ELEKTRONOVÉ A IONTOVÉ SPEKTROSKOPIE

FNPL145 Měření povrchových vlastností pevných látek

Doc. RNDr. Karel Mašek, Dr. Skupina fyziky povrchů KFPP

Základní otázky materiálové analýzy

- Jaké je složení zkoumaného vzorku?
- Jaké jsou koncentrace jednotlivých prvků a v jakém jsou chemickém stavu? Popřípadě koncentrace jednotlivých složek?
- Z jaké oblasti vzorku změřená informace pochází (laterální a hloubkové rozlišení, hloubka informace)?
- Jaká je citlivost a rozlišení použité metody?
- Dochází během měření k poškození zkoumaného vzorku? Mění se s vzorek během měření?
- Za jakých předpokladů jsou data vyhodnocena a jaká je věrohodnost výsledků?

Osnova

Úvod

Elektronové spektroskopie (XPS, AES, SRPES, XPD)

- teoretický základ
- experimentální vybavení
- kvalitativní analýza
- kvantitativní analýza

iontové spektroskopie (SIMS)

- teoretický základ
- experimentální vybavení
- základní aplikace

Srovnání metod

Spektroskopie obecně

 Primární činidlo – rtg záření, elektrony, ultrafialové záření, synchrotronové záření, ionty, tepelná energie, elektrické pole, …

Elektronové spektroskopie

- XPS (X-ray photoelectron spectroscopy) fotoelektronová spektroskopie
- AES (Auger electron spectroscopy) Augerova elektronová spektroskopie
- UPS (ultraviolet photoelectron spectroscopy) ultrafialová fotoelektronová spektroskopie
- EELS (electron energy loss spectroscopy) spektroskopie charakteristických ztrát a modifikace (HREELS, RHEELS)
- SRPES (synchrotron radiation photoelectron spectroscopy) fotoelektronová spektroskopie buzená synchrotronovým zářením

fotoelektrický jev

 $E_{c} = h\nu - E_{b} - \Phi$ $E_{c} = h\nu - E_{b} - \Phi - E_{relax}$

hv energie fotonu E_c kinetická energie E_v energie vakua E_F Fermiho energie VB valenční pás L, K vnitřní hladiny E_{relax} Fermiho energie

- Hlavní kvantové číslo n
- Vedlejší kvantové číslo l 0..n-1
 - Orbitální úhlový moment elektronu
- Spin elektronu ±1/2
- Celkový úhlový moment elektronu = vektorový součet orbitálního momentu a spinu tři metody
- interakce mezi elektrony vede k rozštěpení energetických hladin

j-j vazba

• celkový úhlový moment elektronu j=l+s kvantové číslo j $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$...

○ celkový atomový úhlový moment $J = \sum j$ ○ vhodné pro Z>~75

- "X-ray" notace
 - n=0, 1, 2, 3 …
 K, L, M, N …
 - I=0, 1, 2, 3 ...

K, L, M, N ... s, p, d, f

Quantum numbers					
n	1	j	X-ray suffix	X-ray level	Spectroscopic level
	0	$\frac{1}{2}$	1	K	$1s_{1/2}$
2	0	$\frac{1}{2}$	21	L_1	$2s_{1/2}$
2	1	$\frac{1}{2}$	2	L_2	$2p_{1/2}$
2	1	$\frac{3}{2}$	3	L_3	2p _{3/2}
3	0	$\frac{1}{2}$	1	M_1	$3s_{1/2}$
3	1 1 1	$\frac{1}{2}$	2	M ₂	$3p_{1/2}$
3	1	$\frac{3}{2}$	3	M ₃	3p _{3/2}
3	2	$\frac{3}{2}$	4	M ₄	3d _{3/2}
3	2	$\frac{5}{2}$	5	M ₅	3d _{5/2}
	etc.		etc.	etc.	etc.

Spektrum sekundárních elektronů

Augerův jev

hv energie fotonu E_{KLL} kinetická energie Augerova elektronu E_v energie vakua E_F Fermiho energie VB valenční pás L, K vnitřní hladiny

Augerova emise

Emise fotonu (rtg fluorescence)

L-S vazba

○ celkový atomový orbitální moment $L = \sum l$ ○ celkový atomový spinový moment $S = \sum s$ ○ celkový atomový úhlový moment $J = |L \pm S|$ • J |L-S| |L+S|
• vhodné pro Z<~20
○ notace ^(2S+1)L
• L=0, 1, 2, 3 ...
S, P, D, F ...

