace the course
of the phase transition. The order parameter is an appropriate, measurable
quantity that is apt to account for the essential differences of the phases.

In the first instance, the order parameter is a quantity that can be measured
macroscopically. Depending on the kind of phase transition, it can be, for
example, the difference of the densities of phases 1 and 2 or the magnetization
at a transition from a paramagnetic to a ferromagnetic phase. However, certain
changing structural parameters can also be chosen as order parameters. The
order parameter must fulfil certain conditions; these include:

In the lower-symmetry phase, the order parameter must change continuously
with temperature (or pressure or some other variable of state) and finally it
must vanish at the critical temperature Tc (or at the critical pressure pc), i.e. it
must become zero; in the higher-symmetry phase, after having surpassed Tc, it
remains zero. The critical temperature corresponds to the point of transition
(at a temperature-dependent transition). For transitions in the solid state, the
order parameter has to fulfil certain symmetry properties that are explained on
the following pages. As explained in Appendix B (Section B.2, page 271),
the order parameter η can be used to expand a power series for the Gibbs free
energy, G = G0 + 1

2 a2η2 + 1
4 a4η4 + 1

6 a6η6 + · · · . This power series comprises
only even powers of η , i.e. it is invariant to changes of the sign of η.

CaCl2 is tetragonal in the rutile type above the transition temperature Tc =
490 K (P42/mnm); below it is orthorhombic in the CaCl2 type (Figs. 1.2 and
1.3, page 6). As compared to the tetragonal form, the strands of edge-sharing
coordination octahedra running parallel to c have been mutually rotated in the
orthorhombic form. The angle of rotation becomes larger the further the tem-
perature is below Tc. As with all (static) structural descriptions, the stated
position of the octahedra refers to their mean positions, i.e. the equilibrium
positions of the atomic vibrations.
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Even with the slightest rotation of the octahedra the symmetry can no longer
be tetragonal. The lattice parameters a and b become unequal and the mirror
planes running diagonally through the unit cell of the rutile structure cannot
be retained (in addition to some more symmetry elements). The symmetry of
the CaCl2 type has to be that orthorhombic subgroup of P42/mnm in which
these mirror planes have been omitted; that is the space group P21/n21/n2/m
(Pnnm). Universally it holds:

First criterion of Landau theory: At a continuous phase transition, the
space group H of one phase needs to be a subgroup of the space group G of
the other phase: H < G (‘the symmetry is broken’). It does not have to be a
maximal subgroup.

Starting at a temperature T > Tc = 490 K, upon reduction of temperature, the
frequency of the B1g mode of the octahedra of tetragonal CaCl2 shifts towards
zero. This kind of behaviour is called a soft mode. After the temperature has
fallen below the critical temperature Tc = 490 K, the equilibrium position of the
octahedra has switched from that of the tetragonal to that of the orthorhombic
form. The strands of octahedra now perform rotational vibration about the
new equilibrium position, which now corresponds to the symmetry species Ag

of space group Pnnm. The frequency shift is reversed, with rising frequencies
the more the temperature is below Tc.

Since the motion of atoms during the phase transition is directly connected
with the vibrational mode, one says, ‘the phase transition is driven by a soft
mode’ or ‘the mode condenses’ or ‘the mode freezes’. The symmetry species
of the higher-symmetry phase is called the active representation.

Second criterion of Landau theory: The symmetry breach is due to only
one irreducible representation (symmetry species), the active representation.
In the higher-symmetry phase it may not be the identity representation (to-
tally symmetrical vibration). Upon the phase transition it becomes the iden-
tity representation of the lower-symmetry phase.

In Fig. 15.3 the vector�η has been drawn that marks the shift of the equilib-
rium position of a Cl atom as compared to the position in the high-temperature
form. The vector shows how the coordination octahedra have been rotated. At
a given temperature T < Tc the octahedra have been rotated by a certain angle,
as compared to the rutile type, and the vector �η has some specific length η .
Rotation of the octahedra in the opposite direction −�η is completely equiva-
lent energetically. In the tetragonal high-temperature modification the value is
η = 0. The value of η of the shift can be used as an order parameter.

➤➤➤➤

�η

Fig. 15.3 Two connected octahedra in the
low-temperature modification of CaCl2 and
shift vector�η of the common Cl atom as com-
pared to the position in the high-temperature
modification.

According to the theory, the order parameter must behave with respect to
symmetry in the same way as the active representation (it must be ‘transformed
like the active representation’); for CaCl2 this is the symmetry species B1g of
P42/mnm. As can be checked in corresponding tables (in the ‘character table’
of the point group 4/mmm, see, e.g. [15, 16, 22]), a ‘basis function’ x2 −y2 be-
longs to B1g, x and y being Cartesian coordinates. In our case, the coordinates
x and y of the Cl atom can be taken. η being proportional to x− y, and with
x2 − y2 = (x− y)(x + y) and x + y ≈ constant, η is proportional to x2 − y2 to a
good approximation and is thus an appropriate order parameter. A couple of
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further variables can be used as approximate order parameters for CaCl2; due
to sinϕ ≈ tanϕ ≈ ϕ this is valid for the (small) angle of rotation ϕ of the octa-
hedra and for the ratio (b−a)/(b+ a) of the lattice parameters (the so-called
spontaneous deformation).

In the lower-symmetry phase (T < Tc) the order parameter follows a power
law as mentioned in the margin. A is a constant and β is the critical exponent.

η = A

(
Tc −T

Tc

)β

(15.2) As explained in Appendix B, β ≈ 0.5 holds if there are long-range interactions
between the particles; this is fulfilled for CaCl2, due to the interconnection
of all octahedra. For short ranges of interaction, for example, for magnetic
interactions, β ≈ 0.33.

Landau theory agrees well with the experimental data shown in Fig. 15.4.
There is no discontinuous change of volume at the point of transition. The
order parameter η ′ = (b− a)/(b + a) is consistent with the power law (15.2)
over a large temperature range, a critical exponent of β = 0.45 matching the
experimental dependence quite well. One lattice mode of symmetry species
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Fig. 15.4 Upper left: Plot of the temperature-dependent course of the order parameter η ′ of CaCl2. Lower left: Temperature dependence of the
lattice parameters and the unit cell volume of CaCl2 [38, 40]. Right: Temperature dependence of the frequencies of Raman-active vibrations of
CaCl2 [280]. The B1g mode of the orthorhombic modification at 120 cm−1 changes to the symmetry species A2g of the tetragonal modification and
becomes Raman-inactive.
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B1g of P42/mnm exhibits soft mode behaviour and switches to the symmetry
species Ag of Pnnm, while the frequencies of all other modes remain nearly
temperature independent, even across the point of transition. The minimum of
the frequency of the soft mode is exactly at the transition temperature found
by crystallography.

The same kind of rutile type � CaCl2 type phase transition has been ob-
served with further compounds (e.g. CaBr2, MgF2, NiF2, ZnF2, stishovite-
SiO2, SnO2). If the phase transition is driven by pressure, the CaCl2 type is
the high-pressure modification.

The sketched model of a continuous phase transition, driven by a lattice
mode at the Γ point of the Brillouin zone, matches the notion of a continuous
change from one structure to the other with the synchronous participation of
all atoms of the crystal (or of a large domain of the crystal). A change of
space group takes place at the point of transition. In addition, certain physical
properties change abruptly. For example, CaCl2 becomes ferroelastic below
the point of conversion (‘pure and proper ferroelastic’ [281]).

If a lattice mode at the Γ point is involved, like in the case of the rutile type
� CaCl2 type transformation, the space groups of both phases are translatio-
nengleiche (their primitive unit cells have the same size). If the freezing mode
is at a boundary point of the Brillouin zone, atoms in unit cells adjacent in the
corresponding direction vibrate with exactly opposite displacements; after the
mode has frozen, the volume of the unit cell has been doubled. This means
that the symmetry breach must involve a step of symmetry reduction with a
klassengleiche group–subgroup relation of index 2.

The symbols listed in Table C.1 in Appendix C are not applicable to lattice
vibrations outside the Γ point, i.e. for modes that have atomic motions that
differ from unit cell to unit cell. For this case, other symbols are used [282,
283].

If a non-totally symmetrical lattice mode freezes, the result is a distorted
structure whose space group is a subgroup of the original space group. Such
a subgroup is called an isotropy subgroup. Which isotropy subgroups occur
depending on symmetry species has been listed for all symmetry species of
all space groups [283]. They can also be determined with the computer pro-
gram ISOTROPY [284]. For the theoretically important interplay between lat-
tice modes and isotropy subgroups refer to, for example, [275, 285, 286].

15.3 Domains and twinned crystals

A phase transitions in the solid state often results in a domain structure of
crystalline phases. The domain structure is the result of nucleation and growth
processes. If the arrangement of the building blocks in both phases is rather
different, there is no crystallographic relation between the orientations of the
initial and the new phase. The nuclei form with orientations at random, de-
pending on the energetic conditions at the defect sites in the crystal. This case
is frequently encountered among molecular crystals.

However, if the lattices of the two crystalline phases match to some degree,
for a nucleus of the new structure that develops at a defect site of the old
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structure, it is more favourable to keep the orientation of the old phase. The
orientational relations between the phases before and after the transformation,
as a rule, are not the result of a homogeneous process involving a simultaneous
motion of all atoms in a single crystal. The crystalline matrix of the substrate
rather governs the preferred orientation adopted by the nuclei that are formed
during the course of the nucleation process. The crystallites that result from
the subsequent growth of the nuclei maintain their orientations.

Even at a continuous phase transition that is driven by a soft mode, as a rule,
it is not the whole crystal that transforms at once. The ever existing faults in a
crystal and the mosaic structure of real crystals impede lattice modes running
uniformly through the whole crystal, and the gradients that inevitably emerge
in a crystal during a temperature or pressure change cause different conditions
in different regions of the crystal. In addition, fluctuations arise when the point
of transition is approached; they differ statistically in different regions of the
crystal (cf. Appendix B, Section B.3, for the fluctuations).

Therefore, the phase transition starts in different regions of the crystal si-
multaneously or at consecutive time intervals, such that domains result. The
domains grow until they meet. If two matching domains meet, they can com-
bine to form a larger domain; otherwise a domain boundary results between
them. Once formed domain boundaries can advance through the crystal, one
of the domains growing at the expense of the other one.

The resulting system of intergrown crystallites is called a topotactic texture
after W. KLEBER [287].

Under these circumstances, aspect 3 of the symmetry principle, as stated
in Section 1.1, is fully effective [12, 106, 289, 290]. A phase transition that is
connected with a symmetry reduction will result in new phases that consist of

twin domains
if the formed phase belongs to a crystal class of reduced symmetry, or

antiphase domains,
if translational symmetry is lost.

Therefore, twinned crystals are formed if the new phase belongs to a trans-
lationengleiche subgroup, and antiphase domains if it is a klassengleiche sub-
group. In the physical literature, phase transitions between translationen-
gleiche space groups are called ferroic transitions, the lower-symmetry phase
being the ferroic phase and the higher-symmetry phase the para phase. Non-
ferroic transitions take place between klassengleiche space groups. For stricter
definitions of these terms see [288].

Twin domains are dealt with in Section 15.5, antiphase domains in Section
15.6.

The total number of domains formed, of course, depends on the number of
nucleation sites. The number of different domain kinds, however, is ruled by
the index of the symmetry reduction. At a translationengleiche symmetry re-
duction of index 3 (t3 group–subgroup relation) we can expect twins with three
kinds of domains, having three different orientations. An isomorphic subgroup
of index 5 (i5 relation), since it is a klassengleiche symmetry reduction, will
entail five kinds of antiphase domains. If the symmetry reduction includes
several steps (in a chain of several maximal subgroups), the domain structure



15.4 Can a reconstructive phase transition proceed via a common subgroup? 207

will become more complicated. With two t2 group–subgroup relations, we can
expect twins of twins.

The actual number of observable domain kinds may be less than expected
if a domain kind is not formed during nucleation. This can be controlled by
the experimental conditions. For example, an external electric field can sup-
press the formation of more than one kind of differently oriented ferroelectric
domain at a phase transition from a paraelectric to a ferroelectric modifica-
tion. Among very small crystals (in the nanometre range), it can happen that
only one nucleus is formed per crystal and that its growth is fast enough to fill
the whole crystal before a second nucleus is formed, with the result of single-
domain crystals [291].

As a rule, among temperature-driven phase transitions, the high-temperature
form has the higher symmetry. Among phase transitions induced by electric or
magnetic fields, the lower-symmetry phase is the one persisting while the field
is being applied. No corresponding rules can be stated for phase transitions
induced by pressure; under pressure, the more dense phase is the more stable
one.

The symmetry relations are also valid for topotactic reactions, when a chem-
ical reaction takes place in the crystalline solid and the orientation of the do-
mains of the product is determined by the original crystal (Section 16.1).

15.4 Can a reconstructive phase transition
proceed via a common subgroup?

Some substances exhibit two subsequent displacive phase transitions (at two
different temperatures or pressures) with small atomic displacements, such that
the first transition involves a symmetry reduction, the second one a symmetry
enhancement.

Silicon offers an example. When increasing pressures are exerted upon sili-
con, it experiences several phase transitions:

10.3 GPa 13.2 GPa 15.6 GPa 38 GPa
Si-I � Si-II � Si-XI � Si-V � further

diamond I 41/amd I mma P6/mmm modifications
type β -Sn type

Silicon-V (P6/m2/m2/m) has a simple hexagonal structure [292]. There exists
no group–subgroup relation between I 41/a2/m2/d (β -tin type) and
P6/m2/m2/m and they have no common supergroup. However, the structure
of Si-XI is intimately related with both that of Si-II and Si-V, and the space
group of Si-XI, I 21/m21/m21/a, is a common subgroup of I 41/a2/m2/d and
P6/m2/m2/m (Fig. 15.5).

Assuming no atomic displacements, the calculated coordinates of a Si atom
of Si-XI would be 0, 1

4 ,−0.125 when derived from Si-II, and 0, 1
4 , 0.0 when

derived from Si-V. The actual coordinates are halfway between. The metric
deviations of the lattices are small. The lattice parameter c of the hexagonal
structure is approximately half the value of a of tetragonal Si-II. Taking into
account the basis transformations given in Fig. 15.5, the expected lattice para-
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Fig. 15.5 Group–subgroup relations between
three high-pressure modifications of silicon.
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at 16.2 GPa

aII = 466.5 pm
cII = 256.5 pm
at 11.7 GPa

aXI = 450.2 pm
bXI = 473.7 pm
cXI = 255.0 pm
at 15 GPa

meters for Si-XI, calculated from those of Si-V, would be aXI = aV
√

3 = 441.5
pm, bXI = 2cV = 476.6 pm, and cXI = aV = 254.9 pm. Compare this with the
observed values (Fig. 15.5).

The coordination of a Si atom is (contact distances in pm up to 340 pm):

Si-II 4×242 2×257 4×302 I 41/amd
↙ ↘ ↓ ↙ ↘

Si-XI 2×239 2×246 2×255 2×275 2×327 I mma
↓ ↘ ↓ ↙

Si-V 2×238 6×255 P6/mmm

At the points of transition, volume discontinuities were observed experi-
mentally, amounting to 0.2% for Si-II � Si-XI and to 0.5% for Si-XI � Si-V,
and the atomic coordinates shift abruptly [292]. Therefore, the transitions are
first-order transitions. However, the abrupt changes are small, and the model of
two displacive phase transitions with small atom shifts seems plausible. Most
notably, two separate phase transitions are actually observed. In a certain pres-
sure range, the whole crystal actually consists of stable Si-XI. In this case, a
group-theoretical relation between Si-II and Si-V via the common subgroup of
Si-XI is justified.

A completely different situation is that of reconstructive phase transitions
when there is no group–subgroup relation between the involved space groups.
For such cases, the success of the theory of continuous phase transitions has
misled researchers to conceive of mechanisms according to which two subse-
quent transformations take place via an intermediate phase, similar to the case
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of the transformations of Si-II to Si-V via Si-XI. The hypothetical intermedi-
ate phase is assumed to have a space group that is a common subgroup of the
initial and the final space groups.

Reconstructive phase transitions are always first-order transitions and show
hysteresis. Therefore, a synchronous motion of atoms in the whole crystal is
excluded. The transformation can proceed only by nucleation and growth, with
coexistence of both phases during the transformation. Between the growing
new and the receding old phase there are phase boundaries. The reconstruc-
tion of the structure occurs at and only at these boundaries. Any intermediate
state is restricted to this interface between the two phases. The situation is
fundamentally different from that of silicon where the existence of Si-XI is not
restricted to an interface.

The space groups on either side of an interface are different. They cannot be
mapped one onto the other by a symmetry operation; therefore, no symmetry
element can exist at the interface. In particular, an intermediate phase whose
existence would be restricted to the region of the interface cannot have any
space group whatsoever. There is an additional aspect: Space groups describe
some static state. During a snapshot of a few femtoseconds duration, no crystal
fulfils a space group because the atoms are vibrating and nearly all of them are
displaced from their equilibrium positions. Mean atomic positions that fulfil a
space group can only be discerned after a somewhat longer time interval has
elapsed. During a phase transition, the interface advances through the crystal
and the atoms are in motion; there exist no mean atomic positions.

Devised reaction mechanisms for reconstructive phase transitions via hy-
pothetical common subgroups are disconnected from reality. Approximately
10 different mechanisms were published merely for the transformation of the
NaCl type to the CsCl type, with different common subgroups (see, e.g. [293–
295] and references therein). The very number is suspect. Formally, arbitrarily
many such mechanisms can be devised, as there are always an infinite number
of common subgroups.

In such papers, detailed paths of motion of the atoms have been described,
depicted in one unit cell. Tacitly, a synchronous motion of the atoms in all
unit cells of the crystal is thus suggested, proceeding until they snap into place
in the assumed intermediate space group, followed by a synchronous motion
from the intermediate phase to the final phase. Synchronous motion, however,
is excluded for a first-order transition. But perhaps it has not been meant to
be this way, but tacitly only a shift of atoms in one cell has been assumed,
followed by further cells, like in a row of falling dominoes. This would be a
realistic model with nucleation and subsequent growth. However: this does
not require and is not in accordance with the occurrence of a hypothetical in-
termediate phase. It may well be that, for a few femtoseconds, the atoms are
arranged in a couple of cells as in one cell of the assumed intermediate phase.
However, it is impossible to assign a space group to this state.
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15.5 Growth and transformation twins www w

Definition 15.4 An intergrowth of two or more macroscopic, congruent, or
enantiomorphic individuals of the same crystal species is a twin, if there is a
crystal-symmetric relative orientation between the individuals [297].

The individuals are the twin components or twin domains. The twin law
specifies their mutual orientation. The twin law is a symmetry operation that
maps one domain onto the other one. The twin element is the corresponding
symmetry element. This symmetry operation does not belong to the point
group of the crystal.

The domain boundary or twin interface is a planar or irregular surface at
which the twin components are in contact. If the structures of the adjacent
domains have to be harmonized by certain distortions on either side of the
boundary, the domain boundary is in the midst of a domain wall that can have
a thickness of up to a few unit cells. If the domain boundary is planar, on the
atomic scale, its symmetry is a layer group.

The occurrence of twins is a widespread phenomenon. One has to distin-
guish whether the twins have developed during the growth of the crystals or by
a phase transition in the solid state.

Among growth twins, the formation of nuclei of crystallization decides how
the individuals are intergrown. In this case, group–subgroup relations between
space groups are irrelevant.

The shape of a kind of the frequently occurring twins of the cubic mineral
fluorite (CaF2) is shown in Fig. 15.6. This is an example of a penetration twin;
these occur only among growth twins. Starting from a nucleus, the crystal
grows with two different orientations that are mutually rotated by 180◦ about
[111]. Actually, the twin consists of twelve pyramid-shaped domains, six of
each orientation, originating from a common point in the centre of the crystal.
Contact twins are simpler; the twin components have a common a plane. A
polysynthetic (or lamellar) twin is formed by repetition of contact twins and
consists of a sequence of domains with two alternating orientation states.

➤ [111]

Fig. 15.6 Centre: View of a twin of the
mineral fluorite having the twin axis [111].
The two cubes are mutually rotated about the
space diagonal [111] by exactly 180◦ .

Transformation twins are formed during a phase transition in the solid
state. Frequently, there exists a group–subgroup relation between the involved
space groups and the kind of twinning depends on this relation. The group–
subgroup relation between the two modifications of calcium chloride is shown
in Fig. 1.2 (page 6). Pnnm is a translationengleiche subgroup of index 2 of
P42/mnm, so we can expect the formation of twins with two orientational
states when CaCl2 is transformed from the tetragonal rutile type to the or-
thorhombic CaCl2 type. The lattice parameters a and b, being equal in the
tetragonal structure, become unequal during the phase transition, either a < b
or a > b. If we retain the directions of the basis vectors a and b, then one of the
orientational states of the twin components is that with a < b, the other one that
with a > b (Fig. 1.3, page 6). The two components can be mapped one onto
the other by a symmetry operation that has disappeared at the symmetry reduc-
tion, for example by reflection through a plane that runs diagonally through the
unit cell of the rutile type. This (former) symmetry element becomes the twin
element.
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During the phase transition, the distinction of the lattice parameters taking
place within the matrix of the tetragonal crystal causes mechanical stress. The
occurrence of differently oriented twin domains partly alleviates the stress.
Therefore, a crystal consisting of many twin domains will be energetically
favoured as compared to a single-domain crystal (Fig. 15.7). A uniformly
synchronous motion of all atoms in the whole crystal resulting in a single-
domain crystal is less probable.
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Fig. 15.7 Top: Transformation twin with do-
mains I and II of a crystal of CaBr2 (CaCl2
type); direction of view along c, photograph
taken with crossed polarization filters [296].
Bottom: Growth twin of K2SO4 having six
domains, precipitated from aqueous solution.
View onto (001) of a plate, about 1 mm thick
and 5 mm in diameter (taken between polar-
ization filters to enhance the contrast [297];
M. Moret, Milano).

Potassium sulfate crystallizes from aqueous solution in an orthorhombic
modification with a pseudohexagonal structure [298, 299]:

Pmcn, a = 576.3 pm, b = 1007.1 pm (≈ a
√

3 = 998.2 pm), c = 747.6 pm

Growth twins are formed (depending on crystallization conditions) adopting
the shape of pseudo-hexagonal plates that are subdivided in three pairs of sec-
tor domains with 60◦ angles (Fig. 15.7). Upon heating, a first-order phase
transformation takes place at 587 ◦C, at which the domains coalesce to one
domain, the crystal becoming hexagonal (P63/mmc). In the hexagonal modi-
fication the SO2−

4 ions are misordered in at least two orientations (Fig. 15.8).
When allowed to cool again, the SO2−

4 ions regain their order, and again
orthorhombic twins with three kinds of domains are formed, but this time as
transformation twins with lamellar domains.

Isotypic ammonium sulfate also forms the same kind of growth twins. By
slight compression, the domain boundaries can be caused to advance through
the crystal until a single-domain single crystal is obtained [303]. The ex-
pected phase transition to a hexagonal high-temperature form does not occur
because ammonium sulfate melts ‘prematurely’. Therefore, in this case, the
hexagonal aristotype is a hypothetical modification (‘paraphase’, ‘prototype
phase’) [304]. In contrast to potassium sulfate, ammonium sulfate exhibits
a phase transition to a ferroelectric modification below −50 ◦C in which the
SO2−

4 tetrahedrons are tilted. The corresponding group–subgroup relations are
shown in Fig. 15.8.

15.6 Antiphase domains

The phase transition of Cu3Au from its misordered high-temperature phase in
the space group F m3m to the ordered phase involves a klassengleiche symme-
try reduction of index 4 to the space group Pm3m (Fig. 1.4, page 7). There-
fore, the occurrence of antiphase domains can be expected. The crystal class
is retained, and the size of the primitive unit cell is enlarged by a factor of 4
(because the face-centring disappears).

Consider a nucleus of crystallization of the ordered phase and its growth,
and let the gold atoms occupy the vertices of the initial unit cell. Let another
nucleus be formed at some other site in the crystal, but with a shifted origin, i.e.
with a gold atom at one of the face centres of the initial unit cell. Somewhere
the growing domains will meet. Even though the unit cells have the same size
and the same orientation, they do not match with one another because their unit
cells are displaced by half of a face diagonal. A domain boundary emerges at
which the ‘wrong’ atoms come to be next to each other. This is an antiphase

http://link.aps.org/doi/10.1103/PhysRevB.43.12665
http://it.iucr.org/
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Fig. 15.8 Crystal structure of the low-
temperature form of potassium sulfate and
group–subgroup relations from the hexago-
nal high-temperature form, in which the sul-
fate ions are misordered (for this reason no
O atom coordinates are given). Ammonium
sulfate forms a non-centrosymmetric, ferro-
electric low-temperature form.
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boundary between antiphase domains (they have shifted phases). Since the
gold atoms have the choice to occupy one out of four positions (0,0,0, 1

2 , 1
2 ,0,

1
2 ,0, 1

2 , 0, 1
2 , 1

2 of the initial cell), four kinds of domains result. Antiphase
domains are also called translation twins or translation domains.

Antiphase domains do not show up in X-ray diffraction; the structure deter-
mination is not hampered (except when the domains are very small and part of
the Bragg reflections spread to diffuse scattering). Antiphase boundaries can
be made visible by electron microscopy.

P63 22

➤t2

P63

➤

i4
2a, 2b, c

P63

Consider the example of the structures of the high- and low-temperature
modifications of BaAl2O4 shown in Fig. 15.9. These are stuffed tridymite
structures, with a framework of vertex-sharing AlO4 tetrahedra and Ba2+ ions
in hexagonal channels. At high temperatures BaAl2O4 is paraelectric in the
space group P63 22. Upon cooling, a phase transition takes place between
670 and 400 K, resulting in a ferroelectric modification in the space group
P63, with the AlO4 tetrahedra being mutually tilted and with doubled lattice
parameters a and b. This requires the two steps of symmetry reduction shown
in the margin.

The translationengleiche step causes the occurrence of twin domains that
are distinct by opposite orientations (opposite c directions) and that alternate



15.6 Antiphase domains 213

P63 22
a = 522 pm, c = 878 pm

➤
b

➤

a

➤

c

➤a

P63 a = 1047 pm, c = 882 pm

➤

a

➤b

Fig. 15.9 Unit cells of BaAl2O4. Left:
high-temperature form [305]. Right: low-
temperature form with unit cell enlarged by
a factor of 4 and tilted coordination tetrahe-
dra [306].

in lamellae along c (Fig. 15.10 left). In addition, due to the isomorphic sub-
group of index 4, four kinds of antiphase domains are observed. Figure 15.11
shows schematically how the unit cells of the four kinds of domains are mu-
tually displaced. The domain boundaries can be discerned with an electron
microscope (Fig. 15.10 centre and right).

50 nm

2 nm

Fig. 15.10 Transmission electron-microscopic frames of BaAl2O4 [307]. Left: View along [100] showing twin domains. Centre and right: View
along [001]; arrows mark antiphase boundaries.
Reprinted with permission of Taylor & Francis from [307]. www.tandfonline.com/doi/abs/10.1080/01411590008224545 c© (2000) Overseas Publishers Association N.V.

www.tandfonline.com/doi/abs/10.1080/01411590008224545
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Fig. 15.11 Schematic drawing with the four
kinds of antiphase domains of BaAl2O4
[307]. The circles represent the Ba atoms.
Domain boundaries are enhanced in grey.
One unit cell is marked in domain 1. The
numbers at the Ba atoms designate the four
different origin positions of the four domains.
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Exercises

Solutions in Appendix D (page 296)

(15.1) What are experimentally observable properties that can
be used to decide whether a phase transition is of second
order (after EHRENFEST) or if it is continuous?

(15.2) May or must an ‘isosymmetric’ phase transition be a con-
tinuous transition?

(15.3) In Fig. 15.4 (left) the curve for the cell volume V has a
kink at Tc. May this be the case for a second-order phase
transition?

(15.4) The packing of several modifications of P4S3 and simi-
lar cage-like molecules is shown in Fig. 14.4 (page 190),
and the corresponding symmetry relations are given in
Fig. 14.3. All modifications have the same packing pat-
tern, but with differently rotated molecules. Could these
modifications be transformed one to the other by contin-
uous phase transitions?

(15.5) At high temperatures, BaTiO3 has the cubic perovskite
structure, space group Pm3m. Upon cooling it is dis-
torted, adopting the space group P4mm. Will the crys-
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tals of the low-symmetry structure be twinned? If so,
with how many kinds of domains?

(15.6) SrTiO3 has the cubic perovskite structure (Pm3m).
Upon cooling below 105 K, the coordination octahe-
dra are mutually rotated and the symmetry is reduced to
I 4/mcm, including an enlargement of the unit cell by a
factor of 4 (a′ = b′ = a

√
2, c′ = 2c). Will the crystals of

the low-symmetry structure be twinned? If so, with how
many kinds of domains?

(15.7) SrCu2(BO3)2 exhibits a second-order phase transition at
395 K. Above 395 K its space group is I 4/mcm, below
it is I 42m with the same lattice parameters [308]. Upon
cooling beyond the point of transition, can one expect the
formation of twins? If so, will these cause problems for
X-ray crystal structure determination?

(15.8) The structure of ErCo2 experiences a distortion during
the phase transition from the paramagnetic to the fer-
rimagnetic modification at 32 K. At T > 32K it is cu-
bic, space group F d 3m, a = 713.3 pm; below 32 K it
is rhombohedral, space group F 3m, a = 714.5 pm, α =
89.91◦ (non-conventional face-centred setting for R3m
with rhombohedral axes) [309]. Why do the X-ray re-
flections of the ferrimagnetic phase show a broadening
or splitting?

(15.9) According to quantum-mechanical calculations, silli-
manite, Al2SiO5, should exhibit a phase transition if

pressure is exerted to more than 30 GPa. The atoms are
expected to move together, with an increase of the coor-
dination number of the Si atoms from 4 to 5. The calcu-
lated change of the corresponding Si–O distances and of
the lattice parameter a as a function of pressure is shown
below (arrows mark the directions of pressure increase
and decrease) [310]. The remaining lattice parameters
and the structure in general are changed only marginally.
The space group is Pnma before and after the transition.
Is this a continuous phase transition? Is the transforma-
tion reconstructive or displacive?
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Topotactic reactions 16

16.1 Symmetry relations among topotactic
reactions 218

16.2 Topotactic reactions among lantha-
noid halides 220

Exercises 224

A topotactic reaction is a chemical reaction that takes place in the solid state
such that the orientation of the product crystal is determined by the orientation
of the initial material. As an example, Fig. 16.1 shows three images taken
by electron diffraction. The first one was made from a trigonal single crystal
of ZnFe2O2(OH)4, the last one from cubic spinel ZnFe2O4 that was obtained
from this after heating. The central image shows an intermediate stage at which
the reaction had proceeded halfway; it shows reflections of the initial and the
product crystal. The direction of view is along the trigonal axis [001] which
becomes the cubic axis [111].
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Fig. 16.1 Single-crystal electron diffraction
images of ZnFe2O2(OH)4. (a) δ -FeOOH
type, (b) after 5 days at 210 ◦C, (c) spinel
structure ZnFe2O4 after 5 days at 260 ◦C
[311].

In this case, like with many other topotactic reactions, there is no crystal-
lographic group–subgroup relation between the initial and the final product.
The formation of the topotactic texture is rather to be understood by analogy
to the formation of growth twins. In ZnFe2O2(OH)4, space group P3m1, the
O atoms are arranged in a hexagonal-closest packing with metal atoms in oc-
tahedral interstices. In spinel, space group F d 3m, it is a cubic-closest packing
with metal atoms in octahedral and tetrahedral interstices. The orientational
states result from the orientation of nuclei of crystallization which is predeter-
mined by the matrix of the initial crystal.

This is in accordance with a similar, much investigated example. Mg(OH)2,
brucite, is homeotypic to CdI2; it has a hexagonal-closest packing of O atoms
in the space group P3m1. By thermal dehydration, a single crystal of Mg(OH)2

is converted to MgO (periclase), NaCl type, space group F m3m, with cubic-
closest packing of O atoms [312, 313]. Thereby a topotactic texture is formed
that consists of a large number of MgO crystallites that are oriented like and
only like the cubic twins with a twin axis [111] (Fig. 15.6). These are ori-
entations associated with the terms ‘obverse’ and ‘reverse’ in crystallogra-
phy. The analogy between the macroscopically well-shaped twins according to
Fig. 15.6 and the fine texture of periclase crystallites points to a common kind
of nascent state. The growth twin originates from only two nuclei of the ob-
verse and reverse orientations, whereas the topotactic texture originates from
a large number of nuclei that have emerged at energetically equivalent sites
in the interior of the initial crystal, either obverse or reverse with statistical
probability.

Nucleation generally is the controlling factor of topotactic reactions. The
nuclei are formed in the matrix of the original crystal; nuclei that have the ap-
propriate orientation have a higher probability of being formed and to continue
to grow. Frequently, particles have to diffuse through the crystal, for example,
the water eliminated in the preceding examples. This causes the formation of
defects in the crystal; these are new nucleation sites. In addition, the topo-
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tactic texture becomes porous, but the morphology of the initial crystal does
not collapse.

This phenomenon has been known for a long time in mineralogy under
the term pseudomorphism. A pseudomorph is a mineral that has been al-
tered after its formation but has kept its appearance. An example is malachite,
Cu2CO3(OH)2, formed from azurite, Cu3(CO3)2(OH)2, in that it has taken up
OH− ions from surrounding water and released CO2−

3 ions.

16.1 Symmetry relations among topotactic
reactions

Aside from reactions as dealt with in the preceding section, there also exist
topotactic reactions with retention of symmetry or with a group–subgroup re-
lation. For example, some molecules dimerize or polymerize within the crystal
in such a way that the reacting molecules move together and join with each
other, but on the whole the molecules keep their places. The space group may
be retained or it may change to a subgroup or supergroup. In organic chemistry,
such reactions are called topochemical.

Crystals of the fullerene C70 that were obtained by sublimation consist of a
hexagonal-closest packing of molecules (P63/mmc); in the mean, the rotating
molecules are spherical and the ratio c/a = 1.63 corresponds to the ideal value
of a packing of spheres [314, 315]. Upon cooling, a first-order phase transition
is observed at approximately 50 ◦C, but the structure retains the hexagonal
space group, albeit with c/a = 1.82. There is no group–subgroup relation.
The molecules, which have an elongated shape, keep rotating, but henceforth
they are oriented parallel to the hexagonal axis and rotate about this direction.
At about 20 ◦C, this rotation also freezes. Due to the molecular symmetry
102m (D5h), the crystal symmetry then cannot continue to be hexagonal; it
becomes orthorhombic, space group Pbnm (Fig. 16.2). The symmetry reduc-
tion (Fig. 16.3) includes a translationengleiche relation of index 3, and accord-
ingly transformation twins are formed with the three orientations as shown in
Fig. 8.1 (page 101). The intermediate group C mcm is not observed because the
molecules are turned along their fivefold axes in such a way that their twofold
axes do not coincide with those of C mcm (Fig. 16.2).

Under pressure (2 GPa) C70 polymerizes in the crystalline state at 300 ◦C
[316]. The starting point at this temperature is the hexagonal high-temperature
form. The joining in the polymer now forces the molecules into an orientation
that fulfils the space group C mcm (Fig. 16.3). The crystals of the polymer
are triplets (twins with three orientational states of the domains). Upon poly-
merization, the C70 molecules approach each other, causing a decrease of the
lattice parameter c from 1853 pm to 1792 pm; the polymeric molecules are
aligned along c.

