Instrumentace Ramanovy spektroskopie

Vladimír Baumruk

Univerzita Karlova v Praze, Matematicko-fyzikální fakulta

2

Vhodná volba excitační vlnové délky

Technologický pokrok v Ramanově spektroskopii v uplynulých 20 letech

Technologický pokrok v Ramanově spektroskopii v uplynulých 20 letech

Technologický pokrok v Ramanově spektroskopii v uplynulých 20 letech

- 5. Nové excitační lasery (diodové Al:GaAs, diodami čerpané Nd:YAG)
- + kompaktní
- + levný provoz
- + rozšíření o další excitační vlnové délky v NIR oblasti

6. Integrované spektrometry

- + kompaktní (přenosné, ruční)
- + snadná obsluha
- + vyšší spolehlivost
- + využití pro rychlou identifikaci látek

FirstDefender (Ahura)

R-3000R/R-3000HR (Raman Systems)

RSLplus (Raman Systems)

Disperzní mnohokanálový Ramanův spektrometr

Nedisperzní FT-Ramanův spektrometr

Výhody

- citlivost
- vyšší poměr signál/šum
- λ_{exc} = 200 800 nm (limitováno odezvou CCD)

- vysoká přesnost určení frekvence
- vyšší světelnost
- ▶ vždy λ_{exc} ≥ 1064 nm
- zpravidla bez fluorescence

Nevýhody

- kompromis mezi rozlišením a pokrytím
- více fluorescence
- měnící se spektrální rozlišení

- horší poměr signál/šum
- často vysoký výkon budícího laseru

Ramanův posun (cm⁻¹)

kratší vlnové délky	delší vlnové délky
vyšší účinný průřez rozptylu	nižší účinný průřez rozptylu
nižší šum detektoru	
disperzní spektrometr	nedisperzní spektrometr
vyšší pozadí	nižší pozadí
často background shot noise limited	obecně detector noise limited
obecně mnohem vyšší SNR	nižší SNR vyžaduje vyšší výkon laseru

Ramanova spektra kloktadla měřená na různých spektrometrech.

- A. disperzní mnohokanál, 514.5 nm laser, 100 mW, 3 s akumulace
- B. disperzní mnohokanál, 785 nm, 50 mW, 150 s akumulace, 4 cm⁻¹ rozlišení
- C. FT Raman 1064 nm, 245 mW, 150 s akumulace, 4 cm⁻¹ rozlišení

 λ_{exc} < 900 nm \Rightarrow disperzní Ramanovy spektrometry (omezení křemíkovými CCD detektory)

 λ_{exc} = 1064 nm \Rightarrow nedisperzní FT Ramanovy spektrometry

Kontinuální (cw) lasery pro Ramanovu spektroskopii

typ	λ (nm)	typický výkon
druhá harmonická Ar⁺	224, 257, 229	15-200 mW
Ar ⁺ (vzduchem chlazený)	488, 514.5	5-50 mW
Ar⁺ (vodou chlazený)	351.1, 454,5, 457.9, 465.8 476.5, 488 , 496.5, 501.7, 514.5	0.1-10 W
He-Ne	632.8	5-100 mW
He-Cd	442 nm	5-50 mW
Kr ⁺	406.7, 413.1, 647.1 , 752.5	0.1-4 W
Nd:YAG	1064	0.1-10 W
druhá harmonická Nd:YAG	532	0.05-5 W
diodový (external cavity, fixed λ)	785	300 mW
diodový (external cavity)	780-1060	500 mW
barvivové, Ti: safír	spojitě přeladitelné	

PROČ ?

pro potlačení nežádoucí spontánní emise (např. plasmové linie v iontových laserech, široké pozadí z Nd:YAG a diodových laserů)

JAK ?

Objemová holografická optika a její spektroskopické aplikace

Figure 1. Comparison of conventional surface-relief grating used in spectroscopy (a) with various volume holographic element configurations (b–e).

Tedesco et al. Anal. Chem. 65, 441A (1993).

Laser band-pass filters

Figure 2. Laser bandpass filter configuration using volume transmission hologram embedded in a cube for maximum dispersion.

Velmi účinné potlačení plasmových čar iontových laserů

Konvenční versus zobrazovací (imaging) spektrograf

Zobrazovací spektrograf – má ploché pole velikosti standardního CCD detektoru (25 mm dlouhé, několik mm vysoké)

Jednoduchý mřížkový spektrograf v Czerny-Turnerově uspořádání (možnost dvou mřížek s různou hustotou vrypů na společném otočném držáku – turret)

Problém – pozadí (stray light) \Rightarrow je nutné odfiltrovat Rayleighův rozptyl

JAK ?

více stupňů (dvojitý monochromátor, trojitý spektrograf) holografické filtry (notch, edge) – obecně band rejection (BR) filters