Practical Surface Analysis

Table 3.2 Notation in L-S coupling

Transition	Configuration	L	S	Term
KL ₁ L ₁	$2s^{0}2p^{6}$	0	0	¹ S
VI 1	0.10.5	ſ 1	0	¹ P
$KL_{1}L_{2,3}$	$2s^2p^3$	11	1	³ <i>P</i>
KL _{2,3} L _{2,3}	$2s^22p^4$	$\begin{cases} 0 \\ \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	0 1 0	${}^{1}S$ ${}^{3}P]^{\dagger}$ ${}^{1}D$

Instrumentální vybavení

10 - 15 kV

intenzivní čáry K α

Mg:	1253,6 eV,	$\Delta = 0,7 \text{ eV}$
AI:	1486,6 eV,	∆ = 0,85 eV

Primární zdroj

- Rtg záření Al, Mg Kα
- elektrony 50 5000 eV
- UV záření He výboj
- synchrotronové záření

40 – 1000 eV

- Zdroj iontů 50 – 5000 eV

Elektronové spektroskopie - měření

hv energie fotonu E_c kinetická energie E_v energie vakua E_b vazebná energie E_F Fermiho energie VB valenční pás L, K vnitřní hladiny ϕ_v výstupní práce vzorku ϕ_A výstupní práce analyzátoru

4-mřížkový analyzátor

LEED – difrakce nízkoenergetických elektronů AES – Augerova spektroskopie

Cylindrický analyzátor (CMA)

Jednoduchý CMA

Cylindrický analyzátor (CMA)

Dvojitý CMA (s brzdnýmpolem)

Hemisférický analyzátor HMA

Elektronové spektroskopie – XPS, UPS, AES, EELS, SRPES Lepší rozlišení Citlivost závisí na velikosti sfér

Způsob měření – přímá detekce

- <u>Přímé spektrum</u> proud nebo počet pulsů za jednotku času
- <u>Derivované spektrum</u> první derivace (někdy i druhá derivace) signálu, v případě analýzátoru s brzdným polem získáme přímé spektrum

Detektor

- ≻násobič
- ≻kanálek (channeltron)
- ≻pole kanálků
- ≻kanálková destička (channelplate)

Elektronika analyzátoru

- ➢potřebná řídící a napájecí napětí
- ≻komunikace s počítačem
- Snímání signálu z detektoru

PC a interface(převodníky, čítače, komunikační karty)

komunikace s řídící jednotkou analyzátoru
 generování řídících příkazů nebo signálů
 akumulace dat, jejich záznam a zobrazení

Způsob měření

Detektor

≻násobič

- ≻kanálek (channeltron)
- ≻pole kanálků

≻kanálková destička (channelplate)

Elektronika analyzátoru

➢potřebná řídící a napájecí napětí

➢komunikace s počítačem

Snímání signálu z detektoru

PC a interface(převodníky, čítače, komunikační karty)

komunikace s řídící jednotkou analyzátoru
 generování řídících příkazů nebo signálů
 akumulace dat, jejich záznam a zobrazení

Měření pomocí HMA

Name	Group		Analyzer		Acquisition	Date
ws mc 0.57	2nd W	Ox deposition, 120	PHOIBOS HS	A3500 150	05/07/05	18:05:24
Method Er	Itance and Exit SIR	Lens Mode		Analysis	Mode	
LIPS ¥ 5	7x20 * 2:oper *	HighPointTransm	ission.	✓ FinedA	nalyzerTran	mission
Еекс	Ekin Start	Epass	☐ Ubias	☐ Udet	I	- Wi
0	30	2	90	2700		4.5
Ekin/Epass	Ekin Step	Ekin End	Values	Scans	(well Time
12.75	0.5	125	191	1		0.1
Comment					(efault Value:
					1	Load
					4	Save
Previous	Nest	New	Validada	1 40	aure 1	Clear

<u>Měřící módy</u>

- CPE constant pass energy
 - konstantní absolutní rozlišení
 - měříme N(E)/E ... XPS
- CRR constant retarding ratio
 - konstantní relativní rozlišení
 - měříme E ... AES