Polymerization of C70 is an example of a topotactic reaction with a group–
subgroup relation between the space groups of the reactant and the product.
Such reactions proceed by nucleation and growth in a similar way as the for-
mation of transformation twins. For the formation of domains, the same rules
apply as mentioned in Section 15.3 (page 206) for phase transitions.
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Fig. 16.2 The low-temperature modification of C70. a = 1002 pm, b = 1735 pm = a
√

3, c = 1853 pm. Left: view along the pseudohexagonal axis.
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Fig. 16.3 Crystal structure of polymeric C70, space group C 2/m2/c21/m (C mcm), a = 999 pm, b = 1730 pm, c = 1792 pm. Right: symmetry
relations between the C70 modifications and with poly-C70.
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16.2 Topotactic reactions among lanthanoid
halides

The reduction of rare-earth trihalides with the corresponding metals at high
temperatures yields subhalides of the general formula LnnX2n+1. Their crystal
structures are so-called vernier structures, in which the halogen atoms alternate
in closer and less closer rows like in a vernier scale. The arrangement of the
metal atoms is roughly face-centred cubic (Fig. 16.4) [317–326].

The vernier structures can be derived from the CaF2 type, albeit with a slight
excess of halogen atoms. The structures of the dihalides DyCl2 (SrBr2 type,
P4/n) [327–329] and TmCl2 (SrI2 type, Pcab) [330, 331] can also be derived
from the CaF2 type (Fig. 16.5). In both cases, the metal atoms have distorted,
pseudo-face-centred cubic arrangements. In the case of the SrBr2 type, the
halogen atoms are arranged in layers of squares as in CaF2, but half of the lay-
ers are turned by 45◦. In the SrI2 type, the squares are distorted to rhombuses
and the layers are corrugated (Fig. 16.5).

Fig. 16.4 The vernier structure of Tm7Cl15.
Seven pseudo-face-centred ‘cells’ of Tm
atoms are shown in the upper part. The
Cl atoms are located at the junctions of the
drawn nets; only the nets are shown in the
lower part. Seven rows of Cl atoms with the
pseudosquare pattern are located on top of
eight rows with the pseudohexagonal pattern.
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Fig. 16.5 The crystal structures of DyCl2
(SrBr2 type) and TmCl2 (SrI2 type). Six
pseudo-face-centred ‘cells’ of metal atoms
are shown for DyCl2, two for TmCl2. The
Cl atoms are located at the junctions of the
drawn nets; the nets of TmCl2 are corrugated.
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Fig. 16.6 Structural relations between the strontium halides and the vernier structure Ln7Cl15. Only the metal atom positions of the CaF2 type are
shown. The axes in the direction of view are ĉ ≈ c′′ ≈ c′ ≈ c.

How the unit cells are related with that of the CaF2 type is shown in Fig. 16.6.
From the figure, we calculate the lattice parameters listed in the margin (in pm),
assuming a = b = c = 682 pm (Dy compounds) and a = b = c = 678 pm (Tm
compounds) for the CaF2 type.

DyCl2 P4/n [326]
calculated observed

â = 1
2

√
10a = 1078 1077.5

b̂ = 1
2

√
10a = 1078 1077.5

ĉ = c = 682 664.3

Dy7Cl15 Pcmn [320]
calculated observed

a′ = a = 682 667.4
b′ = 7b = 4774 4818
c′ = c = 682 709.7

Tm7Cl15 Pcmn [320, 332]
calculated observed

a′ = a = 678 657.1
b′ = 7b = 4746 4767.7
c′ = c = 678 700.1

TmCl2 Pcab [331, 332]
calculated observed

a′′ = 2a = 1356 1318.1
b′′ = b = 678 671.4
c′′ = c = 678 697.7

When these compounds are heated, their anion partial structure melts before
the actual fusion takes place; i.e. there is a phase transition at which the cations,
due to the mutual repulsion of their higher charges, retain the order as in the
CaF2 type, whereas the intervening anions start floating. This melting of the
anion partial structure is well known among the strontium halides and other
compounds having the CaF2 structure; this includes a high ionic conductivity
of the high-temperature form [333] and a high transformation entropy, which
can be even higher than the entropy of fusion [334]. The quasiliquid state of
the anions at the high temperatures of preparation of the vernier compounds is
compatible with a non-stoichiometric composition. Upon cooling, the cations
determine a matrix in which the anions organize themselves. Depending on
composition, several compounds crystallize in common, their crystals being
intergrown in a regular manner. If, for example, the high-temperature phase
has the composition DyCl2.08, DyCl2 and Dy7Cl15 (= DyCl2.14) crystallize in
common.

The X-ray diffraction pattern of a crystal obtained in this way, at first glance,
is confusing (Fig. 16.7 left). Taking into account the orientational relations
according to Fig. 16.6 and the group–subgroup relations (Fig. 16.8), the pattern
can be interpreted as an intergrowth of DyCl2 and Dy7Cl15 (Fig. 16.7 right).
The tetragonal c∗ axis of DyCl2 is exactly coincident with a reciprocal axis
of Dy7Cl15; for this reason, it was chosen to be the c∗ axis, resulting in the
non-conventional space-group setting Pcmn (Pnma would be conventional).

The strong reflections in Fig. 16.7 that result from superposition of reflec-
tions from both compounds correspond to reflections of the CaF2 type, which,
however, is not present. Since the lattice parameters do not match exactly, the
reflections are not superimposed exactly, but appear broadened.

Atomic coordinates calculated from the CaF2 type and observed coordinates
of the Tm atoms of Tm7Cl15 are compared in Table 16.1. As can be seen in
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Fig. 16.7 Buerger precession photograph of a ‘single crystal’ of DyClx with x ≈ 2.08 [326] (MoKα radiation; Kβ reflections and streaks originating
from bremsstrahlung have been removed).
Right: Interpretation as topotactic texture of DyCl2 and Dy7Cl15 by superposition of hk0 reflections of both compounds. Small circles: DyCl2 in
the SrBr2 type (P4/n); rectangles: Dy7Cl15 in the Tm7Cl15 type (Pcmn); large circles: superimposed reflections from both substances. Due to the
n glide planes, all reflections with h+k = 2n+1 are absent. 18.4◦ = arc tan 1

3 .

Table 16.1 Atomic coordinates for the cations of Tm7Cl15 calculated from the CaF2 type accord-
ing to x, 1

7 y+ 1
28 , z + 1

4 ; ±(0, 1
7 ,0); −(0, 2

7 ,0) and comparison with the observed atomic coor-
dinates [320]. The projection onto the CaF2 type refers to observed coordinates that have been
retransformed according to x, 7y− 1

4 , z− 1
4 .

Calculated Observed Obs. projected on CaF2 Ideal values
Atom x y z x y z x y z x y z

Tm(1) 0.0 0.0357 0.25 −0.0242 0.03946 0.3346 −0.0242 0.0262 0.0846 0 0 0
Tm(2) 0.0 −0.1071 0.25 0.0224 −0.11122 0.2624 0.0224 −1.0285 0.0124 0 −1 0
Tm(3) 0.0 0.1786 0.25 −0.0200 0.18094 0.3258 −0.0200 1.0166 0.0758 0 1 0
Tm(4) 0.0 − 1

4 0.25 0.0178 − 1
4 0.2626 0.0178 −2 0.0126 0 −2 0

the figure of the sructure (Fig. 16.4), the arrangement of the rare-earth atoms
matches quite well a cubic-closest packing, which is ideally fulfilled in SrCl2.
The calculated coordinates deviate only slightly from the observed ones. A
good way to recognize the coincidence is to project the observed coordinates
onto the CaF2 type, i.e. to ‘recalculate’ them back to the aristotype.

The topotactic intergrowth observed between TmCl2 and Tm7Cl15 is simi-
lar to that of DyCl2 and Dy7Cl15. The relative location of the unit cells shown
in Fig. 16.6 can be discerned clearly in X-ray diffraction diagrams (Fig. 16.9).
The basis vectors of both compounds have exactly the same directions, the long
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Fig. 16.8 Derivation of the crystal structures
of some rare-earth chlorides from the aristo-
type fluorite by group–subgroup relations.

vector a′′ of TmCl2 being perpendicular to the long vector b′ of the vernier
compound. Note the reflections 0 4 0 and 4 4 0 of TmCl2 in Fig. 16.9 next
to 0 28 0 and 2 28 0 of Tm7Cl15. They are not superposed exactly because
b (TmCl2) = 671.4 pm < 1

7 b (Tm7Cl15) = 681.1 pm. 1
2 a (TmCl2) = 659.05 pm

is scarcely larger than a (Tm7Cl15) = 657.1 pm; however, the difference can
be perceived by the mutual shift of the reflection 8 4 0 of TmCl2 and 4 28 0 of
Tm7Cl15 in the horizontal direction (shorter distances in the reciprocal lattice
of the X-ray diagram correspond to longer distances in real space). Since the
reflections hk0 with h + k = 2n +1 are absent for Tm7Cl15, there is no super-
position with the reflections 2 0 0, 6 0 0 (and 10 0 0, 14 0 0, not shown in
Fig. 16.9) of TmCl2, so that these can be measured accurately and permit an
accurate determination of a′′.
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Fig. 16.9 Simulated precession photograph
of the reflections hk0 of a topotactic texture
of TmCl2 and Tm7Cl15. In the upper left
quadrant, the reciprocal lattice lines of
TmCl2 have been included, with blanks
at the sites of reflections. In the lower
left quadrant the reciprocal lattice lines of
Tm7Cl15 have been drawn. The simulation
is based on a Weissenberg photograph and
on measured X-ray diffraction data from
a ‘single crystal’ [326]. Due to the glide
planes, the reflections h + k = 2n + 1 of
Tm7Cl15 (Pcmn) are absent; TmCl2 (Pcab)
has absent reflections k = 2n + 1 and h00 if
h = 2n + 1. Miller indices in italics refer to
Tm7Cl15.
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Exercises

Solutions in Appendix D (page 296)

(16.1) (Demanding exercise) The oxides Ln2O3 of the rare
earths occur in a trigonal A form and a monoclinic
B form. When a melt of a mixture of La2O3 and
Sm2O3 solidifies (24–28% amount-of-substance frac-
tion of La2O3), a segregation takes place; one obtains
two kinds of intergrown crystals, those of the A and the
B form, which show up by X-ray diffraction by a super-
position of the interference patterns of both forms. There
is a characteristic orientational relation (see figure). Pure
A-Sm2O3 is not known; however, it can be stabilized
by doping. The following lattice parameters were taken
from A-Sm2O3 stabilized by Zr [335]; the atomic coor-
dinates of the table are those of A-Ce2O3 [336].

A-Sm2O3: P32/m1, aA = 377.8 pm, cA = 594.0 pm,
Z = 1;

B-Sm2O3: C 12/m1, aB = 1420 pm, bB = 362.7 pm,
cB = 885.6 pm, βB = 99.99◦, Z = 6.
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Section h0l of the reciprocal lattice of a topotactic intergrowth of A-

Ln2O3 (squares) and B-Ln2O3 (dots). The absent reflections h = 2n +1

of B-Ln2O3 have not been included [337].
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x y z
A-Sm2O3, P32/m1

Sm 2d 1
3

2
3 0.246

O(1) 2d 1
3

2
3 0.647

O(2) 1a 0 0 0

B-Sm2O3, C 12/m1 [338]

Sm(1) 4i 0.135 0 0.490
Sm(2) 4i 0.190 0 0.138
Sm(3) 4i 0.467 0 0.188
O(1) 4i 0.129 1

2 0.286
O(2) 4i 0.175 1

2 −0.027
O(3) 4i −0.202 1

2 0.374
O(4) 4i 0.026 0 0.657
O(5) 2a 0 0 0

(a) Enter the indices of the reflections of the A and the
B form in the figure close to the origin of the reciprocal
lattice. Mind the extinctions. Express the basis vectors
of the reciprocal cell a∗A,b∗A,c∗A of the A form by lin-
ear combinations of the basis vectors a∗B,b∗B,c∗B and write
down the result in matrix form. The lattices do not match
accurately; be satisfied with an obvious approximation.
Consider that b∗

A forms a 60◦ angle with a∗A and that the
reciprocal basis vectors are transformed like the atomic
coordinates.

(b) What is the transformation matrix A → B for the basis
vectors of real space? Check the metric relations between
the unit cells. Draw a sketch that shows the relations of
the basis vectors.

(c) Set up the group–subgroup relations from the A to the
B form. For the relation C 12/m1 —i3→ C 12/m1 you
will find a different basis transformation in International
Tables A1 than the one needed here (different setting of
the monoclinic cell).

(d) Multiply the transformation matrices for the consec-
utive steps of symmetry reductions. Do you meet some-
thing familiar?

(e) Map the atoms of the B form onto the trigonal unit cell
of the A form by transformation of the coordinate triplets
xB,yB,zB; compare them with those of the A-form.

(f) The B form tends to form twins. Under a microscope
the twin law is easy to recognize, but it seems to be cu-
rious [339]: it is the twofold rotation about [132]. By
transformation from [132]B to [u, v, w]A, show that the
twin law is sensible.

(g) Crystals of the B modification form thin plates with
{201} as the main face. The lateral faces {1 0 1},
{1 1 1}, and {111} are narrow. Transform the mentioned
face indices to {hk l} triplets of the trigonal cell. Note
that Miller indices are transformed like the basis vectors
of the unit cell.
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One of the most frequent errors in crystal structure determinations is the choice
of the wrong space group. As a consequence, the atomic coordinates and all
derived values are unreliable. A procedure to detect wrong space groups is
described in Section 8.7. Among the reasons for wrong structure determina-
tions are deficient knowledge of crystallography and the uncritical acceptance
of computer results that have often been produced with automated routines of
the computer programs. But even specialists can become victims of pitfalls
in spite of meticulous work. In addition, there exist certain problems that can
complicate structure determination.

There exist many crystals with a seemingly normal X-ray diffraction pattern,1 1Normal means: without satellite reflections,
without diffuse scattering, no quasicrystals.and the analysis of which yields a structural model that appears reasonable.

And yet, the structure determination can be wrong. There exist certain alarm
signals that should always be taken seriously:

• systematically absent reflections that do not match any space group;

• split reflections that are increasingly separate the higher the angle of
diffraction θ ;

• seeming misorder, expressed by split atomic positions (atoms occupy
several positions statistically with occupancy probabilities of less than
1);

• suspicious parameters of ‘thermal’ displacement of certain atoms, i.e.
conspicuously large, elongated, or flat ellipsoids of ‘thermal motion’;

• high correlations between certain parameters during refinement by the
method of least squares (do not skip the corresponding table of the com-
puter output!);

• unreasonable bond lengths and angles.

In the following, using examples, we point out how certain problems can be
solved and how certain errors can be avoided with the aid of group–subgroup
relations.
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17.1 What space group should be chosen? o

At the beginning of any crystal structure determination by diffraction tech-
niques, the space group has to be established. First of all, three observations
are used for its determination:

(1) the metric of the unit cell;

(2) the Laue symmetry which can be deduced from the equality or non-
equality of the intensities of certain reflections;

(3) extinct reflections which point to the presence of centrings, glide planes,
or screw axes.

Frequently, it is not possible to establish unambiguously the space group from
these data and one is forced to choose among several possibilities.

If the structures of related compounds are already known, group–subgroup
relations can help to choose the correct space group.

Numerous salts of tetraphenylphosphonium and arsonium ions crystallize
with tetragonal symmetry in one of the space groups P4/n (if the anion has
a fourfold rotation axis) or I 4 (if the anion is tetrahedral). In both cases, the
lattice parameters are close to a = b ≈ 1300 pm and c ≈ 780 pm. The packing
in the crystal is governed by the space requirements of the cations, which are
stacked along c to columns; see Section 14.3. The packing in the space group
P4/n has phosphorus (or As) atoms at z = 0; the packing in the space group I 4
has mutually shifted columns, with P (As) atoms at z = 0 and z = 1

2 .
Crystals of tetraphenylphosphonium diazidoiodate(1–), P(C6H5)4[I(N3)2],P(C6H5)4[I(N3)2]

a = 1499 pm, b = 1006 pm, c = 800 pm,
α = β = 90◦, γ = 91.7◦

all reflections h + k + l = 2n +1 absent

are monoclinic with the lattice parameters and the reflection condition men-
tioned in the margin. This leaves three space groups to choose from: I 112/m,
I 112, or I 11m. According to the cell metric, a packing similar to that of one
of the mentioned tetragonal structures can be expected. In that case, the cor-
rect space group should be a subgroup of either P4/n or I 4. This is true only
for I 112 which is a subgroup of I 4. Therefore, I 112 is probable, and the
packing of the ions should correspond to that of the structures with tetrahedral
anions. Actually, this is the case. It was possible to start with the refinement
of the structure (at first without the N atoms) right away, without a preceding
phase determination, starting from the atomic coordinates of a substance that
crystallizes in the space group I 4 [340].

17.2 Solving the phase problem of protein
structures

Di-Co-DF1-L13A Di-Mn-DF1-L13G
(modif. 1)

a/pm 8978 8930
b/pm 14772 14640
c/pm 3760 3820
space C 2221 P21 21 21
group

C 2221

➤

k2
– 1

4 , 0, 0

P21 21 21

The structure solution mentioned in the preceding section, using only a group–
subgroup relation, can help to solve the structures of proteins. The solution
of the phase problem is one of the main obstacles for the crystal structure de-
termination of proteins and other very large structures. If the crystal structure
of a protein with a similar unit cell is already known, one should search for a
group–subgroup relation.

The crystal data of two protein–metal complexes are given in the margin.
The crystal structure of the manganese complex (the one mentioned second)
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had been known. The similarity of the lattice parameters adumbrates a group–
supergroup relation with the cobalt complex. The asymmetric unit of C 2221

contains half as many atoms as that of P21 21 21. If there is a group–supergroup
relation, the structure of the manganese complex should have pseudorotation
axes of order 2, which are real rotation axes in the supergroup. If these axes
were present, there should exist pairs of atoms whose coordinates are equiv-
alent by the relation 1

2 − x, y, 1
2 − z (in the coordinate system of P21 21 21).

The table in the margin lists the calculated coordinates of manganese atoms

x y z

Mn1′ 0.268 0.125 0.278
Mn2 0.273 0.124 0.221

Mn3′ 0.102 0.297 0.585
Mn5 0.108 0.298 0.627

Mn4′ 0.063 0.300 0.589
Mn6 0.068 0.301 0.637

Mn7′ 0.450 0.016 0.034
Mn8 0.450 0.012 –0.026

Mn10′ 0.167 0.040 –0.008
Mn12 0.167 0.042 –0.072

according to this relation (marked by primes ′) in comparison to the observed
coordinates of other atoms (the coordinates were converted from data of the
protein database [7]).

The pseudosymmetry seems to be fulfilled. Using the atomic coordinates
of the manganese protein (after the necessary origin shift), it was possible to
determine the crystal structure of the cobalt protein [341].

17.3 Superstructure reflections, suspicious
structural features

Superstructure reflections are rather weak X-ray diffraction reflections that ap-
pear in between the strong main reflections. If they are missed, the derived
unit cell is too small and the space group is wrong. Four-circle diffractome-
ters that begin with the measurement procedure by searching for a number of
reflections in order to determine the unit cell can be the first source of error.
The search routine sometimes does not register any of the weak reflections.
Diffractometers with an area detector are less prone to errors of this kind. In
powder diffractograms, the superstructure reflections sometimes can hardly be
detected on top of the background radiation.

Superstructure reflections not considered at first require an enlargement of
the unit cell, and the real space group is a klassengleiche subgroup of the space
group assumed initially. Don’t get irritated by the terms; the space group of a
‘superstructure’ is a subgroup.

Zr2Co2In crystallizes in the Mo2FeB2 type. The Zr atoms span cubes and
pairs of trigonal prisms that have common faces (Fig. 17.1). The indium atoms
are in the midst of the cubes. The cobalt atoms inside the prisms form Co2

dumbbells. If the dumbbells consist of Si atoms and uranium atoms take the
cube vertices and centres, this is the U3Si2 type. In both cases, the space group
is P4/m21/b2/m.

At first glance, the X-ray diffraction pattern of Hf2Ni2Sn corresponds to
the Mo2FeB2 type. Not until one has looked thoroughly can one discern a
few superstructure reflections that require a doubling of the c axis (Fig. 17.2).
Patterns from single crystals are more convenient to reveal the weak super-
structure reflections. Refinement of the structure without the superstructure
reflections resulted in an excellent residual index of only R1 = 0.0216, and yet
the structure was not correct. The position of the Ni atom had to be refined
with a split position (two sites with occupancy of one half at z = ± 0.068).
In addition, the parameter U11 = U22 of the ‘thermal’ displacement of the Hf
atom was suspiciously large (Table 17.1). The correct space group, taking into



230 Group–subgroup relations as an aid for structure determination

P 4/m 21/b 2/m
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4/m m.2m m.2m

0 0.374 0.169
0 0.874 0.669
0 0 1

2
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Hf2Ni2Sn

Sn:4d Ni:8 j Hf:4 f Hf:4g
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Fig. 17.1 Unit cell of Zr2Co2In (Mo2FeB2 type; U3Si2 type if the Zr and In positions are occupied by atoms of the same element) and group–
subgroup relations to Hf2Ni2Sn [342].
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Fig. 17.2 Simulated (calculated) X-ray powder diffraction diagrams of Hf2Ni2Sn for the space groups P 4/m 21/b 2/m and P 42/m 21/n 2/m. Arrows
mark the two most prominent superstructure reflections.

account the superstructure reflections, is P42/mnm. No split positions are then
needed for the nickel atoms. Instead of one, there are two independent hafnium
positions with reasonable displacement parameters.

17.4 Detection of twinned crystals

The X-ray diffraction data of Er2.30Ni1.84In0.70 indicate a structure with the
Mo2FeB2 type. There are no superstructure reflections. The diffraction pattern
corresponds to the Laue symmetry 4/mmm (equal intensities of reflections hkl
and khl). Refinement of the structure, assuming the Mo2FeB2 type, lead to sus-
piciously large parameters of thermal motion of the erbium atoms in the a-b
plane. This suggested a reduced symmetry, for example a lower Laue class. In
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Table 17.1 Refinement results for Hf2Ni2Sn [342].

Without superstructure reflections,
P4/m21/b2/m, a = 703.1 pm, c = 338.1 pm, R1 = 0.0216, 199 reflections

atom x y z U11 = U22/pm2 U33/pm2

Sn 0 0 0 44 74
Hf 0.16738 x+ 1

2 0 176 42
Ni 0.3733 x+ 1

2 0.0679 half occupancy

With superstructure reflections,
P42/m21/n2/m, a = 703.1 pm, c = 676.1 pm, R1 = 0.0219, 370 reflections

atom x y z U11 = U22/pm2 U33/pm2

Sn 0 1
2

1
4 36 70

Hf1 0.18146 x 0 48 40
Hf2 0.15310 x 1

2 51 49
Ni 0.3733 x 0.2838 48 62

fact, the Laue symmetry 4/m is correct. In this case, the reason are merohedral
twins with exact superposition of the reflections.2 The reflections hkl of one 2The components of merohedral twins have

coincident lattices [297].kind of domain are superposed exactly on the reflections khl of the other kind.
If both kinds of domains are present with about the same volume fractions,
the diffraction pattern of the higher Laue symmetry is feigned. The true space
group is P4/m, a maximal subgroup of P4/m21/b2/m. Since it is a translatio-
nengleiche subgroup, there are no superstructure reflections. Refinement in the
space group P4/m, taking into account the twins, yielded a satisfactory result.
The cube about the origin of the unit cell (Fig. 17.1) is slightly larger and that
about 1

2 , 1
2 , 0 is smaller [343].

Solid-state reactions are usually performed at high temperatures. If a sub-
stance forms several polymorphic forms, at first a high-temperature form will
be formed. During the subsequent cooling, unnoticed phase transitions with
symmetry reductions can take place. If such a transition involves a translatio-
nengleiche group–subgroup relation, the formation of twins can be expected
(cf. Section 15.3). The twin law corresponds to a symmetry operation of the
high-temperature form; therefore, the X-ray reflections from the twin domains
will be nearly or exactly superposed in a systematic manner. This can feign
a wrong space group which, in many cases, is a supergroup of the real space
group, like in the example of Er2.30Ni1.84In0.70. However, the symmetry of a
subgroup can also be feigned, as shown with the following example.

The space groups and lattice parameters from the literature of three sub-

CaCrF5 CaMnF5 CdMnF5

space group C 2/c P2/c P21/n
a/pm 900.5 893.8 884.8
b/pm 647.2 636.9 629.3
c/pm 753.3 783.0 780.2
β/◦ 115.9 116.2 116.6
reference [344] [345] [346]

stances are listed in the margin. All three have the same structure (Fig. 17.3)
and nearly the same lattice parameters, and therefore, the occurrence of three
different space groups is out of the question. It should be easily possible to
distinguish the three space groups C 2/c, P2/c, and P121/n1 from the reflection



232 Group–subgroup relations as an aid for structure determination

➤

➤

c

b

➤

➤

c

a

➤ a(I mmm)

I 2/m 2/m 2/m
2a 2b 2c 4e 4g

mmm mmm mmm 2mm m2m
0 0 0 0.224 0
0 1

2 0 0 0.294
0 1

2
1
2 0 0

C 1 2/m 1

C 1 2/c 1

CaMnF5

Mn:4a Ca:4e F: 4e F: 8 f F: 8 f
1 2 2 1 1
0 0 0 0.224 0.010
0 0.456 0.093 –0.017 0.294
0 1

4
1
4 0.116 –0.033

t2
a− c, b, c

➤

k2
a, b, 2c

➤

➤ ➤ ➤ ➤ ➤

x, y, 1
2 (x + z)

➤
➤

➤

cc′

aa′

➤ I mmm cell

Fig. 17.3 Structure of the compounds CaCrF5, CaMnF5, and CdMnF5 and group–subgroup relations from the probable high-temperature aristotype.
Upper left: Section from a chain of the vertex-sharing octahedra; in the high-temperature form the chain is linear (or misordered in two orientations).
Lower left: Mutual orientation of the unit cells of the twin domains.

conditions in the X-ray patterns. Therefore, there must be some fundamental
error. Twins are the cause, and group–subgroup relations can help to trace the
error. The actual space group is C 2/c [347].

The structure contains zigzag-shaped MF2−
5 chains of vertex-sharing octahe-

dra along c. If the chains are linear, the symmetry is enhanced to I 2/m2/m2/m
with half the size of the unit cell. At the conditions of preparation at high
temperature, this enhanced symmetry seems to be true. Upon cooling, a phase
transition takes place, with symmetry reduction to C 2/c (Fig. 17.3). This in-
volves a translationengleiche subgroup of index 2, and thus the formation of
twins with two orientational states. Corresponding to the orthorhombic metric
of the supergroup, the metrical relations of the monoclinic cells are such that
there is a superposition of the X-ray reflections from one twin component with
those of the other one. Part of the reflections of one component appear right
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there where the other one has extinct reflections. As a consequence, the C cen-
tring of the space group C 2/c cannot be recognized by the absent reflections
h + k = 2n + 1 (for all hkl). However, the reflections with h + k = 2n + 1 are
still absent if l is even. These is a reflection condition that does not match with
any space group; hence it was disregarded, although this should have been an
alarm signal.

The refinement of the structure of CaMnF5 with the too low space-group
symmetry P2/c, a subgroup of C 2/c, yielded unreliable atomic coordinates
and bond lengths and the wrong conclusion, ‘unexpectedly, this is the first
case of Mn3+ exhibiting both possible distortions due to the Jahn–Teller effect,
elongated and compressed coordination octahedra’ [345].

For a collection of literature concerning twins and solved structures of twins
see �www.cryst.chem.uu.nl/lutz/twin/twin lit.html�.

Exercises

Solutions in Appendix D (page 298)

(17.1) HoRhIn (= Ho3Rh3In3) crystallizes in the ZrNiAl type,
space group P62m, Laue class 6/mmm, with the follow-
ing coordinates:

x y z

Ho 3g 0.4060 0 1
2

Rh1 1b 0 0 1
2

Rh2 2c 1
3

2
3 0

In 3 f 0.7427 0 0

The structure of Gd3Rh2In4 is similar, but the position
of the Rh2 atom is taken by Rh and In atoms with half
occupancy each [348]. According to the X-ray reflection
intensities, the Laue symmetry is still 6/mmm. There are
no superstructure reflections. Refinement yields a suspi-
ciously large displacement parameter U11 = U22 for the
Gd atom at the position 3g. What is the probable problem
of the structure determination? What is the actual space
group?
Hint: The positions of the Rh and In atoms are occupied
in an ordered manner.

(17.2) An X-ray powder diffraction pattern of Eu2PdSi3 can ini-
tially be indexed with a small hexagonal unit cell with
a = 416 pm and c = 436 pm. The pattern of the reflection
intensities agrees with an AlB2-like structure (P6/mmm,
Al: 1a 0, 0, 0; B: 2d 1

3 , 2
3 , 1

2 ; Fig. 11.4). An ordered
distribution of the palladium and silicon atoms within the

layers of hexagonal rings is not compatible with this sym-
metry and cell. A detailed inspection of the powder dif-
fractogram reveals the presence of weak reflections that
require a doubling of the a and b axes [349]. Use group–
subgroup relations to search for a model with ordered dis-
tribution of the atoms of the silicide Eu2PdSi3.

(17.3) The structure of CsMnF4 contains distorted coordination
octahedra that share vertices, forming corrugated, tetrag-
onal layers. Initially, the space group P4/nmm was as-
sumed [350]. However, several aspects remained un-
satisfactory: The ellipsoids of ‘thermal’ motion of the
bridging fluorine atoms were suspiciously large; these
ellipsoids had their semi-major axes approximately par-
allel to the covalent bonds (normally they are approxi-
mately perpendicular); each Mn atom had four long and
two short Mn–F bonds (4× 201 pm in the layer, 2×
181 pm terminal), but the distortion at Mn3+ ions due
to the Jahn–Teller effect should result in four short and
two long bonds; the observed ferromagnetism (at low
temperatures) is only compatible with elongated and not
compressed coordination octahedra [351]. These defi-
ciencies were eliminated by a new determination of the
structure [352]. How was it possible to solve the prob-
lem?
Hints: Compare the image of the structure (next page)
with the figure of the symmetry elements in International
Tables A, space group P4/nmm (No. 129), origin choice
2; the correct structure is tetragonal and the Mn atoms
occupy a centrosymmetric position.

www.cryst.chem.uu.nl/lutz/twin/twin_lit.html
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18.1 Derivation of hypothetical structure types
with the aid of group–subgroup relations

Previous chapters deal with relationships between known structure types. The
starting point is always a high-symmetry structure type, the aristotype, from
which all other structures can be derived. As a rule, one can find additional
subgroups of the space group of the aristotype that belong to as yet unknown
structure types. We have presented two examples: the conceivable structure
of an unknown modification of WCl3 and a variant of the ilmenite type which
could be the structure of AlTiO3 (Section 13.2.1, page 172; Fig. 13.5).

One can search in a systematic way for new possible structures with the
aid of group–subgroup relations, i.e. one can predict possible structure types.
What sense does it make to look for hypothetical structure types, the number
of known structures being already immense? There are several reasons:

(1) One can still reveal relatively simple structure types for which no rep-
resentatives are as yet known. It would be worthwhile to specifically
search for them or to answer the question, why they do not exist.

(2) If one has prepared a microcrystalline compound, the powder diffraction
diagram of which cannot be interpreted for the moment, model compu-
tations with feasible structure types can be of help.

(3) Hypothetical models can be useful for the structure determination of
crystals exhibiting misorder with diffuse X-ray scattering, although at
first glance this does not seem to be an adequate approach. For an ex-
ample see the end of Section 18.4, page 252.

The starting point is always an aristotype and a structural principle. For ex-
ample, the aristotype can be the hexagonal-closest packing of spheres, and the
structural principle can be the partial occupation of the octahedral interstices
of this packing. Of course, only such structure types will be found that meet
these initial conditions. To put it in another way: Among the ever infinite set of
conceivable structures, one restricts oneself to a subset that causes the infinite
problem to become more manageable. However, in order to reduce the infinite
problem to a finite one, some more restrictions are necessary. Such restrictions
can be: The chemical composition; a given molecular structure; a maximum
number of symmetry-independent atoms for every atom species; a maximum
size of the unit cell. Energy computations, such as are also being performed
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without group-theoretical considerations [354], finally can help to settle what
are the most probable structures.

To explain how to proceed, we examine what structures are possible for
compounds AaBb...Xx if the X atoms form a hexagonal-closest packing of
spheres and the remaining atoms occupy its octahedral interstices. We thus
extend the considerations of Sections 13.2.1 and 13.2.2 to include as yet un-
known structure types of this family of structures.

In this case, the aristotype has the space group P63/m2/m2/c, and the space
groups of the sought structure types are subgroups thereof. The unit cell of the
hexagonal-closest packing of spheres contains two X atoms and two octahe-
dral interstices (cf. Fig. 13.2, page 169). If the unit cell is enlarged by a factor
of Ξ , the cell contains 2Ξ octahedral voids and 2Ξ X atoms. We treat unoc-
cupied octahedral voids in the same way as occupied octahedral voids; so to
say, they are being occupied by Schottky defects (symbol �). For the chemical
composition AaBb...�sXx we then have: a+b+ · · ·+ s = x.

All numbers 2aΞ/x, 2bΞ/x, ..., 2sΞ/x have to be integral. That means that,
depending on chemical composition, the unit cell of the packing of spheres
has to be enlarged by an appropriate factor of Ξ . For example, for a trihalide
A1�2X3, the cell must be enlarged by a factor of Ξ = 3 or a multiple thereof;
otherwise it is not possible to occupy one-third of the octahedral voids by A
atoms in an ordered manner.

The first consideration to be made is how to enlarge the cell of the aristotype
in an appropriate way. Figure 18.1 shows the possibilities of enlargement of
the hexagonal cell by the factors 2, 3, and 4. The enlargement factor Ξ always
refers to the primitive cells. If one is interested in finding all possible kinds of
cell enlargement for a given factor Ξ , one has to be cautious with the larger
values of Ξ ; perhaps one could miss some possibilities, or one could consider
seemingly but not really different possibilities several times.

Enlargement of the (primitive) unit cell means loss of translational sym-
metry. Therefore, there must be at least one klassengleiche group–subgroup
relation. One sets up a tree of group–subgroup relations and looks for sub-
groups that correspond to the selected cell enlargement. In so doing, we have
to monitor how the point orbits that are to be occupied with atoms develop
from each group to its subgroups. The necessary information can be taken
from International Tables A1. Most important are those group–subgroup re-
lations that involve a splitting of the considered orbit into independent orbits.
For our example, we have to monitor what and how many independent orbits
result from the orbit of the octahedron centres. The symmetry reduction has to
be tracked only until all octahedral voids have become symmetry independent
in the enlarged cell, provided that distortion variants are not considered. Sub-
groups that do not involve splittings of the orbits do not have to be considered
unless they are needed as intermediate groups.

If the partial substitution of the X atoms is also considered, the development
of the orbits of the X atoms also has to be monitored. However, they should
also be tracked if only one kind of X atom is present to be sure of how many
non-equivalent positions the X atoms will be distributed among. Space groups
with many symmetry-independent X atoms are less probable according to the
symmetry principle.
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Fig. 18.1 Possibilities for the enlargement of a hexagonal unit cell by the factors Ξ = 2, 3, and 4. Numbers indicate the heights of the unit cell
vertices and of translation-equivalent points in the direction of view as multiples of the hexagonal lattice constant c. Symmetry symbols state the
minimum symmetry retained if the packing of spheres stays undistorted and atoms are being inserted into the centres of the octahedra (1 means a
direction that remains without symmetry).
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Some subgroups of the tree permit certain distortions if the involved coordi-
nates are no longer fixed by symmetry. Additional distortions require further
symmetry reductions with translationengleiche subgroups. They can be re-
garded in retrospect; we disregard them here.

Consider as an example the tripled, rhombohedral unit cell that is shown in
Fig. 18.1 under Ξ = 3, 2a+b,−a+b,3c. In this case, there is a ninefold en-
largement of the cell in the hexagonal axes setting, but due to the rhombohedral
centring the primitive cell is only tripled. The corresponding tree of group–
subgroup relations is shown in Fig. 13.1, page 169. The lowest-symmetry
space group in this tree is R3. This is the most symmetrical subgroup of
P63/mmc that has all octahedral voids symmetrically independent. Additional
space groups that could have been included as intermediate groups between
P63/mmc and R3 are not mentioned because they have no more symmetry-
independent octahedral voids than preceding space groups. Space groups not
mentioned in Fig. 13.1 cannot occur with the considered kind of cell enlarge-
ment, as long as the packing of spheres consists of only one kind of atoms and
provided that no distortions require additional symmetry reductions.