Spektrální rozlišení a spektrální pokrytí

excitační vlnová délka (nm)	hustota vrypů (vrypy/mm)	ohnisková vzdálenost (mm)	Δ <i>v</i> (cm ⁻¹) na 25 μm pixel @ 1500 cm ⁻¹	spektrální pokrytí 25 mm detektoru (cm ⁻¹)
514.5	600	250	5.4	4756
514.5	1200	250	2.7	2709
514.5	1800	250	1.8	1894
785	600	250	2.11	2231
785	1200	250	1.05	1223
785	1200	500	0.53	642

Schéma dvojitého monochromátoru (např. Spex 1403) 70. až 80. léta

Výhody:

- vysoké rozlišení
- výborný odstup od pozadí (10⁻¹² 10⁻¹⁴)
- měření v blízkosti excitační linie

Nevýhody:

- pomalé měření (bod po bodu)
- příliš velká disperze pro mnohokanálovou detekci

Schéma trojitého spektrografu (např. Jobin Yvon T64000)

Diagram ilustrující fungování trojitého spektrografu

Výhody:

- výborný odstup od pozadí (10⁻¹² 10⁻¹⁴)
- měření v blízkosti excitační linie
- univerzálnost

Nevýhody:

- nízká světelnost (⇒ málo světla na detektoru)
- vysoká cena

Holografický zobrazovací spektrograf s vysokou světelností

Schéma osového transmisního holografického spektrografu (např. Kaiser 1.8i)

Výhody:

- světelnost (přechod od f/4 k f/1.4 představuje téměř řádové zvýšení signálu na detektoru, 4/1.4)² = 8.2)
- kompaktnost (malé rozměry)
- velká disperze

Nevýhoda:

různé mřížky pro různé excitační vlnové délky

Spektrum síry změřené na jednoduchém spektrografu s holografickým notch filtrem a na trojitém spektrografu

Detektory pro jednokanálové spektrometry

parametry	PMT v režimu čítání fotonů (RCA 31034a)	Lavinová fotodioda
Maximální Q	25%	90%
Rozsah odezvy	185-930 nm	300-1050 nm
Fotocitlivá plocha	3 x 15 mm	průměr 5 – 20 mm
Temný signál	<10/sec	<25/sec
Maximální rychlost čítání	>10 ⁵ /sec	>10 ⁶ /sec

Mnohokanálové detektory (CCD)

Orientace CCD v ohniskové rovině spektrografu

Některé reprezentativní CCD užívané v Ramanově spektoskopii

typ	formát	velikost pixelu (µm)	Q _{max}	Temný proud (e ⁻ /pixel/sec)
EEV 15-11	256 x 1024	27 x 27	0.45 (FI)	< 0.002 (LN ₂)
			0.92 (BI)	< 0.02 (TE)
ISA "MRC"	2000 x 800	15 x 15	0.45 (FI)	< 0.001 (LN ₂)
			0.88 (BI)	< 0.01 (TE)
SPE-10:100B	1340 x 100	20 x 20	0.92 (BI)	< 0.001 (LN ₂)

Základní parametry:

 $S(\text{photons}) = \frac{\gamma S'(\text{counts})}{\gamma}$

gain (γ zisk) – počet zachycených elektronů potřebných pro jednu digitální jednotku (ADC unit)

dark current (e⁻/pixel/sec) – nízký u scientific grade spectroscopic CCDs (\Rightarrow drahé!)

readout noise – nezávisí na počtu počítaných elektronů, činí řádově jednotky elektronů, projeví se pouze při velmi malém počtu počítaných elektronů, při stovkách elektronů je již zanedbatelný

full well capacity – limit počtu zachycených elektronů, obecně 10^4 až 10^6 elektronů, překročení limitu \Rightarrow blooming, může být podstatná při binningu

dynamic range – efektivní rozsah pozorovatelných intenzit, poměr full well capacity a readout noise

binning – sčítání elektronů ze dvou či více pixelů při nebo po odečtu (hardware binning, software binning), možné podél obou os

back illuminated, UV % Or of the second sec

Kvantová účinnost různých CCD užívaných v Ramanově spektoskopii

Mnohokanálové detektory (CCD)

Mnohokanálové detektory (CCD)

Multi segment acquisition – problémy se "slepováním" jednotlivých úseků Multi segment acquisition – problémy se "slepováním" jednotlivých úseků může pomoci vyřešit korekce na odezvu spektrometru (instrument response funcion).

Scanning multichannel technique (SMT) – mřížka při odečítání CCD stojí, poté se nepatrně pootočí (o malý krok srovnatelný s posunem spektra o 1 pixel). Výsledkem je velký počet silně se překrývajících úseků, ze kterého je potom zrekonstruováno výsledné spektrum.

Možné je i kontinuální skenování, kdy je pohyb mřížky synchronizován s odečtem CCD.