Nastavení:

- napětí vstupní elektronové optiky
- mód měření
- vstupní a výstupní clona
- nastavení napětí na detektoru
- měřících parametrů

<u>Typy měření</u>

- široké spektrum
- podrobné měření

Postup měření

- Příprava vzorku
 - mechanická příprava
 - umístění na držák
 - vložení do komory
 - čištění vzorku (ohřev, iontový bombard, ..)
- Měření
 - výběr záření (Al Kα 1486,6 eV/0,85 eV, Mg K 1253,6 eV/0,7 eV)
 - výběr oblasti snímání spekter mód vstupní optiky
 - široké spektrum (průletová energie)
 - odrobná spektra
- Pomocné operace
 - Kalibrace spektrometru (Cu, Au, Ag)
 - Nastavení napětí na detektorech

Postup měření

- Zpracování spekter
- Kvalitativní
 - OPrvky ve vzorku
 - Jejich chemický stav
 - OPozadí neelasticky rozptýlených elektronů
- Kvantitativní
 - Koncentrace (ASF versus účinný průřez)
 - OHloubkový profil
 - OHloubka informace (určení IMFP)

Příklady spekter - AES

Přímé spektrum

Derivované spektrum

Příklady spekter - XPS

Reálné XPS spektrum ze vzorku Pd, záření Mg Ka

Hlavní maxima při kinetických energiích 330, 690, 720, 910 a 920 eV.

Nejintenzivnější maximum je na vazebné energii 335 eV

Příklady spekter - XPS

- Valenční pás (4*d*,5*s*) vazebné energie 0 8 eV (měřeno vzhledem k Fermiho mezi, nebo alternativně na 4 12 eV měřeno vzhledem k úrovni vakua).
- 2. Emise z hladin 4p a 4s maxima na energiích 54 and 88 eV
- 3. Nejintenzivnější maximum na energii 335 eV emise z 3*d* hladiny atomu Pd, zatímco 3*p* a 3*s* hladiny leží na energiích 534/561 eV a 673 eV.
- 4. MNN odpovídá maximu Augerových elektronů buzených rtg zářením. Nalézá se na kinetické energii 330 eV.

Vnitřní atomární hladiny

- poloha vazebné energie: kvalitativní složení vzorku, porovnání s tabulkami, databázemi nebo atlasy spekter
- \bigcirc chemický posuv chemický stav atomů $E_c = hv E_b \Phi E_{relax}$
- 🔘 šířka maxim

$$\Delta E = \left(\Delta E_n^2 + \Delta E_p^2 + \Delta E_a^2\right)^{1/2}$$

• Atlas spekter - Silver Ag

0	2.	2	2 days	3dem	Ac	4n	
35	3p1/2	573	374	368	98	60	
/19	004	515	514	500			
uger Line	s M45N23V		M5VV		M ₄ VV		
	1191		1135		1129	(AI)	
	958		902		896	(Mg)	

- Valenční pás
 - kov x nevodič
 - měření rozlišení exp zařízení na E_F

Augerovy linie

- 🔘 chemický posuv
- tvar emisních linií zejména ve valenčním pásu $\alpha = KE_A KE_P$,
- Augerův parametr α
 - Odstraňuje efekt nabíjení

 $KE_A + BE_P = hv + \alpha$

KE = hv - BE

Graf KE(A) versus BE(P) je nezávislý na energii fotonů

Tvar pozadí násobně neelasticky rozptýlených elektronů

Sekundární struktura spekter

- satelity primárního rtg záření
- o plazmonové ztráty
- rozštěpení hladin ("multiplet splitting")
- "shake-up" satelity
- asymetrie vnitřních hladin kovů
- asymetrie hladin nekovových prvků vibrační rozšíření
- "shake-off" satelity

Další problémy

- časová závislost spekter
- zvýšení povrchové citlivosti
- nabíjení nevodivých vzorků
- vliv struktury difrakční jevy

Intenzita měřená analyzátorem

$$I_a = F * n_a * \sigma_a * T * \int e^{-z/d} dz$$

- F je tok fotonů
- n_a je koncentrace emitujících atomů
- $\circ \sigma_a$ je účinný průřez fotoemise elektronu z určité hladiny
- O T je transmisivita analyzátoru
- poslední člen vyjadřuje pokles signálu s hloubkou z