Known structure types corresponding to the tree of Fig. 13.1 are mentioned
in Section 13.2.1. In addition, the unknown structure is mentioned that could
exist for WCl3 in the space group G7 = R32 if its point orbit c3 is occupied by
W atoms (Fig. 13.5, page 172). For the space groups mentioned in Fig. 13.1,
some more structure types are feasible, depending on what orbits are occupied
by atoms of different elements. For example, the LiSbF6 type is known for the
composition AB�4X6 (R3, occupied orbits a and b; Fig. 13.1). There are two
more possibilities for this composition, namely in the space group R3:

(1) Atom A at orbit a2, B at a3 of R3; that is a BiI3 derivative with substitu-
tion of the Bi positions by alternating A and B atoms within a layer.

(2) Atom A at orbit a3, B at a6 of R3; that is a derivative of the hypothetical
WCl3 with one A and B atom each in the pairs of face-sharing octahedra.

This way, we have revealed two new possible structure types for compounds
ABX6. There are no additional possible structures for this composition with
one of the space groups of Fig. 13.1. For example, in R3, if A were to occupy
a1 and B were to occupy a3, this would be the same structure type as with
occupation of a2 and a3. Occupation of a1 and a5 would result in the LiSbF6

type which, however, does not belong to space group R3 because this distri-
bution of atoms can already be realized in space group R3. Therefore, when
predicting possible structure types by systematic occupation of all point orbits
to be considered, caution should be exercised with respect to two aspects:

(1) Several distributions of atoms that at first seem to be different may refer
to the same structure type; only one of them is to be considered.

(2) Some atom distributions are realizable with higher-symmetry space
groups and have to be assigned to them.

Errors can be avoided if, for a given chemical composition, one has calcu-
lated in how many ways different kinds of atoms can be allocated to the orbits
of a space group; see the next section.
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Derivations of possible crystal structure types by this method have been
described for the following structural principles: Occupation of octahedral
voids in the hexagonal-closest packing of spheres [173, 355], occupation of
octahedral voids in the cubic-closest packing of spheres [213, 356, 357], oc-
cupation of octahedral and tetrahedral voids in the cubic-closest packing of
spheres [358].

18.2 Enumeration of possible structure types
In this section we present mathematical procedures to enumerate the different
structures that are possible for every subgroup, given an aristotype and struc-
tural principle. Already when trying to determine completely all different sub-
stitution variants of the NaCl type with doubled unit cell (cf. Section 13.3.1)
without mathematical support, one runs into difficulties.

18.2.1 The total number of possible structures

Given a certain number of kinds of atom and a certain number of point orbits,
how many inequivalent ways do there exist to distribute the atoms? The total
number of possibilities can be calculated with Pólya’s enumeration theorem
[359, 360]. The theorem can be used, for example, to enumerate the isomers
of organic molecules [361, 362]. Consider the example of a trigonal prism;
how many different ways are there to mark the six vertices with at most six
different colours (or to occupy them with at most six kinds of atoms)?

The six vertices of the prism are numbered in Fig. 18.2. The notation
(123)(456) is a way to express one possible way to permute the symmetry-
equivalent vertices. (123) means cyclic exchange of the vertices ① → ② →
③ → ①. (13) means exchange of the vertices ① and ③. (5) means, vertex ⑤

keeps its position. If there are n numbers between the parentheses, we write sn

for short. We multiply all values sn belonging to a permutation; this product is
called a cycle structure term. The group of permutations of the trigonal prism
is the group of all possibilities of permuting its vertices in accordance with its
symmetry, i.e. the point group 6m2. The permutation group has an order of
12; it comprises the 12 permutations listed in Fig. 18.2.

permutations cycle structure term

(1)(2)(3)(4)(5)(6) identity = s6
1

(1)(4)(23)(56)
(2)(5)(13)(46)
(3)(6)(12)(45)

⎫⎬⎭vertical reflections = 3s2
1s2

2

(14)(25)(36)
(14)(26)(35)
(16)(25)(34)
(15)(24)(36)

horizontal reflection⎫⎬⎭twofold rotations

⎫⎪⎪⎬⎪⎪⎭= 4s3
2

(123)(456)
(132)(465)

3
3−1

}
= 2s2

3

(162435)
(153426)

6
6−1

}
= 2s1

6

①

④

③

⑥

②

⑤

Fig. 18.2 Permutation group of the trigonal
prism.
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Fig. 18.3 The three possible colourings of the
vertices of a trigonal prism with two colours
if one of the colours is used to mark two and
three vertices, respectively. 3m 1 m

m 2mm 2

two black vertices:

three black vertices:

The sum of all cycle structure terms, divided by the order of the permutationCycle index of the trigonal prism:

Z = 1
12 (s6

1 +3s2
1s2

2 +4s3
2 + 2s2

3 +2s1
6)

sn = xn
1 + xn

2 + · · ·+ xn
k

group, is the cycle index Z. Every one of the k ≤ 6 colours (or atom species)
is designated by one variable xi, for example, x1 = white, x2 = black. Now we
substitute sums of powers xn

i for the quantities sn. Applying this substitution
in the cycle index yields C, the generating function. With two colours x1 and
x2 we have sn = xn

1 + xn
2; the generating function is then:

C = 1
12 [(x1 + x2)

6 +3(x1 + x2)
2(x2

1 + x2
2)

2 +4(x2
1 + x2

2)
3 +2(x3

1 + x3
2)

2 + 2(x6
1 + x6

2)]

= x6
1 + x5

1x2 +3x4
1x2

2 +3x3
1x3

2 + 3x2
1x4

2 + x1x5
2 + x6

2 (18.1)

The powers correspond to the possible colour markings. For example, 3x4
1x2

2
means that there are three possible ways to mark four vertices with the colour
x1 and two vertices with x2. These three markings are shown in Fig. 18.3; in
addition, the three colour markings for 3x3

1x3
2 are shown.

For vertices that are not coloured (or that are left vacant of atoms), one
variable xi can be replaced by x0 = 1. For example, if some of the vertices are
left colourless and the remaining ones are marked with the two colours x1 and
x2, the generating function is:

C = 1
12 [(1+ x1 + x2)

6 +3(1+ x1 + x2)
2(1 + x2

1 + x2
2)

2 +4(1 + x2
1 + x2

2)
3

+2(1 + x3
1 + x3

2)
2 +2(1 + x6

1 + x6
2)]

= x6
1 + x5

1x2 +3x4
1x2

2 +3x3
1x3

2 +3x2
1x4

2 + x1x5
2 + x6

2

+x5
1 +3x4

1x2 + 6x3
1x2

2 +6x2
1x3

2 +3x1x4
2 + x5

2

+3x4
1 +6x3

1x2 +11x2
1x2

2 +6x1x3
2 +3x4

2

+3x3
1 +6x2

1x2 +6x1x2
2 +3x3

2

+3x2
1 +3x1x2 +3x2

2

+x1 + x2

+1 (18.2)
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In the preceding result, all variants that have the same number of colourless
vertices have been collected in one line each (beginning with the second =
sign; the sum of the powers of each product is the same for all products in
one line). The first line (sum of powers equal to 6 each, i.e. no colourless
vertices), of course, corresponds to eqn (18.1). Since colourless vertices could
also be marked with an additional (third) colour, the result is the same as for a
marking with three colours and no colourless vertices; therefore, the coefficient
11x2

1x2
2 = 11x2

1x2
2×12 has the same meaning as 11x2

1x2
2x2

3 for three colours and
no colourless vertices.

If the permutation group is that of an achiral point group, the presented
arithmetic technique does not distinguish pairs of enantiomers in the case of
chiral colour markings. A pair of enantiomeric molecules is counted as one
isomer. If one wants to know how many enantiomeric pairs exist, one repeats
the calculation, but uses the permutation group that consists only of rotations.
In the case of the trigonal prism, these are the identity, three twofold rotations,
and two threefold rotations. The cycle index is then Z′. With two colours x1 Z′ = 1

6 (s6
1 + 3s3

2 +2s2
3)

(white) and x2 (black) the resulting generating function is:

C′ = 1
6 [(x1 + x2)

6 +3(x2
1 + x2

2)
3 +2(x3

1 + x3
2)

2]

= x6
1 + x5

1x2 + 4x4
1x2

2 +4x3
1x3

2 +4x2
1x4

2 + x1x5
2 + x6

2 (18.3)

By subtraction of the generating functions C′ minus C from eqn (18.1), we
obtain the number of enantiomeric pairs:

C′ −C = x4
1x2

2 + x3
1x3

2 + x2
1x4

2

That is one enantiomeric pair with two, one with three, and one with four black
vertices. They are those shown in Fig. 18.3 for the point groups 2 and 1; for
each of them there exists another enantiomer in addition to the ones shown.

If the permutation group corresponds to a chiral point group, all colour
markings are chiral and are counted once each.

The number of possible colour markings has been calculated and listed for
many convex polyhedra [363].

If one is interested in the occupation of points in a crystal, the procedure is
the same. Starting from a set of symmetry-equivalent points, one determines
the possible permutations within one unit cell. Consider the six octahedral
interstices shown in Fig. 13.2 (page 169), placed at z = 0 and z = 1

2 in the
positions ①, ②, and ③ within the unit cell. Referred to the small unit cell
marked by the grey background, all of these points are symmetry equivalent.
In the tripled unit cell, they can be permuted and marked in the same way as
the vertices of a trigonal prism. The point in the centre of the prism ①–②–③

in Fig. 13.2 has the site symmetry 6m2 in the space group of the aristotype
P63/m2/m2/c; that is the point group of the prism.

18.2.2 The number of possible structures depending on
symmetry

The result of a calculation with Pólya’s theorem is the total number of possible
colour markings; there is no statement as to their symmetries. However, their



242 Prediction of possible structure types

point groups must be subgroups of the point group of the most symmetrical
colouring. The point group of the trigonal prism is 6m2 if all vertices are equal.
The point groups of the prisms with differently coloured vertices are subgroups
thereof. The point groups mentioned in Fig. 18.3 are such subgroups.

With reference to the tree of group–subgroup relations, WHITE has ex-
panded Pólya’s theorem, so that the colour markings can be enumerated de-
pending on symmetry [364].1 The application to crystallographic problems1The paper can hardly be understood by non-

mathematicians. was explained by MCLARNAN [365]; see also [353]. MCLARNAN used the
procedure to enumerate the stacking sequences of closest packings of spheres
if the stacking sequence of the hexagonal layers with positionings A, B, and
C are repeated after N = 2, 3, 4, . . . ,50 layers [366]. He also enumerated the
stacking variants of CdI2, ZnS, and SiC polytypes [366, 367] and of sheet sili-
cates [368]. Another technique to enumerate stacking variants in simpler cases
has been described by IGLESIAS [369].

Prerequisites for the application of WHITE’s method are the tree of group–
subgroup relations and a survey of the orbits of the concerned atomic positions.
Starting from the aristotype, all subgroups have to be considered which entail
splittings of orbits into non-equivalent orbits. The tree needs to be traced only
down to the point where all atomic positions of interest have become sym-
metrically independent (not taking into account distortion variants) or until a
predetermined limit of symmetry reduction has been reached.

We designate the space groups (for molecules: the point groups) of the tree
by G1, G2, . . . , the numbering following the hierarchy of decreasing symmetry;
for two groups Gi and Gj , i < j, the index of Gi in G1 must be smaller than or
equal to the index of Gj in G1. G1 is the aristotype. A matrix M is calculated
having the matrix elements:

mi j =
1

|G j| ∑
g∈G1

χ(gGi g−1 ⊆ G j) (18.4)

= I j
[Gi ⊆ G j ]

[Gi]
(18.5)

|G j| = order of the group G j
g = symmetry operation of G1

Ij =
|G1|
|G j|

= index of G j in G1

[Gi] = number of subgroups conjugate to Gi in G1
[Gi ⊆ G j ] = number of these conjugates that are also subgroups of G j
χ(COND) = 1 if the condition COND is fulfilled
χ(COND) = 0 if the condition COND is not fulfilled

χ(COND) is called the ‘characteristic function’. In our case the condition is
COND = gGi g−1 ⊆ G j , i.e. it has to be established whether application of the
symmetry operations g of the aristotype to the group Gi generates the group
G j . To compute the sum of eqn (18.4), all symmetry operations of the aris-
totype have to be processed. This includes the translations of the aristotype
that correspond to the largest unit cell of the considered subgroups; i.e. of the
unit cell of the aristotype as many adjacent unit cells have to be considered
as it corresponds to the largest unit cell among the subgroups. For tetrago-
nal, trigonal, hexagonal, and cubic aristotypes the number of considered cells
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has to be in accordance with the crystal system; for example, if one is inter-
ested in hettotypes of a tetragonal aristotype having a doubled, not only do two
cells of the aristotype in the direction of a have to be considered, but also in
the direction of b; otherwise the group properties of the tetragonal aristotype
would be violated. For larger trees of subgroups the computational expendi-
ture is considerable and can be handled only by a fast computer in reasonable
time. For the computation, the symmetry operations are represented by 4×4
matrices [355, 357, 358].

If one wants to calculate by hand, eqn (18.5) is more convenient. For that
purpose one needs to have an overview of how many conjugates in G1 exist for
every subgroup. As explained in Section 8.3, this can be evaluated with the aid
of the normalizers. For example, using the table of the Euclidean normalizers
of International Tables A, one finds the relations mentioned in the margin for
G6 (hexagonal axes setting) of the tree of Fig. 13.1, page 169.

G1 = P63/m2/m2/c

➤

6
2a+b, –a+b, 3c

NE(G6) = R32/m

➤

–a, –b, 2c

G5 = R32/c = NG 1
(G6)

➤

2

G6 = R3

The index of NG1(G6) in G1 is 6; accordingly, G6 belongs to a conjugacy
class consisting of six subgroups that are conjugate in G1. They differ by three
positions of their origins (which are translationally equivalent in G1), with two
orientations each, rhombohedral obverse and reverse.

The matrix M is triangular, i.e. all elements above the main diagonal are
mi j = 0. All components are zeros or positive integers, and the first column
contains only ones.

Consider the tree of Fig. 13.1 as an example. The space groups are numbered
from G1 to G9. The corresponding matrix is:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 2
1 0 2
1 2 2 4
1 0 2 0 1
1 2 2 4 1 2
1 0 2 0 1 0 2
1 0 2 0 3 0 0 6
1 2 2 4 3 6 6 6 12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18.6)

For example, the matrix elements m64 and m65 of this matrix can be calcu-
lated with eqn (18.5) as follows:

I4 = 2×2 = 4; I5 = 2×3 = 6;

[G6] = 6: there are six conjugates to G6 in G1 (see above);

[G6 ⊆ G4] = 6: all six conjugates to G6 (in G1) are also subgroups of G4;

[G6 ⊆ G5] = 1: only one of the conjugates to G6 is also a subgroup of G5, namely the
one with the same origin position and the same orientation (obverse or reverse).

m64 = I4
[G6 ⊆ G4]

[G6]
= 4

6
6

= 4; m65 = I5
[G6 ⊆ G5]

[G6]
= 6

1
6

= 1

An element mi j is always and only equal to zero if the space group Gi is
not a subgroup of G j. If the matrix M is calculated by a computer with the
aid of eqn (18.4), the results automatically show if there is a group–subgroup
relation between two groups, even for non-maximal subgroups. This ensures
that errors are avoided with complicated trees of subgroups. For the calculation
of M there is even no need to plot the tree; a complete, hierarchically ordered
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list of the subgroups is sufficient. However, the list may not contain subgroups
conjugate in G1; only one representative of every conjugacy class is permitted.

This is because two subgroups Gi and G j are conjugate by definition if the
condition gGi g

−1 ⊆ G j is fulfilled for at least one g. According to eqn (18.4)
the result is then mi j > 0. Since conjugate subgroups have the same order, there
can be no group–subgroup relation between them. A computed value mi j > 0
for two subgroups of the same order indicates that they are conjugate, and one
of them has to be eliminated from the list. On the other hand, non-conjugate
subgroups on a par (Section 8.3, page 107) may not be excluded from the list.

For the subsequent computation, the inverse matrix of M is needed, B =
M−1. Since it is a triangular matrix, the matrix inversion is easy to calculate.
With some practice, it is easily performed by mental arithmetic. All diagonal
elements of B are the reciprocals of the diagonal elements of M, bii = 1/mii.
All other elements result from the formula in the margin. When the matrix B

bi j = −bii

i−1

∑
k= j

mikbk j
is computed row by row from top to bottom, the bk j needed to calculate the bi j

are known.
The inverse of the above-mentioned matrix (18.6) is:

B = M−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
− 1

2
1
2

− 1
2 0 1

2
1
4 − 1

4 − 1
4

1
4

0 0 −1 0 1
0 0 1

2 − 1
2 − 1

2
1
2

0 0 0 0 − 1
2 0 1

2

0 0 1
3 0 − 1

2 0 0 1
6

0 0 − 1
6

1
6

1
2 − 1

4 − 1
4 − 1

12
1

12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
If an element is mi j = 0, then bi j = 0 also holds. All bi j of one row of B always
add up to 0 (the first row excepted).

In addition to the matrix B, for a given chemical composition, one also has
to calculate in how many ways the different kinds of atoms can be allocated to
the considered orbits for every space group of the tree. This is done according
to the rules of combinatorics. For example, in the space group G9 of Fig. 13.1
all six octahedral interstices are symmetry independent; if two of them are to
be occupied by two equal atoms and four remain unoccupied, there are v9 =(6

2

)
= 15 combinatorial distributions. In the space group G6 = R3 there are only

three possibilities to occupy two octahedral interstices by two equal atoms, as
shown in the margin (boxes in grey represent occupied octahedral interstices).
A general formula for the computation of the combinatorial possibilities is

G6 = R3

c2 b c2

a c1 c1

c2 b c2

a c1 c1

c2 b c2

a c1 c1
given in the next section.

In this way, one number v1 to v9 is computed for each space group G1 to G9.
These numbers are combined into a column v = (v1, . . . , v9)

T. They specify
the number of possible combinatorial distributions of atoms among the orbits
of every space group for a given chemical composition. Among the lower-
symmetry space groups, they include those distributions that in reality have a
higher symmetry, and equal structures may have been counted repeatedly. For
example, among the three possibilities shown in the margin, the first one (a and
b occupied) does not correspond to the space group G6 = R3 because it fulfils
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Table 18.1 Numbers of inequivalent structural variants (= components of z), depending on space
group and chemical composition for the occupation of octahedral interstices in the hexagonal-
closest packing with tripled, rhombohedral unit cell (Fig. 13.1) [173]. X = atoms of the sphere
packing, A, B, C = atoms in octahedral interstices, � = unoccupied octahedral interstices.

AX ABX2 AB2X3 ABCX3 AB5X6 ABC4X6 AB2C3X6
�X A�X2 A�2X3 AB�X3 A�5X6 AB�4X6 AB2�3X6

�B2X3 �B5X6 A�C4X6 A�2C3X6
�B2C3X6

v z v z v z v z v z v z v z

G1 = P63/m2/m2/c 1 1 0 0 0 0 0 0 0 0 0 0 0 0
G2 = P32/m1 1 0 2 1 0 0 0 0 0 0 0 0 0 0
G3 = P312/c 1 0 0 0 0 0 0 0 0 0 0 0 0 0
G4 = P3 1 0 2 0 0 0 0 0 0 0 0 0 0 0
G5 = R32/c 1 0 0 0 1 1 0 0 0 0 0 0 0 0
G6 = R3 1 0 4 1 3 1 6 3 2 1 2 1 4 2
G7 = R32 1 0 0 0 3 1 6 3 0 0 0 0 0 0
G8 = R3c 1 0 0 0 3 0 6 1 0 0 0 0 0 0
G9 = R3 1 0 20 1 15 0 90 4 6 0 30 2 60 4

sum (=̂ Pólya) 1 3 3 11 1 3 6

the higher symmetry of the space group G5 = R3c; the other two (occupation
of c1 and c2) represent the same structure type; only one of them should be
considered. The numbers z1, . . . ,z9 of inequivalent structure types, assigned to Number of inequivalent structure types:

z = Bv with z =

⎛⎜⎝ z1
...
z9

⎞⎟⎠the correct space groups, result from the product of B and v.
These numbers are listed in Table 18.1 for different chemical compositions,

referred to the tree of subgroups of Fig. 13.1. The total numbers for each com-
position result from eqn (18.2), page 240; in accordance with the chemical
formula AaBb�sX6, take x1 = A and x2 = B and look at the coefficient of
the product of powers xa

1xb
2. For the composition A2B2�2X6, the coefficient

11x2
1x2

2 indicates eleven possible structures; for AB2�3X6 there are six (6x1x2
2).

In order to compute the combinatorial distributions contained in the column
v, for every space group Gi it must be known how many different symmetry-
equivalent atomic positions have to be considered and what multiplicities these
positions have. Therefore, starting from the aristotype, we have to monitor how
the positions develop from a group to its subgroups, specially, in what way
they split into inequivalent positions. The necessary information is contained
in International Tables A1.

18.3 Combinatorial computation of distributions
of atoms among given positions

Given:

(1) The unit cell of a space group with a (finite) number of points that can
be occupied by atoms. The points are subdivided into Z1 ×n1 points of
multiplicity Z1, Z2 × n2 points of multiplicity Z2, etc. The multiplicity
in each case is the number of symmetry-equivalent points in the primi-
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tive unit cell. n1, n2, . . . indicate how many points of the multiplicities
Z1, Z2, . . . are present in the primitive cell.

(2) A set of a A atoms, b B atoms, . . . , that are to be distributed among
the given points of the unit cell in accordance with symmetry. The total
number of atoms is no more than the total number of available points.
Some points may remain unoccupied.

The number P of combinations to distribute the atoms among the points can
be calculated with the following recurrence formula [370]:

P =
N1

∑
j=0

[

(
n1

j

) N2

∑
k=0

[

(
n2

k

) N3

∑
l=0

· · ·
Nz−1

∑
y=0

[

(
nz−1

y

)
[

(
nz

Nz

)
Pj,k,...,y]] . . . ]] (18.7)

with: (
n
0

)
= 1

(
0
0

)
= 1

(
n
k

)
=

n!
k!(n− k)!

N1 = min(n1, int(a/Z1))

N2 = min(n2, int( a− jZ1
Z2

))

N3 = min(n3, int( a− jZ1−kZ2
Z3

))

etc.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18.8)

min(u,v) = the lesser of the two numbers u and v

int( x
y ) = integer result of the division x/y, with or without remainder

The sequence Z1 ≤ Z2 ≤ Z3 . . . is to be satisfied. The number of addends
(sigma signs) in eqn (18.7) is such that the last but one number is Nz−1 > 0,
and z is less than or equal to the number of occurring multiplicities.

If the integer division int(. . . ) leaves a remainder when computing the last
number Nz or if the result of this division yields Zz > Nz > 0 or int(. . . ) > nz,
then Pj,k,...,y = 0. Otherwise Pj,k,...,y = 1 if there are no B atoms; if there are B
atoms, Pj,k,...,y again has to be computed according to eqn (18.7), but with the
values n′1 = n1 − j, n′2 = n2 − k, . . . instead of n1, n2, . . . and with the number
b of B atoms instead of a in eqns (18.8). If there are c C atoms, the whole
procedure is repeated with the number c in eqns (18.8), etc.

Example 18.1
Consider the distribution of a = 2 A atoms and b = 3 B atoms among points
of the Wyckoff positions 1a, 1b, 2c, 2d, 2e, and 3 f . 1a and 1b are n1 = 2
positions of multiplicity Z1 = 1; 2c, 2d, and 2e are n2 = 3 positions of multi-
plicity Z2 = 2; 3 f are n3 = 1 positions of multiplicity Z3 = 3. There exist 16
combinations shown in Fig. 18.4.
Formulated to detail, the recurrence formula (18.7) yields:

Initial values:
a = 2 b = 3

n1 = 2 Z1 = 1
n2 = 3 Z2 = 2
n3 = 1 Z3 = 3

Because there are z = 3 different multiplicities, a maximum of three numbers
N1, N2, and N3 appears in eqn (18.7), and a maximum of two (= z−1) sigma
signs with the running indices j and k.
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1a 1b 2c 2d 2e 3 f
1 A A B B B

2 A A B B B

3 B A A B B

4 B A A B B

5 B A A B B

6 B A A B B

7 A A B B B

8 B B B A A

9 B A A B B

10 B B B A A

11 B A A B B

12 A A B B B

13 B B B A A

14 B B B A A

15 B B B A A

16 B B B A A

Fig. 18.4 The 16 combinations for the distri-
bution of two A and three B atoms among
points of the positions 1a, 1b 2c, 2d, 2e, and
3 f .

N1 = min(2, int( 2
1)) = 2; the index j runs from 0 to 2

for j = 0 one has N2 = min(3, int( 2−0
2 )) = 1; the index k runs from 0 to 1

for j = 0 and k = 0 one has N3 = min(1, int( 2−0−0
3 )) = 0 with remainder on

division; due to the remainder one has P0,0 = 0
for j = 0 and k = 1 one has N3 = min(1, int( 2−0−1×2

3 )) = 0, no remainder
for j = 1 one has N2 = min(3, int( 2−1×1

2 )) = 0 with remainder;
because N2 = 0 there is no running index k;
due to the remainder one has P1 = 0

for j = 2 one has N2 = min(3, int( 2−2×1
2 )) = 0 without remainder;

because N2 = 0 there is no running index k
Equation (18.7) therefore yields:

P =

(
n1

0

)(
n2

0

)(
n3

N3

)
P0,0︸ ︷︷ ︸

j=0, k=0

+

(
n1

0

)(
n2

1

)(
n3

N3

)
P0,1︸ ︷︷ ︸

j=0, k=1

+

(
n1

1

)(
n2

N2

)
P1︸ ︷︷ ︸

j=1, no k

+

(
n1

2

)(
n2

N2

)
P2︸ ︷︷ ︸

j=2, no k

=

(
2
0

)(
3
0

)(
1
0

)
×0 +

(
2
0

)(
3
1

)(
1
0

)
P0,1 +

(
2
1

)(
3
0

)
×0 +

(
2
2

)(
3
0

)
P2

= 3P0,1 + 1P2 (18.9)

The computation of P0,1 is performed again with eqn (18.7). In the following,
j′, k′, N ′

1, N′
2, N ′

3, and P′
j′,k′ replace the variables j, k, N1, etc.
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n′2 = n2 − k = 3 − 1 = 2 replaces n2; n′1 = n1 = 2, n′3 = n3 = 1. In eqns
(18.8), b = 3 replaces a. P′

j′,k′ = 1 holds because there are no C atoms, unless
P′

j′,k′ = 0 due to a remainder from one of the integer divisions. We obtain:

N′
1 = min(2, int( 3

1)) = 2
for j′ = 0: N ′

2 = min(2, int( 3−0
2 )) = 1

for j′ = 0 and k′ = 0: N′
3 = min(1, int( 3−0−0

3 )) = 1 without remainder,
→ P′

0,0 = 1

for j′ = 0 and k′ = 1: N′
3 = min(1, int( 3−0−1×2

3 )) = 0 with remainder,
→ P′

0,1 = 0

for j′ = 1: N ′
2 = min(2, int( 3−1×1

2 )) = 1
for j′ = 1 and k′ = 0: N′

3 = min(1, int( 3−1×1−0
3 )) = 0 with remainder,

→ P′
1,0 = 0

for j′ = 1 and k′ = 1: N′
3 = min(1, int( 3−1×1−1×2

3 )) = 0 without remainder,
→ P′

1,1 = 1

for j′ = 2: N ′
2 = min(1, int( 3−2×1

3 )) = 0 with remainder,
→ P′

2 = 0, no running index k′

This results in:

P0,1 =

(
n′1
0

)(
n′2
0

)(
n′3
N′

3

)
P′

0,0︸ ︷︷ ︸
j′=0, k′=0

+

(
n′1
0

)(
n′2
1

)(
n′3
N′

3

)
P′

0,1︸ ︷︷ ︸
j′=0, k′=1

+

(
n′1
1

)(
n′2
0

)(
n′3
N ′

3

)
P′

1,0︸ ︷︷ ︸
j′=1, k′=0

+

(
n′1
1

)(
n′2
1

)(
n′3
N ′

3

)
P′

1,1︸ ︷︷ ︸
j′=1, k′=1

+

(
n′1
2

)(
n′2
N′

2

)
P′

2︸ ︷︷ ︸
j′=2, no k′

=

(
2
0

)(
2
0

)(
1
1

)
×1 +

(
2
0

)(
2
1

)(
1
0

)
×0 +

(
2
1

)(
2
0

)(
1
0

)
×0

+

(
2
1

)(
2
1

)(
1
0

)
×1 +

(
2
2

)(
2
0

)
×0

= 5 (18.10)

The value of 5 corresponds to each of the five combinations for the B atoms
shown in Fig. 18.4 under the numbers 2–6, 7–11, and 12–16, when the A
atoms occupy one of the twofold positions 2c, 2d, and 2e, respectively.
P2 is computed in the same way, with the new values n′1 = n1 − j = 2−2 = 0
instead of n1, n′2 = n2 = 3, n′3 = n3 = 1 and b = 3 instead of a = 2. Because
of n′1 = 0, N ′

1 = 0 and j′ can adopt only the value of 0:

N′
2 = min(3, int( 3−0

2 )) = 1
for k′ = 0: N ′

3 = min(1, int( 3−0−0
3 )) = 1 without remainder, → P′

0,0 = 1

for k′ = 1: N ′
3 = min(1, int( 3−0−1×2

3 )) = 0 with remainder, → P′
0,1 = 0

P2 =

(
n′1
0

)(
n′2
0

)(
n′3
N′

3

)
P′

0,0︸ ︷︷ ︸
j′=0, k′=0

+

(
n′1
0

)(
n′2
1

)(
n′3
N′

3

)
P′

0,1︸ ︷︷ ︸
j′=0, k′=1

=

(
0
0

)(
3
0

)(
1
1

)
×1 +

(
0
0

)(
3
0

)(
1
0

)
×0

= 1 (18.11)
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This value of 1 corresponds to the one possible way to distribute the B atoms
when the A atoms occupy the positions 1a and 1b (Fig. 18.4, combination 1).
The total number of combinations is obtained by substitution of eqns (18.10)
and (18.11) into eqn (18.9):

P = 3×5 + 1×1 = 16

To compute eqn (18.7) one can use a computer program that calls a procedure
that computes the expression after one of the sigma signs. If another sigma
sign appears, the procedure calls itself once more and continues doing so
until all sums have been calculated.

18.4 Derivation of possible crystal structure
types for a given molecular structure

In Section 18.1 we considered how atoms can be distributed among given po-
sitions (for example, octahedral voids). In this section we choose a different
approach; we start from a given molecular structure and consider in what ways
the molecules can be packed and what space groups may occur. For molecules
with irregular shape, like most organic molecules, geometrical considerations
are of little help. This is different for inorganic molecules, which can often be
regarded as sections from a packing of spheres. We choose the example of the
dimeric pentahalides to explain the procedure.

Pentachlorides, bromides, and iodides like (NbCl5)2, (UCl5)2, (WBr5)2,
(TaI5)2 consist of molecules having the point symmetry 2/m2/m2/m (Fig. 18.5).
The halogen atoms span two edge-sharing octahedra. Edge-sharing octahedra
also exist in closest packings of spheres (Fig. 13.2, page 169). In fact, (MX5)2

molecules pack themselves in such a way that the halogen atoms form a closest
packing of spheres, with one-fifth of the octahedral voids being occupied. This
entails three important restrictions: (1) pairs of adjacent octahedral voids have
to be occupied; (2) all octahedral voids next to a molecule must remain unoc-
cupied; (3) the molecules can only adopt certain orientations in the packing of
spheres. In addition, we take for granted that no position of a sphere is vacant
(this actually is always fulfilled).

➤

bhex

➤

ahex

➤ [210]hex

A
B

unoccupied octahedral voids

➤ ➤

➤ ➤

➤chex

➤

[210]hex

B

A

B

A

Fig. 18.5 Embedding of an (MX5)2 molecule
into the hexagonal-closest packing of spheres

Figure 18.5 shows how an (MX5)2 molecule fits itself into a hexagonal-
closest packing of X atoms. Only one of the twofold rotation axes of the mole-
cule conforms with a twofold rotation axis of the sphere packing (parallel to
bhex), namely the one that runs through the two M atoms. The remaining rota-
tion axes of the molecule are inclined by 35.3◦ and −54.7◦ relative to the c axis
of the sphere packing. There are two opposed inclinations, one if the occupied
octahedral voids are situated between layers A and B, the other one if they are
between layers B and A of the stacking sequence ABAB. . . .

Because coincidence between symmetry axes of the molecule and the pack-
ing of spheres is only present in one direction, neither the full symmetry of the
molecules nor of the packing of spheres can be retained. The most symmetrical
point group for the molecules is 2/m, a subgroup of 2/m2/m2/m. Among the
symmetry axes of the space group of the packing of spheres, P63/m2/m2/c, the
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Fig. 18.6 The only way for a close packing of
(MX5)2 molecules in one layer; layer group
c12/m1. ➤ a

➤

b

63, 6, 3, and 3 axes cannot be retained. Due to the condition that the octahedral
voids next to a molecule must remain unoccupied, the reflection planes perpen-
dicular to c and the 2 axes parallel to [210] (last 2 in the Hermann–Mauguin
symbol) cannot be retained, because these symmetry elements run through the
X atoms.

There are additional geometric restrictions. If 2
5 of the octahedral voids are

being occupied only between layers A and B in the stacking sequence ABAB. . .
of X atoms, and those between B and A remain vacant (stacking sequence
Aγ2/5B�; γ = atoms in octahedral voids), the result are layers of molecules in
which there exists only one possible arrangement for the molecules (Fig. 18.6).
The layer of molecules has the layer group c12/m1. The layers can be stacked
with different mutual displacements, and they can be mutually turned by 120◦.

If octahedral voids are being occupied between A and B as well as between
B and A, stacking sequence Aγ2/5−nBγ ′n, the closest packing can be realized
only if molecules of equal inclination are stacked to columns parallel to chex,
like the two molecules shown to the right of the lower image in Fig. 18.5.
Twofold rotation axes and reflection planes are then only possible in the sym-
metry direction b (parallel to the connecting M–M line in a molecule). In
other symmetry directions, 21 axes and glide planes are possible, provided that
n = 1

5 (stacking sequence Aγ1/5Bγ ′1/5); in this case the numbers of columns of
molecules with the two inclinations are the same. c glide planes are possible
perpendicular to b. For more details see [371].

Keeping in mind that centrosymmetric molecules crystallize in centrosym-
metric space groups, almost without exceptions (page 186), we do not consider
non-centrosymmetric space groups. In addition, the number of M atoms not
equivalent by symmetry should be kept low. Taking into account all of the
mentioned restrictions, only a few subgroups of P63/m2/m2/c can occur. The
corresponding Bärnighausen tree reveals what space groups are possible when
(MX5)2 molecules crystallize with a hexagonal-closest packing of X atoms
(Fig. 18.7). One-fifth of the octahedral voids being occupied, in any case there
must be a step with an isomorphic subgroup of index 5. The space groups
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P63/m2/m2/c
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➤
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➤
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➤
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➤
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➤
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➤
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➤

t2
➤

k2

➤
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➤
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➤
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α-(NbBr5)2

P1121/a

α-(NbI5)2?
(WSBr4)2C 12/m1

(NbCl5)2

P21/n2/m21/n

stacking sequence Aγ2/5B�

stacking of layers
according to Fig. 18.6 structures shown in Fig. 18.8

stacking sequence Aγ1/5Bγ ′1/5, for (NbCl5)2 Aγ2/15Bγ ′4/15

Fig. 18.7 Possible space groups (marked with
grey) for crystal structures of (MX5)2 mole-
cules with hexagonal-closest packing of X
atoms. Only space groups with a maxi-
mum of two symmetry-independent M atoms
have been considered, but with symmetry-
equivalent M atoms within a molecule. The
setting C 2/c2/m21/m has been chosen (con-
ventional C 2/m2/c21/m) to ensure that for all
space groups the b axes are parallel to the in-
tramolecular M–M connecting line. C 1 is a
non-conventional setting of P1 (centring as
in Fig. 18.6).

considered in Fig. 18.7 refer only to structures in which there are no more
than two symmetrically independent metal atoms. The corresponding molec-
ular packings are shown in Fig. 18.8. For further possibilities, including other
packings of spheres and the corresponding Bärnighausen trees, see [371]. No
representatives are as yet known for some of the possible space groups .

