Novel pyrochlore-like structure in rare-earth iridate single crystals

F. Hájek1, D. Staško1, K. Vlášková1, J. Kaštil2, M. Henriques2, M. Klicpera1

1Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic

2Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic

filip.hajek@matfyz.cuni.cz

The rare-earth A2Ir2O7 pyrochlore iridates (A = Y, Pr-Lu) constitute a family of materials revealing a plethora of novel and exotic properties. The geometrically frustrated pyrochlore lattice hosts Ir4+ ions displaying strong spin-orbit coupling comparable to electron correlations. In combination with crystal field effects and important f-d exchange between the rare-earth and iridium sites, various magnetic and topological phases emerge. Among others, the topological phases include the topological Mott insulator [1], axion insulator [2] or Weyl semimetal [2,3] and the magnetic phases include the fragmented spin ice state with monopole-like excitations [4] and spin liquid states [5, 6].

The following work is focussed on the magnetic and structural properties of the A = Nd single crystal analogue. In contrast to previous works, e.g. [7], where Nd2Ir2O7 adopts the pyrochlore structure, the present single crystals display a different, unusual crystal structure, attributed to a new Pb-based synthesis method. Magnetic properties, including two magnetic transitions at 41 K and 8 K, demonstrate notable similarities for the two crystal structures. The non-pyrochlore structure found using X-ray diffraction is analysed and compared to the pyrochlore structure, with a focus on the Ir pyrochlore-type tetrahedral sublattice with octahedral O2- crystal fields found in both crystal lattices. The full crystal structure contains two Ir sublattices, three Nd sublattices and one Pb sublattice with a high degree of disorder in the form of vacancies. The magnetic structure, fundamentally tied to the tetrahedral lattice in the pyrochlore case, is examined in the non-pyrochlore samples employing neutron diffraction.

 

1. Y. Otsuka, T. Yoshida, K. Kudo, S. Yunoki, Y. Hatsugai, Sci. Rep., 11, (2021), 20270.

2. X. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov, Phys. Rev. B, 83, (2011), 205101.

3. X. Liu, S. Fang, Y. Fu, W. Ge, M. Kareev, J.-W. Kim, Y. Choi, E. Karapetrova, Q. Zhang, L. Gu, E.-S. Choi, F. Wen, J. H.Wilson, G. Fabbris, P. J. Ryan, J. W. Freeland, D. Haskel, W. Wu, J. H. Pixley, J. Chakhalian, Phys. Rev. Lett., 127, (2021), 277204.

4. E. Lefrançois, V. Cathelin, E. Lhotel, J. Robert, P. Lejay, C. V. Colin, B. Canals, F. Damay, J. Ollivier, B. Fåk, L. C. Chapon, R. Ballou, V. Simonet, Nat. Commun., 8, (2017), 209.

5. M. Kavai, J. Friedman, K. Sherman, M. Gong, I. Giannakis, S. Hajinazar, H. Hu, S. E. Grefe, J. Leshen, Q. Yang, S. Nakatsuji, A. N. Kolmogorov, Q. Si, M. Lawler, P. Aynajian, Nat. Commun. 12, (2021), 1377.

6. Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, T. Sakakibara, Nature 463, (2010), 210.

7. H. Takatsu, K. Watanabe, K. Goto, H. Kadowaki, Phys. Rev. B 90, (2014), 235110.