Hloubka informace d

$$d = \lambda * \cos \Theta$$

Ο λ neelastická střední volná dráha elektronů

Náklon vzorku – zvýšení povrchovosti metody

$$I_{s}^{d} = I_{s} e^{-d/\lambda \sin\alpha}$$
$$I_{o}^{d} = I_{o} (1 - e^{-d/\lambda \sin\alpha})$$

Příklad: vrstva SiO₂/Si

Metoda citlivostních faktorů

$$C_x = \frac{I_x / S_x}{\sum_i I_i / S_i}$$

- O Cx atomární podíl prvku ve vzorku
- Sx citlivostní faktor
- Ix změřená plocha emisní linie
- Sx … v tabulkách, pro určitý typ analyzátoru a experimentální uspořádání, data korigovaná na transmisní funkci (1/E pro hemisférický analyzátor)
- Použití hodnot účinných průřezů z tabulek (např. počítané pro jednotlivé atomy)

Metoda citlivostních faktorů

XPS Si 3p,3s,2p,2s

AES

Fitování fotoelektronových spekter

Zpracování dat

XPS Multiquant – Miklós Mohai

📄 E	Elements .											
	Symbol	Line	State	B. E.	Cross s.	Asymm.	Atomic w.	Valence	Oxyge			
1	0	1s		531.0	0.624	2.000	16.00	2				
2	Cr	2р		574.0	2.340	1.459	52.00	3				
3	С	1s		285.0	0.225	2.000	12.01	4				
4	Si	2р		99.0	0.230	1.106	28.09	4				
5												
6												
7												
8	1											

R	Results									
ПМ	lerge chemical s	states	Numbe	1	Atomic	%	•			
	Time (min)	0	Ti	Ag	С	Si	-			
1	0	73.4	24.4	0.0		2.2				
2	2	69.9	28.2	0.0		1.9				
3	4	70.4	29.6	0.0		0.0				
4	6	67.7	29.7	0.0		2.6				
5	8	69.4	30.6	0.0		0.0				
6	10	69.2	30.8	0.0		0.0				
7	12	69.3	30.6	0.1		0.0				
8	14	66.6	29.4	0.7		3.2				
9	16	64.0	27.9	1.7		6.5				
10	18	61.7	26.2	2.9		9.1	-			

							_					
	Intensity						🗙 ontamination 📃 🗖					
	Time (min)	0	Cr	С	Si	-	min)	Class	At. weight	Density	Contam.	-
1	0	837624	669910	41853	213533			Polymer		1.00		
2	10	467572	936964	20378	296118			Inorganic		2.50		
3	20	436508	936100	21494	293938			Inorganic		2.50		
4	30	422376	938868	15150	302254			Inorganic		2.50		
5	40	424544	955776	16565	290347			Element		4.20		
6	50	417772	942724	13359	292522			Element		4.20		
7												
8												
9												
10						-						-

XMQ parametry

		2	10	26.88	26.07 31.12	2 33.98
Parameters	? X	3	20	26.88	26.07 31.12	2 33.98
		4	30	26.88	26.07 31.12	2 33.98
Cross section IMFP Angular	Transmission	5	40	26.88	26.07 31.12	2 33.98
Contamination Model Labels	General	6	50	26.88	26.07 31.12	2 33.98
		8				
C 🔽 Name	Parameters	9			? ×	
C 🔽 Time min 🔹 🗖 Convert ti	Contamination	Model	Labels	G	ieneral	
C Tilt Sputter rate	Cross section	IMFP	Angular		mission	
	Method Expl	icit	-			
	Exponent	0.7				
C Uther text TextLabel	Material class	anic 💌				
C Other numeric NumLabel			-			
	Density	1.5 g/cm3	Use separ	ate values		
Print Cancel Ap	Mean atomic	20	🗖 Calculate	mean atomic	weight	
	weight					
				Shov	N	
					— PI	
		Print	Cancel Ar	olu I	OK 1	514
			Cancer Ap			

Applied IMFP

Time (min)