Similar considerations were applied to derive the possible space groups and
crystal structures for other halides, for example, MX6 molecules [372], MX4

chains of edge-sharing octahedra [373], and MX5 chains of vertex-sharing oc-
tahedra [374].

The intermolecular forces between the molecules differ only marginally for
all of the conceivable crystal structures. Correspondingly, different polymor-
phic forms are observed for these pentahalides; for example, four modifica-
tions are known for (MoCl5)2, all of which correspond to one of the predicted
packings [375].
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Fig. 18.8 Possible ways to pack (MX5)2

molecules with M atoms at z = 0 and z = 1
2

(Aγ2/5−nBγ ′n).

Pnmn

C 12/m1

Pnmn

Pnma

P1121/a

➤ z = 1
2

➤ z = 0

➤ b

➤a

➤

layer of
molecules for

stacking faults

In addition, pentahalides (MX5)2 show a tendency to crystallize with some
misorder.2

2The term ‘misorder’ is explained in the mar-
gin note No. 2 in Section 15.1.2 (page 199).

The X-ray diffraction patterns then exhibit diffuse streaks besides sharp
Bragg reflections. Diffuse streaks imply the presence of layers that consist
of ordered molecules, but the sequence of the layers has no periodic order. In
the direction of b the number of molecular contacts is least, and the intermole-
cular forces are the weakest in this direction. The layers of ordered molecules
are oriented perpendicular to b; they are mutually shifted at random parallel to
+a and −a (one such layer is marked in the image of the space group Pnma
in Fig. 18.8). The misordered structure ultimately is a randomly mixed form
between the structures with the space groups Pnma and P1121/a.

An ‘average structure’ is obtained if only the Bragg reflections are evalu-
ated. The average structure results when all layers are projected into one layer.
This average structure has the space group C 2/c2/m21/m, which is the com-
mon supergroup of all possible space groups (the triclinic ones excepted); in
Fig. 18.7 it is the one mentioned after the first i5 step. In the average structure
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the octahedral voids show a seeming partial occupancy. The real structure can
be determined only by evaluation of the intensities along the diffuse streaks
(which is cumbersome). In this case, the usual methods of crystal structure
solution (Patterson synthesis, direct methods) fail. However, taking into ac-
count the above-mentioned structural possibilities, one can still obtain a suit-
able structure model. The misordered structure variants of (NbBr5)2, (TaI5)2

and, similarly, (MoCl4)6 were determined this way [376–378].

Exercises

Solutions in Appendix D (page 298)

(18.1) Take the prism shown in Fig. 18.2, but assume that the
edges ②–③ and ⑤–⑥ are shorter than the remaining
edges, so that the point group is not 6m2 but 2mm .
Compute in how many inequivalent ways two and three
vertices can be marked with one colour.

(18.2) Compute the number of possible isomers of square-

pyramidal molecules of compositions MX3YZ and
MX2Y2Z (M = central atom; X, Y, Z = ligands). How
many are chiral?

(18.3) Take the right branch of the tree of Fig. 13.10, page 179,
down to the subgroup I 4/mmm. Compute the number of
possible inequivalent structure types for the compositions
ABX2 and ABX4 in space group I 4/mmm.
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Historical remarks 19
For centuries, the objective of crystallography was little more than the descrip-
tion of crystals that were found as minerals or that grew from solutions or from
melts. They attracted attention because of their regular shapes, planar faces,
and cleavability parallel to these faces. Early findings were:

The law of constancy of interfacial angles between crystal faces,
stated by NIELS STENSEN in 1669; he came from Copenhagen
and his geological work in Tuscany is considered to be the origin
of modern geology.
The law of symmetry by RENÉ JUST HAÜY (1815): if the shape
of a crystal is altered, corresponding parts (faces, edges, angles)
of the crystal are simultaneously and similarly modified.
The law of rational indices by HAÜY (1784), according to which
any crystal face can be specified by a set of three, usually small
integral numbers.

Cleavage of calcite crystals resulting in smaller crystals of the same shape
led HAÜY to the assumption of a smallest parallelepiped (‘molécule inté-
grante’) as a building block of a crystal. In 1824, LUDWIG SEEBER explained
certain physical properties of crystals by placing chemical molecules at the
vertices of the parallelepipeds. The concepts of unit cell and of translational
symmetry were thus introduced.

In the nineteenth century interest turned to the mathematical treatment of
symmetry. Based on the law of rational indices, LUDWIG FRANKENHEIM

(1826), JOHANN FRIEDRICH CHRISTIAN HESSEL (1830), and AXEL GADO-
LIN (1867) derived the 32 crystal classes, some of which had never been ob-
served among crystals.

The classification of the 14 lattices of translations by AUGUSTE BRAVAIS

(1850) was followed by the classification of infinite regular systems of points.
CHRISTIAN WIENER, in 1863, stated in his Foundations of World Order

[379]:

‘Regular arrangement of equal atoms takes place when every atom
has placed the others around itself in a coincident manner.’

In LEONHARD SOHNCKE’s Development of a Theory of Crystal Structure
(1879) [380], a crystal is mentally replaced by a system of mass points which
always have a minimum mutual distance:

‘Around every point the arrangement of the others is the same.’

In SOHNCKE’s book, extensive reference is made to earlier historical devel-
opments, such as work by R. HOOKE (1667), CHR. HUYGENS (1690), and
W. H. WOLLASTON (1813).
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SOHNCKE, EVGRAF STEPANOVICH FEDOROV (1891), ARTHUR SCHOEN-
FLIES (1891), and WILLIAM BARLOW (1894) then turned to the investigation
of the underlying plane groups and space groups. F. HAAG (1887) postulated
that crystal structures should be regular arrangements of atoms and that crystal
symmetry should be a space group. However, these conjectures were spec-
ulations at that time, just as the atom packings described by SOHNCKE and
BARLOW, such as a model of the NaCl structure (which they did not assign to
any substance).

It was not until 1912 that this was proven experimentally by the first X-
ray diffraction experiment by WALTHER FRIEDRICH and PAUL KNIPPING,
suggested by MAX VON LAUE. The first crystal structure determinations then
followed with simple inorganic materials (such as NaCl, KCl, and diamond)
by WILLIAM HENRY BRAGG and WILLIAM LAWRENCE BRAGG.

The presentations by SCHOENFLIES and FEDOROV of the space groups
were not yet appropriate for use in structure determinations with X-rays. The
breakthrough came with the geometric description of the space groups by sym-
metry elements and point positions by PAUL NIGGLI in his book Geometrische
Kristallographie des Diskontinuums (1919) [381]. Thereupon, RALPH W. G.
WYCKOFF prepared tables and diagrams of the unit cells with the symmetry
elements and special positions [382]. Together with tables by W. T. ASTBURY

and KATHLEEN YARDLEY [383] they were the basis for the trilingual Inter-
national Tables for the Determination of Crystal Structures, edited by CARL

HERMANN and published in 1935 [23]. These tables included the Hermann–
Mauguin symbols that had been introduced by HERMANN (1928) [48] and
supplemented by CHARLES MAUGUIN [49].

In his major work Das Krystallreich (1920), FEDOROV compiled an exten-
sive collection of crystal-morphological data [384]. In a 159-page elaboration
of 1904, he formulated two laws [385]. In the first one, which he called a
‘deductive law’ that is based on ‘general principles of hard science’, he states:

‘A distribution of all crystals in two categories, the cubic and the
hypohexagonal ones.’

The second law, which is of the ‘inductive kind’, ‘the trueness of which is
based solely on countless facts’, is:

‘All crystals are either pseudotetragonal or pseudohexagonal in a
broad sense, i.e. if even such deviations are accepted as extreme
cases like 20◦. The main value of this law is that deviations are
the less frequent the larger they are.’

Compare this with aspects 1 and 2 of the symmetry principle as stated in Sec-
tion 1.1.

In his textbook on mineralogy [386], PAUL NIGGLI expressly supported
FEDOROV’s opinion. However, due to its unprovability, he scored FEDOROV’s
symmetry law only as a fruitful working hypothesis or philosophical doctrine.
Furthermore, he states:

‘Cubic and hexagonal crystal species are the typical representa-
tives of crystalline material, and any deviation from the two high-
est symmetries has its special causes, attributable to the complex-
ity of the building blocks of the crystal.’
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Finally NIGGLI emphasizes that there are often ‘manifold reminiscences of
higher symmetry’, but that this ‘rather is a confirmation than a proof to the
contrary for the tendency towards the highest possible symmetry’.

FRITZ LAVES was the first and, for a long time, the only one who used the
symmetry principle as a guideline [387–389]. In his work Phase Stability in
Metals and Alloy Phases (1967) he states:

‘In crystal structures there exists a strong tendency towards for-
mation of high-symmetry arrangements.’

That is a restriction to aspect 1 of the symmetry principle in our formulation.
For LAVES it was one out of three fundamental principles. The other two were
the principle of closest packing and the principle of maximal connectivity of
the building blocks of a crystal.

Systematic utilization of group–subgroup relations begins with a paper by
HERMANN on subgroups of space groups (1929) [50]. In this paper, the dis-
tinction between zellengleiche (i.e. translationengleiche) and klassengleiche
subgroups is introduced. Translationengleiche subgroups were included in the
1935 edition of International Tables for the Determination of Crystal Struc-
tures, contrary to the klassengleiche subgroups, but they were omitted in the
later edition of 1952. It was not until 1983 that the subgroups were again listed
in International Tables [13], now including the klassengleiche subgroups, al-
beit not in a complete form.

‘Atoms of the same type tend to be in equivalent positions’ is the essential
statement in a fundamental paper by G. O. BRUNNER of 1971 [30]. According
to this principle, from the infinity of closest packings of spheres, the cubic-
closest and the hexagonal-closest packing are selected. In the formalism of
stacking sequences, these are the sequences ABC and AB. The next possible
kind of stacking, ABAC, already requires atoms at two crystallographically
different, i.e. symmetry-inequivalent positions.

An extensive consideration of the interplay between symmetry and crys-
tal packing of organic molecules was published by A. I. KITAIGORODSKII

(1955) [230]. However, symmetry is not used as an ordering principle, but the
compability of crystal symmetry with the packing of organic molecules is stud-
ied depending on their symmetries and shapes; the principle of closest packing
has priority. A table lists what space groups should be preferred, depending on
molecular symmetry.

The complete compilation of all subgroups of the space groups was accom-
plished in 1966 by JOACHIM NEUBÜSER and HANS WONDRATSCHEK [25].
This ample work was witnessed by HARTMUT BÄRNIGHAUSEN at an early
stage during WONDRATSCHEK’s and BÄRNIGHAUSEN’s common times at the
University of Freiburg, Germany. They maintained scientific contact after both
had become professors at the University of Karlsruhe. This was the fertile soil
that lead BÄRNIGHAUSEN to develop the concept of trees of subgroups which
are the subject of this book.
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Isomorphic subgroups A
As stated by Theorem 7.6 (page 91) and in Section 11.3, indices of maximal
isomorphic subgroups may only be prime numbers p, squares of prime num-
bers p2, or cubes of prime numbers p3. Often only certain prime numbers are
permitted. The reasons are explained in this appendix, together with a short
digression on number theory.

An isomorphic subgroup always has a unit cell that is enlarged by a factor i,
i being the index of the symmetry reduction.

If i ≥ 3, as a rule, there are i conjugate subgroups that differ by the positions
of their origins (translational conjugation, cf. Section 8.1, page 102). This does
not apply to cell enlargements in directions in which the origin ‘floats’, i.e. to
space groups whose origins are not fixed by symmetry. Isomorphic subgroups
on a par (different conjugacy classes of the same kind; Definition 8.2, page
107) occur if i = 2, among some trigonal, and hexagonal space groups if i = 3,
and among certain tetragonal, trigonal, and hexagonal space groups if i ≥ 5
(see the text referring to Fig. A.4 below).

The index of a maximal isomorphic subgroup of a triclinic, monoclinic, or
orthorhombic space group is an arbitrary prime number p. However, the
prime number p = 2 is always excluded if the unit cell is enlarged parallel to
any 21 axis or in the direction of glide components of glide planes. The reason
for this can be seen in Fig. A.1.

In addition, an index of 2 is excluded for base-centred monoclinic and or-
thorhombic space groups if the unit cell is enlarged in the plane of the centring.

k ł

➤

21 axis

1
2 a component of translation of the screw rotation

➤ a

�

➤

component of translation 2
2 a is excluded because

there is no symmetry-equivalent atom at this site

k ł

➤
1
2 a′ = 3

2 a component of translation of the screw rotation

➤ a′ = 3a

Fig. A.1 A translation vector parallel to a 21 axis cannot be doubled. An elongation by an odd
factor is possible.
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Fig. A.2 Left: A C-centred monoclinic or or-
thorhombic space group has no isomorphic
subgroups of index 2 if it is enlarged in the
a-b plane, but it can have isomorphic sub-
groups of index 4; ∗∗∗ stands for 121, 1m1,
1c1, 12/m1, 12/c1, 222, mm2, m2m 2mm, cc2,
mmm, mcm, cmm, or ccm.
Right: Orthorhombic space groups F ∗ ∗∗
and I ∗∗∗, ∗∗∗ = 222, mm2, m2m, 2mm, or
mmm, have no isomorphic subgroups of in-
dex 2 and 4, but of index 8.
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k2
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C ∗∗∗

k2
a,b,2c

➤
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However, some base-centred space groups have non-maximal isomorphic sub-
groups of index 4n (n = integer) that can be reached via a primitive interme-
diate group (Fig. A.2 left). An index of 2 is also excluded for face-centred
and body-centred orthorhombic space groups; however, in some cases there
are non-maximal isomorphic subgroups of index 8 (Fig. A.2 right).

Cubic space groups have only maximal isomorphic subgroups of index p3,
p ≥ 3. The reason is the condition that a′ = b′ = c′ must also hold for the
subgroups and that the directions of the axes must be retained. Isomorphic
subgroups of index 8 (= 23; 2a,2b,2c) are possible, provided there are no
screw axes or glide planes that impede a doubling of lattice parameters. How-
ever, the isomorphic subgroups of index 8 are not maximal, but are reached
via an intermediate group with another kind of centring. See the relations in
the margin; ∗ stands for 2, 4, 4, or m; it may be missing in the last symmetry
direction; 3 may also be 3.

P∗3∗

k2
2a,2b,2c

➤

F ∗3∗

k4

➤

P∗3∗

or P∗3∗

k4
2a,2b,2c
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I ∗3∗
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➤
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I ∗3∗

k2

➤
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k4
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I ∗3∗

Tetragonal, trigonal and hexagonal space groups, cell enlargement paral-
lel to c. By analogy to orthorhombic space groups, the indices of maximal
isomorphic subgroups obtained by increasing c can be arbitrary prime num-
bers; however, p = 2 is excluded for body- and face-centred cells and if there
are 42 or 63 axes or glide planes with glide components parallel to c (glide
planes c, d, or n perpendicular to a or a− b). Special restrictions apply to
rhombohedral space groups and if there are screw axes 31, 32, 41, 43, 61, 62,
64, or 65. The corresponding permitted prime numbers are listed in Table A.1.

Tetragonal space groups, cell enlargement in the a-b plane. The condition
a′ = b′ and the right angle between a′ and b′ must be preserved for isomorphic
subgroups of tetragonal space groups whose cell is enlarged in the a-b plane.

An index of p = 2 requires a basis transformation a− b, a + b, c (or a +
b,−a+b, c) and occurs if the cell is primitive and if there are no 21 axes and
no glide components parallel to a and a−b.

The crystal classes 422, 4mm, 42m, 4m2, and 4/mmm have symmetry el-
ements in the symmetry directions a and a − b. The basis transformation
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Table A.1 Permitted indices of symmetry reduction for maximal isomorphic subgroups of tetrag-
onal, trigonal, and hexagonal space groups having screw axes if c is multiplied.

Screw Permitted
axis∗ indices p† Comments

41 4n−1 substitution 41 → 43; irrelevant for I cells because they have 41 and 43 axes
41 4n+ 1
42 ≥ 3
43 4n−1 substitution 43 → 41; irrelevant for I cells because they have 41 and 43 axes
43 4n+ 1
R 2 or 6n−1 transformation a′ = −a, b′ = −b or interchange obverse � reverse
R 6n+1
31 2 or 6n−1 substitution 31 → 32
31 6n+ 1
32 2 or 6n−1 substitution 32 → 31
32 6n+ 1
61 6n−1 substitution 61 → 65
61 6n+ 1
62 2 or 6n−1 substitution 62 → 64
62 6n+ 1
63 ≥ 3
64 2 or 6n−1 substitution 64 → 62
64 6n+ 1
65 6n−1 substitution 65 → 61
65 6n+ 1

∗ R = rhombohedral space group, hexagonal setting
† p = prime number; n = arbitrary positive integer

a − b, a + b, c (p = 2) then only permits maximal isomorphic subgroups if
the symmetry elements in the symmetry directions a and a−b are of the same
kind, for example, at P422, P4mm, and P4/mcc; otherwise there is an inter-
change, for example, P42 mc —k2→ P42 cm or P42m —k2→ P4m2, and
the maximal subgroup is klassengleiche, but not isomorphic. If the cell is dou-
bled once more, one returns to the initial directions in the now quadrupled cell.
In this case there are non-maximal isomorphic subgroups with index values
that are divisible by 4, as shown in the example in the margin.

P42/m2/m2/c

k2
a−b, a +b, c

➤

P42/m2/c2/m

k2
a +b, −a +b, c

➤

P42/m2/m2/c

non-maximal
i4

2a, 2b, c

➤

In a similar way, the space groups I422, I4mm, and I4/mmm have non-
maximal isomorphic subgroups of index 4 that are reached via an intermediate
group (basis a−b,a + b,2c); I4m2 and I42m have non-maximal isomorphic
subgroups of index 8, basis 2a,2b,2c.

In the crystal classes 422, 4mm, 4m2, 42m, and 4/mmm, maximal subgroups
of index i > 3 exist only for indices i = p2 (p = arbitrary prime number ≥ 3),
basis transformation pa, pb, c.

The crystal classes 4, 4, and 4/m have no symmetry elements in the direc-
tions a and a− b. The directions of the basis vectors a′,b′ of the subgroup
can be different from those of a,b. There are two possibilities for maximal
isomorphic subgroups:
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Fig. A.3 Cell enlargements a′ = qa+rb, b′ =
−ra+qb, c of tetragonal space groups for the
pairs of values q = 2, r = 1 and q = 1, r = 2
for isomorphic subgroups on a par of index
p = 5 = 22 +12 = 12 +22.

a

b

a

b

a′

b′

a′

b′

q = 2, r = 1 q = 1, r = 2
equivalent to q = 1, r = −2 equivalent to q = 2, r = −1

�

�

�

�

�

�

�

�

index p2 with p = 4n−1, basis transformation pa, pb, c; or

index p = 2 or p = q2 + r2 = 4n+1, integral q,r,n 	= 0.

In the case of the index p = q2 +r2 = 4n+1 there are exactly two conjugacy
classes with p conjugate subgroups each. The conjugacy classes (subgroups on
a par) have cells with two orientations, as shown in Fig. A.3, one with the pair
q,r, the other one with interchanged values q and r. As can be seen from the
figure, the lattice parameter for both subgroups is a′ = a

√
q2 + r2 according to

Pythagoras, and the basis plane is enlarged by a factor of p = q2 + r2.

Trigonal and hexagonal space groups, cell enlargement in the a-b plane.
Isomorphic subgroups of trigonal and hexagonal space groups whose cells are
enlarged in the a-b plane must meet the condition a′ = b′ with an angle of 120◦

between a′ and b′.
The crystal classes 321, 312, 3m1, 31m, 3m1, 31m, 622, 6mm, 6m2, 62m,

and 6/mmm have symmetry elements in the symmetry directions a and/or a−b.
There are maximal isomorphic subgroups with basis transformations pa, pb, c,
index p2 for every prime number p 	= 3. Maximal isomorphic subgroups of in-
dex 3 exist only in the crystal class 622 and for the space groups P6mm, P6cc,
P6/mmm, and P6/mcc, basis transformation 2a+b, −a+b, c. The remaining
space groups of these crystal classes have klassengleiche subgroups of index
3 with an interchange P321 � P312, P3m1 � P31m, P63 mc � P63 cm, etc.
There exist non-maximal isomorphic subgroups of index 32n with the basis
transformations pa, pb, c, p = 3n.

In the crystal classes 3, 3, 6, 6, and 6/m there are no symmetry elements in
the directions a and a−b. There are two possibilities for maximal isomorphic
subgroups:

index p2 with p = 2 or p = 6n−1, basis transformation pa, pb, c; or

index p = 3 or p = q2−qr+r2 = 6n+1, q,r,n = positive integers, q > r > 0.

In the case of the index p = q2 − qr + r2 = 6n + 1 there are exactly two
conjugacy classes with p conjugate subgroups each. One of them corresponds
to the pair of values q,r and the basis vectors qa + rb, −ra + (q− r)b, c; at
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➤

➤

➤

➤

➤

➤

➤

➤

a

b

a

b

a′

b′

a′

b′

q = 3, r = 1 (fulfils q > r) q = 3, r = 2 (fulfils q > r)
equivalent to q = 2, r = 3 equivalent to q = 1, r = 3

Fig. A.4 Cell enlargements a′ = qa+rb, b′ =
−ra +(q− r)b, c of isomorphic trigonal and
hexagonal subgroups for the pairs of val-
ues q = 3,r = 1 and q = 3,r = 2 for the
two conjugacy classes of index p = 7 =
32 −3 ·1+12 = 32 −3 ·2+22.

the other one, r is replaced by q− r and the basis vectors are qa + (q− r)b,
(r−q)a+ rb, c (Fig. A.4). The lattice parameters are a′ = b′ = a

√
p .

A little number theory: the isomorphic subgroups of the crystal classes
4, 4, 4/m, 3, 3, 6, 6, and 6/m

Tetragonal space groups. The possible values for the index and the number
of isomorphic tetragonal subgroups with the cell enlargement qa + rb, −ra +
qb, c (Fig. A.3) can be examined with number theory [121]. One has: if the
sum of two square numbers is a prime number, q2 + r2 = p, then this prime
number is p = 2 or p = 4n+ 1 (Fermat’s theorem). Every prime number p =
4n + 1 can be expressed as the sum of two square numbers. Therefore, the
indices of maximal subgroups can be i = 2 and the prime numbers i = p =
4n+1.

If the subgroup is not maximal, there can be several kinds of cell enlarge-
ment for the same index, one each for a conjugacy class of subgroups. In order
to find out how many conjugacy classes there are, one determines the divisors
of the index i and determines how many of them are of the kinds 4n + 1, 2n,
and 4n−1:

i

⎧⎨⎩
number of divisors 4n+1 = Z+

number of divisors 2n → 0
−number of divisors 4n−1 = −Z−

sum = number of conjugacy classes

Example A.1
The number 10 has the divisors 1, 2, 5, and 10:

i = 10

⎧⎨⎩
divisors 4n+1 : 1, 5 Z+ = 2
divisors 2n : 2, 10 → 0

−divisors 4n−1 : none −Z− = 0

sum = 2
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There are two conjugacy classes of isomorphic tetragonal subgroups of index
10. They correspond to the pairs of values q, r = 1, 3 and q, r = 3,1; 12 +
32 = 32 +12 = 10.
They can be reached by two steps of symmetry reduction, one of index 2 and
the other of index 5 (or vice versa).

Example A.2

i = 21

⎧⎨⎩
divisors 4n+1 : 1, 21 Z+ = 2
divisors 2n : none → 0

−divisors 4n−1 : 3, 7 −Z− = −2

sum = 0

The number 21 cannot be expressed by a sum of two square numbers. There
are no tetragonal isomorphic subgroups of index 21 with cell enlargement in
the a-b plane.

Example A.3

i = 25

⎧⎨⎩
divisors 4n+1 : 1, 5, 25 Z+ = 3
divisors 2n : none → 0

−divisors 4n−1 : none −Z− = 0

sum = 3

There are three conjugacy classes of index 25. They have the pairs of values
q, r = 4, 3; q, r = 3, 4; q, r = 5, 0; 42 +32 = 32 +42 = 52 +02 = 25.

The procedure is also applicable to prime numbers. All prime numbers
p = 4n + 1 have the two divisors 1 and p of kind 4n + 1. For every prime
number p = 4n +1 there are exactly two conjugacy classes. The prime num-
bers p = 4n−1 have the divisor 1 of the kind 4n+1 and the divisor p = 4n−1;
therefore, Z+ = 1 and Z− = 1, Z+ −Z− = 0, and none of these prime numbers
corresponds to an isomorphic subgroup (this always holds: if q2 +r2 = p, then
p 	= 4n−1).

Trigonal and hexagonal space groups. For the possible values for the index
and the number of isomorphic trigonal and hexagonal subgroups with the cell
enlargement qa+ rb, −ra+(q− r)b, c one has (Fig. A.4): if the sum p = q2−
qr + r2 is a prime number, then this prime number is p = 3 or p = 6n+1. For
every prime number p = 6n+1 two such sums can be found, one with q,r, and
the other with q,(q− r); q > r > 0.

If the subgroup is not maximal, there can be several kinds of cell enlarge-
ment of the hexagonal cell for the same index i, each one for one conjugacy
class of subgroups. How many conjugacy classes there are follows from the
divisors of i:
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i

⎧⎨⎩
number of divisors 3n+1 = Z+

number of divisors 3n → 0
−number of divisors 3n−1 = −Z−

sum = number of conjugacy classes

Example A.4

i = 21

⎧⎨⎩
divisors 3n+1 : 1, 7 Z+ = 2
divisors 3n : 3, 21 → 0

−divisors 3n−1 : none −Z− = 0

sum = 2

There are two conjugacy classes of hexagonal isomorphic subgroups of index
21, with the pairs of values q, r = 5, 1 and q, r = 5, 4;
52 −5 ·1+12 = 52 −5 ·4+42 = 21.

Example A.5

i = 25

⎧⎨⎩
divisors 3n+1 : 1, 25 Z+ = 2
divisors 3n : none → 0

−divisors 3n−1 : 5 −Z− = −1

sum = 1

There is one conjugacy class of index 25: q = 5, r = 0; 52 −5 ·0+02 = 25.

Exercises

Solutions in Appendix D (page 299)

(A.1) Can the following space groups have isomorphic sub-
groups of index 2?
P12/c1, P21 21 2, P21/n21/n2/m, P4/m21/b2/m,
P61 22.

(A.2) In the text concerning tetragonal space groups it is argued
that there are non-maximal isomorphic subgroups of the
space groups I 4/m2/m2/m, index 4, and I 4m2, index 8,
although there are no maximal isomorphic subgroups of
index 2. Set up the relations.

(A.3) Does the space group P42/m have isomorphic maximal
subgroups of indices 4, 9, 11, and 17 with a cell enlarge-
ment in the a-b plane? If so, what are the necessary trans-
formations of the basis vectors?

(A.4) How many isomorphic subgroups of index 65 are there
for P4/n?

(A.5) Crystalline PtCl3 consists of Pt6Cl12 clusters and of
chains of edge-sharing octahedra of the composition
PtCl4 [390]. To a good approximation, the chlorine

atoms, by themselves, form a cubic-closest packing of
spheres, but 1

37 of the positions of the spheres are vacant
(in the centres of the Pt6Cl12 clusters). The Pt atoms oc-
cupy octahedral voids of the packing of spheres. PtCl3
is rhombohedral, space group R3, a = 2121 pm, c = 860
pm. The symmetry of the sphere packing (acub ≈ 494
pm) can be reduced in two initial steps down to the inter-
mediate group R3:

F m3m — t4; 1
2 (–a+b), 1

2 (–b+c), a+b+c→ R3m (hex)

— t2→ R3
(hex)

Compute the lattice parameters of this intermediate
group. How does the cell of PtCl3 result from this cell?
What is the index of the symmetry reduction between the
intermediate and the final group?

(A.6) Use one of the relations depicted in Fig. 8.7 (page 108)
to show why isomorphic subgroups of the space group
P4/m of index 5 have exactly two conjugacy classes of
subgroups on a par. The Euclidean normalizer of P4/m
is P4/mmm with 1

2 (a−b), 1
2 (a+ b), 1

2 c.
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This appendix is a supplement to Sections 15.1 and 15.2 supposed to enhance
the understanding of the physico-chemical background of phase transitions in
the solid state. However, this is only a brief glimpse into the theory of phase
transitions.

B.1 Thermodynamic aspects concerning phase
transitions

In Section 15.1.1 (page 198), EHRENFEST’s definition of first- and second-
order phase transitions is presented. The determining factors for the classifi-
cation are the derivatives of the Gibbs free energy with respect to temperature,
pressure, or other variables of state. The role of the derivatives is illustrated in
Fig. B.1. In a schematic way, it is shown how the free enthalpies G1 and G2 of
two phases depend on temperature. A first-order phase transition takes place
if the two curves intersect, the intersection point being the point of transition
Tc. The more stable phase is the one having the lower G value; the one with
the higher G value can exist as a metastable phase. When switching from the
curve G1 to G2 at the point Tc, the slope of the curve is changed abruptly; the
first derivative switches discontinuously from one value to another.

A second-order phase transition entails no metastable phases. The dotted
curve G2 represents the hypothetical (computed or extrapolated) course for the
high-temperature modification below Tc. The curve G1 ends at Tc, where it
merges with the curve G2 with the same slope, but with a different curvature.
Mathematically, curvature corresponds to the second derivative; it changes dis-
continuously at Tc.

During a first-order transition both phases coexist. Properties that refer to
the whole specimen, for example, the uptake of heat or the magnetization, re-
sult from the superposition of the properties from both phases, corresponding
to their constituent amounts. Measurement yields a hysteresis curve (Fig. B.2).
Upon heating, phase 1 (stable below Tc) at first lingers on in a metastable state
above Tc (dotted line in Fig. B.2). The more T has surpassed Tc, the more nu-
clei of phase 2 are formed, and the more they grow, the more their properties
dominate until finally only phase 2 is present. Heat uptake follows the right
branch of the curve and shows a sluggish progression of the phase transition at
T > Tc. Upon cooling, the same happens in the opposite direction, with slug-
gish heat release at T < Tc. The width of the hysteresis loop is not a specific
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Fig. B.1 Temperature dependence of the
Gibbs free energies G1 and G2 and of their
derivatives for two phases that are trans-
formed one to the other at the temperature Tc;
left, first order; right, second order.
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Fig. B.2 Hysteresis curve of the heat con-
tents (enthalpy) H of a specimen at an enan-
tiotropic, temperature-dependent first-order
phase transition. Arrows mark the direction
of temperature change.
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property of the material. It depends on the kind and the number of defects in
the crystal and, therefore, depends on the past history of the specimen.

The order of a phase transition can differ depending on conditions. For ex-
ample, pressure causes crystalline cerium to undergo a first-order phase tran-
sition γ-Ce → α-Ce; it is associated with a significant, discontinuous change
of volume (−13 % at room temperature) and an electron transition 4 f → 5d
[391]. The structures of both modifications, γ-Ce and α-Ce, are cubic-closest
packings of spheres (F m3m, atoms at position 4a). The higher the temper-
ature, the lesser is the change of volume, and finally it becomes ΔV = 0 at
the critical point [392]. Above the critical temperature (485 K) or the critical
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pressure (1.8 GPa), there no longer exists a difference between γ-Ce and α-Ce
(Fig. B.3).
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Fig. B.3 Section from the phase diagram of
cerium [391, 393].
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Fig. B.4 Section from the phase diagram of
KH2PO4 [394].

Potassium dihydrogenphosphate exhibits a change from a first-order to a
second-order transition. At ambient pressure, upon change of temperature, it
is converted from a paraelectric to a ferroelectric phase. In the paraelectric
modification, space group I 42d, the H atoms are misordered within hydrogen
bonds:

O–H· · ·O � O· · ·H–O

In the ferroelectric phase, space group F d d 2, they are ordered. At ambi-
ent pressure, a first-order transition takes place at 122 K with a small vol-
ume discontinuity (ΔV approx. −0.5 %). At pressures above 0.28 GPa and
temperatures below 108 K (the ‘tricritical’ point; Fig. B.4) it is of second or-
der [395, 396].

In Section 15.1.1, after EHRENFEST’s definition, a newer definition is men-
tioned according to which the continuous change of an order parameter is de-
cisive. At first glance, this seems to be a completely different criterion as
compared to EHRENFEST’s classification. Actually, there is not so much of
a difference. Phase transitions of n-th order in terms of EHRENFEST having
n > 2 are not really observed. The case n = ∞ does not describe a phase tran-
sition, but a continuous change of properties (e.g. of thermal dilatation; this
is not to be confused with a continuous phase transition). Even at a contin-
uous phase transition, invariably some thermodynamic function experiences
a discontinuity. That embraces more than just a sudden change of a second
derivative of the Gibbs free energy, but any kind of discontinuity or singular-
ity. The change of the order parameter η as a function of some variable of state
(e.g. temperature T ) exhibits a singularity at the point of transition: on the one
side (T < Tc), an analytical dependence according to a power law holds (eqn
(15.2), page 204), but at the point of transition (T = Tc) the order parameter
vanishes (it becomes η = 0 for T ≥ Tc; Fig. 15.4 top left, page 204).

B.2 About Landau theory

In the following explanations, we repeatedly resort to the example of the con-
tinuous phase transition of CaCl2 (Section 15.2, page 200). Let the Gibbs free
energy G of a crystal have the value G0 at the point of transition. For small
values of the order parameter η , the change of Gibbs free energy relative to
G0 can be expressed by a Taylor series. All terms with odd powers have been Taylor expansion of G with respect to η:

G = G0 +
a2

2
η2 +

a4

4
η4 +

a6

6
η6 + · · ·

(B.1)

omitted from the series, since G has to remain unchanged when the sign of η

is changed (it makes no difference whether the octahedra of CaCl2 have been
turned to one or the other side; Figs. 15.2, 15.3). This proposition is univer-
sally valid according to Landau theory: For a continuous phase transition, only
even powers may appear in the Taylor series.

As long as η is small, the Taylor series can be truncated after a few terms,
whereby the term with the highest power has to have a positive coefficient;
this is important, because otherwise G would become more and more negative
with increasing η , which would be an unstable state. The coefficients a2, a4, . . .
depend on the variables of state T and p. Essential is the dependence of a2 on
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T and p. For a temperature-dependent phase transition, a2 = 0 must hold at the
point of transition, above it is a2 > 0 and below a2 < 0, while a4, a6, . . . remain
approximately constant. If, in accordance with experience, a2 changes linearly

a2 = k(T −Tc) (B.2)

with k = positive constant

with temperature close to Tc, one has eqn (B.2). The effect of temperature
on the Gibbs free energy is shown in Fig. B.5. At temperatures above Tc, G
has a minimum at η = 0; the structure of CaCl2 is tetragonal. At the point of
transition T = Tc, there is also a minimum at η = 0, with a gentle curvature
close to η = 0. Below Tc, the curve has a maximum at η = 0 and two minima.
The more the temperature is below Tc, the deeper are the minima and the more
distant they are from η = 0. At T < Tc the structure is no longer tetragonal and
the octahedra have been turned to one side or the other, corresponding to the η

value of one of the minima.
∂ G
∂ η

= a2η + a4η3 = 0 (B.3)

η1,2 = ±
√
−a2

a4
= ±

√
k(Tc −T )

a4
(B.4)

η = A

(
Tc −T

Tc

)β

(B.5)

with β = 1
2 and T < Tc

If a4 > 0, the Taylor series (B.1) can be truncated after the fourth-power
term. From the first derivative with respect to η one obtains condition (B.3)
for the minima: If T < Tc and thus a2 < 0, the positions of the minima are at
η1,2. Taking A =±

√
kTc/a4, the order parameter η of the stable structure then

follows the power law given in eqn (B.5).
A is a constant and β is the critical exponent. The derived value of β = 1

2 is
valid under the assumptions made that G can be expressed by a Taylor series
neglecting powers higher than 4, that a2 depends linearly on the temperature
difference T −Tc, and that a4 > 0 is (nearly) independent of temperature.