Mnohokanálový systém – N_R detekčních elementů detekuje mnoho vlnových délek

Multiplexový systém – fotony různých vlnových délek jsou detekovány jediným detektorem FT-Raman – multiplexová technika, kdy je mnoho vlnových délek modulováno interferometrem, který generuje interferogram zaznamenávaný jediným detektorem

Schéma FT Ramanova spektrometru založeného na Michelsonově interferometru

modulace – lineárním pohybem zrcadla, který generuje dráhový rozdíl a - b = 2x

Interferogram (A) pro cyklohexan excitovaný 1064 nm a Ramanovo spektrum (C).

rozlišení
$$\delta \tilde{\nu} = \frac{1}{\Delta x_{\text{max}}}$$
 maximální dráha zrcadla

neboť šum v FT-Ramanově spektru je úměrný odmocnině ze střední intenzity světla přes celé spektrum, takže jestliže se podstatná část budícího laserového záření dostane do interferometru, celé spektrum bude degradováno (distributed noise)

 \Rightarrow je potřeba excelentní filtr pro potlačení laserového záření

Frekvenční průběh logaritmu detektivity D* polovodičových detektorů s naznačeným rozsahem Ramanových posunů při excitaci 1064 nm.

Nekorigovaná FT-Ramanova spektra pyridinu měřená s různými detektory ilustrující zkreslení relativních intenzit způsobené změnami kvantové účinnosti přes spektrum. kalibrace vlnočtové škály – klíčová procedura, které je třeba věnovat potřebnou péči

Emisní spektrum neonové lampy – jeden z kalibračních standardů, dále třeba plasmové linie Ar+, Kr+

Raman shift standards from ASTM (American Society for Testing and Materials) – např. cyklohexan, inden, síra, … jsou tabelovány polohy standardní odchylka \Rightarrow výhoda: univerzálnost (nezávisí na excitaci !)

Kalibrace přístrojové funkce

Vláknové sondy

Dvě metody připojení optických vláken ke spektrometru

- A. přímé připojení bez možnosti přizpůsobení f/# spektrometru
- běžný způsob umožňující i umístění BR filtru do kolimovaného svazku

Uspořádání vláknových sond (n-around 1).

18 around 1

6 around 1

4 around 1

Ramanovo spektrum typického křemenného optického vlákna, excitace 514.5 nm.

Ramanovo spektrum 5-acetamidofenolu, excitace 785 nm.

Raman shift, cm⁻¹

1300

1800

800

- A. konvenčí měření ve 180° geometrii
- B. měření vláknovou optikou bez korekce
- C. korigované spektrum B

300

Integrovaná vláková sonda obsahující nezbytné filtry (BP, BR) i fokusační optiku

(vnější průměr cca 2 cm, velmi odolná ve srovnání s běžnou laboratorní optikou)

Integrovaná vláková sonda obsahující nezbytné filtry (BP, BR) i fokusační optiku (krychle o hraně cca 5 cm) poměr signál/šum (SNR, signal-to-noise ratio)

se šířkou štěrbiny.

Šum odečtu (readout noise)

Zpravidla nehraje roli; může se uplatnit v případě nízkého signálu a extrémně krátké doby akumulace. Středování signálu nepovede ke zlepšení SNR, pokud šum odečtu bude dominantní.

Spektra dextrózy v pevné fázi měřená s excitací 785 nm na disperzním/CCD spektrometru. Spektrum C, které je průměrem 50 0,1 sekundových akumulací, nevykazuje zlepšení SNR ve srovnání s jedinou 0,1 sekundovou integrací (spektrum A) díky dominujícímu příspěvku šumu odečtu (readout noise).

Dextrose

Sample shot noise limit
$$\sigma_y \gg \sigma_B, \sigma_d, \sigma_r \implies \text{SNR} = \sqrt{S} = \sqrt{\dot{S}t}$$

Background shot noise limit $\sigma_B = \sqrt{(\dot{B}t)} \implies \text{SNR}_B = \frac{\dot{S}t}{\sqrt{(\dot{B}t)}} = \frac{\dot{S}}{\sqrt{\dot{B}}}\sqrt{t}$

nastává u vzorků s fluoreskujícími příměsemi, kdy slabý Ramanův pás je překryt vysokým pozadím

Vliv výstřelového šumu pozadí na SNR (při zanedbání temného a odečtového šumu)

S	В	σ _y (šum)	SNR
1000	0	31	31
1000	1000	31	31
1000	10 ⁴	105	9.5
1000	10 ⁶	1000	1.0
10 ⁵	10 ⁸	104	10

Šum pozadí nelze odečíst a příliš vysoké pozadí může způsobit, že signál nebude možné pozorovat. Pomoci může zvýšení signálu+pozadí např. delší akumulací

Mnohokanálové versus jednokanálové spektrometry

Mnohokanálový systém (N_R = 512) dosáhl vyšší SNR za kratší dobu měření a s nižším excitačním výkonem.