0

26.88

Cr

26.07

Si

33.98

31.12

Model struktury vzorku

🚬 M	Model										
		Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Bulk	Omit			
	Name	CH-1	Pb-Ac	CH-2			SiO2				
	Туре	Layer	Island	Layer							
	Link to			Layer 1							
	Mol. weight	432.36	319.24	432.36			60.09				
	Density	0.780	3.250	0.780			2.200				
0	No. H	72.00	4.00	72.00							
1	0		4.00				2.00	×			
2	Pb		1.00								
3	С	36.00	4.00	36.00							
4	Si						1.00				
1	IMFP 0	25.17	18.75	25.17			21.08				
2	Pb	35.56	26.12								
3	C	31.73	23.40	31.73							
4	Si	36.53	26.81	36.53			30.18				

Layer Calculation									
	Elements	Measured	Diff.%	Calculated relative intensity					
1	Si	1.000	0.00	1.000	1.000	0.000			
2	Siox	0.440	0.00	0.440	0.328	0.000			
×	0	0.747	-14.54	0.638	0.514	0.000			
4	С	0.972	0.00	0.972	0.591	0.000			
	Layers	[nm]	Q sum	0.0118	0.2124	2.6963			
1	СН		d1 =	1.39	1.00	0.00			
2	SiO2		d2 =	2.57	2.00	0.00			
F	Coverage			0.800	0.800	1.000			
Experiment: 2 * Autofit Cancel OK									

IMFP & Contamination											
		Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Bulk				
Name		CH-1	Pb-Ac	CH-2			Si02				
	class	Polymer	Inorganic	Polymer			Inorganic				
	ar weight	432.36	319.24	432.36			60.09				
		0.780	3.250	0.780			2.200				
	energy	6.000	6.000	6.000			6.000				
	electrons	144	44	144			16				

Atom location matrix

IMFP matrix

Element intensity

Layer thickness & Coverage

Zpracování spekter

 Jednoúčelové programy pro snímání spekter – SPECTRA, SPECSLAB, EIS

 Jednoúčelové programy pro zpracování spekter – CasaXPS, XPSpeak, FITT

 Víceúčelové programy – tabulkové procesory – Excel, Origin, Igor, MatLab, IDL, Mathematica

2D surface structure study - SRPES, LEED

Material Science Beamline Joint project of Charles University and Synchrotron Elettra in Trieste

ELETTRA BEAMLINES

1068 = 1253 - 180 - 5

XPS, hv = 1253 eV, 2 nm

SRPES, hv = 600 eV, 0.5

XPS spectra of core-level peak C 1s on ZrV measured during heating cycles.

SRPES spectra of core-level peak C 1s on ZrV measured during heating cycles

The **XPS** experiment shows the stoichiometry across several surface layers indicating that vanadium is the main element considered by carbon metal bonding.

SRPES of C 1s with photon energy 600 eV is more top layer sensitive technique (2 - 3 ML) and it shows that ZrC is the most abundant carbidic species disappearing from the analyzed region with increasing temperature.

X-ray Photoelectron Spectroscopy

Fotoelektronová difrakce

Dominující dopředný rozptyl

Studium adsorbátu

(c)

Postup měření

- výběr emisní linie (prvku)
- rychlé zorientování vzorku
- výběr polárních a azimutálních úseků měření
- O dopočtení dle symetrie povrchu
- orovnání s modelovým difrakčním obrazcem

XPD Cu(001)

XPD Ni 2p_{3/2}

Pb/Ni(111) alloy = Ni(111)

Metoda XPD

Závěr

- Metody XPS a AES jedny z nejrozšířenějších metod materiálové analýzy
- Informace o složení a chemickém stavu
- Přesnost silně závisí na struktuře vzorku

Iontové spektroskopie

- SIMS (Secondary Ion Mass Spectroscopy) hmotnostní spektroskopie sekundárních iontů, typy SSIMS a DSIMS
- ISS (Ion Scattering Spectroscopy) spektroskopie rozptýlených iontů
- LEIS (Low Energy Ion Spectroscopy) spektroskopie nízkoenergetických iontů
- RBS (Rutherford Back Scattering) Rutherfordův zpětný rozptyl
- TDS (Thermodesorption Spectroscopy) termodesorpční spektroskopie
- TPR (Temperature Programmed Desorption) Teplotně programovaná reakce

Některé obrázky v této prezentaci pocházejí z přednášek Petra Bábora, FSI VUT Brno