In addition, it is assumed that the order parameter does not fluctuate. This,
however, cannot be taken for granted close to the point of transition. Just
below Tc, the two minima of the curve for G (Fig. B.5, T � Tc) are shallow
and the maximum in between is low. The energy barrier to be surmounted to
shift from one minimum to the other is less than the thermal energy, and η

can fluctuate easily from one minimum to the other. At the point of transition
itself (curve T = Tc in Fig. B.5) and slightly above, the curvature is so small
that fluctuations of η induced by temperature have nearly no influence on the
Gibbs free energy. The local fluctuations can be different in different regions
of the crystal.

Fig. B.5 Gibbs free energy G as a function of
the order parameter η for different tempera-
tures according to eqn (B.1), truncated after
the fourth power.
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Actually, there are only minor fluctuations if the interactions in the crystal
have a long range. For example, the range of interactions between the tightly
connected octahedra of CaCl2 is long; all of the octahedra (or a large number
of them) would have to participate in the fluctuations. For long-range interac-
tions, Landau theory is satisfied and the critical exponent amounts to β ≈ 1

2 . At T > Tc:

∂ G
∂ T

∣∣∣∣
η=0

=
∂G0

∂ T

∂ 2G
∂ T 2

∣∣∣∣
η=0

=
∂ 2G0

∂ T 2

If T > Tc, the minimum for G is at η = 0, and at this value one has the first
and second derivatives of the Gibbs free energy with respect to temperature as
mentioned in the margin.

If T < Tc, one obtains the value of G corresponding to the minima by insert-
ing eqns (B.2) and (B.4) into eqn (B.1), truncated after the fourth power:

G|η1,2
= G0 +

k(T −Tc)

2

(√
k(Tc −T )

a4

)2

+
a4

4

(√
k(Tc −T )

a4

)4

= G0 −
k2(Tc −T )2

4a4
at T < Tc

From this, we obtain the first and second derivatives with respect to tempera-
ture for T < Tc:

−S|η1,2
=

∂ G
∂ T

∣∣∣∣
η1,2

=
∂ G0

∂T
+

k2

2a4
(Tc −T )

− ∂ S
∂ T

∣∣∣∣
η1,2

=
∂ 2G
∂ T 2

∣∣∣∣
η1,2

=
∂ 2G0

∂ T 2 − k2

2a4

When one approaches the point of transition from the side of low temperatures,
one has (Tc −T ) → 0 and η → 0, and ∂ G/∂ T merges at Tc with the value
∂ G0/∂ T that it also adopts above Tc. However, below Tc, ∂ 2G/∂T 2 has a value
that is smaller by 1

2 k2/a4 than at T > Tc. The first derivative of G thus does
not experience a sudden change at Tc, but the second derivative does, just as
expected for a second-order transition according to EHRENFEST’s definition.

Displacing an octahedron of CaCl2 from its equilibrium position requires a
force F . Force is the first derivative of energy with respect to displacement; for
our purposes that is the first derivative of the Gibbs free energy with respect to
η , F = ∂ G/∂ η. The force constant f is the first derivative of F with respect
to η; actually, it is only a constant for a harmonic oscillator, then one has
F = f η (Hooke’s law; a harmonic oscillator is one for which the Taylor series

f =
∂ F
∂ η

≈ ∂ 2G
∂ η2 = a2 +3a4η2 (B.6)

Substitute η1,2 for η:

f |η1,2
≈ ∂ 2G

∂ η2 = −2a2 at T < Tc

Together with eqn (B.2), it follows that

f ≈ k(T −Tc) at T > Tc (B.7)

and
f ≈ 2k(Tc −T ) at T < Tc (B.8)

contains only terms of powers zero and two). For the curves T > Tc and T < Tc

in Fig. B.5, Hooke’s law is only an approximation close to the minima. The
second derivatives of the Taylor series (B.1), truncated after the fourth power,
corresponds to eqn (B.6). If T > Tc, with the minimum at η = 0, the force
constant is thus f ≈ a2. If T < Tc, the minima are at η1,2 = ±

√
−a2/a4, eqn

(B.4). By substitution of these values into eqn (B.6), one obtains the force
constant in proximity to these minima.

The square ν2 of a vibrational frequency is proportional to the force con-
stant. Therefore, the frequency can be chosen as an order parameter according
to eqn (B.5) with ν instead of η . When approaching the temperature of transi-
tion, f → 0 and thus ν → 0. The vibration becomes a soft mode.

This is valid for phase transitions in both directions. If one starts at a high
temperature, from tetragonal CaCl2, the octahedra perform rotational vibra-
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tions about the equilibrium position η = 0. Below Tc, after the phase transi-
tion, the octahedra vibrate about the equilibrium positions η1 > 0 or η2 < 0;
these shift increasingly away from η = 0 the more the temperature difference
Tc −T increases. Simultaneously, the square of the vibrational frequency ν2

again increases proportional to (Tc−T ). According to eqn (B.8), at T < Tc one
expects a temperature dependence of the squared frequency ν2 twice as large
as when T > Tc.

Equations (B.6) and (B.8) are not valid in close proximity to the point of
transition. Hooke’s law is not then valid. In fact, the frequency of the soft
mode of CaCl2 does not decrease down to 0 cm−1, but only to 14 cm−1. In
addition, the measured temperature dependence of its squared frequency at
T < Tc is not twice as large, but 6.45 times larger than at T > Tc (Fig. 15.4,
page 204; [280]).

B.3 Renormalization-group theory

Landau theory shows good qualitative agreement with experimental observa-
tions. However, there are quantitative discrepancies, and these are quite sub-
stantial in the case of short-range interactions, for example, magnetic inter-
actions. Especially, this applies in proximity to the point of transition. An
improvement has been achieved by K. G. WILSON’s renormalization-group
theory [397, 398].11This is not a branch of normal group theory.

The renormalization group is not a group in
terms of group theory.

Landau theory is a ‘mean-field theory’ that assumes equal conditions in the
whole crystal (also called molecular field theory in the case of magnetic phase
transitions). This is not fulfilled for short-range atomic interactions. In this
case, fluctuations cannot be neglected.

Consider a substance like EuO as an example. It exhibits a second-order
paramagnetic–ferromagnetic phase transition at Tc = 69.2 K. The spins of the
Eu atoms tend to line up in the same direction. If the spin of an Eu atom has the
orientation ↑, it affects neighbouring Eu atoms to adopt this same ↑ spin. Due
to the short range of the magnetic interaction only the nearest-neighbour spins
are coupled to each other. Indirectly, however, farther atoms are indeed being
influenced. If the spin ↑ of the first atom has induced an ↑ alignment of the
second atom, this atom will cause a next (third) atom to adopt an ↑ alignment
as well, etc. As a consequence, the spins of all atoms are correlated. How-
ever, thermal motion counteracts correlation, such that a spin is occasionally
reversed and adopts the ‘wrong’ orientation ↓. The lower the temperature, the
less probable is this reorientation.

Competition between the tendency toward a uniform spin orientation and
the thermal introduction of disorder has the consequence that the correlation
can only be detected up to a certain distance, the correlation length.

At high temperatures, the correlation length is nearly zero. The spins are
oriented at random, and they frequently change their orientation. In the mean,
the number of ↑ and ↓ spins is balanced, and the material is paramagnetic. As
the temperature falls the correlation length increases. Domains appear in which
spins mostly point in the same direction. The overall magnetization is still zero
because there are domains with either orientation (Fig. B.6). The domains are
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Fig. B.6 Domains of predominantly parallel
spins in a magnetic material.not rigid; they continuously fluctuate and there are continuous fluctuations of

single spins within a domain.
As the temperature approaches the critical temperature Tc, the Curie tem-

perature, the correlation length grows rapidly. The domains become larger. At
the Curie temperature the correlation length becomes infinite. Any two spins
are correlated, no matter what the distance between them is. Nevertheless,
fluctuations persist, and the material remains unmagnetized. However, it is
exquisitely sensitive to small perturbations. Holding the spin of a single atom
in one direction creates a disturbance that spreads throughout the lattice and
gives the entire material a magnetization. Below Tc a ferromagnetic order of
the spins arises.

The method of treating the outlined model mathematically is renormaliza-
tion. Let p be the probability of finding another ↑ spin next to an ↑ spin. The
lattice is divided into blocks of a few spins each. Using the probability p, the
number of spins of each orientation in the block is calculated. If the majority
of spins in the block is ↑, an ↑ spin is assigned to the whole block (thick ar-
rows in Fig. B.6). The effect is to eliminate all fluctuations in spin direction
whose scale of length is smaller than the block size. In the same way, in several
steps of iteration, the blocks are collected into larger and even larger blocks.
The effects of interactions at small scales of length are thus extended to large
scales.

The model is independent of the kind of interaction between the particles
(it is not restricted to spin–spin interactions). According to the universality
hypothesis by GRIFFITHS [399], the laws that control continuous phase transi-
tions, in contrast to discontinuous ones, depend only on the range of interaction
and the number of dimensions d and n. d is the number of space dimensions in
which the interactions are active; n is the number of ‘dimensions’ of the order
parameter, i.e. the number of components needed for its description (e.g. the
number of vector components to define the spin vector). A short-range inter-
action decreases by more than r−(d+2) as a function of distance r; a long-range
interaction decreases according to r−(d+σ), with σ < d/2.

From the theory, for short-range interactions, one obtains a value of β = 1
8

for the critical exponent if d = 2; this applies, for example, to ferromagnets
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whose magnetic interactions are restricted to planes and to adsorbed films. If
d = 3, depending on n, critical exponents of β = 0.302 (n = 0) to β = 0.368
(n = 3) are obtained. Experimental values for EuO (d = 3, n = 3) yield β =
0.36. For long-range interactions the results are consistent with Landau theory
(i.e. β = 0.5).

B.4 Discontinuous phase transitions

Finally, let us consider what are the consequences if odd powers appear in the
Taylor series, eqn (B.1). A power of one, η1, is not possible because the order
parameter has to be zero at the transition temperature; G as a function of η

has to have a minimum at T > Tc, the first derivative must be zero at η = 0,
which implies a1 = 0. Including a third power, the series up to the fourth

G = G0 +
a2

2
η2 +

a3

3
η3 +

a4

4
η4 (B.9)

power corresponds to eqn (B.9). If we again assume a linear dependence of
a2 on temperature, a2 = k(T − T0), and assume that a3 > 0 and a4 > 0 are
nearly independent of temperature, we obtain curves for the Gibbs free energy
as shown in Fig. B.7 (T0 is not the transition temperature).

At high temperatures there is only one minimum at η = 0; there exists one
stable high-temperature modification. As temperature falls, a second minimum
appears at a negative η value; at first, this minimum is above the minimum at
η = 0 (curve T > Tc in Fig. B.7). This means that a metastable phase can exist
at this value of η. When the temperature is lowered further, such that both
minima are at the same height, their G values are equal and ΔG = 0; this is
the condition of a state of equilibrium, the corresponding temperature is the
transition temperature T = Tc. If T < Tc, the minimum at η < 0 is below that
at η = 0. Therefore, there exists a stable phase at T < Tc with a negative value
of η and a metastable phase at η = 0.22Not shown in Fig. B.7: If T = T0 < Tc there

is only the one minimum at negative η and a
saddle point at η = 0; if T < T0 the curve is
similar as in Fig. B.5, with a deep minimum
at η1 < 0, a less deep minimum at η2 > 0, and
a maximum at η = 0.

These are the conditions for a discontinuous phase transition. The order
parameter η corresponds to the value of η of the lower minimum. Starting from

Fig. B.7 Gibbs free energy G as a function
of an order parameter η at different temper-
atures if a third-power term appears in the
Taylor series. If a3 < 0 in eqn (B.9), the
curves are mirror-symmetrical with respect to
the vertical coordinate axis, with minima at
η > 0.

� η

G

G0

�

T � Tc

T > Tc

T = Tc

T < Tc
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the high-temperature form with η = 0, at decreasing temperatures a metastable
phase appears at a certain temperature; below Tc this phase becomes stable
and it has an order parameter η that is quite different from zero. There is no
continuous change of the structure with a continuous change of η , but below
Tc the second structure is suddenly the more stable one; the order parameter
experiences a sudden change from η = 0 to η 	= 0 involving a discontinuous
change of structure.

The appearance of a metastable phase entails hysteresis. As the temperature
falls, the structure at first persists in being metastable in the high-temperature
form with η = 0 even below Tc; the transformation does not set in before the
new, lower minimum has become low enough. The lower the new minimum
at η 	= 0 is, the lower is, viewed from η = 0, the maximum between the two
minima; the energy barrier to be surmounted from the minimum at η = 0 to the
minimum at η 	= 0 becomes lower. That means decreasing energy of activation
and thus a faster transformation the further T is below the point of transition
Tc.

Such a model is appropriate only for the description of the thermodynamic
conditions of discontinuous phase transitions if both structures are similar, so
that an order parameter can be found whose (small, but discontinuous) change
results in a straightforward conversion of one structure to the other. The model
is applicable to discontinuous displacive phase transitions, but hardly to recon-
structive phase transitions. It should also be pointed out that this is a purely
thermodynamic point of view by which the Gibbs free energies of two struc-
tures are compared with the aid of an order parameter. There is no reference to
any mechanism as to how the phase transition actually proceeds. The sudden
change of the numerical value of η , which states the shift of the thermody-
namic stability from one structure to the other, does not mean that the atoms
actually execute a simple displacement in the structure. Mechanism and ki-
netics rather are a matter of nucleation and growth. The atoms cannot all be
displaced simultaneously, otherwise there would be no hysteresis.
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Symmetry species C
Symmetry species are used to describe the symmetry properties when points
arranged symmetrically in space are associated with anisotropic properties. A
small local coordinate system is attached to each point, which serves to account
for the direction-dependent properties at this point. If an atom is situated at the
point, such properties can be vibrational motions or the atomic orbitals (wave
function = electron as standing wave). If the point is mapped onto another
point by a symmetry operation, it is mapped together with its local coordinate
system. A symmetry species specifies how a symmetry operation affects the
local conditions at the mapped atom.

Antisymmetric means: after execution of the
symmetry operation the value of the function
(e.g. the vibrational displacement of an atom)
is exactly opposite (sign inversion).

1 vibration that can be composed by linear
combination from two independent vibra-
tions of the same kind; occurs only if there
is at least one symmetry axis of order three or
higher
2 only for cubic point groups
3 g = from German gerade, meaning even
4 u = from German ungerade, meaning odd
5 stated always and only for centrosymmetric
structures
6 mentioned only if the facts do not follow
from the other symbols

Table C.1 Symbols (after PLACZEK [272]) for symmetry species (irreducible representations) for
molecules and for crystals at the Γ point of the Brillouin zone, given a point group, referred to a
Cartesian coordinate system xyz (incomplete list).

A symmetric to the main axis (z axis; axis of highest order);
point groups 222 and mmm: symmetric to all twofold axes;
cubic point groups: symmetric to the threefold axes

A1 as A, in addition symmetric to all other rotation axes or (if not present)
to reflection planes

A2 as A, in addition antisymmetric to all other rotation axes or (if not
present) to reflection planes

B antisymmetric to the main axis

B1 as B and symmetric to the symmetry axis in the direction of x or (if
not present) to the reflection plane perpendicular to x;

point groups 222 and mmm: symmetric to the z axis

B2 as B and antisymmetric to the symmetry axis in the direction of x or
(if not present) to the reflection plane perpendicular to x;

point groups 222 and mmm: symmetric to the y axis

B3 point groups 222 and mmm: symmetric to the x axis

E doubly-degenerate (‘two-dimensional representation’)1

T (or F) triply-degenerate (‘three-dimensional representation’)2

index g symmetric to the centre of inversion3,5 (inversion of all three signs of
x,y, and z makes no difference)

index u antisymmetric to the centre of inversion4,5 (inversion of the signs of
x,y, and z is accompanied by an inversion of the sign of the function)

prime ′ symmetric to the plane of reflection6

double prime ′′ antisymmetric to the plane of reflection6
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Mathematically, symmetry operations are represented by matrices, thus the
term representation theory. Irreducible representations fulfil certain mathe-
matical conditions; in particular, they are independent of each other. Symmetry
species are irreducible representations.



Solutions to the exercises D

3.1 (a) For (8): x̃ = −y+ 1
4 , ỹ = −x+ 1

4 , z̃ = −z + 3
4

for (10): x̃ = x+ 1
2 , ỹ = y, z̃ = −z+ 1

2

(b) For (8): W(8) =

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ and w(8) =

⎛⎜⎝ 1
4
1
4
3
4

⎞⎟⎠
for (10): W(10) =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ and w(10) =

⎛⎜⎝ 1
2
0
1
2

⎞⎟⎠

(c) For (8): W(8) =

⎛⎜⎜⎜⎝
0 1 0 1

4
1 0 0 1

4
0 0 1 3

4
0 0 0 1

⎞⎟⎟⎟⎠

for (10): W(10) =

⎛⎜⎜⎜⎝
1 0 0 1

2
0 1 0 0
0 0 1 1

2
0 0 0 1

⎞⎟⎟⎟⎠
(d) W(8)W(10)=

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠; W(8) w(10)+w(8)=

⎛⎜⎝ 1
4

− 1
4
1
4

⎞⎟⎠
W(10)W(8)=

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠; W(10)w(8)+w(10)=

⎛⎜⎝ 3
4
1
4

− 1
4

⎞⎟⎠
The result depends on the sequence. The two results differ by
the centring translation 1

2 , 1
2 ,− 1

2 .

(e) W(8)W(10) =

⎛⎜⎜⎜⎝
0 1 0 1

4
1 0 0 − 1

4
0 0 1 1

4
0 0 0 1

⎞⎟⎟⎟⎠

W(10)W(8) =

⎛⎜⎜⎜⎝
0 1 0 3

4
1 0 0 1

4
0 0 1 − 1

4
0 0 0 1

⎞⎟⎟⎟⎠
The result corresponds to the matrix–column pair of (d).

(f) The coordinate triplets are:

y+ 1
4 , x− 1

4 , z + 1
4 and y+ 3

4 , x + 1
4 , z− 1

4

After standardization 0 ≤ wi < 1 one has:

y+ 1
4 , x+ 3

4 , z+ 1
4 and y+ 3

4 , x+ 1
4 , z+ 3

4

That corresponds to the coordinate triplets (15)+( 1
2 , 1

2 , 1
2 ) and

(15).

3.2 (a)
P =

⎛⎜⎝ 1 0 1
2

0 1 1
2

0 0 1
2

⎞⎟⎠ cf. eqn (3.29), page 31

Because of det(P) = + 1
2 the volume of the primitive cell is half

that of the conventional cell.

(b) P contains many zeros, so that inversion of P is simple. Tem-
porarily, we designate the coefficients of P−1 = Q by qik . Then,
due to QP = I, one has:

q11×1+q12×0+q13×0 = 1; q11×0+q12×1+q13×0 = 0;
q11× 1

2 +q12× 1
2 +q13× 1

2 = 0; q21×1+q22×0+q23×0 = 0;
q21×0+q22×1+q23×0 = 1; q21× 1

2 +q22× 1
2 +q23× 1

2 = 0;
q31×1+q32×0+q33×0 = 0; q31×0+q32×1+q33×0 = 0;
q31× 1

2 + q32× 1
2 + q33× 1

2 = 1

From this one obtains:

q11 = 1, q12 = 0, q13 = −1, q21 = 0, q22 = 1, q23 = −1,
q31 = 0, q32 = 0, q33 = 2

or P−1 =

⎛⎝ 1 0 1
0 1 1
0 0 2

⎞⎠
One makes sure that PP−1 = P−1P = I holds. If the coordinates
in the new basis are x′i, one has: x′ = x− z; y′ = y− z; z′ = 2z.

(c) According to eqn (3.40), page 34, the symmetry operations
are transformed by W

′ = P
−1

WP. One obtains:

W
′(8) =

⎛⎜⎜⎝
1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

0 1 0 1
4

1 0 0 1
4

0 0 1 3
4

0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 1
2 0

0 1 1
2 0

0 0 1
2 0

0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 1 0 − 1

2
1 0 0 − 1

2
0 0 1 3

2
0 0 0 1

⎞⎟⎟⎟⎠
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W
′(10) =

⎛⎜⎜⎝
1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 1
2

0 1 0 0
0 0 1 1

2
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 1
2 0

0 1 1
2 0

0 0 1
2 0

0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 0 1 0
0 1 1 − 1

2
0 0 1 1
0 0 0 1

⎞⎟⎟⎟⎠

W
′(15) =

⎛⎜⎜⎝
1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

0 1 0 3
4

1 0 0 1
4

0 0 1 3
4

0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 1
2 0

0 1 1
2 0

0 0 1
2 0

0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 1 1 0
1 0 1 − 1

2
0 0 1 3

2
0 0 0 1

⎞⎟⎟⎟⎠
(W(15) + ( 1

2 , 1
2 , 1

2 ))′ =⎛⎜⎜⎝
1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

0 1 0 5
4

1 0 0 3
4

0 0 1 5
4

0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 1
2 0

0 1 1
2 0

0 0 1
2 0

0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 1 1 0
1 0 1 − 1

2
0 0 1 5

2
0 0 0 1

⎞⎟⎟⎟⎠
(d) The standardized entries would be (the index n means stan-
dardized):

(8)′n y+ 1
2 , x + 1

2 , z+ 1
2 ;

(10)′n x+ y, y+ z + 1
2 , z;

(15)′n y− z, x− z + 1
2 , z + 1

2 ;

((15)+( 1
2 , 1

2 , 1
2 ))′n not different from (15)′n

There is no difference between (15) and (15) + ( 1
2 , 1

2 , 1
2 ) be-

cause the centring translation consists of integral numbers when
referred to the primitive basis and disappears by the standard-
ization.

3.3 The transformation matrices are:

P =

⎛⎝ 2 1 0
1 1 0
0 0 1

⎞⎠ and P−1 =

⎛⎝ 1
3

1
3 0

− 1
3

2
3 0

0 0 1

⎞⎠
Since det(P) = 3, the unit cell is tripled. With the coordinate
transformation, the origin shift p =( 2

3 , 1
3 ,0) yields a column part

of:

−P−1p = −

⎛⎝ 1
3

1
3 0

− 1
3

2
3 0

0 0 1

⎞⎠⎛⎝ 2
3
1
3
0

⎞⎠=

⎛⎝ − 1
3

0
0

⎞⎠
The coordinates are transformed according to (P−1,−P−1p) or
1
3 (x+ y)− 1

3 , 1
3 (−x+2y), z.

3.4 The total transformation results from the product of the
transformation matrices P1 and P2:

P = P1P2 =

⎛⎜⎜⎜⎝
1 −1 0 0
1 1 0 1

2
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 − 1
2 − 1

8
0 −1 0 1

8
0 0 − 1

2 − 1
8

0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 1 − 1

2 − 1
4

1 −1 − 1
2

1
2

0 0 − 1
2 − 1

8
0 0 0 1

⎞⎟⎟⎟⎠
Therefore, the total basis transformation and origin shift are:
a′ = a+b, b′ = a−b, c′ =− 1

2 (a+b+c) and p = (− 1
4 , 1

2 , − 1
8 ).

The determinant of P (matrix part of P) is 1, the volume of the
unit cell does not change.
The easiest way to obtain P−1 = P−1

2 P−1
1 is to prepare a graph

of the transformations (without origin shifts) and derive the re-
verse transformation. P−1 is correct if PP−1 = I holds. P−1 is
mentioned in the following equations. The column part of P−1

results from:

−P−1p = −

⎛⎜⎝ 1
2

1
2 −1

1
2 − 1

2 0
0 0 −2

⎞⎟⎠
⎛⎜⎝ − 1

4
1
2

− 1
8

⎞⎟⎠ =

⎛⎜⎝ − 1
4
3
8

− 1
4

⎞⎟⎠

P
−1 = P

−1
2 P

−1
1 =

⎛⎜⎜⎜⎝
1
2

1
2 −1 − 1

4
1
2 − 1

2 0 3
8

0 0 −2 − 1
4

0 0 0 1

⎞⎟⎟⎟⎠
The coordinates are transformed according to:
x′ = 1

2 (x+ y)− z− 1
4 , y′ = 1

2 (x− y)+ 3
8 , z′ = −2z− 1

4 .

3.5

p = −Pp′ = −

⎛⎝ 1
2

1
2 0

− 1
2

1
2 0

0 0 1

⎞⎠⎛⎝ 1
2
0
0

⎞⎠ =

⎛⎜⎝ − 1
4

1
4
0

⎞⎟⎠
The origin shifts listed in Parts 2 and 3 of International Tables
A1 have been chosen differently.
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4.1 The results are:
(8) (10) (15) (15)2 (15)2n

(a) determinant +1 −1 −1 −1 −1

trace −1 +1 +1 +1 +1

(b) type 2 m m m m

(c) u [110] [001] [110] [110] [110]

(d) screw, glide components 0,0,0 1
2 ,0,0 1

4 ,– 1
4 , 3

4
1
4 ,– 1

4 , 5
4 – 1

4 , 1
4 , 1

4

w′ 1
4 , 1

4 , 3
4 0,0, 1

2
1
2 , 1

2 ,0 1,1,0 1
2 , 1

2 ,0

(e) Herm.-Maugin symbol 2 a d d d

(f) fixed points x,x + 1
4 , 3

8 x,y, 1
4 x,x+ 1

2 ,z x,x, z x,x + 1
2 ,z

Referring to (c), one takes eqn Wu = ±u, + for rotations, − for
rotoinversions and reflections. For example:

(8)

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠⎛⎝ u
v
w

⎞⎠ =

⎛⎝ u
v
w

⎞⎠

yields

⎛⎝ −v
−u
−w

⎞⎠=

⎛⎝ u
v
w

⎞⎠
From this follows u = −v; w = −w yields w = 0. The solution
is thus uū0 or standardized 110.

Referring to (d), the screw and glide components are calculated
with eqn (4.3), 1

k t = 1
k (W + I)w (page 46; for reflections and

twofold rotations k = 2).
For example, for (15) one obtains:

1
2 t = 1

2

⎛⎝ 1 1 0
1 1 0
0 0 2

⎞⎠
⎛⎜⎝ 3

4
1
4
3
4

⎞⎟⎠=

⎛⎜⎝ 1
4

− 1
4
3
4

⎞⎟⎠
The columns are calculated with the screw or glide components
according to w′ = w− 1

2 t, for example, for (15):

w′ =

⎛⎜⎝ 3
4
1
4
3
4

⎞⎟⎠−

⎛⎜⎝ 1
4

– 1
4
3
4

⎞⎟⎠=

⎛⎜⎝
1
2
1
2

0

⎞⎟⎠
Referring to (f), the columns w′ are needed for the determina-
tion of the positions of the symmetry elements with the aid of
eqn (4.5), page 46. For example, for (15) one has:⎛⎝ 0 1 0

1 0 0
0 0 1

⎞⎠⎛⎝ x
y
z

⎞⎠+

⎛⎜⎝ 1
2
1
2
0

⎞⎟⎠ =

⎛⎝ x
y
z

⎞⎠
From this follows the system of equations
−y + 1

2 = x, −x + 1
2 = y, z = z, and the result for the fixed

points is y = −x + 1
2 and z = arbitrary.

The screw and glide components 1
2 t show that the twofold rota-

tion (8) is the only one having fixed points.

Question on page 53. Elements of order 2 have a 1 in the main
diagonal.

5.1 If the elements i j and ji are the same in the group-multi-
plication table.

5.2

symm. oper. order symm. oper. order
1 1 m 2
2 2 4,4−1 4

5.3 See Fig. 18.2, page 239. The order of the symmetry group
of the trigonal prism is 12. Let m1, m2 , and m3 be the three
vertical reflections, and 21, 22 , and 23 the twofold rotations (in
the sequence as on page 239). In the following, two sequences
of two consecutive permutations are mentioned:

6 first, then mz

① ② ③ ④ ⑤ ⑥

6 ↓ ↓ ↓ ↓ ↓ ↓
⑥ ④ ⑤ ③ ① ②

mz ↓ ↓ ↓ ↓ ↓ ↓
③ ① ② ⑥ ④ ⑤

that corresponds to the permutation
(1 3 2)(4 6 5) which is 3−1

m1 first, then 3

① ② ③ ④ ⑤ ⑥

m1 ↓ ↓ ↓ ↓ ↓ ↓
① ③ ② ④ ⑥ ⑤

3 ↓ ↓ ↓ ↓ ↓ ↓
② ① ③ ⑤ ④ ⑥

that corresponds to the permutation
(3)(6)(1 2)(4 5) which is m3

The layout of the following group-multiplication table is such
that the upper left quadrant corresponds to the subgroup 6:
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1 3 3−1 6 6−1 mz 21 22 23 m1 m2 m3

1 1 3 3−1 6 6−1 mz 21 22 23 m1 m2 m3

3 3 3−1 1 mz 6 6−1 23 21 22 m3 m1 m2

3−1 3−1 1 3 6−1 mz 6 22 23 21 m2 m3 m1

6 6 mz 6−1 3 1 3−1 m2 m3 m1 22 23 21

6−1 6−1 6 mz 1 3−1 3 m3 m1 m2 23 21 22

mz mz 6−1 6 3−1 3 1 m1 m2 m3 21 22 23

21 21 22 23 m3 m2 m1 1 3 3−1 mz 6−1 6

22 22 23 21 m1 m3 m2 3−1 1 3 6 mz 6−1

23 23 21 22 m2 m1 m3 3 3−1 1 6−1 6 mz

m1 m1 m2 m3 23 22 21 mz 6−1 6 1 3 3−1

m2 m2 m3 m1 21 23 22 6 mz 6−1 3−1 1 3

m3 m3 m1 m2 22 21 23 6−1 6 mz 3 3−1 1

5.4 The group elements can be found in the first line of the pre-
ceding multiplication table.
Coset decomposition with respect to {1, 3, 3−1}:

left cosets

1 · {1,3,3−1} m1 · {1,3,3−1} 6 · {1,3,3−1} 21 · {1,3,3−1}

1, 3, 3−1 m1, m3 , m2 6, mz , 6−1 21, 23 , 22

right cosets

{1,3,3−1} ·1 {1,3,3−1} ·m1· {1,3,3−1} ·6 {1,3,3−1} · 21

1, 3, 3−1 m1, m2 , m3 6, mz , 6−1 21, 22 , 23

The number of cosets being four, the index is 4. Left and right
cosets are the same.

Coset decomposition with respect to {1, m1}:
left cosets
1·{1,m1} 3·{1,m1} 3−1 ·{1,m1} 6 ·{1,m1} 6−1 ·{1,m1} mz ·{1,m1}

1, m1 3, m2 3−1, m3 6, 23 6−1, 22 mz , 21

right cosets
{1,m1}·1 {1,m1}·3 {1,m1}·3−1 {1,m1}·6 {1,m1}·6−1 {1,m1}·mz

1, m1 3, m3 3−1, m2 6, 22 6−1, 23 mz , 21

There are six cosets each, the index is 6. Left and right cosets
are different.

5.5 Only the first coset is a subgroup; it is the only one that con-
tains the identity element.

5.6 A subgroup H of index 2 has only one more (second) coset
in addition to itself; this second coset contains all elements of
G that are not contained in H. Therefore, right and left coset
decompositions must yield the same cosets. That corresponds
to the definition of a normal subgroup.

5.7 (a) Subgroups of order 4 are the cyclic group of elements of
order 4, namely {1, 4, 2, 4−1}, and the compositions from ele-
ments of order 2. The latter cannot contain the elements 4 and
4−1. Therefore, they contain at least two reflections and, as a
composition of these reflections, a rotation, which can only be

2. These subgroups must be of the kind {1, 2, m, m}; they are
{1, 2, mx , my} and {1, 2, m+, m−}. The mentioned subgroups
are maximal subgroups. They have further subgroups of order 2,
consisting of the identity and one of the other elements: {1, 2},
{1, mx}, {1, my}, {1, m+}, {1, m−}.

(b) mx and m+ cannot both appear in a subgroup of order 4 be-
cause any of their compositions always yields the elements 4 or
4−1 of order 4, so that the number of elements would be at least
6. According to LAGRANGE’s theorem this generates the whole
group 4mm.

(c) {1, mx} and {1, my} are conjugate, and so are {1, m+}
and {1, m−}. Conjugating elements are 4 and 4−1:
4−1 ·mx ·4 = my as well as 4−1 ·m+ ·4 = m−. The mirror lines
mx and my are symmetry equivalent by a symmetry operation of
the square (namely by 4 or 4−1) and then the subgroups {1, mx}
and {1, my} are also symmetry equivalent. The mirror lines mx

and m+, however, are not symmetry equivalent in the square
(there is no symmetry operation of the square that maps mx onto
m+).
Remark: mx and my are symmetry equivalent only by a symme-
try operation of the square, but not by a symmetry operation of
{1, 2, mx , my}. Therefore, {1, mx} and {1, my} are conjugate
in 4mm, but not in {1, 2, mx , my}.

(d) Subgroups of index 2 are always normal subgroups. The
two trivial subgroups are also always normal subgroups. The
subgroups {1, mx} and {1, m+} are not normal subgroups be-
cause their left and right cosets are different. The same applies
to {1, my} and {1, m−}.

(e)

4mm

42mx my 2m+ m−

mx my 2 m+ m−

1

index order

1 8

2 4

4 2

8 1

5.8 Left coset decomposition of Z with respect to the subgroup
H = {0,±5,±10, . . .}:

first second third fourth fifth
coset coset coset coset coset
H = 1 +H = 2 +H = 3 +H = 4 +H =

...
...

...
...

...
−5 1−5 = −4 2 −5 = −3 3 −5 = −2 4−5 = −1

e = 0 1+0 = 1 2 +0 = 2 3 +0 = 3 4 +0 = 4
5 1+ 5 = 6 2 + 5 = 7 3 +5 = 8 4 +5 = 9
10 1+10 = 11 2 +10 = 12 3 +10 = 13 4 +10 = 14
...

...
...

...
...
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There are five cosets, the index is 5. Right coset decomposition
yields the second coset 0 + 1 = 1, 5 + 1 = 6, 10 +1 = 11, . . . .
The left cosets are identical with the right cosets. Therefore, the
subgroup {0,±5,±10, . . .} is a normal subgroup.

5.9 F is an Abelian group. gigk = gkgi holds for all group ele-
ments.

6.1 P41 32: cubic; P41 22: tetragonal; F d d d: orthorhombic;
P12/c1: monoclinic; P4n2: tetragonal; P43n: cubic; R3m:
trigonal-rhombohedral; F m3: cubic.

6.2. Both space groups are hexagonal. P63 mc has reflection
planes perpendicular to a and glide-reflection planes c perpen-
dicular to a−b; for P63 cm it is the other way round.

6.3. P21 21 21: 2 2 2; P63/mcm: 6/mmm; P21/c: 2/m; Pa3:
m3; P42/m21/b2/c: 4/m2/m2/m, short 4/mmm.

7.1 1
∞P4−

6 : $2/m11 (or $12/m1); 1
∞P12: $2/m2/c21/m;

1
∞CrF2−

5 : $2/m2/c21/m; 2
∞Si2O2−

5 : p31m; black phosphorus:
p2/m21/a2/n.

8.1 The four rhombohedral subgroups of a cubic space group are
orientation-conjugate. Their threefold rotation axes run along
the four body diagonals of the cube.

