ON POLYIODIDES OF COMPLEX CATIONS WITH 12-CROWN-4 AS LIGAND

Zehra Edis, Theo Gilles, Karl-Friedrich Tebbe

Institut für Anorganische Chemie der Universität zu Köln,D-50939 Köln, Greinstraße 6, Germany, zehra.edis@uni-koeln.de

Keywords: polyiodides, triiodide, pentaiodide, heptaiodide, 12-crown-4, crown ether complexes, crystal structures, phase transitions

On modifying cationic size and shape polyiodide anions I2m+nn- with varying iodine excess m and anionic charge n may be derived as components of crystalline solids, which are formed by adding m iodine molecules I2 und n iodide ions I-. They may be nearly free or associated to networks with differing coordination numbers of the iodide ions and various dimensions of the iodine gratings [1]. The interatomic distances and angles within the anionic iodine substructure cover a broad range with pronounced accumulations depending on the structural patterns. The widespread single charged anions I2n+1- form a first set of polyiodide ions [2]. Recently an increasing number of formally higher charged polyiodide ions of the following rows I4n2-, I6n13-, I8n24- have been made accessible [3]. Because of the comparatively weak interactions within the anionic iodine substructure and the manifold possibilities of joining iodine molecules and iodide ions together by using a few simple basic patterns a systematic route for the deduction of polyiodides with unusual composition and structure is not obvious. Only the variation of cationic size, shape and charge distribution and the recording of complete series of compounds starting with the unavoidable triiodide and ending with the limiting iodine richest compound seems to be successful. Crown ethers and their low charged complexes particularly seem to be suitable to precipitate such anions. Our team [3, 4, 5, 6, 7] and other groups [8, 9, 10] have systematically investigated polyhalides with sufficiently large crown ethers as ligands for a long time. Such studies have now been extended to alkali complexes with the hardly encapsulating ligand 12-crown-4 (1,4,7,10-tetraoxycyclododecan C8H16O4). Triiodides like [Li(12-crown-4)(H2O)]I3 and [M(12-crown-4)2]I3 with M = Na, K, Cs have already been prepared and spectroscopically characterized [11]. Such compounds are much less stable than those with larger rings (e.g. 18-crown-6 and its derivatives) because of dissociating the weakly bound ligand. We completed the listing of compounds and made accessible those with higher iodine contents. Without exception all these (poly)iodides belong to the first row I2n+1- with n = 0 (monoiodides), 1 (triiodides), 2 (pentaiodides) and 3 (heptaiodides). They have been characterized by analytical (CHN, AAS), spectroscopic (MS, UV, IR, Raman), thermal (DSC, TG) and X-ray diffraction (powder, single crystal) methods. In most cases the ligands are burdened with some disorder. Crystal structures will be presented, explained, compared and derived out of suitable fragments of iodide-iodine gratings [12]. At least all triiodides run through temperature dependent phase transitions.

This work is build upon earlier investigations of Dr. M. El Essawi and coworkers. It was carried out within the framework of the Graduiertenkolleg ´Klassifizierung von Phasenumwandlungen kristalliner Stoffe aufgrund struktureller und physikalischer Anomalien´ and was also supported by the Fonds der Chemischen Industrie. Cand. chem. Oliver Schlüter, Marc Lamshöft and Iris Krampitz assisted in preparing some compounds, Dipl.-Chem. Carsten Wieczorrek in solving some crystal structures.

[M(C8H16O4)2]Ix

___________________________________________________________________________

M   x    RG     Z     a      b      c      V      Nref      R1     wR2 
                      a                b                 g 
___________________________________________________________________________ 
Li   3  Fddd   24   12.467 33.445 36.708 15306    3544     0.131   0.554 
     7  Pm3m    1    9.521                 863.1   293     0.075   0.222 
Na   1  Fddd    6   10.452 12.839 24.511  3289 
     3   P1-    2    8.505 14.275 12.213  1472    4204     0.047   0.067 
                    89.71  84.57  68.01 
     5  Pnma    4   13.762  9.515 22.881  2996    2690     0.085   0.309 
     7  Pm3m    1    9.576                 878.1 
K    3  Pnma    4   13.547 22.642  8.904  2731    2476     0.068   0.213 
         P1-    2    9.254 12.900 13.713  1366.3  4442     0.045   0.116 
                   117.22 107.54  90.66 
     5 P4/nbm   4   18.070 13.288         4339    2057 
     7   P1-    2   12.355 12.621 13.722  1761.8  5810     0.053   0.150 
                   116.42  97.52 105.97 
Rb   1 orhP          9.307 12.516 14.548  1694.6 
     3   P1-    2   10.694 11.598 12.718  1375.5  4529     0.049   0.150 
                    71.00  86.97  67.71 
     5 P21/n    4    8.920 24.069 13.995  3104    5532     0.040   0.093 
                           91.98 
Cs   5    P1-   4   15.204 15.403 15.456  2874 
                    67.90  65.15  64.24 
     7  I2/a    4   16.386 11.705 19.005  3467    2871     0.044   0.125 
                          108.01 

_________________________________________________________________________________________

  1. K.-F. Tebbe, in Rings, Chains and Macromolecules of Main-Group-Elements (Ed. A.L. Rheingold). Elsevier Amsterdam (1977) 551 - 606.
  2. K.-F. Tebbe, Z. Kristallogr. Suppl. 11 (1996) 52.
  3. K.-F. Tebbe, M. El Essawi, Z. anorg. allg. Chem. 624 (1998), in print.
  4. K.-F. Tebbe, A. Kavoosian, Z. Naturforsch. 48b (1993) 438 - 442.
  5. K.-F. Tebbe, M. El Essawi, S. Abd El Khalik, Z. Naturforsch. 50b (1995) 1429 - 1439.
  6. K.-F. Tebbe, A. Kavoosian, Acta Crystallogr. C51 (1995) 562 - 565.
  7. M. El Essawi, K.-F. Tebbe, Z. Naturforsch. 53b (1998) 263 - 265.
  8. A.J. Blake, R.O. Gould, S. Parsons, Ch. Radek, M. Schröder, Acta Crystallogr. C52 (1996) 24 - 27.
  9. A.J. Blake, R.O. Gould, W.-S. Li, V. Lippolis, S. Parsons, Ch. Radek, M. Schröder, Angew. Chem. 110 (1998) 305 - 308.
  10. P.C. Junk, L.R. MacGillivray, M.T. May, K.D. Robinson, J.L. Atwood, Inorg. Chem. 34 (1995) 5395 - 5396.
  11. M. El Essawi, S. Abd El Khalik, Egypt. J. Chem. 37 (1994) 559 - 564.
  12. M. El Essawi, I. Dombrowski, Th. Gilles, A. Kavoosioan, K.-F. Tebbe, Z. Kristallogr. Suppl. 15 (1998) 61.