Celková brzdná schopnost – jaderná, elektronová (excitace, ionizace)

$$S(E) = -\frac{dE}{dx}$$

$$S(E) = S_e(E) + S_n(E)$$

Hloubka průniku iontů do PL

Implantace a kanálování iontů

Odprašování

Odprašovací výtěžek

$$Y(E_0) = C \cdot \alpha(\Theta, M_1, M_2) \cdot S_n(E_0) / U_s$$

C ... konstanta [4.2x10¹⁴ cm⁻²] α ... bezrozměrná funkce úhlu dopadu Θ a M₂/M₁ U_S ... povrchová vazebná energie [eV] S_n ... jaderný brzdný účinný průřez [eV·cm²] [P. Sigmund]

Odprašování

Odprašovací výtěžek – závislost na atomovém čísle iontu a jeho energii

Odprašování – závislost na úhlu dopadu, rozdělení energií

Odprašování

Stupeň ionizace β prvků v Si matrici

H. H. Andersen, H. L. Bay: Sputtering by Ion Bombardment I, Springer Verlag, Berlin (1981)

Ernest Rutherford: The Scattering of α and β Particles by Matter and the Structure of the Atom, Philosophical Magazine, Series 6, volume 21, (květen 1911), p. 669-688.

Neočekávaný výsledek: některé částice rozptýleny v úhlech větších než 90°

RBS – Rutherford Backscattering Spectrometry

- amorfní i krystalické materiály
- tenké vrstvy, multivrstvy
- nedestruktivní metoda
- prvkové složení povrchové vrstvy
- koncentrace
- protony, částice alfa, ionty C lehké ionty s vysokou energií
| Prvky | Be-U |
|----------------------|---|
| | |
| Standardní parametry | 2 MeV4He+svazek, Si detektor, 10 min./vzorek |
| Přesnost | Stechiometrie: < 1% rel., Tloušťka: < 5% |
| Citlivost | Objem: 1 až 0.01% v závislosti na Z
Povrch: 1 až 10-4 monovrstvy |
| Hloubkové rozlišení | 1 až 10 nm |
| Poznámky | Dosažitelná hloubka cca 1 um
Lehké prvky na těžkých vzorcích obtížně měřitelné |

2 MeV ⁴He θ Detektor odražených iontů

- Dopadající částice M1, E1
- Částice terče M2
- Energie po srážce E2
- Rozptylový úhel Θ

$$K = \frac{E_2}{E_1} = \left(\frac{M_1 \cos \theta + (M_2^2 - M_1^2 \sin^2 \theta)^{1/2}}{M_1 + M_2}\right)^2$$

Pružný rozptyl

Vzorek

- Coulombická interakce
- Rutherfordův diferenciální účinný průřez
- Kinematický faktor K

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\sin^4 \Theta/2}$$

Počet rozptýlených iontů je dán vztahem:

$$Q_D = \sigma(\Theta) \cdot \Omega \cdot Q \cdot N_S$$

 N_s plošná hustota terče Ω prostorový úhel detektoru Kinematický faktor binární srážky

Metoda umožňuje hmotnostní identifikaci M₂

Problémem je rozlišení těžkých prvků pomocí lehkých primárních částic – viz později

Spektrum naměřené na velmi tenkém terči

Účinný průřez pro Alfa částice

 metoda je 100x citlivější pro těžké prvky

 $\Delta K = \Delta E_1 / E_0$

 $\Delta K_1 >> \Delta K_2$

 $\Delta E_{1(1)} >> \Delta E_{1(2)}$

- Rozlišení pro lehké prvky je mnohem vyšší než pro těžké prvky.
- Rozlišení těžkých prvků je možné zvýšit použitím těžších primárních iontů.

Ztráta do místa srážky

$$\Delta E_{in} = \left(\frac{dE}{dx}\right)_{in} \cdot \Delta x$$

Změna energie při srážce

 $\Delta E_{S} = (1 - K)(E_{0} - \Delta E_{in})$

Ztráta energie při úniku z terče

$$\Delta E_{out} = \left(\frac{dE}{dx}\right)_{out} \cdot \frac{\Delta x}{\cos\Theta}$$