8.2

ffl ffl ffl

ffl ffl ffl

ł

ł

ł

k

k

k
9 9

∆ ∆1
4

1
4

1
4

1
4

1
4

1
4

Ÿ̊
b

a

P21 21 21

ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi

˛
˛
˛
˛
˛

l
l
l
l
l
: : : : :

◊ ◊ ◊ ◊ ◊
NE(P21 21 21) = P2/m2/m2/m

1
2 a, 1

2 b, 1
2 c

if a = b: P42/m2/m2/c

ffi ffi ffi

ffi ffi ffi

ffi ffi ffi

ł

ł

k

k

9 9

∆ ∆

Ÿ̊
b

a

P21/b21/a2/m

ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi
ffi ffi ffi ffi ffi

˛
˛
˛
˛
˛

l
l
l
l
l
: : : : :

◊ ◊ ◊ ◊ ◊
NE(Pbam) = P2/m2/m2/m

1
2 a, 1

2 b, 1
2 c

if a = b: P4/m2/m2/m

) )

) )

ffl

ffl

ffl

ffl)

P41

⁄ ⁄ ⁄

⁄ ⁄ ⁄

⁄ ⁄ ⁄

fi fi

fi fi

˛

˛

˛

˝

˝

l

l

l

i

i

: : :

◊ ◊ ◊

7 7

› ›Š

Š

Š

X

X

X

¼

¼

¼

&

&

&& &X X

¼ ¼Š Š

Ÿ̊
b

a
NE(P 41) = P1 422

1
2 (a−b), 1

2 (a+b), εc

8.3 NE(H) = P6/mmm

P3m1

G = R3m

H = P3m1 = NG(H)

3

➤

➤

a, b, 2c
➤

The index 3 of NG(H) in G indicates three conjugate subgroups
of H in G.

8.4 NE(G) = P6/mmm = NE(H2)

a, b, 1
2 c

P6/m
a, b, 1

2 c

G = NG(H2) = P63/m
a, b, c

P6/mmm = NE(H1)
2a+b, –a+b, 1

2 c

P6/m
2a+b, –a+b, 1

2 c

H1 = P63/m = NG(H1)
2a+b, –a+b, c

H2 = P6
2a+b, –a+b, c

➤2

➤

3

➤

3

➤2

➤

2

➤

3

➤
2

➤

2

The index of NG(H1) in G is 3, there are three conjugates of
H1. The index of NG(H2) in G is 1, H2 has no conjugates.
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8.5 NE(G) = P6/mmm
a, b, 1

2 c

G = P6/mmm = NE (H) = NG(H)
a, b, c

H = P63/mmc
a, b, 2c

➤

2

➤

2

The index of NG(H) in G is 1, there are no conjugates. The
index of NE (H) in NE(G) is 2, there are two subgroups on a
par of type H with respect to G.

8.6 The Euclidean normalizer of P4/n is P4/m2/m2/m with ba-
sis vectors 1

2 (a –b), 1
2 (a +b), 1

2 c, index 8. There are eight sets of
coordinates to describe the same structure. They result from the
initial coordinates by addition of 1

2 , 1
2 , 0 and 0, 0, 1

2 and by the
transformation y, x, z. The eight equivalent sets of coordinates
are:

x y z x y z

P 1
4

3
4 0 3

4
1
4 0

C 1 0.362 0.760 0.141 0.862 0.260 0.141
C 2 0.437 0.836 0.117 0.937 0.336 0.117
Mo 1

4
1
4 0.121 3

4
3
4 0.121

N 1
4

1
4 –0.093 3

4
3
4 –0.093

Cl 0.400 0.347 0.191 0.900 0.847 0.191

P 1
4

3
4

1
2

3
4

1
4

1
2

C 1 0.362 0.760 0.641 0.862 0.260 0.641
C 2 0.437 0.836 0.617 0.937 0.336 0.617
Mo 1

4
1
4 0.621 3

4
3
4 0.621

N 1
4

1
4 0.407 3

4
3
4 0.407

Cl 0.400 0.347 0.691 0.900 0.847 0.691

P 3
4

1
4 0 1

4
3
4 0

C 1 0.760 0.362 0.141 0.260 0.862 0.141
C 2 0.836 0.437 0.117 0.336 0.937 0.117
Mo 1

4
1
4 0.121 3

4
3
4 0.121

N 1
4

1
4 –0.093 3

4
3
4 –0.093

Cl 0.347 0.400 0.191 0.847 0.900 0.191

P 3
4

1
4

1
2

1
4

3
4

1
2

C 1 0.760 0.362 0.641 0.260 0.862 0.641
C 2 0.836 0.437 0.617 0.336 0.937 0.617
Mo 1

4
1
4 0.621 3

4
3
4 0.621

N 1
4

1
4 0.407 3

4
3
4 0.407

Cl 0.347 0.400 0.691 0.847 0.900 0.691

8.7 Considering the similarity of the lattice parameters, the same
space group and the approximately coincident coordinates of the
vanadium atoms, β ′-Cu0.26V2O5 and β -Ag0.33V2O5 seem to be

isotypic. In that case there should exist an equivalent set of co-
ordinates for both compounds, such that the coordinates of the
Cu and Ag atoms also coincide. The Euclidean normalizer is
P2/m. With the coordinate transformation +( 1

2 , 0, 0) taken from
the normalizer one obtains possible alternative coordinates for
the Cu atom: 0.030 0 0.361; they agree acceptably with the
Ag coordinates. However, this transformation would have to be
applied also to the V atoms, and their coordinates would then
show no agreement. The compounds are neither isotypic nor
homeotypic.

8.8 The basis vectors a and b and the coordinates x and y of
Pr2NCl3 have to be interchanged first. This causes no change
of the space-group symbol; the simultaneous inversion of one of
the signs, e.g. z by –z, is not necessary in this case because of
the reflection plane; I bam always has pairs x, y, z and x, y, –z.
After the interchange, the lattice parameters and all coordinates
of Na3AlP2 and Pr2NCl3 show approximate agreement; how-
ever, for Cl 2 a symmetry-equivalent position of I bam has to be
taken: 1

2 − x, 1
2 + y, z yields 0.320, 0.299, 0 for Cl 2 (after inter-

change of the axes), in agreement with the coordinates of Na2
of Na3AlP2. Na3AlP2 and Pr2NCl3 are isotypic.
However, NaAg3O2 is not isotypic; there is no transformation
that yields an equivalent set of coordinates. This can also be de-
duced from the different kinds of Wyckoff positions: Position
4c has site symmetry 2/m, whereas 4a and 4b have 2 2 2; 8e has
site symmetry 1, in contrast to ..m of 8 j.

8.9 In space group P63 mc, the positions x, x̄, z and x̄, x, z + 1
2

are symmetry equivalent. An equivalent positions for Cl 1 there-
fore is 0.536, 0.464, 0.208. The Euclidean normalizer of
P63 mc (P1 6/mmm) has the arbitrary translation 0, 0, t as an
additional generator. After addition of 0.155 to all z coordinates
of Ca4OCl6 its coordinates nearly agree with those of Na6FeS4.
The Na positions correspond to the Cl positions, the S positions
to the Ca positions. The structures are isotypic.

8.10 The Euclidean normalizer of P63 mc (P1 6/mmm) has the
inversion at the origin as an additional generator. The coordi-
nates of wurtzite and rambergite are equivalent; it is the same
structure type. Space group P63 mc has mirror planes, it is not
a Sohncke space group; the structure is not chiral, and therefore
there exists no absolute configuration.

8.11 GeS2: The Euclidean normalizer of I 42d is P42/nmm,
index 4. There are four equivalent sets of coordinates that are
obtained by addition of 0, 0, 1

2 and by inversion at 1
4 , 0, 1

8 (i.e.
1
2 − x, –y, 1

4 − z). Equivalent descriptions for GeS2 are thus:

x y z x y 1
2 +z 1

2 –x –y 1
4 –z 1

2 –x –y 3
4 –z

Ge 0 0 0 0 0 1
2

1
2 0 1

4
1
2 0 3

4
S 0.239 1

4
1
8 0.239 1

4
5
8 0.261 3

4
1
8 0.261 3

4
5
8

None of these coordinate sets can be transformed to one of the
others by a symmetry operation of I 42d. The number of equiv-
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alent sets of coordinates is actually four, the space group I 42d
is correct.
Na2HgO2: The Euclidean normalizer of I 422 is P4/mmm with
axes 1

2 (a−b), 1
2 (a+ b), 1

2 c, index 4. One expects four equiva-
lent sets of coordinates that are obtained by inversion at 0, 0, 0
and by addition of 0, 0, 1

2 . For Na2HgO2, this results in:

x y z –x –y –z x y 1
2 +z –x –y 1

2 –z

Na 0 0 0.325 0 0 –0.325 0 0 0.825 0 0 0.175
Hg 0 0 0 0 0 0 0 0 1

2 0 0 1
2

O 0 0 0.147 0 0 –0.147 0 0 0.647 0 0 0.353

However, the first and the second as well as the third and
the fourth set of coordinates are symmetry equivalent in I 422
(x, y, z and –x, y, –z) and thus are no new descriptions; there
are only two coordinate sets. The space group I 422 is wrong
(I 4/mmm is correct).

8.12 The Euclidean normalizer of P121/m1 with special-
ized metric a = c of the unit cell is Bmmm with 1

2 (a +
c), 1

2 b, 1
2 (−a + c), index 16. An equivalent coordinate set is

obtained by the transformation z, y, x (cf. Table 8.1):

x y z z y x

Au 0 0 0 0 0 0
Na1 0.332 0 0.669 0.669 0 0.332
Na2 0.634 3

4 0.005 0.005 3
4 0.634

Na3 0.993 1
4 0.364 0.364 1

4 0.993

Co 0.266 3
4 0.266 0.266 3

4 0.266
O1 0.713 0.383 0.989 0.989 0.383 0.713
O2 0.989 0.383 0.711 0.711 0.383 0.989
O3 0.433 1

4 0.430 0.430 1
4 0.433

The second coordinate set is not a new coordinate set. P121/m1
being centrosymmetric, x, y, z and x̄, ȳ, z̄ are symmetry equiva-
lent in the first place. The coordinates of O1 and O2 are the
same, and this also applies to Na2 and Na3 after inversion of
the signs; therefore, these atoms are actually symmetry equiva-
lent. The number of equivalent sets of coordinates is less than
the index in the Euclidean normalizer, the space group P21/m is
wrong.
The basis vectors a and c, having the same length, span a rhom-
bus whose diagonals are mutually perpendicular and thus allow
for a B-centred, orthorhombic cell.

➤

➤

➤➤

cmon

amon

aortcort

The monoclinic → orthorhombic transformation matrices are:

P =

⎛⎝ 1 0 −1
0 1 0
1 0 1

⎞⎠ and P−1 =

⎛⎝ 1
2 0 1

2
0 1 0

− 1
2 0 1

2

⎞⎠
The coordinate transformation x′ = 1

2 x+ 1
2 z, y′ = y, z′ =− 1

2 x+
1
2 z then yields the coordinates in the orthorhombic cell:

x′ y′ z′ x′ y′ z′

Au 0 0 0 Co 0.266 3
4 0

Na1 1
2 0 0.168 O1 0.851 0.383 0.138

Na2 0.320 3
4 –0.314 O3 0.432 1

4 0

The actual space group must be a B-centred, orthorhombic
supergroup of P121/m1. From International Tables A1 one
sees that there is only one centred orthorhombic supergroup of
P121/m1: C mcm is mentioned. However, in International Ta-
bles supergroups are only listed with their standard settings (see
Example 7.2, page 95). In the table of space group C mcm,
P1121/m is mentioned as a subgroup, i.e. with monoclinic c
axis, and not P121/m1. By cyclic exchange of axes a ←
b ← c ← a P1121/m is transformed to P121/m1 and C mcm
to Bbmm. Therefore, the actual supergroup of P121/m1 is
Bbmm, a non-conventional setting of C mcm; this is the correct
space group of Na4AuCoO5.

9.1 The inverse of the transformation matrix P is P−1:

P =

⎛⎝ 1 0 1
0 1 1
0 0 1

⎞⎠ P−1 =

⎛⎝ 1 0 −1
0 1 −1
0 0 1

⎞⎠
The coordinates are transformed according to P−1, i.e.
x− z, y− z, z. This causes the coordinates of Wyckoff position
1b (0, 0, 1

2 ) to be converted to those of 1h ( 1
2 , 1

2 , 1
2 ) and vice

versa, and those of 1 f ( 1
2 , 0, 1

2 ) to 1g (0, 1
2 , 1

2 ) and vice versa.
The positions 1b and 1h as well as 1 f and 1g are interchanged.

9.2 a b c :

c a b :

P 21/n 21/m 21/a

➤ ➤

➤

P 21/b 21/n 21/m

0.24, 1
4 , 0.61

➤ ➤

➤

0.61, 0.24, 1
4

a b c :

ba c :

P 21/n 21/m 21/a

➤

➤ ➤

P 21/m 21/n 21/b

0.24, 1
4 , 0.61

➤

➤ ➤

1
4 ,−0.24, 0.61

9.3 The space-group symbol becomes C 2/c11, the monoclinic
axis is a. To ensure a right-handed coordinate system, the direc-
tion of one basis vector has to be inverted, preferably a′ = −b
because then the monoclinic angle keeps its value, α ′ = β ; in-
verting b′ = −a or c′ = −c would entail α ′ = 180◦ − β . The
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new glide-reflection plane c is at x = 0. The coordinates have
to be exchanged correspondingly, −y, x, z (if a′ = −b). If the
transformation to the monoclinic a setting were been made by
cyclic exchange, the space group symbol would be B2/b11 and
the Wyckoff symbols would be retained. Doubts can arise with
the setting C 2/c11 as to what Wyckoff symbols belong to what
positions; they should be named explicitly.

9.4 C 42/e2/m21/c.

9.5 The three cell choices for P121/c1 are P121/c1, P121/n1,
and P121/a1. With coinciding axes directions, the supergroup
has to have a 21 axis parallel to b and a glide-reflection plane
perpendicular to b. With the setting to be chosen, the lattice pa-
rameters of the group and its supergoup have to be (nearly) the
same and the monoclinic angle has to be β ≈ 90◦.
Supergroup Pnna (P2/n21/n2/a): P2/n21/n2/a is a supergroup
if the initial setting P121/n1 instead of P121/c1 is chosen;
with the setting P121/n1 the monoclinic angle must be (nearly)
β = 90◦.
Supergroup Pcca (P21/c2/c2/a): 21/c takes the first position
which is the direction of a; the directions of a and b have to be
interchanged, c must be retained; the symbol of the supergroup
is then P2/c21/c2/b.
Supergroup Pccn (P21/c21/c2/n): 21/c takes the first and sec-
ond positions; there are two supergroups of type Pccn; one of
them is P21/c21/c2/n with unchanged axes setting; the other
one requires an interchange of a and b, but this does not change
the Hermann–Mauguin symbol (the interchanged axes have to
be mentioned explicitly); which one of the two possibilities is
chosen depends on the lattice parameters.

➤
amon

➤

aort

➤

cmon = cort

➤1
4

Supergroup C mce (C 2/m2/c21/e): 21/e means 21/a and 21/b
referred to the direction c; interchange of b and c con-
verts the Hermann–Mauguin symbol to B2/m21/e2/b; by
cyclic exchange c ← a ← b ←
c it becomes B2/b21/e2/m; in
both cases the e contains the nec-
essary c glide reflection. The
conventional space-group symbol
of the supergroup C mce there-
fore refers to two B-centred or-
thorhombic supergroups. The B-
centred cells are twice as large as
that of P121/c1, so that the cell
of the latter cannot be retained; it
must be transformed as shown in
the graph, and this must result in
a right angle βort. aort and cort are
the basis vectors of the B-centred
cells.

11.1 The symmetry reduction from P21/a3 to P21/b21/c21/a
involves the loss of the threefold axes. From P21/b21/c21/a to

Pbc21 (non-conventional for Pca21), in addition, the centres
of inversion, the 21 axes parallel to a and b and the glide planes
perpendicular to c are lost. From P21/a3 to P21 3 the centres of
inversion and the glide planes are lost.

11.2 and 11.3

P 62 2 2

HT quartz

Si:3d O: 6i
222 . .2

1
2 0.416
0 0.208
1
2

2
3

P 32 2 1

LT quartz

Si:3b O: 6c
.2. 1

0.470 0.414
0 0.268
1
6 0.286

t2
0, 0, 1

3

➤

translationengleiche
subgroup; mind the
origin shift;
add – 1

3 to the
z coordinates

The x coordinate of Si
and the z coordinate
of O become independent,
the x and y coordinates
of O become independent

➤ ➤

P 31 2 1

AlPO4

Al:3a P: 3b O1:6c O2:6c
.2. .2. 1 1

0.466 0.467 0.416 0.415
0 0 0.292 0,257
1
3

5
6 0.398 0.884

i2
a, b, 2c
0, 0, – 1

2➤

➤

➤ ➤

➤

Because of the dou-
bling of c divide the

z coordinates by 2, then, due to the origin shift, add 1
4 and 3

4 to
the z coordinates.

11.4 Indium: The relation F m3m → I 4/mmm with the basis
transformation a′ = 1

2 (a− b) yields a ratio of c/a =
√

2. For
indium it is c/a = 1.52 what is slightly greater than

√
2. It can

be described as a cubic-closest packing of spheres that has been
slightly expanded in the direction of c.
Protactinium: With c/a = 0.83 it is to be described as a com-
pressed body-centred packing of spheres.

F 4/m 3 2/m

Cu

Cu:4a
m3m

0
0
0

I 4/m 2/m 2/m

In

In:2a
4/mmm

0
0
0

t3
1
2 (a–b), 1

2 (a+b), c

➤

I 4/m 3 2/m

W

W:2a
m3m

0
0
0

I 4/m 2/m 2/m

Pa

Pa:2a
4/mmm

0
0
0

t3

➤

Mercury: The relation F m3m → R3m(hex) requires the basis
transformation 1

2 (–a + b), 1
2 (–b + c), a + b + c; from this, one

obtains a ratio of c/a =
√

3/( 1
2

√
2) = 2.45. That is slightly

greater than c/a = 1.93 of mercury; it can be described as a trig-
onally distorted cubic-closest packing of spheres. For I m3m →
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R3m(hex) the transformation would be –a+b, –b+c, 1
2 (a+b+

c) and thus c/a = 1
2

√
3/

√
2 = 0.61.

Uranium: One has b/a = 2.06 instead of
√

3 and c/a = 1.74 in-
stead of 1.633; it is a hexagonal-closest packing of spheres that
has been expanded in the direction of b of the orthorhombic cell.

F 4/m 3 2/m

Cu

Cu:4a
m3m

0
0
0

R 3 2/m

α-Hg

Hg:3a
3m
0
0
0

t4
1
2 (–a+b), 1

2 (–b+c), a+b+c

➤

P 63/m 2/m 2/c

Mg

Mg:2c
6m2

1
3
2
3
1
4

C 2/m 2/c 21/m

α-U

U:4c
m2m

0
0.398

1
4

t3
a, a+2b, c x− 1

2 y, 1
2 y, z

➤

11.5 The lattice parameters and the coordinates of ∼ 1
3 show that

the cell has to be enlarged by 3× 3× 3. The index 27 is the
smallest possible index for an isomorphic subgroup of I m3m.

I 4/m 3 2/m

W

W:4a
m3m

0
0
0

I 4/m 3 2/m

Tl7Sb2

Tl1:2a Sb:12e Tl2:16 f Tl3:24h
m3m 4m.m .3m m.m2

0 0.314 0.330 0.350
0 0 0.330 0.350
0 0 0.330 0

i27
3a, 3b, 3c

➤

1
3 x, 1

3 y, 1
3 z; +(u,v,w), u,v,w = 0 or ± 1

3

➤➤

➤ ➤

11.6 The first step of the symmetry reduction
rutile → CaCl2 type is as in Fig. 1.2.

P 42/m 21/n 2/m

VO2, R

V: 2a O: 4 f
mmm m2m

0 0.300
0 0.300
0 0

t2

➤

P 21/n 21/n 2/m

(CaCl2 type)

V: 2a O: 4g
..2/m ..m

0 0.295
0 0.305
0 0

P 1 21/n 1
V:2a O:4e

1 1
0 0.295
0 0.305
0 0.0

P 1 1 2/m
V: 1a V: 1h O:2m O:2n
..2/m ..2/m ..m ..m

0 1
2 0.295 0.205

0 1
2 0.305 0.805

0 1
2 0 1

2

t2

➤

t2

➤

P 1 21/a 1

VO2, M1

V1:4e O1:4e O2:4e
1 1 1

0.026 0.299 0.291
0.021 0.297 0.288
0.239 0.401 0.894

A 1 1 2/m

VO2, M2

V1:4g V2:4i O1:8 j O3:4i O2:4i
..2 ..m 1 ..m ..m
0 0.531 0.294 0.201 0.209
0 0.269 0.148 0.400 0.397

0.281 1
2 0.248 1

2 0

i2
a− c, b, 2c

0, 0, – 1
2

➤

➤ ➤

➤

x, y, 1
2 (x+ z)+ 1

4

k2
a, 2b, 2c
0, 0, – 1

2

➤

➤ ➤

➤
x, 1

2 y, 1
2 z+ 1

4
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11.7 The lattice parameters of TlAlF4-tP6 are transformed to
those of TlAlF4-tI24 according to a

√
2 = 364.9

√
2 pm = 516.0

pm ≈ 514.2 pm and 2c = 2× 641.4 pm = 1282.8 pm ≈ 1280.7
pm. Since the cell of TlAlF4-tI24 is body centred, it is doubly-
primitive; the primitive cell has only a doubled volume, in ac-
cordance with the index 2. TlAlF4-tI24 no longer has the F2
atoms on mirror planes, the coordination octahedra about the Al
atoms are mutually turned about the direction of c.

P 4/m 2/m 2/m

TlAlF4-tP6

Al: 1a Tl: 1d F1:2 f F2:2g
4/mmm 4/mmm mmm 4mm

0 1
2

1
2 0

0 1
2 0 0

0 1
2 0 0.274

k2
a−b, a+b, 2c

➤

1
2 (x− y), 1

2 (x+ y), 1
2 z

I 4/m 2/c 2/m

TlAlF4-tI24

Al: 4c Tl: 4b F1:8h F2:8 f
4/m 42m m2m 4

0 0 0.276 0
0 1

2 0.224 0
0 1

4 0 0.137

11.8

C 2/m 2/c 21/m

γ-AlOOH

Al: 4c O1: 4c O2:4c
m2m m2m m2m

0 0 1
2

0.179 0.206 0.083
1
4

3
4

1
4

C m c 21

RbOH·OH2

Rb:4a O1:4a O2:4a
m.. m.. m..

0 0 1
2

0.152 0.163 –0.032
1
4 0.75 0.146

P 1 1 21/m
2e 2e 2e
m m m

0.179 0.206 0.583
0.358 0.412 0.167

1
4

3
4

1
4

t2

➤

t2
a, 1

2 (–a+b), c x + y, 2y, z

➤

k2
2a, b, c

1
2 x, y, z

➤

P 1 1 21/a

KOH·OH2

K:4e O1:4e O2:4e
1 1 1

0.075 0.085 0.237
0.298 0.343 –0.055
0.254 0.754 0.137

Due to the hydrogen bonds,
there are significant deviations
for some atomic parameters

11.9 Halfway between the reflection planes that run diagonally
through the cell of P4/nmm, there are glide planes with the glide
component 1

2 (a + b); this automatically means also a glide com-
ponent of 1

2 (a + b) + c. Upon doubling of c, the glide compo-
nent 1

2 (a + b) is lost, but the glide component 1
2 (a + b) + 1

2 c is
retained ( 1

2 c instead of c due to the doubling of c). That is an n
glide plane.

11.10 The face-centred cell of the Cu type has an oblique ori-
entation relative to the cell of MoNi4. First, one transforms the
face-centred cell to a body-centred cell and than to the cell of
MoNi4:

aI = 1
2 (aF −bF ),

bI = 1
2 (aF +bF), cI = cF

aI = aF/
√

2

a = aI +2bI ,
b = −2aI +bI , c = cI

a = aI
√

5 = (aF/
√

2)
√

5

= 361.2
√

5
2 pm

= 571.1 pm

0

0

01
2

1
2

➤
➤

a

b

➤

➤

aI

bI

➤
➤

aF

bF

F 4/m 3 2/m

Cu type

Cu:4a
m3m

0
0
0

I 4/m 2/m 2/m
2a

4/mmm
0
0
0

I 4/m
2a

4/m
0
0
0

t3
1
2 (a–b), 1

2 (a+b), c

➤

t2

➤

I 4/m

MoNi4

Mo:2a Ni:8h
4/m m

0 0.400
0 0.200
0 0

i5
a+2b,

–2a+b, c
1
5 (x +2y),

1
5 (–2x+ y), z;
+( 2

5 , 1
5 , 0)

➤

➤➤

The face-centred cell of the Cu type is
fourfold-primitive and contains Z = 4 Cu
atoms; the body-centred cell is half as large
(Z = 2). Compared to the latter, the cell of
MoNi4 is enlarged by a factor of 5; it con-
tains 10 atoms. This agrees with the exper-
imental value of a = 572.0 pm. Therefore,
a step of symmetry reduction of index 5 is
needed. An index of 5 is possible only as an
isomorphic subgroup of I 4/m; before, first
a symmetry reduction down to I 4/m is re-
quired; this step involves only site symmetry
reductions.
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The lattice parameter of
the cubic unit cell of γ-
brass is three times that
of β -brass.

11.11

I 4/m 3 2/m

β -brass

Cu,Zn:2a
m3m

0
0
0

I 4 3 m
2a

43m
0
0
0

I 4 3 m

γ-brass

� : 2a Cu1:8c Zn1:8c Cu2:12e Zn2:24g
43m .3m .3m 2.mm ..m

0 0.328 0.608 0.356 0.312
0 x x 0 x
0 x x 0 0.037

t2

➤

i27
3a, 3b, 3c

➤

1
3 x, 1

3 y, 1
3 z;

±( 1
3 ,0,0); ±( 1

3 , 1
3 ,0);

±( 1
3 , 1

3 , 1
3 ); . . .

➤ ➤ ➤ ➤ ➤

12.1 The common supergroup has to have 21 axes in all three
axes directions, and it must have a glide planes perpendicular to
c. Only two supergroups fulfil these conditions: P21/b21/c21/a
and P21/n21/m21/a. The relation P21/n21/m21/a —t2→
P21 21 21 requires an origin shift (0, 0, − 1

4 ) and is thus ex-
cluded. P21/b21/c21/a is the common supergroup.

12.2 In the right branch of Fig. 12.3 the cell decrease 1
2 (a−b),

1
2 (a+b), c is missing. In addition, there is no step that permits
the necessary origin shift.
Pnnn has eight subgroups on a par of type F d d d with doubled
lattice parameters. Only the one with the mentioned origin shift
yields the correct coordinates for the Ir and Cl atoms.

F 4/m 3̄2/m

NaCl type

Na:4a Cl:4b
m3m m3m

0 0
0 0
0 1

2

t3
1
2 (a−b),

1
2 (a+b), c

➤

x− y, x+ y, z

➤ ➤

I 4/m2/m2/m
2a 2b

4/mmm 4/mmm
0 0
0 0
0 1

2k2

➤

➤ ➤

P42/n2/n2/m(1)
2a 2b

42m 42m
0 0
0 0
0 1

2t2

➤

➤ ➤

P2/n2/n2/n (1)
2a 2c
222 222

0 0
0 0
0 1

2

k2
2a, 2b, 2c
0,− 1

2 , 0

➤

1
2 x, 1

2 y+ 1
4 , 1

2 z

F 2/d 2/d 2/d (1)
16 f 16e
.2. 2..

0 0.0
0.25 1

4
0 1

4i3
a, 3b, c

– 1
4 ,– 1

4 ,– 1
4

➤

x+ 1
4 , 1

3 y+ 1
12 ,z+ 1

4 ; ±(0, 1
3 ,0)

➤ ➤

➤ ➤ ➤� �� designate two
unoccupied octa-
hedral voids at
16 f , 1

4 ,−0.167, 1
4

and 1
4 , 0.5, 1

4

F 2/d 2/d 2/d (1)

β -IrCl3

Ir:16f Cl:16e Cl:32h
.2. 2.. 1
1
4 0.220 0.247

0.167 1
2 0.162

1
4

1
2 0.488

12.3 Pm3m has two subgroups on a par of the same type Pm3m
that are not maximal subgroups (two conjugacy classes of four
conjugates each). Either F m3m or I m3m has to be considered
as an intermediate group with an eightfold enlarged unit cell.
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12.4 The right branch of the tree is correct. The left branch
leads to the same cell; however, by the triplication of the cell
in the first step, translational symmetry is removed that is rein-
serted in the second step; this is not permitted. The intermediate
group C 2/m2/c21/m is wrong. This can easily be recognized
by drawing the unit cells (only the inversion centres have been
drawn):

C 2/m2/c21/m

(3 unit cells)

➤ b

➤

a

➤

i3
a, 3b, c

C 2/m2/c21/m

➤

1
2 a− 1

6 b
this no longer is a
translation vector

C 2/m2/c21/m

P1121/m

➤

t2
1
2 a – 1

2 b, b, c
➤

1
2 a – 1

2 b

this continues to be
a translation vector,
even if b is subsequently tripled

In addition, it is recommended to draw the vertical distances be-
tween the space group symbols proportional to the logarithms of
the indices; the distance at the i3 step should be lg 3/lg 2 = 1.58
times greater than at the t2 step.

12.5 P2/m2/c21/m is not centred, there is no translation vector
1
2 (a−b). P1121/m is only a subgroup of P2/m2/c21/m without
cell transformation.

13.1 Compared to a sphere packing of iodine atoms with a =
2r(I), a is larger by a factor of approximately

√
3: a = 699 pm

≈ 2
√

3×198 pm = 686 pm. In the packing of spheres one has
c/a = 1.633; the expected value is thus c ≈ 2×1.633×198 pm
= 647 pm. Actually, c = 736 pm is somewhat larger because
there are no chemical bonds in this direction.

P 63/m 2/m 2/c

hex.-close pack.

� : 2b I:2c
6m2 6m2

0 1
3

0 2
3

1
4

1
4

➤

k3
2a+b,

–a+b, c

➤ ➤ ➤

1
3 (x+ y), 1

3 (–x+ 2y), z;
±( 1

3 , 2
3 , 0)

P 63/m 2/c 2/m

2a 4c 6g
62m 6 m2m

0 1
3 0.333

0 2
3 0.333

1
4

1
4

1
4

➤

t2

P 63/m

BI3

B:2c � : 2d I: 6h
6 6 m
1
3

2
3 0.318

2
3

1
3 0.357

1
4

1
4

1
4

➤ ➤ ➤

13.2 First, symmetry must be reduced in two translationen-
gleiche steps from F 4/m32/m to R3, then follows an isomor-
phic subgroup of index 13 or 19, respectively, where 12

13 and
18
19 of the symmetry operations are lost. 13 and 19 are prime
numbers of the kind 6n + 1 that are permitted as indices of iso-
morphic subgroups of R3. By comparison with International
Tables A1, the number of symmetry-independent Cl atoms (2
and 3, respectively) indicates that 13 and 19 are the sought
prime numbers: for isomorphic subgroups of R3 of index p, the
position 3a splits into 1×3a and p−1

6 ×18 f , i.e. 13−1
6 = 2×18 f

and 19−1
6 = 3×18 f .
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F 4/m 3 2/m

cub.-close pack.

Cl:4a � : 4b
m3m m3m

0 0
0 0
0 1

2

➤

t4
1
2 (–a+b), 1

2 (–b+ c),
a +b + c

➤ ➤

2
3 (–x+ y+ z),
2
3 (–x–y+2z),
1
3 (x+ y+ z)

R32/m

➤

t2

R3
3a 3b
3 3

0 1
3

0 2
3

0 1
6

➤
i13

3a +4b,
–4a−b, c

➤

i19
5a+ 2b,

–2a+3b, c

➤ ➤ ➤ ➤ ➤ ➤

➤

3a 3b

➤ ➤ ➤ ➤ ➤

➤

3
19 x+ 2

19 y, – 2
19 x + 5

19 y, z;

+( 2u
19 , 5u

19 ,0), u = 1,2, . . .

– 1
13 x+ 4

13 y, – 4
13 x+ 3

13 y, z;

+( 4
13 , 3

13 ,0)

R3

W6Cl18

�: 3a Cl:18f Cl:18f Cl:18f �:3b W:18f
3 1 1 1 3 1

0 0.103 0.213 0.440 1
3 0.103

0 0.259 0.530 0.078 2
3 0.118

0 0.002 –0.012 0.028 1
6 0.138

�: 2×18 f

R3

Zr6C I12

C:3a I:18f I:18f �:3b Zr:18f
3 1 1 3 1

0 0.311 0.616 1
3 0.143

0 0.231 0.460 2
3 0.041

0 0.001 0.009 1
6 0.130

�:18 f

calculated:
C I(1) I(2) Zr

0 4
13 = 0.308 8

13 = 0.615 7
39 = 0.180

0 3
13 = 0.231 6

13 = 0.462 2
39 = 0.051

0 0 0 1
6 = 0.167

calculated: Cl(2) Cl(1) Cl(3) W
2
19 = 0.105 4

19 = 0.211 8
19 = 0.421 7

57 = 0.123
5
19 = 0.263 10

19 = 0.526 20
19 = 1.053 8

57 = 0.140

0 0 0 1
6 = 0.167
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13.3

P42/m21/n2/m

cassiterite

Sn:2a O: 4g
mmm m2m

0 0.305
0 –0.305
0 0

P21/n21/n2/m
2a 4g
2/m ..m

0 0.305
0 –0.305
0 0

P112/m
1a 1h 2m 2n
2/m 2/m m m

0 1
2 0.305 0.805

0 1
2 –0.305 0.805

0 1
2 0 1

2

➤

t2

➤

t2

➤

a, 2b, 2c
k2

0, 0, – 1
2 x, 1

2 y, 1
2 z + 1

4 ; +(0,0, 1
2 )

➤ ➤

➤ ➤ ➤

➤

➤ ➤ ➤

➤

A112/m

Sn2OF2

Sn2:4g Sn1:4i F: 8 j O: 4i � : 4i
2 m 1 m m
0 0.486 0.301 0.803
0 0.283 –0.175 0.392

0.296 1
2 0.321 0

cal- 0 0.5 0.305 0.805 0.805
cula- 0 0.25 –0.152 0.402 0.402
ted: 0.25 1

2 0.25 0 1
2

calculated:
a = 474 pm, b = 947 pm, c = 637 pm, γ = 90◦

observed:
a = 507 pm, b = 930 pm, c = 808 pm, γ = 97.9◦

13.4

F 43m

zinc blende

Zn:4a S:4c
43m 43m

0 1
4

0 1
4

0 1
4

t3

➤

➤ ➤

Compared to
Figs. 13.12
and 13.13
the origin is
shifted by
1
4 , 1

4 , 1
4

F 42m conventional
I 4m2

4a 4c
42m 42m

0 1
4

0 1
4

0 1
4k2

➤

➤ ➤

C 42d conventional
P4n2

4a 4c
4 222

0 1
4

0 1
4

0 1
4k2

a, b, 2c

➤

➤➤

➤

x, y, 1
2 z

I 42d

α-ZnCl2

Zn:4a � : 4b Cl:8d
4 4 .2.
0 0 0.25
0 0 1

4
0 1

2
1
8
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13.5
➤

acub

➤ ccub

➤ a

➤

c
OsO4

a ≈ 2acub, b ≈ acub, c ≈ acub
√

5

C 2/m2/m2/e
4g 4a

mm2 222

0 3
4

1
4 0

0.235 0k2
– 1

4 , – 1
4 , 0

➤

x+ 1
4 , y+ 1

4 , z

➤ ➤

C 1 2/m 1
4i 4g
m 2
1
4 0
1
2

1
4

0.235 0t2
a, b, 2c

➤

x, y, 1
2 z

➤ ➤ ➤ ➤

I 1 2/m 1
4i 4i 4g 4h
m m 2 �

0.25 0.25 0
1
2

1
2 0.25

0.118 0.618 0k2
2a, b, −a+ c

– 1
2 , 0, 0

➤

1
2 (x+ z)+ 1

4 , y, z

➤ ➤ ➤ ➤

I 1 2/a 1

OsO4

O:8 f O:8 f Os:4e 4e
1 1 2 �

0.420 0.699 1
4

0.463 0.517 0.241
0.113 0.618 0

Symmetry reduction can also go via I mma in-
stead of C 12/m1. Doubling of c and the split-
ting of the position 4g of C mme then already
takes place at the first step, and further origin
shifts have to be considered.