Změřená energie

Vzorek

$$E_1(x) = K \cdot E_0 - S \cdot x$$

$$E_{1} = E_{0} - \Delta E_{in} - \Delta E_{S} - \Delta E_{out}$$

$$\approx KE_{0} - \left[\left(\frac{dE}{dx} \right)_{in} \cdot K + \left(\frac{dE}{dx} \right)_{out} \cdot \frac{1}{\cos \Theta} \right] \cdot x$$

$$\int \mathbf{S}$$

Analýza vrstevnatých terčů

Vrstva složená z atomů typu A a vrstva typu B

Kvalitativní interpretace

Kvalitativní interpretace

Příklad: vrstva na podložce

Vhodnější je analyzovat vrstvu těžkých prvků na podložce z lehkých prvků

Příklad: struktura Au / Al / Au

Příklad: vrstva Cr/Ni na Si

Srovnání naměřených dat se simulací – určení koncentračních profilů ve vzorku

$$\frac{E_f}{E_i} = \left(\frac{\left(M^2 - M_i^2 \sin^2\theta\right)^{1/2} + M_i \cos\theta}{M + M_i}\right)^2$$

Ei

Ef

Mi M

q

energie dopadajících iontů energie rozptýlených iontů hmotnost dopadajících iontů hmotnost rozptýlených iontů úhel rozptylu

Parametry metody

Prvky	Li –U
Standardní parametry	2 KeVsvazek He+, Ne+, Ar+, Kr+, Na+, Li+
Přesnost	Stechiometrie: < 5% rel.
	Používánapro analýzu prvků na povrchu
Citlivost	10 ppmaž 1% v závislosti na Z
Hloubkové rozlišení	~1 monovrstva
Poznámky	Informační hloubka 1 monovrstva(~ 0.2 nm) – 10 nm Jednoduchá kvantifikace
	Poskytuje strukturní informace v reálném prostoru
	Neni oviivnena matricovymi efekty

Example: 3 keV Ne \rightarrow alloy

Princip metody – použití HMA

Příklad LEIS spektra

Demonstrace citlivosti ISS vůči povrchům. Přerušovaná čára odpovídá spektru čistého povrchu Si (111) získaného ionty He+ o energii 1 keV rozptýlených pod úhlem 142°, plná čára pak spektru získaného těmito ionty od povrchu Si (100) pokrytého jednou monovrstvou atomů Br. Ve spektru vyznačeném plnou čarou zcela vymizel pík od substrátu Si (100), neboť ionty nepronikají přes atomy Br k níže ležícím atomům Si.

Tenká vrstva Pd (1 ML) připravená na podložku Al / α -Al₂O₃

Nižší pokrytí povrchu Al vrstvou Pd po ohřevu – difúze do podpovrchových vrstev a tvorba binární slitiny Pd-Al.

Spektroskopie rozptýlených iontů (TOF – LEIS) Měření doby letu odražených částic

QUANTITATIVE TOP ATOMIC LAYER CHARACTERISATION

Scattering of noble gas ions by surface atoms

Energy spectrum of the scattered ions corresponding to the masses of the surface atoms

- Velký akceptační úhel
- Paralelní detekce (energiová)
- Statický LEIS (nízké dávky)
- TOF eliminace SIMS iontů

3000x vyšší citlivost než konvenční LEIS přístroj

Nedestruktuvní hloubková informace

[LEIS - H. Brongersma]

Nedestruktuvní hloubková informace

Modrá křivka – submonovrstva Ba Červená křivka – Ba na PPV (poly phenylen vinylen)

Tvar křivky odpovídá hloubkovému rozdělení

Kov – polymer interface Depozice Ba na povrch PPV Difúze Ba do podložky

Odprášené atomy, ionty a klastry

- srážková kaskáda při povrchu
- emise atomů a dalších částic z povrchu vzorku

• malá část ve formě (sekundárních) iontů

0

- Secondary Ion Mass Spectroscopy
- Hmotnostní spektroskopie sekundárních iontů

Sekundární ionty

- separovány v hmotnostním filtru na základě poměru hmotnosti a náboje
- charakterizují chemické složení povrchu jsou

- Statický SIMS SSIMS
 - Dávka primárních iontů <10¹² cm⁻²
 - Každý iont dopadne na nepoškozené místo
 - Desorpce molekul z povrchu
 - Informace o molekulárním složení povrchu
- Dynamický SIMS -DSIMS
 - Dávka primárních iontů >10¹² cm⁻²
 - Každý iont dopadne na fyzikálně i chemickyzměněný povrch
 - Informace o prvkovém a izotopickém složení