13.6

➤ b

➤

a

0; 1
2

3
4

➤

1
4

P 63/m 2/m 2/c
X1:2a X2:2d � : 4 f

3m 6m2 3m

0 2
3

1
3

0 1
3

2
3

0 1
4 0.125

t2
➤

t3
a, a+2b, c

➤

x− 1
2 y, 1

2 y, z

➤ ➤ ➤

P 63/m
2b 2d 4 f
3 6 3

0 2
3

1
3

0 1
3

2
3

0 1
4 0.125

C 2/m 2/c 21/m
4a 4c 8 f

2/m.. m2m m..

0 1
2 0

0 0.167 0.333
0 1

4 0.125

t3

➤

t2

➤

➤ ➤ ➤

C 1 1 21/m
4a 4e 8 f
1 m 1
0 0.5 0.0
0 0.167 0.333
0 1

4 0.125

≡P 1 1 21/m
2a 2e 4 f
1 m 1
0 0.667 0.333
0 0.333 0.667
0 1

4 0.125 i2
a, a+2b, c
– 1

2 , – 1
2 , 0

➤

i2
– 1

4 , – 1
4 , 0

➤

x+ 1
4 , y+ 1

4 , z

➤ ➤ ➤ ➤ ➤

x– 1
2 y+ 1

4 , 1
2 y+ 1

4 , z

➤

P 1 1 21/m
4 f 2e 2e 4 f 4 f
1 m m 1 �

0.25 0.75 0.25 0.25
0.25 0.417 0.917 0.583
0.0 1

4
1
4 0.125i2

2a, b, c

➤

1
2 x, y, z; +( 1

2 , 0, 0)

➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤

P 1 1 21/m

CsTi2Cl7

Cl4:4 f Cl5:4 f Cl2:2e Cl1:2e Cl3:2e Cs:2e Ti:4 f 4 f
1 1 m m m m 1 �

0.112 0.634 0.353 0.907 0.127 0.633 0.139
0.268 0.253 0.435 0.444 0.888 0.946 0.592

–0.001 0.007 1
4

1
4

1
4

1
4 0.111

C 1121/m is identical
to P1121/m but with
a different setting
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14.1 Let the basis vectors of C16H34·[OC(NH2)2]12-I be a, b,
and c. Then the lattice parameters of the other compounds are:

C16H34·[OC(NH2)2]12-II a, b, 2c
C16H34·[OC(NH2)2]12-III a, a

√
3, c

C10H18O2·[OC(NH2)2]8 a, b, 4c
C8H16O2·[OC(NH2)2]7 a, b, 7c

P 61 2 2

C16H34urea12-I

C 2 2 21

P 21 21 21

C16H34urea12-III

P 31 1 2

P 32 1 2

C16H34urea12-II

P 31 1 2

C10H18O2urea8

P 61 2 2

C8H16O2urea7

t3
a, a+2b, c

➤

k2
– 1

4 , 0, 0

➤

t2
0, 0, 1

12➤

i2
a, b, 2c

➤

i2
a, b, 2c

➤

i7
a, b, 7c

➤

14.2 The Bärnighausen tree is like that of Exercise 13.2, but
the position 4b of F m3m can be deleted. Instead of the i13
and i19 steps there is an i7 step with basis transformation
3a+b, –a+2b, c and coordinate transformation 2

7 x+ 1
7 y, – 1

7 x+
3
7 y, z; ±( 1

7 , 3
7 ,0). Position 3a of R3 splits into 3a and 18 f . If

hexachlorbenzene, C6Cl6, were to crystallize with this packing,
the space group would be R3 (with the enlarged unit cell). Be-
cause (BN)3Cl6 does not have inversion centres, a step R3 —
t2→ R3 follows, with splitting of 18 f to 2×9b.

15.1 After EHRENFEST: At the point of transition there may be
no discontinuous change of density and volume and no latent
heat. Continuous: There may be no latent heat and no hystere-
sis; There must exist some variable that can be used as an order
parameter (e.g. the position of a key atom) and that adopts the
value of zero in the high-symmetry form and follows a power
law in the low-symmetry phase (eqn B.5, page 272); the fre-
quency of a lattice mode of appropriate symmetry must also fol-
low the power law and tend toward zero when approaching the
point of transition (soft mode).

15.2 At an isosymmetric phase transition the space group does
not change. There is no group–subgroup relation. Therefore, a
continuous transition is excluded.

15.3 Volume is a first derivative of the Gibbs free energy, V =
∂G/∂ p. It may not exhibit a discontinuity at a second-order
transition. The second derivative ∂ 2G/(∂ p∂ T) = ∂V/∂ T is the
slope of the curve V over T in Fig. 15.4. A kink of the curve
corresponds to a discontinuity of the second derivative. At least
one second derivative of G must have a discontinuity.

15.4 All modifications belong to different branches of the
Bärnighausen tree. If there are phase transitions, they can only
be discontinuous (first order).

15.5 The symmetry reduction Pm3m —t3→ P4/mmm —t2→
P4mm involves a t3 and a t2 step. One can expect the forma-
tion of twins of triplets. The +c axis of P4mm can be oriented
parallel to ±a, ±b, or ±c of Pm3m.

15.6 The symmetry reduction Pm3m —t3→ P4/mmm —k2→
I 4/mcm involves a t3 and k2 step. One can expect the formation
of triplets, each of which has two kinds of antiphase domains.

15.7 I 42m is a translationengleiche subgroup of index 2 of
I 4/mcm; one can expect twins with two orientations, +c and
−c. The X-ray pattern will have reflections from both do-
mains that are exactly coincident, including the extinct reflec-
tions (h+k+ l = odd); the high-symmetry space group I 4/mcm
will not be feigned because it has c glide reflections that cause
different extinctions. Twinning will not be noticed before struc-
ture refinement where it will show up by seemingly split atomic
positions or abnormal ellipsoids of ‘thermal motion’.

15.8 The symmetry reduction F d3m → F 3m (R3m) is trans-
lationengleiche of index 4. Twins with four orientations may
appear, with their 3 axes in the directions of the four cube diag-
onals of the initial cubic unit cell. A reflection hkl of the cubic
phase splits into four different reflections hkl, hkl, hkl, and hkl.

15.9 The curves show hysteresis, the transition is discontinuous.
The same follows from the missing group–subgroup relation.
Since the atoms are only slightly displaced, the transformation
could be termed displacive. Because of the increase of the coor-
dination number of the Si atom from 4 to 5 it should be recon-
structive. The example shows that a clear distinction between
reconstructive and displacive is not always possible.

16.1 Let P be the transformation matrix A → B for the basis
vectors; then one has:

(aB,bB,cB) = (aA,bA,cA)P (hB,kB, lB) = (hA,kA, lA)P

(aA,bA,cA)= (aB,bB,cB)P−1 (hA,kA, lA)= (hB,kB, lB)P−1⎛⎝ a∗B
b∗

B
c∗B

⎞⎠= P−1

⎛⎝ a∗A
b∗

A
c∗A

⎞⎠ ⎛⎝ xB
yB
zB

⎞⎠= P−1

⎛⎝ xA
yA
zA

⎞⎠
⎛⎝ a∗A

b∗
A

c∗A

⎞⎠ = P

⎛⎝ a∗B
b∗

B
c∗B

⎞⎠ ⎛⎝ xA
yA
zA

⎞⎠= P

⎛⎝ xB
yB
zB

⎞⎠
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⎛⎝ uA
vA
wA

⎞⎠ = P

⎛⎝ uB
vB
wB

⎞⎠
(a) From the image of the reciprocal lattice shown with the ex-
ercise we deduce (note that only even hB indices have been in-
cluded):

a∗A ≈ 2a∗B +2c∗B; c∗A ≈−2a∗B + c∗B

b∗
A has the same value as a∗A, it is perpendicular to c∗A and in-

clined by 60◦ against the plane of projection. In the projection,
b∗

A is half as long as a∗A. We obtain:

b∗
A ≈ a∗B +b∗

B + c∗B;

In matrix notation this is:

⎛⎝ a∗A
b∗

A
c∗A

⎞⎠= P

⎛⎝ a∗B
b∗

B
c∗B

⎞⎠=

⎛⎝ 2 0 2
1 1 1

−2 0 1

⎞⎠⎛⎝ a∗B
b∗

B
c∗B

⎞⎠
(b) The transformation of the basis vectors A → B requires the
same matrix P as the transformation of the reciprocal basis vec-
tors in the opposite direction B → A:

(aB,bB,cB) = (aA,bA,cA)

⎛⎝ 2 0 2
1 1 1

−2 0 1

⎞⎠
The metric relations can be taken from the figure in the next col-
umn. With a′ = 2aA + bA we obtain a′ = aA

√
3 = 654.4 pm.

The diagonal in the a′c′ plane has a length of
√

654.42 +594.02

pm = 883.8 pm and corresponds to cB = 885.6 pm. For aB we

expect aB =
√

a′2 +4c2
A =

√
654.42 +4×594.02 pm = 1356.3

pm (observed: 1420 pm). The monoclinic angle follows from βB
= arc tan(2cA/a′) + arc tan(cA/a′) = 103.4◦ (observed: 100.0◦).
The enlargement of the cell corresponds to the fourth image for
Ξ = 3 in Fig. 18.1, page 237.

(c) The translationengleiche symmetry reduction of index 3
yields an orthohexagonal cell (grey in the figure) which, how-
ever, is monoclinic for reasons of symmetry (C 12/m1). Then
follows an isomorphic subgroup with triplication of the unit cell.
From the figure one can see that the enlarged cell is C centred.

(d) The transformation matrices P1 and P2 for both steps of
symmetry reduction can be taken from the figure. Their prod-
uct P = P1P2 is the above-mentioned transformation matrix for
the total transformation A-Ln2O3 → B-Ln2O3. As there are no
origin shifts, we only need 3×3 matrices:

P1P2 =

⎛⎝ 2 0 0
1 1 0
0 0 1

⎞⎠⎛⎝ 1 0 1
0 1 0

−2 0 1

⎞⎠=

⎛⎝ 2 0 2
1 1 1

−2 0 1

⎞⎠

P 3 2/m 1

A-Ln2O3

C 1 2/m 1

➤

t3
2a+b, b, c

➤

i3
a−2c, b, a+ c

C 1 2/m 1

B-Ln2O3

➤

➤

➤

➤➤

➤

➤

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•
•
•

•

•

•

•
a′aA

cA,c′

bA,bB

aB

cB

(e) The transformation of the atomic coordinates of the B form
to the coordinate system of the A form requires the same matrix
P: ⎛⎝ xA

yA
zA

⎞⎠=

⎛⎝ 2 0 2
1 1 1

−2 0 1

⎞⎠⎛⎝ xB
yB
zB

⎞⎠
The results are:

Sm(1) Sm(2) Sm(3) O(1) O(2) O(3) O(4) O(5)

x 1.250 0.656 1.310 0.830 0.296 0.344 1.366 0
y 0.625 0.328 0.655 0.915 0.648 0.672 0.683 0
z 0.220 −0.242 −0.746 0.028 −0.377 0.778 0.605 0

The values agree acceptably with the coordinates of the A form,
cf. the table given with the exercise; note that atoms at x,y,z
are symmetry equivalent to x̄, ȳ, z̄ and to x±m,y±n, z± q with
m,n,q = integral.

(f) The lattice direction (vector) [132] refers to the B form.
Transformation to a lattice direction of the A form, B → A, re-
quires the same matrix P:⎛⎝ uA

vA
wA

⎞⎠ = P

⎛⎝ uB
vB
wB

⎞⎠
=

⎛⎝ 2 0 2
1 1 1

−2 0 1

⎞⎠⎛⎝ 1
3
2

⎞⎠ =

⎛⎝ 6
6
0

⎞⎠
The axis of twinning [132] of the B form corresponds to the
lattice direction [110] of the A form. This is the direction of a
twofold rotation axis of the space group P32/m1 that is being
lost by the symmetry reduction to C 12/m1, but which is con-
served indirectly by the twinning.
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(g) The transformation of the Miller indices B → A requires the
inverse matrix P−1. This can be deduced from the figure of the
basis vectors on the preceding page; it corresponds to the trans-
formation B → A of the basis vectors:

(h,k, l)A = (h,k, l)B

⎛⎜⎝ 1
6 0 − 1

3
− 1

2 1 0
1
3 0 1

3

⎞⎟⎠
That it is correct can be checked by multiplication P×P−1 = I.
The crystal faces of the B form are {201}B, {1 0 1}B, {1 1 1}B,
and {111}B; by transformation one obtains {001}A, {1 0 0}A,
{0 1 0}A, and {110}A. This corresponds to a hexagonal prism
in the coordinate system of the A form.

17.1 In space group P62m the Gd atom would occupy the po-
sition 3g with the site symmetry m2m. The large parameter
U11 = U22 is an indication that the Gd atom is placed on a plane
perpendicular to c close to this position, with reduced site sym-
metry. In that case, the actual space group must be a subgroup
of P62m that has a reduced site symmetry at this position. U33
not being suspicious, the plane of reflection perpendicular to c
can be retained, but not the one parallel c nor the twofold ro-
tation axis (cf. the figure of the symmetry elements of P62m
in International Tables A). As there are no superstructure re-
flections, we have to look for a translationengleiche subgroup.
P62m has only one translationengleiche subgroup that meets
these conditions: P6. P6 is also the only subgroup that results in
a splitting of the position 2c of P62m into two independent po-
sitions (1c, 1e), such that an ordered occupation by Rh and In be-
comes possible. However, P6 does not belong to the Laue class
6/mmm. Evidently, this is feigned by twinning. Refinement as
a twin in space group P6 yields the correct structure [348].

17.2. Doubling of the a and b axes permits an ordered distrib-
ution of the palladium and silicon atoms within a plane of the
hexagons, as shown in the following figure. The subgroup is
isomorphic of index 4.

P6/m2/m2/m

AlB2

Al:1a B: 2d
6/mmm 6m2

0 1
3

0 2
3

0 1
2

P6/m2/m2/m

Eu2PdSi3

Eu: 1a Eu:3 f Pd:2d Si:6m
6/mmm mmm 6m2 mm2

0 1
2

1
3 0.164

0 0 2
3 0.328

0 0 1
2

1
2

➤

i4
2a, 2b, c

➤ ➤ ➤

➤

1
2 x, 1

2 y, z

Si

Pd

1
2

17.3. In space group P4/nmm, atom F1 is forced to occupy a
position on a mirror plane at x = 1

4 . By removal of the mirror
plane, F1 can shift to x ≈ 0.23, which is closer to one and far-
ther away from the other bonded Mn atom. This way, four short
and two long Mn–F bonds result for each Mn atom. The correct
space group is P4/n, a maximal translationengleiche subgroup
of index 2 of P4/nmm [352]. The wrong space group is feigned
by merohedral twins. The wrong position of F1 yields the large
vibrational ellipsoids.

18.1 If the prism has the point group 2mm, the permutation
group has order 4:

(1)(2)(3)(4)(5)(6) identity = s6
1

(1)(4)(23)(56) vertical reflection = s2
1s2

2
(14)(26)(35)
(14)(25)(36)

twofold rotation
horizontal reflection

}
= 2s3

2

Z = 1
4 (s6

1 + s1s2
2 +2s3

2)

With one colour x1 and colourless vertices x2 = x0 = 1 the gen-
erating function is:

C = 1
4 [(x1 + 1)6 +(x1 + 1)2(x2

1 +12)2 +2(x2
1 +12)3]

= x6
1 +2x5

1 +6x4
1 +6x3

1 +6x2
1 + 2x1 + 1

The coefficients show two possible ways to mark one vertex, six
ways to mark two, and six ways to mark three vertices.

18.2 Permutation group of the square pyramid (point group
4mm):

①

②
③

④
⑤

(1)(2)(3)(4)(5) identity = s5
1

(1)(2)(4)(35)
(1)(3)(5)(24)

}
reflections = 2s3

1s2

(1)(23)(45)
(1)(25)(34)
(1)(24)(35)

}
reflections

twofold rotation

⎫⎬⎭ = 3s1s2
2

(1)(2345)
(1)(5432)

4
4−1

}
= 2s1s4
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Z = 1
8 (s5

1 +2s3
1s2 +3s1s2

2 + 2s1s4)

Marking the vertices with three colours (or occupation with
three kinds of atoms) can be treated the same way as with two
colours in addition to colourless (unmarked) vertices; one can
calculate with s1 = x1 +x2 +1 instead of s1 = x1 +x2 +x3. The
generating function is then:

C = 1
8 [(x1 + x2 +1)5 +2(x1 + x2 +1)3(x2

1 + x2
2 +12)

+3(x1 + x2 +1)(x2
1 + x2

2 + 12)2

+2(x1 + x2 +1)(x4
1 + x4

2 + 14)]

= x5
1 + 2x4

1x2 +3x3
1x2

2 +3x2
1x3

2 +2x1x4
2 + x5

2

+2x4
1 +4x3

1x2 +6x2
1x2

2 +4x1x3
2 +2x4

2

+3x3
1 +6x2

1x2 +6x1x2
2 +3x3

2

+3x2
1 +4x1x2 +3x2

2

+2x1 + 2x2

+1

The coefficients 4x3
1x2 and 6x2

1x2
2 show four and six possible dis-

tributions of atoms (isomers) for the compositions MX3YZ and
MX2Y2Z, respectively. Pairs of enantiomers are counted as one
isomer each.
The number of chiral pairs of enantiomers is determined by cal-
culating the cycle index Z′ and the generating function C′ con-
sidering only rotations:

Z′ = 1
4 (s5

1 + s1s2
2 +2s1s4)

C′ = 1
4 [(x1 + x2 + 1)5 +(x1 + x2 + 1)(x2

1 + x2
2 +12)2

+2(x1 + x2 +1)(x4
1 + x4

2 +14)]

= x5
1 +2x4

1x2 +3x3
1x2

2 +3x2
1x3

2 +2x1x4
2 + x5

2

+2x4
1 +5x3

1x2 +8x2
1x2

2 + 5x1x3
2 +2x4

2

+3x3
1 +8x2

1x2 +8x1x2
2 + 3x3

2

+3x2
1 +5x1x2 +3x2

2

+2x1 +2x2

+1

The number of pairs of enantiomers follows from:

C′ −C = x3
1x2 +2x2

1x2
2 + x1x3

2 +2x2
1x2 +2x1x2

2 + x1x2

There is one pair of enantiomers for MX3YZ and two for
MX2Y2Z.

18.3 We designate the space groups by G1 to G4. We set up
the following tree of group–subgroup relations that includes the
Euclidean normalizers (cf. Section 8.3).

P4/m2/m2/m = NE (G2)

= NE(G3)
1
2 a, 1

2 b, 1
2 c

2
➤

2

➤

P4/m2/m2/m = NE (G4)
1
2 a, 1

2 b, c

2

➤

G1 = F 4/m32/m
a, b, c

3

➤

G2 = F 4/m2/m2/m
a, b, c

2

➤
G3 = C 4/m2/m2/m = NG 1

(G4)
a, b, c

2

➤

G4 = I 4/m2/m2/m
a, b, 2c

NG 1
(G2) = NG 1

(G3) = G2

The index 3 of G2 in G1 shows three conjugate subgroups G2 in
G1, [G2] = 3 (with c along a, b, and c of G1, respectively). The
same applies to G3, [G3] = 3. There are six conjugate subgroups
G4 in G1, [G4] = 6 (index of NG 1

(G4) in G1); in addition to the
three orientations, their origins can be at 0,0,0 and 0, 1

2 , 1
2 of G1.

Two of them are also subgroups of G2 and G3. With eqn (18.5),
page 242, one has:

M =

⎛⎜⎜⎝
1
1 1
1 1 2
1 1 2 2

⎞⎟⎟⎠
B = M−1 =

⎛⎜⎜⎝
1

−1 1
0 − 1

2
1
2

0 0 − 1
2

1
2

⎞⎟⎟⎠
In the space groups G1 and G2, there are no positions that per-
mit an occupation resulting in the composition ABX2. There are
two combinatorial distributions for G3 (C 4/mmm): A at 2a, B at
2d and vice versa (2b and 2c are occupied by X). There are also
two combinatorial distributions for G4 (I 4/mmm): A at 2a and
2b, B at 4d and vice versa. One thus has v = (0, 0, 2, 2)T and z
= Bv = (0, 0, 1, 0). There exists only one possible structure in
space group G3 (where c is not yet doubled) and none in space
group G4.
For the composition AB�2X4 there are only two combinatorial
distributions in space group G4: A at 2a, B at 2b and vice versa.
v = (0, 0, 0, 2)T; z = Bv = (0, 0, 0, 1). There exists only one
possible structure in space group G4.

A.1 P12/c1 has a glide-reflection plane with the glide direction
c. Therefore, c cannot be doubled. Isomorphic subgroups of in-
dex 2 are possible by doubling of a and b.
P21 21 2 has 21 axes parallel to a and b and, therefore, cannot
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be doubled in these directions. Isomorphic subgroups of index
2 are possible by doubling of c.
The n glide-reflections of P21/n21/n2/m have glide components
in the directions of a, b, and c; there are no subgroups of index
2.
P4/m21/b2/m has 21 axes parallel to a (and b); a doubling of
the cell in the a-b plane is excluded. A doubling of c is possible.
The c vector of P61 22 can be enlarged only by factors of 6n+1
or 6n− 1; in the a-b plane, the only possible transformations
are 2a+b,−a+ b (index 3) and pa, pb (Index p2). There is no
subgroup of index 2.

A.2 I 4/m2/m2/m

k2

➤

P4/m2/m2/m

k2
a−b, a +b, 2c

➤

I 4/m2/m2/m

I 4m2

k2

➤

P4m2

k2
a−b, a +b, c

➤

P42m

k2
a+ b, −a+b, 2c

➤
I 4m2

A.3 A subgroup with i = 4 is possible, but it is not maximal.
i = 9, 3a,3b,c, is one of the permitted isomorphic subgroups
pa, pb,c, p = 4n−1.
i = 17 corresponds to the basis transformation a′ = qa+rb, b′ =
−ra + qb , p = q2 + r2 = 4n + 1, with q, r = 4,1 and with
q, r = 1,4.
11 	= 4n+1 is not a possible index.

A.4 The index of 65 has the divisors 1, 5, 13, and 65, all of which
are of the kind 4n+1. There are four conjugacy classes with 65
conjugate subgroups each. The basis transformations are a′ =
qa + rb, b′ = −ra + qb , with q, r = 8,1, q,r = 1,8, q,r = 7,4
and q, r = 4,7. 82 +12 = 12 + 82 = 72 + 42 = 42 + 72 = 65. A
subgroup of index 65 is reached by two steps of maximal sub-
groups, one of index 5, the other of index 13 (or vice versa).

A.5 From the basis transformations from F m3m to the interme-
diate group R3

(hex)
one has:

ahex = 1
2

√
2acub ≈ 1

2

√
2×494 pm = 349.3 pm;

chex =
√

3acub ≈
√

3×494 pm = 855.6 pm.

chex agrees with c = 860 pm of PtCl3. Since 1
37 of the atom

positions of the packing of spheres are vacant, the unit cell
has to be enlarged by a factor of 37 (or a multiple thereof).
One expects an isomorphic group–subgroup relation of index
37. 37 = 6n + 1 is one of the permitted prime numbers for
an isomorphic subgroup with hexagonal axes and cell enlarge-
ment in the a-b plane. ahex

√
37 = 349.3

√
37 pm = 2125 pm

agrees with a = 2121 pm of PtCl3. q2 − qr + r2 = 37 is ful-
filled for q,r = 7,3 and q,r = 7,4. Therefore, the basis trans-
formation is aPtCl3 = 7ahex +3bhex, bPtCl3 = −3ahex +4bhex or
aPtCl3 = 7ahex +4bhex, bPtCl3 = −4ahex + 3bhex.

A.6 P4/m2/m2/m = NE (G)

2

➤

P4/m

2
a,b,2c

➤

P4/m

➤

2
a+b,−a+b,c

G = P4/m

➤

5
a+2b,−2a+b,c

H = P4/m = NG(H)

➤

5
P4/m2/m2/m = NE(H)

➤
2

P4/m = D

➤

2
a, b, 2c

P4/m

➤

2
a+b,−a+b,c

Index 5 of NG(H) in G shows five conjugates of H in G. Ac-
cording to the index 2× 5 of D in NE (G) there are five conju-
gates in two conjugacy classes each.
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revisited. Acta Crystallogr. B 59, 337.

[169] Babel, D. and Deigner, P. (1965). Die Kristallstruktur von β -Iridium(III)-
chlorid. Z. Anorg. Allg. Chem. 339, 57.



310 References

[170] Brese, N. E., O’Keeffe, M., Ramakrishna, B. L., and van Dreele, R. B. (1990).
Low-temperature structures of CuO and AgO and their relationships to those of
MgO and PdO. J. Solid State Chem. 89, 184.

[171] Jansen, M. and Fischer, P. (1988). Eine neue Darstellungsmethode für mono-
klines Silber(I,III)-oxid, Einkristallzüchtung und Röntgenstrukturanalyse. J.
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[225] Santamarı́a-Pérez, D., Vegas, A., and Müller, U. (2005). A new description of
the crystal structures of tin oxide fluorides. Solid State Sci. 7, 479.

[226] Oswald, H. R. and Jaggi, H. (1960). Die Struktur der wasserfreien Zinkhalo-
genide. Helv. Chim. Acta 43, 72.

[227] Ueki, T., Zalkin, A., and Templeton, D. H. (1965). The crystal structure of os-
mium tetroxide. Acta Crystallogr. 19, 157.

[228] Krebs, B. and Hasse, K.-D. (1976). Refinements of the crystal structures of
KTcO4, KReO4 and OsO4. Acta Crystallogr. B 32, 1334.
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Structural properties of the low-temperature phase of hexadecane/urea inclusion
compound. J. Phys. Chem. B 101, 9926.

[259] Forst, R., Boysen, H., Frey, F., Jagodzinski, H., and Zeyen, C. (1986). Phase
transitions and ordering in urea inclusion compounds with n-paraffins. J. Phys.
Chem. Solids 47, 1089.

[260] Hollingsworth, M. D., Brown, M. E., Hillier, A. C., Santarsiero, B. D., and
Chaney, J. D. (1996). Superstructure control in the crystal growth and ordering
of urea inclusion compounds. Science 273, 1355.

[261] Brown, M. E., Chaney, J. D., Santarsiero, B. D., and Hollingsworth, M. D.
(1996). Superstructure topologies and host–guest interactions in commensurate
inclusion compounds of urea with bis(methyl)ketones. Chem. Mater. 8, 1588.

[262] Müller, U. (1971). Die Kristallstruktur von Hexachlorborazol. Acta Crystallogr.
B 27, 1997.

[263] Deen, P. P., Braithwaite, D., Kernavanois, N., Poalasini, L., Raymond, S., Barla,
A., Lapertot, G., and Sánchez, J. P. (2005). Structural and electronic transitions
of the low-temperature, high-pressure phase of SmS. Phys. Rev. B 71, 245118.

[264] Dove, M. T. (1997). Theory of displacive phase transitions in minerals. Amer.
Mineral. 82, 213.

[265] Pirc, R. and Blinc, R. (2004). Off-center Ti model of barium titanate. Phys. Rev.
B 70, 134107.

[266] Völkel, G. and Müller, K. A. (2007). Order–disorder phenomena in the low-
temperature phase of BaTiO3. Phys. Rev. B 76, 094105.



References 315

[267] Decius, J. C. and Hexter, R. M. (1977). Molecular Vibrations in Crystals. New
York: McGraw Hill.

[268] Sherwood, P. M. A. (1972). Vibrational Spectroscopy of Solids. Cambridge:
Cambridge University Press.

[269] Weidlein, J., Müller, U., and Dehnicke, K. (1988). Schwingungsspektroskopie
(2nd edn). Stuttgart: Thieme.

[270] Sathnayanarayana, D. N. (2004). Vibrational Spectroscopy: Theory and Appli-
cations. New Delhi: New Age International.

[271] Franzen, H. F. (1982). Second-order Phase Transitions and the Irreducible Rep-
resentations of Space Groups. Berlin: Springer.

[272] Placzek, G. (1959). The Rayleigh and Raman Scattering. Translation series, US
Atomic Energy Commission, UCRL Tansl. 256. Berkeley: Lawrence Radiation
Laboratory.
[Translation from German: Rayleigh-Streuung und Raman-Effekt. In Hand-
buch der Radiologie, Vol. VI, pp. 205–374. Leipzig: Akademische Verlags-
gesellschaft (1934).]

[273] G. Herzberg (1945). Molecular Spectra and Molecular Structure, Vol. II: In-
frared and Raman Spectra of Polyatomic Molecules, pp. 104–131. New York:
Van Norstrand Reinhold.

[274] Mulliken, R. S. (1933). Electronic structures of polyatomic molecules and va-
lence. IV. Electronic states, quantum theory and the double bond. Phys. Rev. 43,
279.

[275] Izyumov, Yu. A. and Syromyatnikov, V. N. (1990). Phase Transitions and Crys-
tal Symmetry. Dordrecht: Kluwer Academic Publishers.
[Translation from Russian: Fazovie perekhodi i simmetriya kristallov. Moskva:
Nauka (1984).]

[276] Lyubarskii, G. Y. (1960). Application of Group Theory in Physics. Oxford: Perg-
amon.
[Translation from Russian: Teoriya grupp i e’e primenenie v fizike. Moskva:
Gostekhizdat (1957). German: Anwendungen der Gruppentheorie in der
Physik, Berlin: Deutscher Verlag der Wissenschaften (1962).]

[277] Chaikin, P. M. and Lubensky, T. C. (1995; reprint 2000). Principles of Con-
densed Matter in Physics. Cambridge: Cambridge University Press.

[278] Tolédano, J.-C. and P. Tolédano, P. (1987). The Landau Theory of Phase Tran-
sitions. Singapore: World Scientific.

[279] Tolédano, J.-C., Janovec, V., Kopský, V., Scott, J.-F., and Boček, P. (2003).
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Ln3+, Ln2+ oder Sr2+; X = Cl oder Br; m = 4–7). Dissertation, Universität
Karlsruhe.

[319] Bärnighausen, H. and Haschke, J. M. (1978). Compositions and crystal struc-
tures of the intermediate phases in the samarium bromine system. Inorg. Chem.
17, 18.
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[340] Müller, U., Dübgen, R., and Dehnicke, K. (1980). Diazidoiodat(I): Darstellung,
IR-Spektrum und Kristallstruktur von PPh4[I(N3)2]. Z. Anorg. Allg. Chem. 463,
7.

[341] De Costanzo, L., Forneris, F., Geremia, S., and Randaccio, L. (2003). Phasing
protein structures using the group–subgroup relation. Acta Crystallogr. D 59,
1435.

[342] Zumdick, M. F., Pöttgen, R. Müllmann, R., Mosel, B. D., Kotzyba, G., and
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Glossary

Abelian group (commutative group; Chap. 5). Group
whose elements fulfil the condition gigk = gkgi.
Antiphase domains (Sect. 15.6). Domains in a crystal
having mutually shifted origins.
Aristotype (basic structure; Sect. 1.2, Chap. 10). High-
symmetry crystal structure from which the hettotypes can
be derived, i.e. structures with reduced symmetry.
Augmented matrix (Sect. 3.3). 4×4 matrix used to con-
vert the coordinates related to a mapping.
Bärnighausen tree (Sect. 1.2, Chaps. 10, 11). Tree of
group–subgroup relations between space groups which
discloses relationships between crystal structures.

Bravais type (Bravais lattice; Sect. 6.2). Space-group
type of a point lattice.

Brillouin zone (Chap. 15). Polyhedron about the origin
of ‘k space’, delimited by faces normal to and across the
midpoints of the connecting lines to adjacent lattice points
in reciprocal space. Lattice vibrations are characterized
by points in the Brillouin zone.

Centred lattice (Sects. 2.3, 6.2). Lattice whose basis is
not primitive. Lattice vectors may be linear combinations
from certain fractions of the basis vectors. The conven-
tional centred lattices are base centred, face centred, body
centred, and trigonal-rhombohedral.
Chirality (Sect. 8.6). Property of an object that cannot be
superposed by pure rotation and translation on its image
formed by inversion through a point.

Column part (Sect. 3.2). Column of numbers that con-
tains the translational components of a mapping.

Conjugacy class (Sects. 5.4, 8.1, 8.3). The set of sub-
groups of a group G that are conjugate in G.
Conjugate subgroups (Sects. 5.4, 8.1, 8.3). Subgroups
of a space group G that are equivalent under symmetry
operations of G.

Conventional setting (Sects. 2.3, 9.3). Setting of a space
group corresponding to the listing in International Tables
A.

Coset (Sect. 5.3). The elements of a group G can be de-
composed into cosets with respect to a subgroup H. The
subgroup itself is the first coset; the other cosets consist
of elements gH (left cosets) or Hg (right cosets), g ∈ G,
g 	∈ H, and contain each the same number of different
group elements g 	∈ H. The number of cosets is the index
of the subgroup.
Critical exponent (Sect. 15.2.2, Appendix B.2). Expo-
nent in the power law that describes the dependence of
the order parameter on a variable of state during a contin-
uous phase transition.
Crystal class (Sect. 6.1). Point-group type of a crystal.
Crystal pattern (infinite ideal crystal; Sect. 2.2). Flaw-
less, infinitely extended three-dimensional periodic array
of atoms.
Crystal structure (Sect. 2.2). The spatial distribution of
the atoms in a crystal.
Crystal system (Sect. 6.1). Point group type of the lattice
of a crystal structure (holohedry).
Crystallographic basis Sect. 2.3). Three non-coplanar
lattice vectors that serve to determine the lattice and the
coordinate system of a crystal structure.
Daughter phase (distorted structure; Sect. 1.2). Hetto-
type at a phase transition.
Domain (Sects. 15.3, 15.6). Region within a crystal sep-
arated from other regions by domain boundaries.
Enantiomorphic space group (chiral space group; Sects.
6.1.3, 8.6). Space group whose symmetry elements can-
not be superposed by pure rotation and translation with
those of the space group formed by inversion through
a point. There exists 11 pairs of enantiomorphic space
group types.
Euclidean normalizer (Sect. 8.2). NE(G), the normal-
izer of the group G with respect to the Euclidean group E
(group of all isometries of three-dimensional space). It is
used to determine the normalizers between space groups
and to determine equivalent sets of coordinates of a crys-
tal structure.
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Family of structures (Sect. 1.2, Chap. 10). A family of
structures consists of an aristotype and its hettotypes.
General position (Sects. 6.1, 6.4, 6.5). Point with the site
symmetry 1.
Generating function (Sect. 18.2.1). Power series that
discloses how many inequivalent configurations exist for
a structure.
Generators (Sect. 5.2). Set of group elements from
which the complete group (all group elements) can be
generated by repeated composition.
Glide reflection (Sect. 4.2). Symmetry operation where a
reflection is coupled with a translation parallel to a glide-
reflection plane.
Group (Sects. 5.1, 5.2). A set (of numbers, symmetry op-
erations, or any other elements) which satisfies the group
axioms.
Group element (Sects. 5.1, 5.2). One representative out
of the set of elements of a group.
Hermann–Mauguin symbol (international symbol;
Sects. 4.2, 6.3.1). Symbol common in crystallography
to designate symmetry, specifying the present symmetry
operations according to certain rules.
Hettotype. See aristotype.
Index (Sect. 5.3). Ratio G/H, G being the order of a
group and H being the order of its subgroup. See also
coset.
Inversion (Sect. 4.2). Symmetry operation that generates
an inverted image at the opposite side and at the same dis-
tance from a centre of inversion.
Irreducible representation (symmetry species; Sect.
15.2.1, Appendix C). Effect of a symmetry operation re-
ferred to the local conditions at a point (e.g. for a vibra-
tion).
Isometry (Sects. 3.5, 3.6). Mapping that leaves all dis-
tances and angles unchanged.
Isomorphic group (Sect. 5.2). Two groups are isomor-
phic if they have the same multiplication table.
Isomorphic subgroup (Sect. 7.2, Chap. 10, Sect. 11.3,
Appendix A). Klassengleiche subgroup belonging to the
same or the enantiomorphic space-group type as the su-
pergroup.
Isotropy subgroup (Sect. 15.2). Subgroup of a space
group that results when a structure is distorted according
to a certain irreducible representation.
Isotypism (Sect. 8.8). Two crystal structures are isotypic
if their atoms are distributed in a like manner and if they
have the same space group.

Klassengleiche subgroup (Sect. 7.2, Chap. 10, Sect.
11.2). Subgroup of a space group belonging to the same
crystal class. It has fewer translations (enlarged primitive
unit cell).
Landau theory (Sect. 15.2.2, Appendix B.2). Theory
that describes the processes taking place during a contin-
uous phase transition.
Lattice (vector lattice; Sects. 2.2, 6.2). The set of all
translation vectors of a crystal structure.
Lattice parameters (lattice constants; Sect. 2.5). The
lengths a, b, c of the basis vectors and the angles α, β ,
γ between them.
Layer group (Sect. 7.5). Symmetry group of an object in
three-dimensional space that has translational symmetry
in only two dimensions.
Mapping (Sects. 3.1–3.4). Instruction that assigns ex-
actly one image point to any point in space.
Matrix part (Sect. 3.2). Matrix that serves to convert the
coordinates at a mapping, not considering translational
components.
Miller indices (Sect. 2.4). Three integral numbers hkl
used to designate net planes. From a set of parallel planes,
that one which is closest to the origin without running it-
self through the origin intersects the coordinate axes at
distances of a1/h, a2/k, a3/l from the origin.
Multiplicity. For point groups (Sect. 6.1): The number
of points that are symmetry equivalent to one point.
For space groups (Sect. 6.4): The number of points that
are symmetry equivalent to one point within one unit cell.
Normal subgroup (Sect. 5.4). Subgroup H of a group G
which satisfies the condition Hgm = gmH for all gm ∈ G.
Normalizer (Sect. 8.2). NG(H), the normalizer of H in
G, consists of all those elements of G that map H onto
itself. H � NG(H) ≤ G holds.
Orbit. See point orbit.
Order of an axis (Sect. 3.6). For axes of rotation and
even-fold rotoinversion: The least number of rotations to
be performed until a point at a general position returns to
its initial position.
For odd-fold axes of rotoinversion: One half of the least
number of rotations to be performed until a point at a gen-
eral position returns to its initial position.
For screw-rotation axes: The least number of rotations to
be performed until a point reaches a translation-equivalent
position.
Order of a group (Sect. 5.2). The number of group ele-
ments in a group.
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Order parameter (Sect. 15.2.2, Appendices B.2, B.4).
Appropriate measurable quantity apt to disclose the
course of a phase transition in a quantitative manner.
Parent clamping approximation (Sect. 11.1). The basis
vectors of a crystal structure are treated as being the same
as or integer multiples of the basis vectors of another crys-
tal structure even though they are not exactly the same.
Phase transition (Sect. 15.1, Appendix B). Event which
entails a discontinuous (sudden) change of at least one
property of a material.
Point group (Sect. 6.1). For molecules: The group of the
symmetry operations of a molecule.
For crystals: The group of the symmetry operations relat-
ing the normals on the faces of a crystal.
Point lattice (Sect. 2.2). The set of all points that are
translation equivalent to a point.
Point orbit (crystallographic point orbit; Sects. 5.6, 6.5,
9.1). The set of all points that are symmetry equivalent to
a point in a point group or a space group.
Prototype (parent phase; Sect. 1.2). Aristotype at a phase
transition.
Pseudosymmetry (Sect. 1.1). Symmetry that is fulfilled
approximately.
Reciprocal lattice (Sect. 2.4). Vector lattice having the
basis vectors a∗1,a

∗
2,a

∗
3 which are normal to the net planes

(100), (010), and (001) and have the lengths 1/d100,
1/d010, 1/d001, respectively, d100 being the distance be-
tween neighbouring net planes (100).
Reduced cell (Sects. 2.3, 8.4). Unique unit cell settled
according to certain rules.
Reflection (Sect. 4.2). Symmetry operation associated
with a reflection plane.
Rod group (Sect. 7.5). Symmetry group of an object in
three-dimensional space which has translational symme-
try in only one dimension.
Rotation (Sect. 4.2). Symmetry operation associated
with a turn of 360◦/N around a rotation axis, N = inte-
ger.
Rotoinversion (Sect. 4.2). Symmetry operation where a
rotation is coupled with an inversion through a point on
the rotation axis.
Schoenflies symbol (Sect. 6.3.2). Symbol to designate
symmetry. It is of common usage for molecules, but
hardly ever used in crystallography.
Screw rotation (Sect. 4.2). Symmetry operation where a
rotation is coupled with a translation parallel to a screw
axis.

Site symmetry (Sects. 6.1, 6.4, 6.5). Symmetry opera-
tions of the point group or space group that leave a point
of a molecule or a crystal unchanged.

Soft mode (freezing lattice mode; Sect. 15.2). Vibrational
lattice mode whose frequency tends toward zero when ap-
proaching the point of transition of a phase transition, and
which determines the atomic motions during a continuous
phase transition.

Sohncke space group (Sect. 8.6). Space group that has
no points of inversion, no rotoinversion axes, no reflection
planes, and no glide planes. Chiral crystal structures are
compatible only with Sohncke space groups.

Space group (Sect. 3.1, Chap. 6, Sect. 6.6). The set of all
symmetry operations of a crystal structure, including the
translations with given lattice parameters.

Space-group type (Sects. 6.1, 6.6). One out of 230 possi-
bilities to combine crystallographic symmetry operations
to a space group (with arbitrary lattice parameters).

Special position (Sects. 6.1, 6.4, 6.5). Point whose site
symmetry is higher than 1.

Standardization (Sect. 2.3). Conversion of coordinates
to values 0 ≤ x,y,z < 1.

Subgroup (Sects. 5.2, 7.1, 7.2). Subset of the elements of
a group which itself satisfies the group axioms. The sub-
group is maximal if there does not exist an intermediate
group between the group and the subgroup.

Subgroups on a par (Sect. 8.3). Subgroups H1, H2, . . .
of a space group G, H1,H2, · · · < Z ≤ G, that are not
conjugate in G, but are conjugate in one of the Euclidean
normalizers NE(Z) or NE(G). They have the same lattice
dimensions and the same space-group type.

Supergroup (Sects. 5.2, 7.4). A supergroup contains ad-
ditional group elements.

Superspace (Sect. 2.2). Space having more than three
dimensions.

Superstructure (Sects. 11.2, 17.3). Crystal structure
whose unit cell is enlarged as compared to an ideal struc-
ture. Its space group is a klassengleiche subgroup.

Symmetry-adapted cell (Sect. 6.3.1). Unit cell having
basis vectors parallel to symmetry axes or to normals on
symmetry planes.

Symmetry direction (Sect. 6.3.1). Special direction par-
allel to symmetry axes or to normals on symmetry planes.

Symmetry element (Sects. 4.3, 6.4.1). Point, line, or
plane that remains unchanged when a symmetry opera-
tion is performed.
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Symmetry operation (Sect. 3.1). Mapping that brings an
object to superposition with itself or with its mirror im-
age.
Symmetry principle (Sect. 1.1). In crystal structures the
arrangement of atoms reveals a pronounced tendency to-
wards the highest possible symmetry.
Symmetry species. See irreducible representation.
Topotactic reaction (Chap. 16). Chemical reaction in the
solid state such that the orientations of the domains of the
product crystal are predetermined by the orientation of the
initial crystal.
Topotactic texture (Sect. 15.3). Texture of domains of
crystallites that are intergrown in a regular manner.
Translation (symmetry-translation; Sect. 2.2). Shift by a
translation vector that results in a superposition of a crys-
tal structure.

Translationengleiche subgroup (Sect. 7.2, Chap. 10,
Sect. 11.1). Subgroup of a space group whose lattice is
unchanged (unchanged primitive unit cell). It belongs to
a lower-symmetry crystal class.
Twinned crystal (Sects. 15.3, 15.5, 17.4). Intergrowth of
two or more congruent or enantiomorphic individuals of
the same crystal species having a crystal-symmetric rela-
tive orientation between the individuals.
Unit cell (Sect. 2.3). The parallelepiped in which the co-
ordinates of all points are 0 ≤ x, y, z < 1.
Wyckoff position (Sects. 6.1, 6.4, 9.1). The set of all
point orbits whose site symmetries are conjugate.
Wyckoff symbol (Sects. 1.2, 6.4.2, 9.1 ). Symbol to des-
ignate a Wyckoff position. It consists of the multiplicity
of one of its points and the Wyckoff letter (an alphabetical
label).
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Abelian group, 52
absolute configuration, 113
absolute structure, 113
abstract group, 53
achiral, 113
action of a group on a set, 59–60
active representation, 203
affine-equivalent, 68
affine mapping, 20–2

of vectors, 24
affine normalizer, 105
affine space-group type, 68
alarm signals for errors, 227
angle calculation, 16–17
angle of rotation, 28
antiphase domains, 206, 211–4
antisymmetric, 279
aristotype, 5, 136, 148
associative, 49–51
atomic coordinates, 110, 136
augmented column, 23
augmented matrix, 23
average structure, 252
axes ratios, 117
axis of rotation, 46
axis of rotoinversion, 29, 46

Bärnighausen tree, 5, 133–6, 137, 151
scheme to set up, 135

base-centred lattice, 69
basic structure, 5
basis, 13

choice, 25, 110, 123
monoclinic cells, 122, 125–7

conventional, 14, 69
crystallographic, 13, 69
function, 203
orthonormal, 13
primitive, 14, 69
reciprocal, 16, 39
transformation, 31–3, 35, 134–5

consecutive, 36–8, 164–5
wrong, 162–3

vectors, 13, 25
Bilbao crystallographic server, 2
body-centred lattice, 69
Bravais type (lattice), 70
Brillouin zone, 200–1

Cartesian coordinate system, 13

cell (unit cell)
centred, 15

rhombohedral space groups, 129
symbols, 69

choice, 78
monoclinic space groups, 78, 122, 126

reduced, 15, 110
symmetry-adapted, 71
transformation, 31–3, 35, 134–5

consecutive, 36–8, 164–5
wrong, 162–3

centre of inversion (of symmetry), 28, 46, 72
centred cell and lattice, 14, 69, 71

symbols, 69
change of basis, 31–2, 35, 134–5
characteristic function, 242
Cheshire group, 104
chiral space groups, 113–5
chirality, 113–5
chirality-preserving Euclidean normalizer, 106,

114
closest packing of molecules, 185-6, 188–91,

249–52
closest packing of spheres, 167

cubic, occupation of
octahedral voids, 178–80
tetrahedral voids, 180–2

hexagonal, 169–70
occupation of octahedral voids, 168–78,

236–9, 244–5
hexagonal hettotypes, 174–8
rhombohedral hettotypes, 168–73
trigonal hettotypes, 174–8

closure, 51
cluster compound, 180
coefficient of thermal expansion, 198
column part, 21, 47
combinatorial computation of atom

distributions, 245–9
common subgroup, 89, 207–9
common supergroup, 89, 139, 149–51
commutative group, 52
complex, 52
composition of mappings, 49–50
compressibility, 198
conjugacy class, 56, 57, 101, 107
conjugate group elements, 56
conjugate subgroups, 57, 101–3, 107–9, 162
continuous phase transition, 198–9, 202, 271
contracted group–subgroup graph, 87

conventional basis, 14, 69
coordinate sets, equivalent, 111
coordinate system, 13

change of, 22, 30–39,
coordinate triplet, 13, 19, 79
correlation length, 274–5
coset, 53–4
coset decomposition, 53–5
critical exponent, 204, 272–3
critical phenomena, 199
critical temperature, 202, 272–4
crystal chemistry, 1
crystal class, 45, 67
crystal lattice, 12
crystal, macroscopic, 12
crystal pattern, 11
crystal structure, 11

description, 15
equivalent descriptions, 110–3
incorrect, 7, 115–7, 227, 229–33
prediction of, 174, 235–8, 249–52
related, 137–54
standardized description, 110
of individual compounds see structure types

crystal system, 68
crystallographic basis, 13, 69
crystallographic point orbit, 60, 82, 121
crystallographic space-group type, 68, 84–5
crystallographic symmetry operation, 19, 41–2,

46
Hermann–Mauguin symbol, 43–5

crystallography, 1
cubic, 70, 72, 78
cubic-closest packing, occupation of

octahedral voids, 178–80
tetrahedral voids, 180–2

cycle index, 240
cycle structure term, 239
cyclic group, 52

daughter phase, 5
defect, 199
defect structure, 167
Delaunay reduction, 15
derivative structure, 5
determinant, 22, 25
deviation parameters, 117–8
diagram of group–subgroup relations

for point groups, 87–8
for space groups, 92–4, 135
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diffuse streaks, 252
dimensions at phase transitions, 275–6
discontinuous phase transition, 198–9, 276–7
disorder (misorder), 7, 199, 252–3
displacement parameter, suspicious, 227, 230
displacive phase transition, 199–200, 207–8,

277
distance calculation, 16–17
distance vector, 24
distorted structure, 5
domain 3, 4, 206

antiphase, 206, 211–4
boundary, 206, 210
magnetic, 275
structure, 205–7
twin, 6, 206–7, 210–1
wall, 210

double-hexagonal closest packing, 184

Ehrenfest’s classification, 198, 269
electronic phase transition, 197
ellipsoid of thermal motion, suspicious 227, 229
enantiomer, enantiomorph, 113

number of, 241
enantiomorphic space-group types, 68–9, 113–5
enantiomorphic structures, 114, 115
enantiotropic phase transition, 198
enthalpy, 198

of transformation, 198–9
entropy, 198
enumeration of possible structures, 239–41

depending on symmetry, 241–5
equivalent by symmetry, 19
equivalent by translation, 13
equivalent points, 19
equivalent sets of coordinates, 111–3
error sources, 159
errors at crystal structure determination, 227,

229–33
Euclidean-equivalent subgroups, 107
Euclidean group, 104
Euclidean normalizer, 104–6, 111–2, 113

chirality preserving, 106, 114
with specialized metric, 104

extended Hermann–Mauguin symbol, 73

face-centred lattice, 69
factor group, 57–8
family of structures, 5, 151–4
Fedorov symbol, 70
ferroic transition, 206
first-order phase transition, 198, 269–70
fixed point, 22, 46
fluctuations, 206, 272
force constant, 273
frieze group, 96
full Hermann–Mauguin symbol, 71

general position, 41, 47, 64, 79–80, 82–3
diagram of, 80–1

general subgroup, 90, 148
generating function, 240
generators, 52, 70
Gibbs free energy, 198, 269–70, 272–3, 276–7
glide component, 46
glide plane, 30, 46
glide reflection, 29–30, 46

Hermann–Mauguin symbol, 45
non-conventional, 127

glide vector, 30, 45
graph of group–subgroup relations

for point groups, 87–8
for space groups, 92–4, 135

graphic symbols for symmetry elements, 78
group, 49, 51

Abelian, 52
abstract, 53
axioms, 51–2
commutative, 52
cyclic, 52
elements, 51–2
infinite, 52
isomorphic, 53
multiplication table, 50–1, 53
of permutations, 50, 239
subperiodic, 96
theory, 49–60

group–subgroup relations
between point groups, 87–9
between space groups, 89, 92–4
contracted graph of, 87–8, 92
general scheme of presentation, 135
relating crystal structures by, 137–54
structure determination with the aid of,

227–33
structure prediction with, 174, 235–8, 249–52

growth twin, 210

Hall symbol, 70
helical molecule, symmetry of, 97
Hermann’s theorem, 90
Hermann–Mauguin symbol, 43–5, 70–4, 76

extended, 73
for layer and rod groups, 96–7
full, 71
non-conventional setting, 124–9
short, 73

hettotype, 5
hexagonal space groups, 70, 72, 78

isomorphic subgroups, 262, 264, 266
non-conventional settings, 129

hexagonal-closest packing of spheres, 169–70
occupation of octahedral voids, 168–78,

236–9, 244–5
hexagonal hettotypes, 174–8
rhombohedral hettotypes, 168–73, 238,

244–5
trigonal hettotypes, 174–8

holohedry, 68
homeotypic, 119

homomorphism, 58–9
hysteresis, 199, 209, 269–70, 277

identity element, 52
identity mapping, 22, 27
identity representation, 203
incommensurately modulated structure, 160
incorrect crystal structures, 7, 115–7, 227,

229–33
index of a subgroup, 54–5

isomorphic subgroups, 145, 261–7
possible values, 91, 261

infinite group, 52
infinite ideal crystal, 11
intermediate group, 136
international symbol, 70
interstice, occupation of, 167

octahedral, 178–80
tetrahedral, 180–2

interstitial compound, 167
invariant subgroup, 57
invariants, 15, 22
inverse element, 52
inverse mapping, 22
inversion, 28, 46

Hermann–Mauguin symbol, 43
inversion centre, 28, 46, 72
irreducible representation, 200–2, 279–80
isometry, 25–29
isomorphic group, 53
isomorphic subgroup, 90, 93, 133–5, 145–7,

261–7
isomorphic supergroup, 94
isomorphism, 58
isomorphism class, 53
isostructural phase transition, 197
isosymbolic subgroup, 133
isotropy subgroup, 205
isotypism, 117–8, 138

kernel of a homomorphism, 59
klassengleiche subgroup, 90, 93, 133–5, 141–5,

205
klassengleiche supergroup, 94
k space, 200

Lagrange’s theorem, 55
Landau theory, 202–4, 271–4
latent heat, 198–9
lattice, 12, 69

basis, 13, 69
centred, 14, 69
direction, 15
parameters (constants), 16–17
primitive, 14, 69
reciprocal, 16
vector, 12, 13, 69
vibration, 200–2

law of constancy of interfacial angles, 255
law of rational indices, 255
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law of symmetry, 255
layer group, 63, 96
length of an orbit, 61
linear part, 23

macroscopic (ideal) crystal, 12
magnetic phase transition, 284–5
magnetostriction, 197
mapping, 20, 33–36, 42

affine, 20–2
as permutation, 50
compositions, 50
homomorphic, 58
identity, 22, 27
inverse, 22
reduced, 30

matrix–column pair, 21, 42, 45–6, 47
matrix notation, 20
matrix part, 21, 42, 45, 47
maximal subgroup, 52, 90, 91, 133
mean-field theory, 274
metastable phase, 199, 269, 277
metric tensor (matrix), 17, 25
Miller indices, 15, 39
minimal supergroup, 52, 94–5
mirror plane, 29, 46
misorder (disorder), 7, 199, 252–3
mode (vibrational), 200

soft (freezing, condensing) 203–5, 273
modulated structure, 160
molecular compounds, 185–94, 249–53
molecular field theory, 274
molecular symmetry, 63, 87
monoclinic space group, 70, 72, 78

cell choice, 122, 126
isomorphic subgroups, 261–2
non-conventional settings, 125–7

Mulliken symbol, 200
multiplication table, 50–1, 53
multiplicity, 5, 64, 79, 82, 121

net (2D lattice), 12
net plane, 15
non-conventional settings, 123, 134

hexagonal space groups, 129
monoclinic space groups, 125–7
orthorhombic space groups, 77, 123–5
rhombohedral space groups, 129
tetragonal space groups, 127–8

non-crystallographic symmetry, 97
non-singular mapping, 22
normal subgroup, 57–8
normalizer, 103–4, 107–8

affine, 105
Euclidean, 104–6, 111–2, 113

chirality preserving, 106, 114
with specialized metric, 104

nucleation, 199, 206–7, 217
number of possible structure types, 239–44

depending on symmetry, 242–5

number theory and isomorphic subgroups,
265–7

obverse setting, 129, 134, 217
octahedral voids, occupation of, 167

cubic closest packing, 178–82
hexagonal closest packing, 168–78, 236–9,

244–5
orbit (point orbit, G-orbit), 60, 82, 121

length, 61
order of a

group, 52
mapping, 22
phase transition, 270
rotation, 28, 42, 45
screw rotation, 28

order–misorder transition, 7, 199–200
order parameter, 198, 202–4, 271–4, 276–7
orientational conjugation, 101
origin, 13

choice, 134
shift, 30–2, 35, 38–9, 134–5, 142–3, 160–1

orthogonality, 27
orthohexagonal cell, 32, 129
orthonormal basis, 13
orthorhombic space groups, 70, 72, 77

isomorphic subgroups, 261–2
non-conventional settings, 77, 123

paraphase, 211
parent clamping approximation, 137–8
parent phase, 5
particle lattice, 12
penetration twin, 210
periodicity, 11
permutation, 50

group, 53, 239
phase boundary, 209
phase problem, solution of, 228
phase transition, 3, 5, 197

BaAl2O4, 212–3
BaTiO3, 200
C70, 218–9
CaCl2, 5–6, 202–5, 271–4
continuous, 198–9, 202, 271–4
Cu3Au, 5–6,
discontinuous, 198–9, 276–7
displacive, 199–200, 207–8, 277
electronic, 197
enantiotropic, 198
EuO, 274
ferroic, 206
first-order, 198, 269–70
isostructural, isosymmetric, 197
K2SO4, 211
mechanism, 141, 209, 277
MnP type, 148
MoNi4, 157, 290
monotropic, 198
(NH4)2SO4, 211

phase transition, continued
order-misorder (disorder), 7, 199–200
PbTiO3, 200
quartz, 156, 288
pressure dependence, 207
reconstructive, 199, 208–9
second-order, 198, 269–70
silicon, 207–8
SmS, 207–8
structural, 197
temperature dependence, 202, 207, 272–4,

276–7
theory, 202–5, 269–77
tin, 140–1
VO2, 156, 289
WO3, 153–5

phenomenological theory, 202
phonon, 200
Placzek symbol, 200, 279
plane, 15
plane group, 96
plane of reflection, 29, 46
plastic phase, 187
point group, 63–4, 66

Hermann–Mauguin symbol, 74, 76
polar, 89
subgroups, 87–9
Schoenflies symbol, 74–6

point-group type, 64
point lattice, 12
point of inversion, 28, 46, 72
point orbit, 60, 82, 121
point space, 24
points, symmetry-equivalent, 19
polar point group, 89
Pólya’s enumeration theorem, 239—-41
polymeric molecule, symmetry of, 97–8
position, 41

general, 47, 64, 79–80, 82–3
diagram of, 80–1

special, 64, 83–4
Wyckoff, 65, 79, 82, 121–3

relations between, 122
position vector, 13, 16
positional component, 46
power law, 204
prediction of crystal structures, 174, 235–8,

249–52
primitive basis (cell, lattice), 14, 69, 71
principle of closest packing, 185–6, 257
principle of maximal connectivity, 257
principle of symmetry, 2–3
principle of symmetry avoidance, 185, 194
projection, 22
proper normal subgroup, 57
proper subgroup, 52
proper supergroup, 52
protein structure

phase determination, 228–9
prototype, 5
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pseudomorphism, 218
pseudosymmetry, 3

quasicrystal, 12

racemate, 113
range of interaction, 204, 275–6
real crystal, 12
reciprocal basis vectors, 39
reciprocal element, 52
reciprocal lattice, 16, 39
reconstructive phase transition, 199, 208–9
reduced cell, 15, 110
reduced mapping, 30
reduced operation, 46
reduction method, 15
reflection, 29, 46

Hermann–Mauguin symbol, 43
regular mapping, 22
related symmetry, 89, 133
renormalization, 275
renormalization-group theory, 274–6
representation, active, 203
representation theory, 200
representative symmetry direction, 71–2
reverse setting, 129, 134, 217
rhombohedral space groups, 72

centring, 69–70, 129
non-conventional settings, 129

rod group, 63, 96–7
rotation, 27–28, 42, 45, 46

Hermann–Mauguin symbol, 43
rotation axis, 28, 46
rotoinversion, 29

Hermann–Mauguin symbol, 43
rotoreflection, 74

Schoenflies symbol, 74–6
screw component, 46
screw rotation, 28, 46

Hermann–Mauguin symbol, 43–4
second-order phase transition, 198, 269–70
second-kind symmetry operation, 30
Seitz symbol, 21
self-conjugate, 56
self-conjugate subgroup, 57
setting, nonconventional, 123–9, 134
short Hermann–Mauguin symbol, 73
similarity transformation, 35
site symmetry, 60, 64, 79, 81, 83
soft mode, 203–5, 273
Sohncke space-group type, 114–5, 185
space in mathematics, 24
space group, 20, 68, 84

chiral (enantiomorphic), 68, 113–5
determination of, 228
diagram of symmetry elements, 77
Hermann–Mauguin symbol, 70–4
non-conventional setting, 77, 123–9
Schoenflies symbol, 75–6

space group, continued
Sohncke, 114–5, 185
subgroups of, 89–94
supergroups of, 94–5
wrong, 7, 115–7, 227, 231–3

space groups, frequency, 185–6
space-group type, 68, 84–5

affine, 68
special position, 64, 83–4
specific heat, 198
sphere packing, 167

cubic, occupation of
octahedral voids, 178–80
tetrahedral voids, 180–2

hexagonal, 169–70
occupation of octahedral voids, 168–78,

236–9, 244–5
hexagonal hettotypes, 174–8
rhombohedral hettotypes, 168–73
trigonal hettotypes, 174–8

spin interactions, 274–5
split reflections, 227
spontaneous deformation, 204
square, symmetry of, 49–51

coset decomposition, 54
splitting of Wyckoff positions, 122–3, 138–9,

143
stabilizer, 60
standardization, 14
standardized description, 110
structural phase transition, 197
structural relation, 1
structure types; crystal structures

AgGaS2S6, 118
AgInP2S6, 174–6
AgO, 164
Ag3O, 175–7
Ag0.33V2O5, 119–20
AlB2, 141–2
AlD3, 171
AlF3, 171
AlPO4, 156, 288
AlTiO3, 172
anatase (TiO2), 178–9
As(C6H5)4[MoNCl4][MoNCl4·CH3CN],

192, 194
As(C6H5)4RuNCl4, 192–3
As4S3, 189–90
BaAl2O4, 212
BaTiO3, 200
BI3, 183
BiI3, 169–70, 173, 292
boehmite (γ-AlOOH), 157
brass (CuZn, Cu5Zn8), 157, 291
brucite (Mg(OH)2), 217
burtite (CaSn(OH)6), 143–5
C60, 188
C70, 218–9
C60·Se8·CS2, 188
CaCl2, 5, 202, 271

structure types, continued
CaCrF5, 323–3
CaF2, 180–2, 220
CaIn2, 142
calcite (CaCO3), 171
CaMnF5, 323–3
Ca4OCl6, 120
cassiterite (SnO2), 184, 294
CdI2, 170, 173
CdMnF5, 323–3
cerium, 270
chalcopyrite (CuFeS2), 118
CO2, 117
cobaltite (CoAsS), 138–9
CoF3, 171
corundum (α-Al2O3), 169–70, 172–3
CrF3, 171–2
Cr5S6, 175
Cr2Te3, 175
CsCl, 187
CsMnF4, 233–4
CsTi2Cl7, 184, 295
Cu, 156, 288–9
Cu3Au, 7
CuF2, 145–6
CuGaTe2, 118
Cu2O, 181–2
Cu0.26V2O5, 119–20
diamond, 4, 140
DyCl2, 220–3
Dy7Cl15, 220–3
Er2.30Ni1.84In0.70, 230–1
Eu2PdSi3, 233, 298
FeF3, 170–2
ε-Fe2N, 175–6
FeZrCl6, 175–6
GaF3, 171
Gd3Rh2In4, 233
gersdorfitte (NiAsS), 138–9
GeS2, 120
hexachloroborazine, 195
Hf2Ni2Sn, 229–31
α-Hg, 156, 289
HgI2, 181–2
Hg3NbF6, 175
HoRhIn, 233
ilmenite (FeTiO3), 169, 172
In, 156, 288
InF3, 171
In(OH)3, 143–5
β -IrCl3, 162–3, 166, 291
IrF3, 171
K2CO3, 160
KCuF3, 109
KH2PO4, 270
KN3, 187
KNiIO6, 175
KOH·OH2, 157
K2PtCl6, 186
K2SO4, 211–2
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structure types, continued
LaB2C2, 116
LiBO2, 118
LiCaAlF6, 175–6
LiFeO2, 178
LiInTe2, 118
LiNbO3, 169, 172–3
LiPN2, 118
Li2Pt(OH)6, 175
LiSbF6, 169, 173
LiScI3, 175–6
Li2TeZrO6, 173
Li2ZrF6, 175–6
Mg, 156, 289
(MoCl5)2, 251
MnP, 148–9
MoF3, 171
MoF6, 187–8
Mo2FeB2, 229
MoNi4, 157, 290
NaAg3O2, 120
Na3AlP2, 120
Na4AuCoO5, 120, 287
NaCl, 111, 178–80, 291
Na2CO3, 160
Na3CrCl6, 175
(Na-15-crown-5)2ReCl6·4CH2Cl2, 190–1
Na6FeS4, 120
Na2HgO3, 109
NaNbO2, 120, 287
NaP, 114
Na2Sn(NH2)6, 169, 173
Na2UI6, 169, 173
(NbBr5)2, 251–2
(NbCl5)2, 251–2
(NbI5)2, 251–2
NbO, 180
(NH4)2SO4, 212
NiAs, 148, 173
NiCr2O4 (spinel), 128
Ni3N, 175–6
Ni3TeO6, 173
NiTi3S6, 173
OsO4, 184, 295
Pa, 156, 288
PbO, 181–2
PbTiO3, 200
P(C6H5)4[CoBr3NCCH3], 192–4
P(C6H5)4I(N3)2, 228
P(C6H5)4MoNCl4, 119
P(C6H5)4SnCl3, 192–4
P(C6H5)4SnCl5, 192–4
P(C6H5)4[TiCl5NCCH3], 192–4
PdS2, 137–9
pentahalides, 249–552
periclase (MgO), 217
perovskite (CaTiO3), 109
PI3, 177–8
poly-C70, 218–9
Pr2NCl3, 120

structure types, continued
P4S3, 189–90
P4Se3, 189–90
PtCl3, 267
PtS, 181–2
Pt2Si, 181
pyrite (FeS2), 117, 137–9
quartz (SiO2), 115, 156, 288
rambergite (MnS), 120
RbAuBr4, 149–51
RbAuCl4, 149–51
RbOH·OH2, 157
ReO3, 152, 170–1
RhF3, 160–70, 172–3
RuBr3, 175–8
rutile (TiO2), 84, 147, 202
silicon, 207–8
SiS2, 181–2
skutterudite (CoAs3), 143
Sm2O3, 224–5, 297
SmS, 197
SnF4, 178–9
Sn2OF2, 184, 294
SrBr2, 220
SrI2, 220
TeO3, 171
tetraphenylphosphonium salts, 191–4, 228
ThCr2Si2, 179–80
TiF3, 171–2
TiI3, 175–6
tin, 140–1
TlAlF4, 156–7, 290
Tl7Sb2, 156, 289
TmCl2, 220–4
TmCl3, 171
Tm7Cl15, 220–4
trifluorides, 170–1
trihalides, 170, 175–7
trimethylamine, 177–8
trirutile, 147
α-U, 156
(UCl5)2, 251–2
U3Si2, 229–30, 289
VF3, 171
VO2, 145–6, 156, 289
W, 156, 288–9
WCl3, 172
WCl6, 169, 173
W6Cl18, 183, 293
WO3, 152–5
WOBr4, 112–3
(WSBr4)2, 251–2
(WSCl4)2, 251–2
wurtzite (ZnS), 120
zinc blende (ZnS), 4, 181–82, 294
ZnCl2, 182, 184, 294
ZrBeSi, 141–2
Zr6C I12, 183
Zr2Co2In, 229–30, 293
ZrNiAl, 233

subgroup, 4, 52
common, 89, 208–9
general, 90, 148
invariant, 57
isomorphic, 90, 93, 133–5, 145–7, 261–7
isotropy, 205
klassengleiche, 90, 93, 133–5, 141–5, 205
maximal, 52, 90, 91, 133
proper, 52
self-conjugate, 57
translationengleiche, 90, 91–2, 133–5,

137–40, 205
trivial, 52
zellengleiche, 133

subgroups
conjugate, 57, 101–3, 107–9, 162
Euclidean equivalent, 107
of point groups, 87–9
of space groups, 89–94
on a par, 102, 107–9, 143, 162

subperiodic group, 96
substitution derivatives, 4–5, 119, 138–9, 141,

147, 151–2
supergroup, 52

common, 89, 139, 149–51
minimal, 52, 94–5
of space groups, 94–5
proper, 52
trivial, 52

superspace, 12
superspace group, 160
superstructure, 143, 229
symbols

Fedorov, 70
for symmetry species, 200, 279
for centred lattices, 69
graphic, 78
Hall, 70
Hermann–Mauguin, 43, 70–4, 76

non-conventional, 124–9
international, 70
hexagonal space groups, 129
Placzek (Mulliken), 200, 279
Schoenflies, 74–6
Seitz, 21
Wyckoff, 5, 79, 121

symmetry 1, 49, 65–9
breach, 87, 203
feigned, 176, 231–3
non-crystallographic, 97
reduction, 3, 87, 133

different paths of, 136, 163–5
related, 89, 133

symmetry-adapted cell, 71
symmetry classes, 71
symmetry direction, 71–2

systems, 71
symmetry element, 46, 78

graphic symbols, 78
symmetry-equivalent points, 19
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symmetry of the symmetry, 104
symmetry operation, 19, 47

crystallographic, 19, 41–42, 46
Hermann–Mauguin symbol, 43–45

of the second kind, 30, 113
symmetry principle 2–3

as philosophical doctrine, 256
symmetry relations, 89, 137, 139–54

scheme for the presentation of, 135
symmetry species, 200–2, 205, 279–80
symmetry translation, 12

tetragonal space groups, 70, 72, 78
isomorphic subgroups, 262–5
nonconventional settings, 127–8

tetrahedral voids, occupation of
cubic-closet packing, 180–2

theorem of Hermann, 90
theorem of Lagrange, 55
theorem of Pólya, 239–41
thermal expansion, 198
tolerances, 117–8, 138, 143
topochemical reaction, 218
topotactic reaction, 3, 217–21
topotactic texture, 206
totally symmetrical vibration, 202–3
trace of a matrix, 22, 28

transformation twin, 210–1
translation, 12, 22, 27
translation domains, 212
translation equivalent, 13
translation group, 66
translation part, 23
translation twins, 212
translation vector, 12, 40
translational conjugation, 102
translationengleiche subgroup, 90, 91–2,

133–5, 137–40, 205
translationengleiche supergroup, 94
triclinic, 70, 72, 78
tricritical point, 271
trigonal, 70, 72, 78
trigonal prism, permutation group, 239

group multiplication table, 284
trivial subgroup, 52
twin, 5–6, 176, 210–1, 231–3

domains, 6, 206–7, 210–1
growth-, 210
interface, 210
law, 210
merohedral, 231
penetration-, 210
transformation-, 210–1
undetected, 7, 230–3

unique direction, 87
unit cell, 14

volume, 17
unit representation, 202
universality (phase transitions), 199, 275

vector, affine mapping of, 24
vector lattice, 12, 69
vector space, 24
vernier structure, 220
vibrational frequency, 273–4
vibrational mode, 200

soft (freezing, condensing) 203–5, 273
volume of unit cell, 17

wrong space group, 7, 115–7, 227, 231–3
Wyckoff letter, 79, 121
Wyckoff position, 65, 79, 82, 121–3

relations between, 122
Wyckoff set, 121
Wyckoff symbol, 5, 79, 121

zellengleiche subgroup, 133, 145
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