Experimentální vybavení –

- Zdroj primárních iontů (Ar+, Ga+, Cs+, O₂+)
- Držák vzorků, manipulátor
- Iontová optika pro extrakci sekundárních iontů
- Energetický filtr
- Hmotnostní analyzátor
- Detektor
- Vakuová komora

Hmotnostní analyzátor

	Quadrupole	Time of Flight	Magnetic Sector
Mass resolution m/am	<600	>20,000	<20,000
Mass range	Up to 1000 amu	Thousands of amu	1-280 amu (typical)
Type of analysis	Static & Dynamic	Static (also shallow implant profiles)	Dynamic & Static
Data sequence	Sequential	Burst	Sequential
Cost	Least expensive	Medium cost	Most expensive

Hmotnostní spektrum

- separace podle m/q
- izotopy, klastry
- interference na různých hmotách

Výstupy metody SIMS
 hmotnostní spektrum
 hloubkový profil
 izotopové složení
 2D povrchové složení
 3D SIMS

RESISTIVE ANODE ENCODER ACCESSORY

NiFeCr Stainless Steel images

150μm diameter, O₂⁺Primary ions, impact energy 5keV Acquisition Time: 60s for trace elements Elements analysed: Ni, Al, Mg, Cr, K, Na

Signál generovaný počítačem

Trajektorie primárního svazku na vzorku během profilování

Hloubkový profil

Rastrovaná plocha 3 mm2

 $J_{S} = J_{P} c Y \beta^{\pm} f$

 J_s – proud sekundárních iontů

- J_P-proud primárních iontů
- c relativní atomová koncentrace
- Y korigovaný výtěžek odprašování daného prvku
- β^{\pm} pravděpodobnost ionizace (efekt matrice)
 - f kolekční účinnost (transmisivita) přístroje

Metoda kalibračních standardů

- Příprava kalibračního standardu
- Změření kalibračního standartu za stejných podmínek jako "reálného" vzorku
- Výpočet relativního citlivostního faktoru (RSF)
- Převod škály intenzit (counts/s) na koncentrace (at/cm3)
- u "reálného" vzorku

Nutné podmínky kvantitativní SIMS analýzy:

- rovnovážný stav odprašování
- lineární závislost signálu na koncentraci nízké koncentrace (do několika procent)

Implantovaný kalibrační standard: ⁵⁵Mn v GaAs 360 keV, 5x10¹⁵ cm⁻²

Vzorek: 50 nm GaMnAs/GaAs

Metoda SIMS

Kvantitativní analýza je ovlivněna zejména:

- Kráterový jev
- Promíchávání atomů ve srážkové kaskádě
- Povrchová morfologie
- Nabíjení povrchu (u málo vodivých vzorků)
- Kontaminace povrchu
- Informační hloubka

Metoda SIMS - závěr

- Proč používat SIMS
 - O nízký detekční limit
 - detekce všech prvků a jejich izotopů
 - ovrchová citlivost
 - O 3D analýza, hloubkové profilování
 - O možná kvantifikace

Srovnání metod

method	AES	XPS	UPS	SSIMS	DSIMS	ISS	RB
základní informace	chemické složení	chemické složení	struktura val. pásu povrchové chemické	chemické složení (izotopy)	chemické složení (izotopy)	chemické složení	che slo
citlivost (det. limit) ppm	1000	1000	¥02́by104	10	10-3	104	104
povrchová citlivost (hloubkové	1	1	0.3	0.6	10	0.3	10
rozlišení) nm laterální rozlišení	25 nm	0.1 mm	1 mm	1 mikron	50 nm	1 mm	1 n
nedestruktivní?	víceméně	ano	ano	víceméně	ne	víceméně	and
hloubkový profil	v kombinaci s odprašováním , nebo změnou energie a úhlu dopadu	v kombinaci s odprašováním , nebo změnou energie fotoelektronů a	-	ano (pomalý)	ano	v kombinaci s odprašováním	and
další informace	valence, chemický stav	ú hlunde țekce chemický stav, struktura	vazebná geometrie (ARUPS)	povrchové sloučeniny	povrchové sloučeniny	struktura (LEIS)	stru
modifikace	mapování a zobrazení prvků (SAM)	(ARPES)			zobrazení		mi

Srovnání metod

Srovnání metod

